| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. |
| * Copyright (C) 2018-2020 Linaro Ltd. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/bits.h> |
| #include <linux/bitfield.h> |
| #include <linux/mutex.h> |
| #include <linux/completion.h> |
| #include <linux/io.h> |
| #include <linux/bug.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/netdevice.h> |
| |
| #include "gsi.h" |
| #include "gsi_reg.h" |
| #include "gsi_private.h" |
| #include "gsi_trans.h" |
| #include "ipa_gsi.h" |
| #include "ipa_data.h" |
| #include "ipa_version.h" |
| |
| /** |
| * DOC: The IPA Generic Software Interface |
| * |
| * The generic software interface (GSI) is an integral component of the IPA, |
| * providing a well-defined communication layer between the AP subsystem |
| * and the IPA core. The modem uses the GSI layer as well. |
| * |
| * -------- --------- |
| * | | | | |
| * | AP +<---. .----+ Modem | |
| * | +--. | | .->+ | |
| * | | | | | | | | |
| * -------- | | | | --------- |
| * v | v | |
| * --+-+---+-+-- |
| * | GSI | |
| * |-----------| |
| * | | |
| * | IPA | |
| * | | |
| * ------------- |
| * |
| * In the above diagram, the AP and Modem represent "execution environments" |
| * (EEs), which are independent operating environments that use the IPA for |
| * data transfer. |
| * |
| * Each EE uses a set of unidirectional GSI "channels," which allow transfer |
| * of data to or from the IPA. A channel is implemented as a ring buffer, |
| * with a DRAM-resident array of "transfer elements" (TREs) available to |
| * describe transfers to or from other EEs through the IPA. A transfer |
| * element can also contain an immediate command, requesting the IPA perform |
| * actions other than data transfer. |
| * |
| * Each TRE refers to a block of data--also located DRAM. After writing one |
| * or more TREs to a channel, the writer (either the IPA or an EE) writes a |
| * doorbell register to inform the receiving side how many elements have |
| * been written. |
| * |
| * Each channel has a GSI "event ring" associated with it. An event ring |
| * is implemented very much like a channel ring, but is always directed from |
| * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel |
| * events by adding an entry to the event ring associated with the channel. |
| * The GSI then writes its doorbell for the event ring, causing the target |
| * EE to be interrupted. Each entry in an event ring contains a pointer |
| * to the channel TRE whose completion the event represents. |
| * |
| * Each TRE in a channel ring has a set of flags. One flag indicates whether |
| * the completion of the transfer operation generates an entry (and possibly |
| * an interrupt) in the channel's event ring. Other flags allow transfer |
| * elements to be chained together, forming a single logical transaction. |
| * TRE flags are used to control whether and when interrupts are generated |
| * to signal completion of channel transfers. |
| * |
| * Elements in channel and event rings are completed (or consumed) strictly |
| * in order. Completion of one entry implies the completion of all preceding |
| * entries. A single completion interrupt can therefore communicate the |
| * completion of many transfers. |
| * |
| * Note that all GSI registers are little-endian, which is the assumed |
| * endianness of I/O space accesses. The accessor functions perform byte |
| * swapping if needed (i.e., for a big endian CPU). |
| */ |
| |
| /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ |
| #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ |
| |
| #define GSI_CMD_TIMEOUT 5 /* seconds */ |
| |
| #define GSI_CHANNEL_STOP_RX_RETRIES 10 |
| #define GSI_CHANNEL_MODEM_HALT_RETRIES 10 |
| |
| #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ |
| #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ |
| |
| #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ |
| |
| /* An entry in an event ring */ |
| struct gsi_event { |
| __le64 xfer_ptr; |
| __le16 len; |
| u8 reserved1; |
| u8 code; |
| __le16 reserved2; |
| u8 type; |
| u8 chid; |
| }; |
| |
| /** gsi_channel_scratch_gpi - GPI protocol scratch register |
| * @max_outstanding_tre: |
| * Defines the maximum number of TREs allowed in a single transaction |
| * on a channel (in bytes). This determines the amount of prefetch |
| * performed by the hardware. We configure this to equal the size of |
| * the TLV FIFO for the channel. |
| * @outstanding_threshold: |
| * Defines the threshold (in bytes) determining when the sequencer |
| * should update the channel doorbell. We configure this to equal |
| * the size of two TREs. |
| */ |
| struct gsi_channel_scratch_gpi { |
| u64 reserved1; |
| u16 reserved2; |
| u16 max_outstanding_tre; |
| u16 reserved3; |
| u16 outstanding_threshold; |
| }; |
| |
| /** gsi_channel_scratch - channel scratch configuration area |
| * |
| * The exact interpretation of this register is protocol-specific. |
| * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. |
| */ |
| union gsi_channel_scratch { |
| struct gsi_channel_scratch_gpi gpi; |
| struct { |
| u32 word1; |
| u32 word2; |
| u32 word3; |
| u32 word4; |
| } data; |
| }; |
| |
| /* Check things that can be validated at build time. */ |
| static void gsi_validate_build(void) |
| { |
| /* This is used as a divisor */ |
| BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); |
| |
| /* Code assumes the size of channel and event ring element are |
| * the same (and fixed). Make sure the size of an event ring |
| * element is what's expected. |
| */ |
| BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); |
| |
| /* Hardware requires a 2^n ring size. We ensure the number of |
| * elements in an event ring is a power of 2 elsewhere; this |
| * ensure the elements themselves meet the requirement. |
| */ |
| BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); |
| |
| /* The channel element size must fit in this field */ |
| BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); |
| |
| /* The event ring element size must fit in this field */ |
| BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); |
| } |
| |
| /* Return the channel id associated with a given channel */ |
| static u32 gsi_channel_id(struct gsi_channel *channel) |
| { |
| return channel - &channel->gsi->channel[0]; |
| } |
| |
| /* Update the GSI IRQ type register with the cached value */ |
| static void gsi_irq_type_update(struct gsi *gsi, u32 val) |
| { |
| gsi->type_enabled_bitmap = val; |
| iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); |
| } |
| |
| static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id) |
| { |
| gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id)); |
| } |
| |
| static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) |
| { |
| gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id)); |
| } |
| |
| /* Turn off all GSI interrupts initially */ |
| static void gsi_irq_setup(struct gsi *gsi) |
| { |
| u32 adjust; |
| |
| /* Disable all interrupt types */ |
| gsi_irq_type_update(gsi, 0); |
| |
| /* Clear all type-specific interrupt masks */ |
| iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); |
| iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); |
| iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); |
| iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); |
| |
| /* Reverse the offset adjustment for inter-EE register offsets */ |
| adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST; |
| iowrite32(0, gsi->virt + adjust + GSI_INTER_EE_SRC_CH_IRQ_OFFSET); |
| iowrite32(0, gsi->virt + adjust + GSI_INTER_EE_SRC_EV_CH_IRQ_OFFSET); |
| |
| iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); |
| } |
| |
| /* Turn off all GSI interrupts when we're all done */ |
| static void gsi_irq_teardown(struct gsi *gsi) |
| { |
| /* Nothing to do */ |
| } |
| |
| static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id) |
| { |
| bool enable_ieob = !gsi->ieob_enabled_bitmap; |
| u32 val; |
| |
| gsi->ieob_enabled_bitmap |= BIT(evt_ring_id); |
| val = gsi->ieob_enabled_bitmap; |
| iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); |
| |
| /* Enable the interrupt type if this is the first channel enabled */ |
| if (enable_ieob) |
| gsi_irq_type_enable(gsi, GSI_IEOB); |
| } |
| |
| static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id) |
| { |
| u32 val; |
| |
| gsi->ieob_enabled_bitmap &= ~BIT(evt_ring_id); |
| |
| /* Disable the interrupt type if this was the last enabled channel */ |
| if (!gsi->ieob_enabled_bitmap) |
| gsi_irq_type_disable(gsi, GSI_IEOB); |
| |
| val = gsi->ieob_enabled_bitmap; |
| iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); |
| } |
| |
