| // SPDX-License-Identifier: GPL-2.0 |
| // Copyright 2019 NXP |
| |
| #include <linux/atomic.h> |
| #include <linux/clk.h> |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/firmware.h> |
| #include <linux/interrupt.h> |
| #include <linux/kobject.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/miscdevice.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_platform.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/regmap.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sysfs.h> |
| #include <linux/types.h> |
| #include <linux/gcd.h> |
| #include <sound/dmaengine_pcm.h> |
| #include <sound/pcm.h> |
| #include <sound/pcm_params.h> |
| #include <sound/soc.h> |
| #include <sound/tlv.h> |
| #include <sound/core.h> |
| |
| #include "fsl_easrc.h" |
| #include "imx-pcm.h" |
| |
| #define FSL_EASRC_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \ |
| SNDRV_PCM_FMTBIT_U16_LE | \ |
| SNDRV_PCM_FMTBIT_S24_LE | \ |
| SNDRV_PCM_FMTBIT_S24_3LE | \ |
| SNDRV_PCM_FMTBIT_U24_LE | \ |
| SNDRV_PCM_FMTBIT_U24_3LE | \ |
| SNDRV_PCM_FMTBIT_S32_LE | \ |
| SNDRV_PCM_FMTBIT_U32_LE | \ |
| SNDRV_PCM_FMTBIT_S20_3LE | \ |
| SNDRV_PCM_FMTBIT_U20_3LE | \ |
| SNDRV_PCM_FMTBIT_FLOAT_LE) |
| |
| static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); |
| struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp); |
| struct fsl_easrc_priv *easrc_priv = easrc->private; |
| struct soc_mreg_control *mc = |
| (struct soc_mreg_control *)kcontrol->private_value; |
| unsigned int regval = ucontrol->value.integer.value[0]; |
| |
| easrc_priv->bps_iec958[mc->regbase] = regval; |
| |
| return 0; |
| } |
| |
| static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); |
| struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp); |
| struct fsl_easrc_priv *easrc_priv = easrc->private; |
| struct soc_mreg_control *mc = |
| (struct soc_mreg_control *)kcontrol->private_value; |
| |
| ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase]; |
| |
| return 0; |
| } |
| |
| static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); |
| struct soc_mreg_control *mc = |
| (struct soc_mreg_control *)kcontrol->private_value; |
| unsigned int regval; |
| |
| regval = snd_soc_component_read(component, mc->regbase); |
| |
| ucontrol->value.integer.value[0] = regval; |
| |
| return 0; |
| } |
| |
| static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); |
| struct soc_mreg_control *mc = |
| (struct soc_mreg_control *)kcontrol->private_value; |
| unsigned int regval = ucontrol->value.integer.value[0]; |
| int ret; |
| |
| ret = snd_soc_component_write(component, mc->regbase, regval); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| #define SOC_SINGLE_REG_RW(xname, xreg) \ |
| { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \ |
| .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ |
| .info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \ |
| .put = fsl_easrc_set_reg, \ |
| .private_value = (unsigned long)&(struct soc_mreg_control) \ |
| { .regbase = xreg, .regcount = 1, .nbits = 32, \ |
| .invert = 0, .min = 0, .max = 0xffffffff, } } |
| |
| #define SOC_SINGLE_VAL_RW(xname, xreg) \ |
| { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \ |
| .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ |
| .info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \ |
| .put = fsl_easrc_iec958_put_bits, \ |
| .private_value = (unsigned long)&(struct soc_mreg_control) \ |
| { .regbase = xreg, .regcount = 1, .nbits = 32, \ |
| .invert = 0, .min = 0, .max = 2, } } |
| |
| static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = { |
| SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0), |
| SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0), |
| SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0), |
| SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0), |
| |
| SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0), |
| SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0), |
| SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0), |
| SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0), |
| |
| SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0), |
| SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1), |
| SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2), |
| SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3), |
| |
| SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)), |
| SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)), |
| SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)), |
| SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)), |
| SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)), |
| SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)), |
| SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)), |
| SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)), |
| SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)), |
| SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)), |
| SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)), |
| SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)), |
| SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)), |
| SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)), |
| SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)), |
| SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)), |
| SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)), |
| SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)), |
| SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)), |
| SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)), |
| SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)), |
| SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)), |
| SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)), |
| SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)), |
| }; |
| |
| /* |
| * fsl_easrc_set_rs_ratio |
| * |
| * According to the resample taps, calculate the resample ratio |
| * ratio = in_rate / out_rate |
| */ |
| static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx) |
| { |
| struct fsl_asrc *easrc = ctx->asrc; |
| struct fsl_easrc_priv *easrc_priv = easrc->private; |
| struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; |
| unsigned int in_rate = ctx_priv->in_params.norm_rate; |
| unsigned int out_rate = ctx_priv->out_params.norm_rate; |
| unsigned int frac_bits; |
| u64 val; |
| u32 *r; |
| |
| switch (easrc_priv->rs_num_taps) { |
| case EASRC_RS_32_TAPS: |
| /* integer bits = 5; */ |
| frac_bits = 39; |
| break; |
| case EASRC_RS_64_TAPS: |
| /* integer bits = 6; */ |
| frac_bits = 38; |
| break; |
| case EASRC_RS_128_TAPS: |
| /* integer bits = 7; */ |
| frac_bits = 37; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| val = (u64)in_rate << frac_bits; |
| do_div(val, out_rate); |
| r = (uint32_t *)&val; |
| |
| if (r[1] & 0xFFFFF000) { |
| dev_err(&easrc->pdev->dev, "ratio exceed range\n"); |
| return -EINVAL; |
| } |
| |
| regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index), |
| EASRC_RRL_RS_RL(r[0])); |
| regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index), |
| EASRC_RRH_RS_RH(r[1])); |
| |
| return 0; |
| } |
| |
| /* Normalize input and output sample rates */ |
| static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx) |
| { |
| struct fsl_easrc_ctx_priv *ctx_priv; |
| int a, b; |
| |
| if (!ctx) |
| return; |
| |
| ctx_priv = ctx->private; |
| |
| a = ctx_priv->in_params.sample_rate; |
| b = ctx_priv->out_params.sample_rate; |
| |
| a = gcd(a, b); |
| |
| /* Divide by gcd to normalize the rate */ |
| ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a; |
| ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a; |
| } |
| |
| /* Resets the pointer of the coeff memory pointers */ |
| static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc, |
| unsigned int ctx_id, int mem_type) |
| { |
| struct device *dev; |
| u32 reg, mask, val; |
| |
| if (!easrc) |
| return -ENODEV; |
| |
| dev = &easrc->pdev->dev; |
| |
| switch (mem_type) { |
| case EASRC_PF_COEFF_MEM: |
| /* This resets the prefilter memory pointer addr */ |
| if (ctx_id >= EASRC_CTX_MAX_NUM) { |
| dev_err(dev, "Invalid context id[%d]\n", ctx_id); |
| return -EINVAL; |
| } |
| |
| reg = REG_EASRC_CCE1(ctx_id); |
| mask = EASRC_CCE1_COEF_MEM_RST_MASK; |
| val = EASRC_CCE1_COEF_MEM_RST; |
| break; |
| case EASRC_RS_COEFF_MEM: |
| /* This resets the resampling memory pointer addr */ |
| reg = REG_EASRC_CRCC; |
| mask = EASRC_CRCC_RS_CPR_MASK; |
| val = EASRC_CRCC_RS_CPR; |
| break; |
| default: |
| dev_err(dev, "Unknown memory type\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * To reset the write pointer back to zero, the register field |
| * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from |
| * 0x0 to 0x1 to 0x0. |
| */ |
| regmap_update_bits(easrc->regmap, reg, mask, 0); |
| regmap_update_bits(easrc->regmap, reg, mask, val); |
| regmap_update_bits(easrc->regmap, reg, mask, 0); |
| |
| return 0; |
| } |
| |
| static inline uint32_t bits_taps_to_val(unsigned int t) |
| { |
| switch (t) { |
| case EASRC_RS_32_TAPS: |
| return 32; |
| case EASRC_RS_64_TAPS: |
| return 64; |
| case EASRC_RS_128_TAPS: |
| return 128; |
| } |
| |
| return 0; |
| } |
| |
| static int fsl_easrc_resampler_config(struct fsl_asrc *easrc) |
| { |
| struct device *dev = &easrc->pdev->dev; |
| struct fsl_easrc_priv *easrc_priv = easrc->private; |
| struct asrc_firmware_hdr *hdr = easrc_priv->firmware_hdr; |
| struct interp_params *interp = easrc_priv->interp; |
| struct interp_params *selected_interp = NULL; |
| unsigned int num_coeff; |
| unsigned int i; |
| u64 *coef; |
| u32 *r; |
| int ret; |
| |
| if (!hdr) { |
| dev_err(dev, "firmware not loaded!\n"); |
| return -ENODEV; |
| } |
| |
| for (i = 0; i < hdr->interp_scen; i++) { |
| if ((interp[i].num_taps - 1) != |
| bits_taps_to_val(easrc_priv->rs_num_taps)) |
| continue; |
| |
| coef = interp[i].coeff; |
| selected_interp = &interp[i]; |
| dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n", |
| selected_interp->num_taps, |
| selected_interp->num_phases); |
| break; |
| } |
| |
| if (!selected_interp) { |
| dev_err(dev, "failed to get interpreter configuration\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * RS_LOW - first half of center tap of the sinc function |