| /* Enable all GSI_interrupt types */ |
| static void gsi_irq_enable(struct gsi *gsi) |
| { |
| u32 val; |
| |
| /* Global interrupts include hardware error reports. Enable |
| * that so we can at least report the error should it occur. |
| */ |
| iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); |
| gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE)); |
| |
| /* General GSI interrupts are reported to all EEs; if they occur |
| * they are unrecoverable (without reset). A breakpoint interrupt |
| * also exists, but we don't support that. We want to be notified |
| * of errors so we can report them, even if they can't be handled. |
| */ |
| val = BIT(BUS_ERROR); |
| val |= BIT(CMD_FIFO_OVRFLOW); |
| val |= BIT(MCS_STACK_OVRFLOW); |
| iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); |
| gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL)); |
| } |
| |
| /* Disable all GSI interrupt types */ |
| static void gsi_irq_disable(struct gsi *gsi) |
| { |
| gsi_irq_type_update(gsi, 0); |
| |
| /* Clear the type-specific interrupt masks set by gsi_irq_enable() */ |
| iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); |
| iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); |
| } |
| |
| /* Return the virtual address associated with a ring index */ |
| void *gsi_ring_virt(struct gsi_ring *ring, u32 index) |
| { |
| /* Note: index *must* be used modulo the ring count here */ |
| return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; |
| } |
| |
| /* Return the 32-bit DMA address associated with a ring index */ |
| static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) |
| { |
| return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE; |
| } |
| |
| /* Return the ring index of a 32-bit ring offset */ |
| static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) |
| { |
| return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; |
| } |
| |
| /* Issue a GSI command by writing a value to a register, then wait for |
| * completion to be signaled. Returns true if the command completes |
| * or false if it times out. |
| */ |
| static bool |
| gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion) |
| { |
| reinit_completion(completion); |
| |
| iowrite32(val, gsi->virt + reg); |
| |
| return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ); |
| } |
| |
| /* Return the hardware's notion of the current state of an event ring */ |
| static enum gsi_evt_ring_state |
| gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) |
| { |
| u32 val; |
| |
| val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); |
| |
| return u32_get_bits(val, EV_CHSTATE_FMASK); |
| } |
| |
| /* Issue an event ring command and wait for it to complete */ |
| static void evt_ring_command(struct gsi *gsi, u32 evt_ring_id, |
| enum gsi_evt_cmd_opcode opcode) |
| { |
| struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; |
| struct completion *completion = &evt_ring->completion; |
| struct device *dev = gsi->dev; |
| bool success; |
| u32 val; |
| |
| /* We only perform one event ring command at a time, and event |
| * control interrupts should only occur when such a command |
| * is issued here. Only permit *this* event ring to trigger |
| * an interrupt, and only enable the event control IRQ type |
| * when we expect it to occur. |
| * |
| * There's a small chance that a previous command completed |
| * after the interrupt was disabled, so make sure we have no |
| * pending interrupts before we enable them. |
| */ |
| iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); |
| |
| val = BIT(evt_ring_id); |
| iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); |
| gsi_irq_type_enable(gsi, GSI_EV_CTRL); |
| |
| val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); |
| val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); |
| |
| success = gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion); |
| |
| /* Disable the interrupt again */ |
| gsi_irq_type_disable(gsi, GSI_EV_CTRL); |
| iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); |
| |
| if (success) |
| return; |
| |
| dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n", |
| opcode, evt_ring_id, evt_ring->state); |
| } |
| |
| /* Allocate an event ring in NOT_ALLOCATED state */ |
| static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) |
| { |
| struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; |
| |
| /* Get initial event ring state */ |
| evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); |
| if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) { |
| dev_err(gsi->dev, "event ring %u bad state %u before alloc\n", |
| evt_ring_id, evt_ring->state); |
| return -EINVAL; |
| } |
| |
| evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); |
| |
| /* If successful the event ring state will have changed */ |
| if (evt_ring->state == GSI_EVT_RING_STATE_ALLOCATED) |
| return 0; |
| |
| dev_err(gsi->dev, "event ring %u bad state %u after alloc\n", |
| evt_ring_id, evt_ring->state); |
| |
| return -EIO; |
| } |
| |
| /* Reset a GSI event ring in ALLOCATED or ERROR state. */ |
| static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) |
| { |
| struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; |
| enum gsi_evt_ring_state state = evt_ring->state; |
| |
| if (state != GSI_EVT_RING_STATE_ALLOCATED && |
| state != GSI_EVT_RING_STATE_ERROR) { |
| dev_err(gsi->dev, "event ring %u bad state %u before reset\n", |
| evt_ring_id, evt_ring->state); |
| return; |
| } |
| |
| evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); |
| |
| /* If successful the event ring state will have changed */ |
| if (evt_ring->state == GSI_EVT_RING_STATE_ALLOCATED) |
| return; |
| |
| dev_err(gsi->dev, "event ring %u bad state %u after reset\n", |
| evt_ring_id, evt_ring->state); |
| } |
| |
| /* Issue a hardware de-allocation request for an allocated event ring */ |
| static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) |
| { |
| struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; |
| |
| if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) { |
| dev_err(gsi->dev, "event ring %u state %u before dealloc\n", |
| evt_ring_id, evt_ring->state); |
| return; |
| } |
| |
| evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); |
| |
| /* If successful the event ring state will have changed */ |
| if (evt_ring->state == GSI_EVT_RING_STATE_NOT_ALLOCATED) |
| return; |
| |
| dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n", |
| evt_ring_id, evt_ring->state); |
| } |
| |
| /* Fetch the current state of a channel from hardware */ |
| static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) |
| { |
| u32 channel_id = gsi_channel_id(channel); |
| void *virt = channel->gsi->virt; |
| u32 val; |
| |
| val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); |
| |
| return u32_get_bits(val, CHSTATE_FMASK); |
| } |
| |
| /* Issue a channel command and wait for it to complete */ |
| static void |
| gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) |
| { |
| struct completion *completion = &channel->completion; |
| u32 channel_id = gsi_channel_id(channel); |
| struct gsi *gsi = channel->gsi; |
| struct device *dev = gsi->dev; |
| bool success; |
| u32 val; |
| |
| /* We only perform one channel command at a time, and channel |
| * control interrupts should only occur when such a command is |
| * issued here. So we only permit *this* channel to trigger |
| * an interrupt and only enable the channel control IRQ type |
| * when we expect it to occur. |
| * |
| * There's a small chance that a previous command completed |
| * after the interrupt was disabled, so make sure we have no |
| * pending interrupts before we enable them. |
| */ |
| iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); |
| |
| val = BIT(channel_id); |
| iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); |
| gsi_irq_type_enable(gsi, GSI_CH_CTRL); |
| |
| val = u32_encode_bits(channel_id, CH_CHID_FMASK); |
| val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); |
| success = gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion); |
| |
| /* Disable the interrupt again */ |
| gsi_irq_type_disable(gsi, GSI_CH_CTRL); |
| iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); |
| |
| if (success) |
| return; |
| |
| dev_err(dev, "GSI command %u for channel %u timed out, state %u\n", |
| opcode, channel_id, gsi_channel_state(channel)); |
| } |
| |
| /* Allocate GSI channel in NOT_ALLOCATED state */ |
| static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| struct device *dev = gsi->dev; |
| enum gsi_channel_state state; |
| |
| /* Get initial channel state */ |
| state = gsi_channel_state(channel); |
| if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) { |
| dev_err(dev, "channel %u bad state %u before alloc\n", |
| channel_id, state); |
| return -EINVAL; |
| } |
| |
| gsi_channel_command(channel, GSI_CH_ALLOCATE); |
| |
| /* If successful the channel state will have changed */ |
| state = gsi_channel_state(channel); |
| if (state == GSI_CHANNEL_STATE_ALLOCATED) |
| return 0; |
| |
| dev_err(dev, "channel %u bad state %u after alloc\n", |
| channel_id, state); |
| |
| return -EIO; |
| } |
| |
| /* Start an ALLOCATED channel */ |
| static int gsi_channel_start_command(struct gsi_channel *channel) |
| { |
| struct device *dev = channel->gsi->dev; |
| enum gsi_channel_state state; |
| |
| state = gsi_channel_state(channel); |
| if (state != GSI_CHANNEL_STATE_ALLOCATED && |
| state != GSI_CHANNEL_STATE_STOPPED) { |
| dev_err(dev, "channel %u bad state %u before start\n", |
| gsi_channel_id(channel), state); |
| return -EINVAL; |
| } |
| |
| gsi_channel_command(channel, GSI_CH_START); |
| |
| /* If successful the channel state will have changed */ |
| state = gsi_channel_state(channel); |
| if (state == GSI_CHANNEL_STATE_STARTED) |
| return 0; |
| |
| dev_err(dev, "channel %u bad state %u after start\n", |
| gsi_channel_id(channel), state); |
| |
| return -EIO; |
| } |
| |
| /* Stop a GSI channel in STARTED state */ |
| static int gsi_channel_stop_command(struct gsi_channel *channel) |
| { |
| struct device *dev = channel->gsi->dev; |
| enum gsi_channel_state state; |
| |
| state = gsi_channel_state(channel); |
| |
| /* Channel could have entered STOPPED state since last call |
| * if it timed out. If so, we're done. |
| */ |
| if (state == GSI_CHANNEL_STATE_STOPPED) |
| return 0; |
| |
| if (state != GSI_CHANNEL_STATE_STARTED && |
| state != GSI_CHANNEL_STATE_STOP_IN_PROC) { |
| dev_err(dev, "channel %u bad state %u before stop\n", |
| gsi_channel_id(channel), state); |
| return -EINVAL; |
| } |
| |
| gsi_channel_command(channel, GSI_CH_STOP); |
| |
| /* If successful the channel state will have changed */ |
| state = gsi_channel_state(channel); |
| if (state == GSI_CHANNEL_STATE_STOPPED) |
| return 0; |
| |
| /* We may have to try again if stop is in progress */ |
| if (state == GSI_CHANNEL_STATE_STOP_IN_PROC) |
| return -EAGAIN; |
| |
| dev_err(dev, "channel %u bad state %u after stop\n", |
| gsi_channel_id(channel), state); |
| |
| return -EIO; |
| } |
| |
| /* Reset a GSI channel in ALLOCATED or ERROR state. */ |
| static void gsi_channel_reset_command(struct gsi_channel *channel) |
| { |
| struct device *dev = channel->gsi->dev; |
| enum gsi_channel_state state; |
| |
| msleep(1); /* A short delay is required before a RESET command */ |
| |
| state = gsi_channel_state(channel); |
| if (state != GSI_CHANNEL_STATE_STOPPED && |
| state != GSI_CHANNEL_STATE_ERROR) { |
| /* No need to reset a channel already in ALLOCATED state */ |
| if (state != GSI_CHANNEL_STATE_ALLOCATED) |
| dev_err(dev, "channel %u bad state %u before reset\n", |
| gsi_channel_id(channel), state); |
| return; |
| } |
| |
| gsi_channel_command(channel, GSI_CH_RESET); |
| |
| /* If successful the channel state will have changed */ |
| state = gsi_channel_state(channel); |
| if (state != GSI_CHANNEL_STATE_ALLOCATED) |
| dev_err(dev, "channel %u bad state %u after reset\n", |
| gsi_channel_id(channel), state); |
| } |
| |
| /* Deallocate an ALLOCATED GSI channel */ |
| static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| struct device *dev = gsi->dev; |
| enum gsi_channel_state state; |
| |
| state = gsi_channel_state(channel); |
| if (state != GSI_CHANNEL_STATE_ALLOCATED) { |
| dev_err(dev, "channel %u bad state %u before dealloc\n", |
| channel_id, state); |
| return; |
| } |
| |
| gsi_channel_command(channel, GSI_CH_DE_ALLOC); |
| |
| /* If successful the channel state will have changed */ |
| state = gsi_channel_state(channel); |
| |
| if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) |
| dev_err(dev, "channel %u bad state %u after dealloc\n", |
| channel_id, state); |
| } |
| |
| /* Ring an event ring doorbell, reporting the last entry processed by the AP. |
| * The index argument (modulo the ring count) is the first unfilled entry, so |
| * we supply one less than that with the doorbell. Update the event ring |
| * index field with the value provided. |
| */ |
| static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) |
| { |
| struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; |
| u32 val; |
| |
| ring->index = index; /* Next unused entry */ |
| |
| /* Note: index *must* be used modulo the ring count here */ |
| val = gsi_ring_addr(ring, (index - 1) % ring->count); |
| iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); |
| } |
| |
| /* Program an event ring for use */ |
| static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) |
| { |
| struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; |
| size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE; |
| u32 val; |
| |
| /* We program all event rings as GPI type/protocol */ |
| val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK); |
| val |= EV_INTYPE_FMASK; |
| val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); |
| iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); |
| |
| val = u32_encode_bits(size, EV_R_LENGTH_FMASK); |
| iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); |
| |
| /* The context 2 and 3 registers store the low-order and |
| * high-order 32 bits of the address of the event ring, |
| * respectively. |
| */ |
| val = evt_ring->ring.addr & GENMASK(31, 0); |
| iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); |
| |
| val = evt_ring->ring.addr >> 32; |
| iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); |
| |
| /* Enable interrupt moderation by setting the moderation delay */ |
| val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); |
| val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ |
| iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); |
| |
| /* No MSI write data, and MSI address high and low address is 0 */ |
| iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); |
| iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); |
| iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); |
| |
| /* We don't need to get event read pointer updates */ |
| iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); |
| iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); |
| |
| /* Finally, tell the hardware we've completed event 0 (arbitrary) */ |
| gsi_evt_ring_doorbell(gsi, evt_ring_id, 0); |
| } |
| |
| /* Return the last (most recent) transaction completed on a channel. */ |
| static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) |
| { |
| struct gsi_trans_info *trans_info = &channel->trans_info; |
| struct gsi_trans *trans; |
| |
| spin_lock_bh(&trans_info->spinlock); |
| |
| if (!list_empty(&trans_info->complete)) |
| trans = list_last_entry(&trans_info->complete, |
| struct gsi_trans, links); |
| else if (!list_empty(&trans_info->polled)) |
| trans = list_last_entry(&trans_info->polled, |
| struct gsi_trans, links); |
| else |
| trans = NULL; |
| |
| /* Caller will wait for this, so take a reference */ |
| if (trans) |
| refcount_inc(&trans->refcount); |
| |
| spin_unlock_bh(&trans_info->spinlock); |
| |
| return trans; |
| } |
| |
| /* Wait for transaction activity on a channel to complete */ |
| static void gsi_channel_trans_quiesce(struct gsi_channel *channel) |
| { |
| struct gsi_trans *trans; |
| |
| /* Get the last transaction, and wait for it to complete */ |
| trans = gsi_channel_trans_last(channel); |
| if (trans) { |
| wait_for_completion(&trans->completion); |
| gsi_trans_free(trans); |
| } |
| } |
| |
| /* Stop channel activity. Transactions may not be allocated until thawed. */ |
| static void gsi_channel_freeze(struct gsi_channel *channel) |
| { |
| gsi_channel_trans_quiesce(channel); |
| |
| napi_disable(&channel->napi); |
| |
| gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id); |
| } |
| |
| /* Allow transactions to be used on the channel again. */ |
| static void gsi_channel_thaw(struct gsi_channel *channel) |
| { |
| gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id); |
| |
| napi_enable(&channel->napi); |
| } |
| |
| /* Program a channel for use */ |
| static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) |
| { |
| size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; |
| u32 channel_id = gsi_channel_id(channel); |
| union gsi_channel_scratch scr = { }; |
| struct gsi_channel_scratch_gpi *gpi; |
| struct gsi *gsi = channel->gsi; |
| u32 wrr_weight = 0; |
| u32 val; |
| |
| /* Arbitrarily pick TRE 0 as the first channel element to use */ |
| channel->tre_ring.index = 0; |