| * RS_HIGH - second half of center tap of the sinc function |
| * This is due to the fact the resampling function must be |
| * symetrical - i.e. odd number of taps |
| */ |
| r = (uint32_t *)&selected_interp->center_tap; |
| regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0])); |
| regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1])); |
| |
| /* |
| * Write Number of Resampling Coefficient Taps |
| * 00b - 32-Tap Resampling Filter |
| * 01b - 64-Tap Resampling Filter |
| * 10b - 128-Tap Resampling Filter |
| * 11b - N/A |
| */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_CRCC, |
| EASRC_CRCC_RS_TAPS_MASK, |
| EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps)); |
| |
| /* Reset prefilter coefficient pointer back to 0 */ |
| ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM); |
| if (ret) |
| return ret; |
| |
| /* |
| * When the filter is programmed to run in: |
| * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase |
| * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase |
| * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase |
| * This means the number of writes is constant no matter |
| * the mode we are using |
| */ |
| num_coeff = 16 * 128 * 4; |
| |
| for (i = 0; i < num_coeff; i++) { |
| r = (uint32_t *)&coef[i]; |
| regmap_write(easrc->regmap, REG_EASRC_CRCM, |
| EASRC_CRCM_RS_CWD(r[0])); |
| regmap_write(easrc->regmap, REG_EASRC_CRCM, |
| EASRC_CRCM_RS_CWD(r[1])); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_easrc_normalize_filter - Scale filter coefficients (64 bits float) |
| * For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]: |
| * scale it by multiplying filter coefficients by 2^31 |
| * For input int[16, 24, 32] -> output float32 |
| * scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31 |
| * input: |
| * @easrc: Structure pointer of fsl_asrc |
| * @infilter : Pointer to non-scaled input filter |
| * @shift: The multiply factor |
| * output: |
| * @outfilter: scaled filter |
| */ |
| static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc, |
| u64 *infilter, |
| u64 *outfilter, |
| int shift) |
| { |
| struct device *dev = &easrc->pdev->dev; |
| u64 coef = *infilter; |
| s64 exp = (coef & 0x7ff0000000000000ll) >> 52; |
| u64 outcoef; |
| |
| /* |
| * If exponent is zero (value == 0), or 7ff (value == NaNs) |
| * dont touch the content |
| */ |
| if (exp == 0 || exp == 0x7ff) { |
| *outfilter = coef; |
| return 0; |
| } |
| |
| /* coef * 2^shift ==> exp + shift */ |
| exp += shift; |
| |
| if ((shift > 0 && exp >= 0x7ff) || (shift < 0 && exp <= 0)) { |
| dev_err(dev, "coef out of range\n"); |
| return -EINVAL; |
| } |
| |
| outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) + ((u64)exp << 52); |
| *outfilter = outcoef; |
| |
| return 0; |
| } |
| |
| static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id, |
| u64 *coef, int n_taps, int shift) |
| { |
| struct device *dev = &easrc->pdev->dev; |
| int ret = 0; |
| int i; |
| u32 *r; |
| u64 tmp; |
| |
| /* If STx_NUM_TAPS is set to 0x0 then return */ |
| if (!n_taps) |
| return 0; |
| |
| if (!coef) { |
| dev_err(dev, "coef table is NULL\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * When switching between stages, the address pointer |
| * should be reset back to 0x0 before performing a write |
| */ |
| ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < (n_taps + 1) / 2; i++) { |
| ret = fsl_easrc_normalize_filter(easrc, &coef[i], &tmp, shift); |
| if (ret) |
| return ret; |
| |
| r = (uint32_t *)&tmp; |
| regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id), |
| EASRC_PCF_CD(r[0])); |
| regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id), |
| EASRC_PCF_CD(r[1])); |
| } |
| |
| return 0; |
| } |
| |
| static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc, |
| unsigned int ctx_id) |
| { |
| struct prefil_params *prefil, *selected_prefil = NULL; |
| struct fsl_easrc_ctx_priv *ctx_priv; |
| struct fsl_easrc_priv *easrc_priv; |
| struct asrc_firmware_hdr *hdr; |
| struct fsl_asrc_pair *ctx; |
| struct device *dev; |
| u32 inrate, outrate, offset = 0; |
| u32 in_s_rate, out_s_rate, in_s_fmt, out_s_fmt; |
| int ret, i; |
| |
| if (!easrc) |
| return -ENODEV; |
| |
| dev = &easrc->pdev->dev; |
| |
| if (ctx_id >= EASRC_CTX_MAX_NUM) { |
| dev_err(dev, "Invalid context id[%d]\n", ctx_id); |
| return -EINVAL; |
| } |
| |
| easrc_priv = easrc->private; |
| |
| ctx = easrc->pair[ctx_id]; |
| ctx_priv = ctx->private; |
| |
| in_s_rate = ctx_priv->in_params.sample_rate; |
| out_s_rate = ctx_priv->out_params.sample_rate; |
| in_s_fmt = ctx_priv->in_params.sample_format; |
| out_s_fmt = ctx_priv->out_params.sample_format; |
| |
| ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2; |
| ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate; |
| |
| ctx_priv->st1_num_taps = 0; |
| ctx_priv->st2_num_taps = 0; |
| |
| regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0); |
| regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0); |
| |
| /* |