| |
| /* We program all channels as GPI type/protocol */ |
| val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, CHTYPE_PROTOCOL_FMASK); |
| if (channel->toward_ipa) |
| val |= CHTYPE_DIR_FMASK; |
| val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); |
| val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); |
| iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); |
| |
| val = u32_encode_bits(size, R_LENGTH_FMASK); |
| iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); |
| |
| /* The context 2 and 3 registers store the low-order and |
| * high-order 32 bits of the address of the channel ring, |
| * respectively. |
| */ |
| val = channel->tre_ring.addr & GENMASK(31, 0); |
| iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); |
| |
| val = channel->tre_ring.addr >> 32; |
| iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); |
| |
| /* Command channel gets low weighted round-robin priority */ |
| if (channel->command) |
| wrr_weight = field_max(WRR_WEIGHT_FMASK); |
| val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); |
| |
| /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ |
| |
| /* We enable the doorbell engine for IPA v3.5.1 */ |
| if (gsi->version == IPA_VERSION_3_5_1 && doorbell) |
| val |= USE_DB_ENG_FMASK; |
| |
| /* v4.0 introduces an escape buffer for prefetch. We use it |
| * on all but the AP command channel. |
| */ |
| if (gsi->version != IPA_VERSION_3_5_1 && !channel->command) { |
| /* If not otherwise set, prefetch buffers are used */ |
| if (gsi->version < IPA_VERSION_4_5) |
| val |= USE_ESCAPE_BUF_ONLY_FMASK; |
| else |
| val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY, |
| PREFETCH_MODE_FMASK); |
| } |
| |
| iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); |
| |
| /* Now update the scratch registers for GPI protocol */ |
| gpi = &scr.gpi; |
| gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) * |
| GSI_RING_ELEMENT_SIZE; |
| gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; |
| |
| val = scr.data.word1; |
| iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); |
| |
| val = scr.data.word2; |
| iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); |
| |
| val = scr.data.word3; |
| iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); |
| |
| /* We must preserve the upper 16 bits of the last scratch register. |
| * The next sequence assumes those bits remain unchanged between the |
| * read and the write. |
| */ |
| val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); |
| val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); |
| iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); |
| |
| /* All done! */ |
| } |
| |
| static void gsi_channel_deprogram(struct gsi_channel *channel) |
| { |
| /* Nothing to do */ |
| } |
| |
| /* Start an allocated GSI channel */ |
| int gsi_channel_start(struct gsi *gsi, u32 channel_id) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| int ret; |
| |
| mutex_lock(&gsi->mutex); |
| |
| ret = gsi_channel_start_command(channel); |
| |
| mutex_unlock(&gsi->mutex); |
| |
| gsi_channel_thaw(channel); |
| |
| return ret; |
| } |
| |
| /* Stop a started channel */ |
| int gsi_channel_stop(struct gsi *gsi, u32 channel_id) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| u32 retries; |
| int ret; |
| |
| gsi_channel_freeze(channel); |
| |
| /* RX channels might require a little time to enter STOPPED state */ |
| retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES; |
| |
| mutex_lock(&gsi->mutex); |
| |
| do { |
| ret = gsi_channel_stop_command(channel); |
| if (ret != -EAGAIN) |
| break; |
| msleep(1); |
| } while (retries--); |
| |
| mutex_unlock(&gsi->mutex); |
| |
| /* Thaw the channel if we need to retry (or on error) */ |
| if (ret) |
| gsi_channel_thaw(channel); |
| |
| return ret; |
| } |
| |
| /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */ |
| void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| |
| mutex_lock(&gsi->mutex); |
| |
| gsi_channel_reset_command(channel); |
| /* Due to a hardware quirk we may need to reset RX channels twice. */ |
| if (gsi->version == IPA_VERSION_3_5_1 && !channel->toward_ipa) |
| gsi_channel_reset_command(channel); |
| |
| gsi_channel_program(channel, doorbell); |
| gsi_channel_trans_cancel_pending(channel); |
| |
| mutex_unlock(&gsi->mutex); |
| } |
| |
| /* Stop a STARTED channel for suspend (using stop if requested) */ |
| int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| |
| if (stop) |
| return gsi_channel_stop(gsi, channel_id); |
| |
| gsi_channel_freeze(channel); |
| |
| return 0; |
| } |
| |
| /* Resume a suspended channel (starting will be requested if STOPPED) */ |
| int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| |
| if (start) |
| return gsi_channel_start(gsi, channel_id); |
| |
| gsi_channel_thaw(channel); |
| |
| return 0; |
| } |
| |
| /** |
| * gsi_channel_tx_queued() - Report queued TX transfers for a channel |
| * @channel: Channel for which to report |
| * |
| * Report to the network stack the number of bytes and transactions that |
| * have been queued to hardware since last call. This and the next function |
| * supply information used by the network stack for throttling. |
| * |
| * For each channel we track the number of transactions used and bytes of |
| * data those transactions represent. We also track what those values are |
| * each time this function is called. Subtracting the two tells us |
| * the number of bytes and transactions that have been added between |
| * successive calls. |
| * |
| * Calling this each time we ring the channel doorbell allows us to |
| * provide accurate information to the network stack about how much |
| * work we've given the hardware at any point in time. |
| */ |
| void gsi_channel_tx_queued(struct gsi_channel *channel) |
| { |
| u32 trans_count; |
| u32 byte_count; |
| |
| byte_count = channel->byte_count - channel->queued_byte_count; |
| trans_count = channel->trans_count - channel->queued_trans_count; |
| channel->queued_byte_count = channel->byte_count; |
| channel->queued_trans_count = channel->trans_count; |
| |
| ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel), |
| trans_count, byte_count); |
| } |
| |
| /** |
| * gsi_channel_tx_update() - Report completed TX transfers |
| * @channel: Channel that has completed transmitting packets |
| * @trans: Last transation known to be complete |
| * |
| * Compute the number of transactions and bytes that have been transferred |
| * over a TX channel since the given transaction was committed. Report this |
| * information to the network stack. |
| * |
| * At the time a transaction is committed, we record its channel's |
| * committed transaction and byte counts *in the transaction*. |
| * Completions are signaled by the hardware with an interrupt, and |
| * we can determine the latest completed transaction at that time. |
| * |
| * The difference between the byte/transaction count recorded in |
| * the transaction and the count last time we recorded a completion |
| * tells us exactly how much data has been transferred between |
| * completions. |
| * |
| * Calling this each time we learn of a newly-completed transaction |
| * allows us to provide accurate information to the network stack |
| * about how much work has been completed by the hardware at a given |
| * point in time. |
| */ |
| static void |
| gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans) |
| { |
| u64 byte_count = trans->byte_count + trans->len; |
| u64 trans_count = trans->trans_count + 1; |
| |
| byte_count -= channel->compl_byte_count; |
| channel->compl_byte_count += byte_count; |
| trans_count -= channel->compl_trans_count; |
| channel->compl_trans_count += trans_count; |
| |
| ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel), |
| trans_count, byte_count); |
| } |
| |
| /* Channel control interrupt handler */ |
| static void gsi_isr_chan_ctrl(struct gsi *gsi) |
| { |
| u32 channel_mask; |
| |
| channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); |
| iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); |
| |
| while (channel_mask) { |
| u32 channel_id = __ffs(channel_mask); |
| struct gsi_channel *channel; |
| |
| channel_mask ^= BIT(channel_id); |
| |
| channel = &gsi->channel[channel_id]; |
| |
| complete(&channel->completion); |
| } |
| } |
| |
| /* Event ring control interrupt handler */ |
| static void gsi_isr_evt_ctrl(struct gsi *gsi) |
| { |
| u32 event_mask; |
| |
| event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); |
| iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); |
| |
| while (event_mask) { |
| u32 evt_ring_id = __ffs(event_mask); |
| struct gsi_evt_ring *evt_ring; |
| |
| event_mask ^= BIT(evt_ring_id); |
| |
| evt_ring = &gsi->evt_ring[evt_ring_id]; |
| evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); |
| |
| complete(&evt_ring->completion); |
| } |
| } |
| |
| /* Global channel error interrupt handler */ |
| static void |
| gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) |
| { |
| if (code == GSI_OUT_OF_RESOURCES) { |
| dev_err(gsi->dev, "channel %u out of resources\n", channel_id); |
| complete(&gsi->channel[channel_id].completion); |
| return; |
| } |
| |
| /* Report, but otherwise ignore all other error codes */ |
| dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", |
| channel_id, err_ee, code); |
| } |
| |
| /* Global event error interrupt handler */ |
| static void |
| gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) |
| { |
| if (code == GSI_OUT_OF_RESOURCES) { |
| struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; |
| u32 channel_id = gsi_channel_id(evt_ring->channel); |
| |
| complete(&evt_ring->completion); |
| dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", |
| channel_id); |
| return; |
| } |
| |
| /* Report, but otherwise ignore all other error codes */ |
| dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", |
| evt_ring_id, err_ee, code); |
| } |
| |
| /* Global error interrupt handler */ |
| static void gsi_isr_glob_err(struct gsi *gsi) |
| { |
| enum gsi_err_type type; |
| enum gsi_err_code code; |
| u32 which; |
| u32 val; |
| u32 ee; |
| |
| /* Get the logged error, then reinitialize the log */ |
| val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); |
| iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); |
| iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); |
| |
| ee = u32_get_bits(val, ERR_EE_FMASK); |
| type = u32_get_bits(val, ERR_TYPE_FMASK); |
| which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); |
| code = u32_get_bits(val, ERR_CODE_FMASK); |
| |
| if (type == GSI_ERR_TYPE_CHAN) |
| gsi_isr_glob_chan_err(gsi, ee, which, code); |
| else if (type == GSI_ERR_TYPE_EVT) |
| gsi_isr_glob_evt_err(gsi, ee, which, code); |
| else /* type GSI_ERR_TYPE_GLOB should be fatal */ |
| dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); |
| } |
| |
| /* Generic EE interrupt handler */ |
| static void gsi_isr_gp_int1(struct gsi *gsi) |
| { |
| u32 result; |
| u32 val; |
| |
| /* This interrupt is used to handle completions of the two GENERIC |
| * GSI commands. We use these to allocate and halt channels on |
| * the modem's behalf due to a hardware quirk on IPA v4.2. Once |
| * allocated, the modem "owns" these channels, and as a result we |
| * have no way of knowing the channel's state at any given time. |
| * |
| * It is recommended that we halt the modem channels we allocated |
| * when shutting down, but it's possible the channel isn't running |
| * at the time we issue the HALT command. We'll get an error in |
| * that case, but it's harmless (the channel is already halted). |
| * |
| * For this reason, we silently ignore a CHANNEL_NOT_RUNNING error |
| * if we receive it. |
| */ |
| val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); |
| result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); |
| |
| switch (result) { |
| case GENERIC_EE_SUCCESS: |
| case GENERIC_EE_CHANNEL_NOT_RUNNING: |
| gsi->result = 0; |
| break; |
| |
| case GENERIC_EE_RETRY: |
| gsi->result = -EAGAIN; |
| break; |
| |
| default: |
| dev_err(gsi->dev, "global INT1 generic result %u\n", result); |
| gsi->result = -EIO; |
| break; |
| } |
| |
| complete(&gsi->completion); |
| } |
| |
| /* Inter-EE interrupt handler */ |
| static void gsi_isr_glob_ee(struct gsi *gsi) |
| { |
| u32 val; |
| |
| val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); |
| |
| if (val & BIT(ERROR_INT)) |
| gsi_isr_glob_err(gsi); |
| |
| iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); |
| |
| val &= ~BIT(ERROR_INT); |
| |
| if (val & BIT(GP_INT1)) { |
| val ^= BIT(GP_INT1); |
| gsi_isr_gp_int1(gsi); |
| } |
| |
| if (val) |
| dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); |
| } |
| |
| /* I/O completion interrupt event */ |
| static void gsi_isr_ieob(struct gsi *gsi) |
| { |
| u32 event_mask; |
| |
| event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); |
| iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); |
| |
| while (event_mask) { |
| u32 evt_ring_id = __ffs(event_mask); |
| |
| event_mask ^= BIT(evt_ring_id); |
| |
| gsi_irq_ieob_disable(gsi, evt_ring_id); |
| napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); |
| } |
| } |
| |
| /* General event interrupts represent serious problems, so report them */ |
| static void gsi_isr_general(struct gsi *gsi) |
| { |
| struct device *dev = gsi->dev; |
| u32 val; |
| |
| val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); |
| iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); |
| |
| dev_err(dev, "unexpected general interrupt 0x%08x\n", val); |
| } |
| |
| /** |
| * gsi_isr() - Top level GSI interrupt service routine |
| * @irq: Interrupt number (ignored) |
| * @dev_id: GSI pointer supplied to request_irq() |
| * |
| * This is the main handler function registered for the GSI IRQ. Each type |
| * of interrupt has a separate handler function that is called from here. |
| */ |
| static irqreturn_t gsi_isr(int irq, void *dev_id) |
| { |
| struct gsi *gsi = dev_id; |
| u32 intr_mask; |
| u32 cnt = 0; |
| |
| /* enum gsi_irq_type_id defines GSI interrupt types */ |
| while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { |
| /* intr_mask contains bitmask of pending GSI interrupts */ |
| do { |
| u32 gsi_intr = BIT(__ffs(intr_mask)); |
| |
| intr_mask ^= gsi_intr; |
| |
| switch (gsi_intr) { |
| case BIT(GSI_CH_CTRL): |
| gsi_isr_chan_ctrl(gsi); |
| break; |
| case BIT(GSI_EV_CTRL): |
| gsi_isr_evt_ctrl(gsi); |
| break; |
| case BIT(GSI_GLOB_EE): |
| gsi_isr_glob_ee(gsi); |
| break; |
| case BIT(GSI_IEOB): |
| gsi_isr_ieob(gsi); |
| break; |
| case BIT(GSI_GENERAL): |
| gsi_isr_general(gsi); |
| break; |
| default: |
| dev_err(gsi->dev, |
| "unrecognized interrupt type 0x%08x\n", |
| gsi_intr); |
| break; |
| } |
| } while (intr_mask); |
| |
| if (++cnt > GSI_ISR_MAX_ITER) { |
| dev_err(gsi->dev, "interrupt flood\n"); |
| break; |
| } |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| unsigned int irq; |
| int ret; |
| |
| ret = platform_get_irq_byname(pdev, "gsi"); |
| if (ret <= 0) { |
| dev_err(dev, "DT error %d getting \"gsi\" IRQ property\n", ret); |
| return ret ? : -EINVAL; |
| } |
| irq = ret; |
| |
| ret = request_irq(irq, gsi_isr, 0, "gsi", gsi); |
| if (ret) { |
| dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret); |
| return ret; |
| } |
| gsi->irq = irq; |
| |
| return 0; |
| } |
| |
| static void gsi_irq_exit(struct gsi *gsi) |
| { |
| free_irq(gsi->irq, gsi); |
| } |
| |
| /* Return the transaction associated with a transfer completion event */ |
| static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel, |
| struct gsi_event *event) |
| { |
| u32 tre_offset; |
| u32 tre_index; |
| |
| /* Event xfer_ptr records the TRE it's associated with */ |
| tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0); |
| tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); |
| |
| return gsi_channel_trans_mapped(channel, tre_index); |
| } |
| |
| /** |
| * gsi_evt_ring_rx_update() - Record lengths of received data |
| * @evt_ring: Event ring associated with channel that received packets |
| * @index: Event index in ring reported by hardware |
| * |
| * Events for RX channels contain the actual number of bytes received into |
| * the buffer. Every event has a transaction associated with it, and here |
| * we update transactions to record their actual received lengths. |
| * |
| * This function is called whenever we learn that the GSI hardware has filled |
| * new events since the last time we checked. The ring's index field tells |
| * the first entry in need of processing. The index provided is the |
| * first *unfilled* event in the ring (following the last filled one). |
| * |
| * Events are sequential within the event ring, and transactions are |
| * sequential within the transaction pool. |
| * |
| * Note that @index always refers to an element *within* the event ring. |
| */ |
| static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) |
| { |
| struct gsi_channel *channel = evt_ring->channel; |
| struct gsi_ring *ring = &evt_ring->ring; |
| struct gsi_trans_info *trans_info; |
| struct gsi_event *event_done; |
| struct gsi_event *event; |
| struct gsi_trans *trans; |
| u32 byte_count = 0; |
| u32 old_index; |
| u32 event_avail; |
| |
| trans_info = &channel->trans_info; |
| |
| /* We'll start with the oldest un-processed event. RX channels |