| * The audio float point data range is (-1, 1), the asrc would output |
| * all zero for float point input and integer output case, that is to |
| * drop the fractional part of the data directly. |
| * |
| * In order to support float to int conversion or int to float |
| * conversion we need to do special operation on the coefficient to |
| * enlarge/reduce the data to the expected range. |
| * |
| * For float to int case: |
| * Up sampling: |
| * 1. Create a 1 tap filter with center tap (only tap) of 2^31 |
| * in 64 bits floating point. |
| * double value = (double)(((uint64_t)1) << 31) |
| * 2. Program 1 tap prefilter with center tap above. |
| * |
| * Down sampling, |
| * 1. If the filter is single stage filter, add "shift" to the exponent |
| * of stage 1 coefficients. |
| * 2. If the filter is two stage filter , add "shift" to the exponent |
| * of stage 2 coefficients. |
| * |
| * The "shift" is 31, same for int16, int24, int32 case. |
| * |
| * For int to float case: |
| * Up sampling: |
| * 1. Create a 1 tap filter with center tap (only tap) of 2^-31 |
| * in 64 bits floating point. |
| * 2. Program 1 tap prefilter with center tap above. |
| * |
| * Down sampling, |
| * 1. If the filter is single stage filter, subtract "shift" to the |
| * exponent of stage 1 coefficients. |
| * 2. If the filter is two stage filter , subtract "shift" to the |
| * exponent of stage 2 coefficients. |
| * |
| * The "shift" is 15,23,31, different for int16, int24, int32 case. |
| * |
| */ |
| if (out_s_rate >= in_s_rate) { |
| if (out_s_rate == in_s_rate) |
| regmap_update_bits(easrc->regmap, |
| REG_EASRC_CCE1(ctx_id), |
| EASRC_CCE1_RS_BYPASS_MASK, |
| EASRC_CCE1_RS_BYPASS); |
| |
| ctx_priv->st1_num_taps = 1; |
| ctx_priv->st1_coeff = &easrc_priv->const_coeff; |
| ctx_priv->st1_num_exp = 1; |
| ctx_priv->st2_num_taps = 0; |
| |
| if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE && |
| out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) |
| ctx_priv->st1_addexp = 31; |
| else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE && |
| out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) |
| ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp; |
| } else { |
| inrate = ctx_priv->in_params.norm_rate; |
| outrate = ctx_priv->out_params.norm_rate; |
| |
| hdr = easrc_priv->firmware_hdr; |
| prefil = easrc_priv->prefil; |
| |
| for (i = 0; i < hdr->prefil_scen; i++) { |
| if (inrate == prefil[i].insr && |
| outrate == prefil[i].outsr) { |
| selected_prefil = &prefil[i]; |
| dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n", |
| selected_prefil->insr, |
| selected_prefil->outsr, |
| selected_prefil->st1_taps, |
| selected_prefil->st2_taps); |
| break; |
| } |
| } |
| |
| if (!selected_prefil) { |
| dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n", |
| in_s_rate, inrate, |
| out_s_rate, outrate); |
| return -EINVAL; |
| } |
| |
| /* |
| * In prefilter coeff array, first st1_num_taps represent the |
| * stage1 prefilter coefficients followed by next st2_num_taps |
| * representing stage 2 coefficients |
| */ |
| ctx_priv->st1_num_taps = selected_prefil->st1_taps; |
| ctx_priv->st1_coeff = selected_prefil->coeff; |
| ctx_priv->st1_num_exp = selected_prefil->st1_exp; |
| |
| offset = ((selected_prefil->st1_taps + 1) / 2); |
| ctx_priv->st2_num_taps = selected_prefil->st2_taps; |
| ctx_priv->st2_coeff = selected_prefil->coeff + offset; |
| |
| if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE && |
| out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) { |
| /* only change stage2 coefficient for 2 stage case */ |
| if (ctx_priv->st2_num_taps > 0) |
| ctx_priv->st2_addexp = 31; |
| else |
| ctx_priv->st1_addexp = 31; |
| } else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE && |
| out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) { |
| if (ctx_priv->st2_num_taps > 0) |
| ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp; |
| else |
| ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp; |
| } |
| } |
| |
| ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp + |
| ctx_priv->st2_num_taps / 2; |
| ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate; |
| |
| if (ctx_priv->in_filled_sample * out_s_rate % in_s_rate != 0) |
| ctx_priv->out_missed_sample += 1; |
| /* |
| * To modify the value of a prefilter coefficient, the user must |
| * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA] |
| * while the respective context RUN_EN bit is set to 0b0 |
| */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id), |
| EASRC_CC_EN_MASK, 0); |
| |
| if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) { |
| dev_err(dev, "ST1 taps [%d] mus be lower than %d\n", |
| ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS); |
| ret = -EINVAL; |
| goto ctx_error; |
| } |
| |
| /* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id), |
| EASRC_CCE2_ST1_TAPS_MASK, |
| EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1)); |
| |
| /* Prefilter Coefficient Write Select to write in ST1 coeff */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), |
| EASRC_CCE1_COEF_WS_MASK, |
| EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT); |
| |
| ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id, |
| ctx_priv->st1_coeff, |
| ctx_priv->st1_num_taps, |
| ctx_priv->st1_addexp); |
| if (ret) |
| goto ctx_error; |
| |
| if (ctx_priv->st2_num_taps > 0) { |
| if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) { |
| dev_err(dev, "ST2 taps [%d] mus be lower than %d\n", |
| ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS); |
| ret = -EINVAL; |
| goto ctx_error; |
| } |
| |
| regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), |
| EASRC_CCE1_PF_TSEN_MASK, |
| EASRC_CCE1_PF_TSEN); |
| /* |
| * Enable prefilter stage1 writeback floating point |
| * which is used for FLOAT_LE case |
| */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), |
| EASRC_CCE1_PF_ST1_WBFP_MASK, |
| EASRC_CCE1_PF_ST1_WBFP); |
| |
| regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), |
| EASRC_CCE1_PF_EXP_MASK, |
| EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1)); |
| |
| /* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id), |
| EASRC_CCE2_ST2_TAPS_MASK, |
| EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1)); |
| |
| /* Prefilter Coefficient Write Select to write in ST2 coeff */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), |
| EASRC_CCE1_COEF_WS_MASK, |
| EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT); |
| |
| ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id, |
| ctx_priv->st2_coeff, |
| ctx_priv->st2_num_taps, |
| ctx_priv->st2_addexp); |
| if (ret) |
| goto ctx_error; |
| } |
| |
| return 0; |
| |
| ctx_error: |
| return ret; |
| } |
| |
| static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx, |
| struct fsl_easrc_slot *slot) |
| { |
| struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; |
| int st1_mem_alloc = 0, st2_mem_alloc = 0; |
| int pf_mem_alloc = 0; |
| int max_channels = 8 - slot->num_channel; |
| int channels = 0; |
| |
| if (ctx_priv->st1_num_taps > 0) { |
| if (ctx_priv->st2_num_taps > 0) |
| st1_mem_alloc = |
| (ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1; |
| else |
| st1_mem_alloc = ctx_priv->st1_num_taps; |
| } |
| |
| if (ctx_priv->st2_num_taps > 0) |
| st2_mem_alloc = ctx_priv->st2_num_taps; |
| |
| pf_mem_alloc = st1_mem_alloc + st2_mem_alloc; |
| |
| if (pf_mem_alloc != 0) |
| channels = (6144 - slot->pf_mem_used) / pf_mem_alloc; |
| else |
| channels = 8; |
| |
| if (channels < max_channels) |
| max_channels = channels; |
| |
| return max_channels; |
| } |
| |
| static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx, |
| struct fsl_easrc_slot *slot, |
| unsigned int slot_ctx_idx, |
| unsigned int *req_channels, |
| unsigned int *start_channel, |
| unsigned int *avail_channel) |
| { |
| struct fsl_asrc *easrc = ctx->asrc; |
| struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; |
| int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc; |
| unsigned int reg0, reg1, reg2, reg3; |
| unsigned int addr; |
| |
| if (slot->slot_index == 0) { |
| reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx); |
| reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx); |
| reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx); |
| reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx); |
| } else { |
| reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx); |
| reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx); |
| reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx); |
| reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx); |
| } |
| |
| if (*req_channels <= *avail_channel) { |
| slot->num_channel = *req_channels; |
| *req_channels = 0; |
| } else { |
| slot->num_channel = *avail_channel; |
| *req_channels -= *avail_channel; |
| } |
| |
| slot->min_channel = *start_channel; |
| slot->max_channel = *start_channel + slot->num_channel - 1; |
| slot->ctx_index = ctx->index; |
| slot->busy = true; |
| *start_channel += slot->num_channel; |
| |
| regmap_update_bits(easrc->regmap, reg0, |
| EASRC_DPCS0R0_MAXCH_MASK, |
| EASRC_DPCS0R0_MAXCH(slot->max_channel)); |
| |
| regmap_update_bits(easrc->regmap, reg0, |
| EASRC_DPCS0R0_MINCH_MASK, |
| EASRC_DPCS0R0_MINCH(slot->min_channel)); |
| |
| regmap_update_bits(easrc->regmap, reg0, |
| EASRC_DPCS0R0_NUMCH_MASK, |
| EASRC_DPCS0R0_NUMCH(slot->num_channel - 1)); |
| |
| regmap_update_bits(easrc->regmap, reg0, |
| EASRC_DPCS0R0_CTXNUM_MASK, |
| EASRC_DPCS0R0_CTXNUM(slot->ctx_index)); |
| |
| if (ctx_priv->st1_num_taps > 0) { |
| if (ctx_priv->st2_num_taps > 0) |
| st1_mem_alloc = |
| (ctx_priv->st1_num_taps - 1) * slot->num_channel * |
| ctx_priv->st1_num_exp + slot->num_channel; |
| else |
| st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel; |
| |
| slot->pf_mem_used = st1_mem_alloc; |
| regmap_update_bits(easrc->regmap, reg2, |
| EASRC_DPCS0R2_ST1_MA_MASK, |
| EASRC_DPCS0R2_ST1_MA(st1_mem_alloc)); |
| |
| if (slot->slot_index == 1) |
| addr = PREFILTER_MEM_LEN - st1_mem_alloc; |
| else |
| addr = 0; |
| |
| regmap_update_bits(easrc->regmap, reg2, |
| EASRC_DPCS0R2_ST1_SA_MASK, |
| EASRC_DPCS0R2_ST1_SA(addr)); |
| } |
| |
| if (ctx_priv->st2_num_taps > 0) { |