| * replenish receive buffers in single-TRE transactions, so we |
| * can just map that event to its transaction. Transactions |
| * associated with completion events are consecutive. |
| */ |
| old_index = ring->index; |
| event = gsi_ring_virt(ring, old_index); |
| trans = gsi_event_trans(channel, event); |
| |
| /* Compute the number of events to process before we wrap, |
| * and determine when we'll be done processing events. |
| */ |
| event_avail = ring->count - old_index % ring->count; |
| event_done = gsi_ring_virt(ring, index); |
| do { |
| trans->len = __le16_to_cpu(event->len); |
| byte_count += trans->len; |
| |
| /* Move on to the next event and transaction */ |
| if (--event_avail) |
| event++; |
| else |
| event = gsi_ring_virt(ring, 0); |
| trans = gsi_trans_pool_next(&trans_info->pool, trans); |
| } while (event != event_done); |
| |
| /* We record RX bytes when they are received */ |
| channel->byte_count += byte_count; |
| channel->trans_count++; |
| } |
| |
| /* Initialize a ring, including allocating DMA memory for its entries */ |
| static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) |
| { |
| size_t size = count * GSI_RING_ELEMENT_SIZE; |
| struct device *dev = gsi->dev; |
| dma_addr_t addr; |
| |
| /* Hardware requires a 2^n ring size, with alignment equal to size */ |
| ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); |
| if (ring->virt && addr % size) { |
| dma_free_coherent(dev, size, ring->virt, ring->addr); |
| dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n", |
| size); |
| return -EINVAL; /* Not a good error value, but distinct */ |
| } else if (!ring->virt) { |
| return -ENOMEM; |
| } |
| ring->addr = addr; |
| ring->count = count; |
| |
| return 0; |
| } |
| |
| /* Free a previously-allocated ring */ |
| static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) |
| { |
| size_t size = ring->count * GSI_RING_ELEMENT_SIZE; |
| |
| dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); |
| } |
| |
| /* Allocate an available event ring id */ |
| static int gsi_evt_ring_id_alloc(struct gsi *gsi) |
| { |
| u32 evt_ring_id; |
| |
| if (gsi->event_bitmap == ~0U) { |
| dev_err(gsi->dev, "event rings exhausted\n"); |
| return -ENOSPC; |
| } |
| |
| evt_ring_id = ffz(gsi->event_bitmap); |
| gsi->event_bitmap |= BIT(evt_ring_id); |
| |
| return (int)evt_ring_id; |
| } |
| |
| /* Free a previously-allocated event ring id */ |
| static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) |
| { |
| gsi->event_bitmap &= ~BIT(evt_ring_id); |
| } |
| |
| /* Ring a channel doorbell, reporting the first un-filled entry */ |
| void gsi_channel_doorbell(struct gsi_channel *channel) |
| { |
| struct gsi_ring *tre_ring = &channel->tre_ring; |
| u32 channel_id = gsi_channel_id(channel); |
| struct gsi *gsi = channel->gsi; |
| u32 val; |
| |
| /* Note: index *must* be used modulo the ring count here */ |
| val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); |
| iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); |
| } |
| |
| /* Consult hardware, move any newly completed transactions to completed list */ |
| static void gsi_channel_update(struct gsi_channel *channel) |
| { |
| u32 evt_ring_id = channel->evt_ring_id; |
| struct gsi *gsi = channel->gsi; |
| struct gsi_evt_ring *evt_ring; |
| struct gsi_trans *trans; |
| struct gsi_ring *ring; |
| u32 offset; |
| u32 index; |
| |
| evt_ring = &gsi->evt_ring[evt_ring_id]; |
| ring = &evt_ring->ring; |
| |
| /* See if there's anything new to process; if not, we're done. Note |
| * that index always refers to an entry *within* the event ring. |
| */ |
| offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); |
| index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); |
| if (index == ring->index % ring->count) |
| return; |
| |
| /* Get the transaction for the latest completed event. Take a |
| * reference to keep it from completing before we give the events |
| * for this and previous transactions back to the hardware. |
| */ |
| trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1)); |
| refcount_inc(&trans->refcount); |
| |
| /* For RX channels, update each completed transaction with the number |
| * of bytes that were actually received. For TX channels, report |
| * the number of transactions and bytes this completion represents |
| * up the network stack. |
| */ |
| if (channel->toward_ipa) |
| gsi_channel_tx_update(channel, trans); |
| else |
| gsi_evt_ring_rx_update(evt_ring, index); |
| |
| gsi_trans_move_complete(trans); |
| |
| /* Tell the hardware we've handled these events */ |
| gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index); |
| |
| gsi_trans_free(trans); |
| } |
| |
| /** |
| * gsi_channel_poll_one() - Return a single completed transaction on a channel |
| * @channel: Channel to be polled |
| * |
| * Return: Transaction pointer, or null if none are available |
| * |
| * This function returns the first entry on a channel's completed transaction |
| * list. If that list is empty, the hardware is consulted to determine |
| * whether any new transactions have completed. If so, they're moved to the |
| * completed list and the new first entry is returned. If there are no more |
| * completed transactions, a null pointer is returned. |
| */ |
| static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) |
| { |
| struct gsi_trans *trans; |
| |
| /* Get the first transaction from the completed list */ |
| trans = gsi_channel_trans_complete(channel); |
| if (!trans) { |
| /* List is empty; see if there's more to do */ |
| gsi_channel_update(channel); |
| trans = gsi_channel_trans_complete(channel); |
| } |
| |
| if (trans) |
| gsi_trans_move_polled(trans); |
| |
| return trans; |
| } |
| |
| /** |
| * gsi_channel_poll() - NAPI poll function for a channel |
| * @napi: NAPI structure for the channel |
| * @budget: Budget supplied by NAPI core |
| * |
| * Return: Number of items polled (<= budget) |
| * |
| * Single transactions completed by hardware are polled until either |
| * the budget is exhausted, or there are no more. Each transaction |
| * polled is passed to gsi_trans_complete(), to perform remaining |
| * completion processing and retire/free the transaction. |
| */ |
| static int gsi_channel_poll(struct napi_struct *napi, int budget) |
| { |
| struct gsi_channel *channel; |
| int count = 0; |
| |
| channel = container_of(napi, struct gsi_channel, napi); |
| while (count < budget) { |
| struct gsi_trans *trans; |
| |
| count++; |
| trans = gsi_channel_poll_one(channel); |
| if (!trans) |
| break; |
| gsi_trans_complete(trans); |
| } |
| |
| if (count < budget) { |
| napi_complete(&channel->napi); |
| gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id); |
| } |
| |
| return count; |
| } |
| |
| /* The event bitmap represents which event ids are available for allocation. |
| * Set bits are not available, clear bits can be used. This function |
| * initializes the map so all events supported by the hardware are available, |
| * then precludes any reserved events from being allocated. |
| */ |
| static u32 gsi_event_bitmap_init(u32 evt_ring_max) |
| { |
| u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); |
| |
| event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); |
| |
| return event_bitmap; |
| } |
| |
| /* Setup function for event rings */ |
| static void gsi_evt_ring_setup(struct gsi *gsi) |
| { |
| /* Nothing to do */ |
| } |
| |
| /* Inverse of gsi_evt_ring_setup() */ |
| static void gsi_evt_ring_teardown(struct gsi *gsi) |
| { |
| /* Nothing to do */ |
| } |
| |
| /* Setup function for a single channel */ |
| static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| u32 evt_ring_id = channel->evt_ring_id; |
| int ret; |
| |
| if (!channel->gsi) |
| return 0; /* Ignore uninitialized channels */ |
| |
| ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); |
| if (ret) |
| return ret; |
| |
| gsi_evt_ring_program(gsi, evt_ring_id); |
| |
| ret = gsi_channel_alloc_command(gsi, channel_id); |
| if (ret) |
| goto err_evt_ring_de_alloc; |
| |
| gsi_channel_program(channel, true); |
| |
| if (channel->toward_ipa) |
| netif_tx_napi_add(&gsi->dummy_dev, &channel->napi, |
| gsi_channel_poll, NAPI_POLL_WEIGHT); |
| else |
| netif_napi_add(&gsi->dummy_dev, &channel->napi, |
| gsi_channel_poll, NAPI_POLL_WEIGHT); |
| |
| return 0; |
| |
| err_evt_ring_de_alloc: |
| /* We've done nothing with the event ring yet so don't reset */ |
| gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); |
| |
| return ret; |
| } |
| |
| /* Inverse of gsi_channel_setup_one() */ |
| static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| u32 evt_ring_id = channel->evt_ring_id; |