| st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1); |
| |
| regmap_update_bits(easrc->regmap, reg1, |
| EASRC_DPCS0R1_ST1_EXP_MASK, |
| EASRC_DPCS0R1_ST1_EXP(st1_chanxexp)); |
| |
| st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps; |
| slot->pf_mem_used += st2_mem_alloc; |
| regmap_update_bits(easrc->regmap, reg3, |
| EASRC_DPCS0R3_ST2_MA_MASK, |
| EASRC_DPCS0R3_ST2_MA(st2_mem_alloc)); |
| |
| if (slot->slot_index == 1) |
| addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc; |
| else |
| addr = st1_mem_alloc; |
| |
| regmap_update_bits(easrc->regmap, reg3, |
| EASRC_DPCS0R3_ST2_SA_MASK, |
| EASRC_DPCS0R3_ST2_SA(addr)); |
| } |
| |
| regmap_update_bits(easrc->regmap, reg0, |
| EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN); |
| |
| return 0; |
| } |
| |
| /* |
| * fsl_easrc_config_slot |
| * |
| * A single context can be split amongst any of the 4 context processing pipes |
| * in the design. |
| * The total number of channels consumed within the context processor must be |
| * less than or equal to 8. if a single context is configured to contain more |
| * than 8 channels then it must be distributed across multiple context |
| * processing pipe slots. |
| * |
| */ |
| static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id) |
| { |
| struct fsl_easrc_priv *easrc_priv = easrc->private; |
| struct fsl_asrc_pair *ctx = easrc->pair[ctx_id]; |
| int req_channels = ctx->channels; |
| int start_channel = 0, avail_channel; |
| struct fsl_easrc_slot *slot0, *slot1; |
| struct fsl_easrc_slot *slota, *slotb; |
| int i, ret; |
| |
| if (req_channels <= 0) |
| return -EINVAL; |
| |
| for (i = 0; i < EASRC_CTX_MAX_NUM; i++) { |
| slot0 = &easrc_priv->slot[i][0]; |
| slot1 = &easrc_priv->slot[i][1]; |
| |
| if (slot0->busy && slot1->busy) { |
| continue; |
| } else if ((slot0->busy && slot0->ctx_index == ctx->index) || |
| (slot1->busy && slot1->ctx_index == ctx->index)) { |
| continue; |
| } else if (!slot0->busy) { |
| slota = slot0; |
| slotb = slot1; |
| slota->slot_index = 0; |
| } else if (!slot1->busy) { |
| slota = slot1; |
| slotb = slot0; |
| slota->slot_index = 1; |
| } |
| |
| if (!slota || !slotb) |
| continue; |
| |
| avail_channel = fsl_easrc_max_ch_for_slot(ctx, slotb); |
| if (avail_channel <= 0) |
| continue; |
| |
| ret = fsl_easrc_config_one_slot(ctx, slota, i, &req_channels, |
| &start_channel, &avail_channel); |
| if (ret) |
| return ret; |
| |
| if (req_channels > 0) |
| continue; |
| else |
| break; |
| } |
| |
| if (req_channels > 0) { |
| dev_err(&easrc->pdev->dev, "no avail slot.\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * fsl_easrc_release_slot |
| * |
| * Clear the slot configuration |
| */ |
| static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id) |
| { |
| struct fsl_easrc_priv *easrc_priv = easrc->private; |
| struct fsl_asrc_pair *ctx = easrc->pair[ctx_id]; |
| int i; |
| |
| for (i = 0; i < EASRC_CTX_MAX_NUM; i++) { |
| if (easrc_priv->slot[i][0].busy && |
| easrc_priv->slot[i][0].ctx_index == ctx->index) { |
| easrc_priv->slot[i][0].busy = false; |
| easrc_priv->slot[i][0].num_channel = 0; |
| easrc_priv->slot[i][0].pf_mem_used = 0; |
| /* set registers */ |
| regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0); |
| regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0); |
| regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0); |
| regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0); |
| } |
| |
| if (easrc_priv->slot[i][1].busy && |
| easrc_priv->slot[i][1].ctx_index == ctx->index) { |
| easrc_priv->slot[i][1].busy = false; |
| easrc_priv->slot[i][1].num_channel = 0; |
| easrc_priv->slot[i][1].pf_mem_used = 0; |
| /* set registers */ |
| regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0); |
| regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0); |
| regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0); |
| regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * fsl_easrc_config_context |
| * |
| * Configure the register relate with context. |
| */ |
| static int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id) |
| { |
| struct fsl_easrc_ctx_priv *ctx_priv; |
| struct fsl_asrc_pair *ctx; |
| struct device *dev; |
| unsigned long lock_flags; |
| int ret; |
| |
| if (!easrc) |
| return -ENODEV; |
| |
| dev = &easrc->pdev->dev; |
| |
| if (ctx_id >= EASRC_CTX_MAX_NUM) { |
| dev_err(dev, "Invalid context id[%d]\n", ctx_id); |
| return -EINVAL; |
| } |
| |
| ctx = easrc->pair[ctx_id]; |
| |
| ctx_priv = ctx->private; |
| |
| fsl_easrc_normalize_rates(ctx); |
| |
| ret = fsl_easrc_set_rs_ratio(ctx); |
| if (ret) |
| return ret; |
| |
| /* Initialize the context coeficients */ |
| ret = fsl_easrc_prefilter_config(easrc, ctx->index); |
| if (ret) |
| return ret; |
| |
| spin_lock_irqsave(&easrc->lock, lock_flags); |
| ret = fsl_easrc_config_slot(easrc, ctx->index); |
| spin_unlock_irqrestore(&easrc->lock, lock_flags); |
| if (ret) |
| return ret; |
| |
| /* |
| * Both prefilter and resampling filters can use following |
| * initialization modes: |
| * 2 - zero-fil mode |
| * 1 - replication mode |
| * 0 - software control |
| */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), |
| EASRC_CCE1_RS_INIT_MASK, |
| EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode)); |
| |
| regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), |
| EASRC_CCE1_PF_INIT_MASK, |
| EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode)); |
| |
| /* |
| * Context Input FIFO Watermark |
| * DMA request is generated when input FIFO < FIFO_WTMK |
| */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id), |
| EASRC_CC_FIFO_WTMK_MASK, |
| EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk)); |
| |
| /* |
| * Context Output FIFO Watermark |
| * DMA request is generated when output FIFO > FIFO_WTMK |
| * So we set fifo_wtmk -1 to register. |
| */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id), |
| EASRC_COC_FIFO_WTMK_MASK, |
| EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1)); |
| |
| /* Number of channels */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id), |
| EASRC_CC_CHEN_MASK, |
| EASRC_CC_CHEN(ctx->channels - 1)); |
| return 0; |
| } |
| |
| static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx, |
| struct fsl_easrc_data_fmt *fmt, |
| snd_pcm_format_t raw_fmt) |
| { |
| struct fsl_asrc *easrc = ctx->asrc; |
| struct fsl_easrc_priv *easrc_priv = easrc->private; |
| int ret; |
| |
| if (!fmt) |
| return -EINVAL; |
| |
| /* |
| * Context Input Floating Point Format |
| * 0 - Integer Format |
| * 1 - Single Precision FP Format |
| */ |
| fmt->floating_point = !snd_pcm_format_linear(raw_fmt); |
| fmt->sample_pos = 0; |
| fmt->iec958 = 0; |
| |
| /* Get the data width */ |
| switch (snd_pcm_format_width(raw_fmt)) { |
| case 16: |
| fmt->width = EASRC_WIDTH_16_BIT; |
| fmt->addexp = 15; |
| break; |
| case 20: |
| fmt->width = EASRC_WIDTH_20_BIT; |
| fmt->addexp = 19; |
| break; |
| case 24: |
| fmt->width = EASRC_WIDTH_24_BIT; |
| fmt->addexp = 23; |
| break; |
| case 32: |
| fmt->width = EASRC_WIDTH_32_BIT; |
| fmt->addexp = 31; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (raw_fmt) { |
| case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE: |
| fmt->width = easrc_priv->bps_iec958[ctx->index]; |
| fmt->iec958 = 1; |
| fmt->floating_point = 0; |
| if (fmt->width == EASRC_WIDTH_16_BIT) { |
| fmt->sample_pos = 12; |
| fmt->addexp = 15; |
| } else if (fmt->width == EASRC_WIDTH_20_BIT) { |
| fmt->sample_pos = 8; |
| fmt->addexp = 19; |
| } else if (fmt->width == EASRC_WIDTH_24_BIT) { |
| fmt->sample_pos = 4; |
| fmt->addexp = 23; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| /* |
| * Data Endianness |
| * 0 - Little-Endian |
| * 1 - Big-Endian |
| */ |
| ret = snd_pcm_format_big_endian(raw_fmt); |
| if (ret < 0) |
| return ret; |
| |
| fmt->endianness = ret; |
| |
| /* |
| * Input Data sign |
| * 0b - Signed Format |
| * 1b - Unsigned Format |
| */ |
| fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0; |
| |
| return 0; |
| } |
| |
| static int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx, |
| snd_pcm_format_t *in_raw_format, |
| snd_pcm_format_t *out_raw_format) |
| { |
| struct fsl_asrc *easrc = ctx->asrc; |
| struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; |
| struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt; |
| struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt; |
| int ret = 0; |
| |
| /* Get the bitfield values for input data format */ |
| if (in_raw_format && out_raw_format) { |
| ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format); |
| if (ret) |
| return ret; |
| } |
| |
| regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), |
| EASRC_CC_BPS_MASK, |
| EASRC_CC_BPS(in_fmt->width)); |
| regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), |
| EASRC_CC_ENDIANNESS_MASK, |
| in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT); |
| regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), |
| EASRC_CC_FMT_MASK, |
| in_fmt->floating_point << EASRC_CC_FMT_SHIFT); |
| regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), |
| EASRC_CC_INSIGN_MASK, |
| in_fmt->unsign << EASRC_CC_INSIGN_SHIFT); |
| |
| /* In Sample Position */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), |
| EASRC_CC_SAMPLE_POS_MASK, |
| EASRC_CC_SAMPLE_POS(in_fmt->sample_pos)); |
| |
| /* Get the bitfield values for input data format */ |
| if (in_raw_format && out_raw_format) { |
| ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format); |
| if (ret) |
| return ret; |
| } |
| |
| regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), |
| EASRC_COC_BPS_MASK, |
| EASRC_COC_BPS(out_fmt->width)); |
| regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), |
| EASRC_COC_ENDIANNESS_MASK, |
| out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT); |
| regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), |
| EASRC_COC_FMT_MASK, |
| out_fmt->floating_point << EASRC_COC_FMT_SHIFT); |
| regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), |
| EASRC_COC_OUTSIGN_MASK, |
| out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT); |
| |
| /* Out Sample Position */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), |