| |
| if (!channel->gsi) |
| return; /* Ignore uninitialized channels */ |
| |
| netif_napi_del(&channel->napi); |
| |
| gsi_channel_deprogram(channel); |
| gsi_channel_de_alloc_command(gsi, channel_id); |
| gsi_evt_ring_reset_command(gsi, evt_ring_id); |
| gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); |
| } |
| |
| static int gsi_generic_command(struct gsi *gsi, u32 channel_id, |
| enum gsi_generic_cmd_opcode opcode) |
| { |
| struct completion *completion = &gsi->completion; |
| bool success; |
| u32 val; |
| |
| /* The error global interrupt type is always enabled (until we |
| * teardown), so we won't change that. A generic EE command |
| * completes with a GSI global interrupt of type GP_INT1. We |
| * only perform one generic command at a time (to allocate or |
| * halt a modem channel) and only from this function. So we |
| * enable the GP_INT1 IRQ type here while we're expecting it. |
| */ |
| val = BIT(ERROR_INT) | BIT(GP_INT1); |
| iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); |
| |
| /* First zero the result code field */ |
| val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); |
| val &= ~GENERIC_EE_RESULT_FMASK; |
| iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); |
| |
| /* Now issue the command */ |
| val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); |
| val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); |
| val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); |
| |
| success = gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion); |
| |
| /* Disable the GP_INT1 IRQ type again */ |
| iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); |
| |
| if (success) |
| return gsi->result; |
| |
| dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", |
| opcode, channel_id); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) |
| { |
| return gsi_generic_command(gsi, channel_id, |
| GSI_GENERIC_ALLOCATE_CHANNEL); |
| } |
| |
| static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) |
| { |
| u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES; |
| int ret; |
| |
| do |
| ret = gsi_generic_command(gsi, channel_id, |
| GSI_GENERIC_HALT_CHANNEL); |
| while (ret == -EAGAIN && retries--); |
| |
| if (ret) |
| dev_err(gsi->dev, "error %d halting modem channel %u\n", |
| ret, channel_id); |
| } |
| |
| /* Setup function for channels */ |
| static int gsi_channel_setup(struct gsi *gsi) |
| { |
| u32 channel_id = 0; |
| u32 mask; |
| int ret; |
| |
| gsi_evt_ring_setup(gsi); |
| gsi_irq_enable(gsi); |
| |
| mutex_lock(&gsi->mutex); |
| |
| do { |
| ret = gsi_channel_setup_one(gsi, channel_id); |
| if (ret) |
| goto err_unwind; |
| } while (++channel_id < gsi->channel_count); |
| |
| /* Make sure no channels were defined that hardware does not support */ |
| while (channel_id < GSI_CHANNEL_COUNT_MAX) { |
| struct gsi_channel *channel = &gsi->channel[channel_id++]; |
| |
| if (!channel->gsi) |
| continue; /* Ignore uninitialized channels */ |
| |
| dev_err(gsi->dev, "channel %u not supported by hardware\n", |
| channel_id - 1); |
| channel_id = gsi->channel_count; |
| goto err_unwind; |
| } |
| |
| /* Allocate modem channels if necessary */ |
| mask = gsi->modem_channel_bitmap; |
| while (mask) { |
| u32 modem_channel_id = __ffs(mask); |
| |
| ret = gsi_modem_channel_alloc(gsi, modem_channel_id); |
| if (ret) |
| goto err_unwind_modem; |
| |
| /* Clear bit from mask only after success (for unwind) */ |
| mask ^= BIT(modem_channel_id); |
| } |
| |
| mutex_unlock(&gsi->mutex); |
| |
| return 0; |
| |
| err_unwind_modem: |
| /* Compute which modem channels need to be deallocated */ |
| mask ^= gsi->modem_channel_bitmap; |
| while (mask) { |
| channel_id = __fls(mask); |
| |
| mask ^= BIT(channel_id); |
| |
| gsi_modem_channel_halt(gsi, channel_id); |
| } |
| |
| err_unwind: |
| while (channel_id--) |
| gsi_channel_teardown_one(gsi, channel_id); |
| |
| mutex_unlock(&gsi->mutex); |
| |
| gsi_irq_disable(gsi); |
| gsi_evt_ring_teardown(gsi); |
| |
| return ret; |
| } |
| |
| /* Inverse of gsi_channel_setup() */ |
| static void gsi_channel_teardown(struct gsi *gsi) |
| { |
| u32 mask = gsi->modem_channel_bitmap; |
| u32 channel_id; |
| |
| mutex_lock(&gsi->mutex); |
| |
| while (mask) { |
| channel_id = __fls(mask); |
| |
| mask ^= BIT(channel_id); |
| |
| gsi_modem_channel_halt(gsi, channel_id); |
| } |
| |
| channel_id = gsi->channel_count - 1; |
| do |
| gsi_channel_teardown_one(gsi, channel_id); |
| while (channel_id--); |
| |
| mutex_unlock(&gsi->mutex); |
| |
| gsi_irq_disable(gsi); |
| gsi_evt_ring_teardown(gsi); |
| } |
| |
| /* Setup function for GSI. GSI firmware must be loaded and initialized */ |
| int gsi_setup(struct gsi *gsi) |
| { |
| struct device *dev = gsi->dev; |
| u32 val; |
| int ret; |
| |
| /* Here is where we first touch the GSI hardware */ |
| val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); |
| if (!(val & ENABLED_FMASK)) { |
| dev_err(dev, "GSI has not been enabled\n"); |
| return -EIO; |
| } |
| |
| gsi_irq_setup(gsi); |
| |
| val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); |
| |
| gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); |
| if (!gsi->channel_count) { |
| dev_err(dev, "GSI reports zero channels supported\n"); |
| return -EINVAL; |
| } |
| if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) { |
| dev_warn(dev, |
| "limiting to %u channels; hardware supports %u\n", |
| GSI_CHANNEL_COUNT_MAX, gsi->channel_count); |
| gsi->channel_count = GSI_CHANNEL_COUNT_MAX; |
| } |
| |
| gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); |
| if (!gsi->evt_ring_count) { |
| dev_err(dev, "GSI reports zero event rings supported\n"); |
| return -EINVAL; |
| } |
| if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) { |
| dev_warn(dev, |
| "limiting to %u event rings; hardware supports %u\n", |
| GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count); |
| gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; |
| } |
| |
| /* Initialize the error log */ |
| iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); |
| |
| /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ |
| iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); |
| |
| ret = gsi_channel_setup(gsi); |
| if (ret) |
| gsi_irq_teardown(gsi); |
| |
| return ret; |
| } |
| |
| /* Inverse of gsi_setup() */ |
| void gsi_teardown(struct gsi *gsi) |
| { |
| gsi_channel_teardown(gsi); |
| gsi_irq_teardown(gsi); |
| } |
| |
| /* Initialize a channel's event ring */ |
| static int gsi_channel_evt_ring_init(struct gsi_channel *channel) |
| { |
| struct gsi *gsi = channel->gsi; |
| struct gsi_evt_ring *evt_ring; |
| int ret; |
| |
| ret = gsi_evt_ring_id_alloc(gsi); |
| if (ret < 0) |
| return ret; |
| channel->evt_ring_id = ret; |
| |
| evt_ring = &gsi->evt_ring[channel->evt_ring_id]; |
| evt_ring->channel = channel; |
| |
| ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); |
| if (!ret) |
| return 0; /* Success! */ |
| |
| dev_err(gsi->dev, "error %d allocating channel %u event ring\n", |
| ret, gsi_channel_id(channel)); |
| |
| gsi_evt_ring_id_free(gsi, channel->evt_ring_id); |
| |
| return ret; |
| } |
| |
| /* Inverse of gsi_channel_evt_ring_init() */ |
| static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) |
| { |
| u32 evt_ring_id = channel->evt_ring_id; |
| struct gsi *gsi = channel->gsi; |
| struct gsi_evt_ring *evt_ring; |
| |
| evt_ring = &gsi->evt_ring[evt_ring_id]; |
| gsi_ring_free(gsi, &evt_ring->ring); |
| gsi_evt_ring_id_free(gsi, evt_ring_id); |
| } |
| |
| /* Init function for event rings */ |
| static void gsi_evt_ring_init(struct gsi *gsi) |
| { |
| u32 evt_ring_id = 0; |
| |
| gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); |
| gsi->ieob_enabled_bitmap = 0; |
| do |
| init_completion(&gsi->evt_ring[evt_ring_id].completion); |
| while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX); |
| } |
| |
| /* Inverse of gsi_evt_ring_init() */ |
| static void gsi_evt_ring_exit(struct gsi *gsi) |
| { |
| /* Nothing to do */ |
| } |
| |
| static bool gsi_channel_data_valid(struct gsi *gsi, |
| const struct ipa_gsi_endpoint_data *data) |
| { |
| #ifdef IPA_VALIDATION |
| u32 channel_id = data->channel_id; |
| struct device *dev = gsi->dev; |
| |
| /* Make sure channel ids are in the range driver supports */ |
| if (channel_id >= GSI_CHANNEL_COUNT_MAX) { |
| dev_err(dev, "bad channel id %u; must be less than %u\n", |
| channel_id, GSI_CHANNEL_COUNT_MAX); |
| return false; |
| } |
| |
| if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { |
| dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id); |
| return false; |
| } |
| |
| if (!data->channel.tlv_count || |
| data->channel.tlv_count > GSI_TLV_MAX) { |
| dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", |
| channel_id, data->channel.tlv_count, GSI_TLV_MAX); |
| return false; |
| } |
| |
| /* We have to allow at least one maximally-sized transaction to |
| * be outstanding (which would use tlv_count TREs). Given how |
| * gsi_channel_tre_max() is computed, tre_count has to be almost |
| * twice the TLV FIFO size to satisfy this requirement. |
| */ |
| if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) { |
| dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", |
| channel_id, data->channel.tlv_count, |
| data->channel.tre_count); |
| return false; |
| } |
| |
| if (!is_power_of_2(data->channel.tre_count)) { |
| dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", |
| channel_id, data->channel.tre_count); |
| return false; |
| } |
| |
| if (!is_power_of_2(data->channel.event_count)) { |
| dev_err(dev, "channel %u bad event_count %u; not power of 2\n", |
| channel_id, data->channel.event_count); |
| return false; |
| } |
| #endif /* IPA_VALIDATION */ |
| |
| return true; |
| } |
| |
| /* Init function for a single channel */ |
| static int gsi_channel_init_one(struct gsi *gsi, |
| const struct ipa_gsi_endpoint_data *data, |
| bool command) |
| { |
| struct gsi_channel *channel; |
| u32 tre_count; |
| int ret; |
| |
| if (!gsi_channel_data_valid(gsi, data)) |
| return -EINVAL; |
| |
| /* Worst case we need an event for every outstanding TRE */ |
| if (data->channel.tre_count > data->channel.event_count) { |
| tre_count = data->channel.event_count; |
| dev_warn(gsi->dev, "channel %u limited to %u TREs\n", |
| data->channel_id, tre_count); |
| } else { |
| tre_count = data->channel.tre_count; |
| } |
| |
| channel = &gsi->channel[data->channel_id]; |
| memset(channel, 0, sizeof(*channel)); |
| |
| channel->gsi = gsi; |
| channel->toward_ipa = data->toward_ipa; |
| channel->command = command; |
| channel->tlv_count = data->channel.tlv_count; |
| channel->tre_count = tre_count; |
| channel->event_count = data->channel.event_count; |
| init_completion(&channel->completion); |
| |
| ret = gsi_channel_evt_ring_init(channel); |
| if (ret) |
| goto err_clear_gsi; |
| |
| ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); |
| if (ret) { |
| dev_err(gsi->dev, "error %d allocating channel %u ring\n", |
| ret, data->channel_id); |
| goto err_channel_evt_ring_exit; |
| } |
| |
| ret = gsi_channel_trans_init(gsi, data->channel_id); |
| if (ret) |
| goto err_ring_free; |
| |
| if (command) { |
| u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); |
| |
| ret = ipa_cmd_pool_init(channel, tre_max); |
| } |
| if (!ret) |
| return 0; /* Success! */ |
| |
| gsi_channel_trans_exit(channel); |
| err_ring_free: |
| gsi_ring_free(gsi, &channel->tre_ring); |
| err_channel_evt_ring_exit: |
| gsi_channel_evt_ring_exit(channel); |
| err_clear_gsi: |
| channel->gsi = NULL; /* Mark it not (fully) initialized */ |
| |
| return ret; |
| } |
| |
| /* Inverse of gsi_channel_init_one() */ |
| static void gsi_channel_exit_one(struct gsi_channel *channel) |
| { |
| if (!channel->gsi) |
| return; /* Ignore uninitialized channels */ |
| |
| if (channel->command) |
| ipa_cmd_pool_exit(channel); |
| gsi_channel_trans_exit(channel); |
| gsi_ring_free(channel->gsi, &channel->tre_ring); |
| gsi_channel_evt_ring_exit(channel); |
| } |
| |
| /* Init function for channels */ |
| static int gsi_channel_init(struct gsi *gsi, u32 count, |
| const struct ipa_gsi_endpoint_data *data) |
| { |
| bool modem_alloc; |
| int ret = 0; |
| u32 i; |
| |
| /* IPA v4.2 requires the AP to allocate channels for the modem */ |
| modem_alloc = gsi->version == IPA_VERSION_4_2; |
| |
| gsi_evt_ring_init(gsi); |
| |
| /* The endpoint data array is indexed by endpoint name */ |
| for (i = 0; i < count; i++) { |
| bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; |
| |
| if (ipa_gsi_endpoint_data_empty(&data[i])) |
| continue; /* Skip over empty slots */ |
| |
| /* Mark modem channels to be allocated (hardware workaround) */ |
| if (data[i].ee_id == GSI_EE_MODEM) { |
| if (modem_alloc) |
| gsi->modem_channel_bitmap |= |
| BIT(data[i].channel_id); |
| continue; |
| } |
| |
| ret = gsi_channel_init_one(gsi, &data[i], command); |
| if (ret) |
| goto err_unwind; |
| } |
| |
| return ret; |
| |
| err_unwind: |
| while (i--) { |
| if (ipa_gsi_endpoint_data_empty(&data[i])) |
| continue; |
| if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { |
| gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); |
| continue; |
| } |
| gsi_channel_exit_one(&gsi->channel[data->channel_id]); |
| } |
| gsi_evt_ring_exit(gsi); |
| |
| return ret; |
| } |
| |
| /* Inverse of gsi_channel_init() */ |
| static void gsi_channel_exit(struct gsi *gsi) |
| { |
| u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; |
| |
| do |
| gsi_channel_exit_one(&gsi->channel[channel_id]); |
| while (channel_id--); |
| gsi->modem_channel_bitmap = 0; |
| |
| gsi_evt_ring_exit(gsi); |
| } |
| |
| /* Init function for GSI. GSI hardware does not need to be "ready" */ |
| int gsi_init(struct gsi *gsi, struct platform_device *pdev, |
| enum ipa_version version, u32 count, |
| const struct ipa_gsi_endpoint_data *data) |
| { |
| struct device *dev = &pdev->dev; |
| struct resource *res; |
| resource_size_t size; |
| u32 adjust; |
| int ret; |
| |
| gsi_validate_build(); |
| |
| gsi->dev = dev; |
| gsi->version = version; |
| |
| /* The GSI layer performs NAPI on all endpoints. NAPI requires a |
| * network device structure, but the GSI layer does not have one, |
| * so we must create a dummy network device for this purpose. |
| */ |
| init_dummy_netdev(&gsi->dummy_dev); |
| |
| /* Get GSI memory range and map it */ |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); |
| if (!res) { |
| dev_err(dev, "DT error getting \"gsi\" memory property\n"); |
| return -ENODEV; |
| } |
| |
| size = resource_size(res); |
| if (res->start > U32_MAX || size > U32_MAX - res->start) { |
| dev_err(dev, "DT memory resource \"gsi\" out of range\n"); |
| return -EINVAL; |
| } |
| |
| /* Make sure we can make our pointer adjustment if necessary */ |
| adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST; |
| if (res->start < adjust) { |
| dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n", |
| adjust); |
| return -EINVAL; |
| } |
| |
| gsi->virt = ioremap(res->start, size); |
| if (!gsi->virt) { |
| dev_err(dev, "unable to remap \"gsi\" memory\n"); |
| return -ENOMEM; |
| } |
| /* Adjust register range pointer downward for newer IPA versions */ |
| gsi->virt -= adjust; |
| |
| init_completion(&gsi->completion); |
| |
| ret = gsi_irq_init(gsi, pdev); |
| if (ret) |
| goto err_iounmap; |
| |
| ret = gsi_channel_init(gsi, count, data); |
| if (ret) |
| goto err_irq_exit; |
| |
| mutex_init(&gsi->mutex); |
| |
| return 0; |
| |
| err_irq_exit: |
| gsi_irq_exit(gsi); |
| err_iounmap: |
| iounmap(gsi->virt); |
| |
| return ret; |
| } |
| |
| /* Inverse of gsi_init() */ |
| void gsi_exit(struct gsi *gsi) |
| { |
| mutex_destroy(&gsi->mutex); |
| gsi_channel_exit(gsi); |
| gsi_irq_exit(gsi); |
| iounmap(gsi->virt); |
| } |
| |
| /* The maximum number of outstanding TREs on a channel. This limits |
| * a channel's maximum number of transactions outstanding (worst case |
| * is one TRE per transaction). |
| * |
| * The absolute limit is the number of TREs in the channel's TRE ring, |
| * and in theory we should be able use all of them. But in practice, |
| * doing that led to the hardware reporting exhaustion of event ring |
| * slots for writing completion information. So the hardware limit |
| * would be (tre_count - 1). |
| * |
| * We reduce it a bit further though. Transaction resource pools are |
| * sized to be a little larger than this maximum, to allow resource |
| * allocations to always be contiguous. The number of entries in a |
| * TRE ring buffer is a power of 2, and the extra resources in a pool |
| * tends to nearly double the memory allocated for it. Reducing the |
| * maximum number of outstanding TREs allows the number of entries in |
| * a pool to avoid crossing that power-of-2 boundary, and this can |
| * substantially reduce pool memory requirements. The number we |
| * reduce it by matches the number added in gsi_trans_pool_init(). |
| */ |
| u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| |
| /* Hardware limit is channel->tre_count - 1 */ |
| return channel->tre_count - (channel->tlv_count - 1); |
| } |
| |
| /* Returns the maximum number of TREs in a single transaction for a channel */ |
| u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id) |
| { |
| struct gsi_channel *channel = &gsi->channel[channel_id]; |
| |
| return channel->tlv_count; |
| } |