| EASRC_COC_SAMPLE_POS_MASK, |
| EASRC_COC_SAMPLE_POS(out_fmt->sample_pos)); |
| |
| regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), |
| EASRC_COC_IEC_EN_MASK, |
| out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT); |
| |
| return ret; |
| } |
| |
| /* |
| * The ASRC provides interleaving support in hardware to ensure that a |
| * variety of sample sources can be internally combined |
| * to conform with this format. Interleaving parameters are accessed |
| * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers |
| */ |
| static int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx) |
| { |
| struct fsl_easrc_ctx_priv *ctx_priv; |
| struct fsl_asrc *easrc; |
| |
| if (!ctx) |
| return -ENODEV; |
| |
| easrc = ctx->asrc; |
| ctx_priv = ctx->private; |
| |
| /* input interleaving parameters */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index), |
| EASRC_CIA_ITER_MASK, |
| EASRC_CIA_ITER(ctx_priv->in_params.iterations)); |
| regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index), |
| EASRC_CIA_GRLEN_MASK, |
| EASRC_CIA_GRLEN(ctx_priv->in_params.group_len)); |
| regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index), |
| EASRC_CIA_ACCLEN_MASK, |
| EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len)); |
| |
| /* output interleaving parameters */ |
| regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index), |
| EASRC_COA_ITER_MASK, |
| EASRC_COA_ITER(ctx_priv->out_params.iterations)); |
| regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index), |
| EASRC_COA_GRLEN_MASK, |
| EASRC_COA_GRLEN(ctx_priv->out_params.group_len)); |
| regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index), |
| EASRC_COA_ACCLEN_MASK, |
| EASRC_COA_ACCLEN(ctx_priv->out_params.access_len)); |
| |
| return 0; |
| } |
| |
| /* |
| * Request one of the available contexts |
| * |
| * Returns a negative number on error and >=0 as context id |
| * on success |
| */ |
| static int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx) |
| { |
| enum asrc_pair_index index = ASRC_INVALID_PAIR; |
| struct fsl_asrc *easrc = ctx->asrc; |
| struct device *dev; |
| unsigned long lock_flags; |
| int ret = 0; |
| int i; |
| |
| dev = &easrc->pdev->dev; |
| |
| spin_lock_irqsave(&easrc->lock, lock_flags); |
| |
| for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) { |
| if (easrc->pair[i]) |
| continue; |
| |
| index = i; |
| break; |
| } |
| |
| if (index == ASRC_INVALID_PAIR) { |
| dev_err(dev, "all contexts are busy\n"); |
| ret = -EBUSY; |
| } else if (channels > easrc->channel_avail) { |
| dev_err(dev, "can't give the required channels: %d\n", |
| channels); |
| ret = -EINVAL; |
| } else { |
| ctx->index = index; |
| ctx->channels = channels; |
| easrc->pair[index] = ctx; |
| easrc->channel_avail -= channels; |
| } |
| |
| spin_unlock_irqrestore(&easrc->lock, lock_flags); |
| |
| return ret; |
| } |
| |
| /* |
| * Release the context |
| * |
| * This funciton is mainly doing the revert thing in request context |
| */ |
| static void fsl_easrc_release_context(struct fsl_asrc_pair *ctx) |
| { |
| unsigned long lock_flags; |
| struct fsl_asrc *easrc; |
| |
| if (!ctx) |
| return; |
| |
| easrc = ctx->asrc; |
| |
| spin_lock_irqsave(&easrc->lock, lock_flags); |
| |
| fsl_easrc_release_slot(easrc, ctx->index); |
| |
| easrc->channel_avail += ctx->channels; |
| easrc->pair[ctx->index] = NULL; |
| |
| spin_unlock_irqrestore(&easrc->lock, lock_flags); |
| } |
| |
| /* |
| * Start the context |
| * |
| * Enable the DMA request and context |
| */ |
| static int fsl_easrc_start_context(struct fsl_asrc_pair *ctx) |
| { |
| struct fsl_asrc *easrc = ctx->asrc; |
| |
| regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), |
| EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE); |
| regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), |
| EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE); |
| regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), |
| EASRC_CC_EN_MASK, EASRC_CC_EN); |
| return 0; |
| } |
| |
| /* |
| * Stop the context |
| * |
| * Disable the DMA request and context |
| */ |
| static int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx) |
| { |
| struct fsl_asrc *easrc = ctx->asrc; |
| int val, i; |
| int size; |
| int retry = 200; |
| |
| regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val); |
| |
| if (val & EASRC_CC_EN_MASK) { |
| regmap_update_bits(easrc->regmap, |
| REG_EASRC_CC(ctx->index), |
| EASRC_CC_STOP_MASK, EASRC_CC_STOP); |
| do { |
| regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val); |
| val &= EASRC_SFS_NSGO_MASK; |
| size = val >> EASRC_SFS_NSGO_SHIFT; |
| |
| /* Read FIFO, drop the data */ |
| for (i = 0; i < size * ctx->channels; i++) |
| regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val); |
| /* Check RUN_STOP_DONE */ |
| regmap_read(easrc->regmap, REG_EASRC_IRQF, &val); |
| if (val & EASRC_IRQF_RSD(1 << ctx->index)) { |
| /*Clear RUN_STOP_DONE*/ |
| regmap_write_bits(easrc->regmap, |
| REG_EASRC_IRQF, |
| EASRC_IRQF_RSD(1 << ctx->index), |
| EASRC_IRQF_RSD(1 << ctx->index)); |
| break; |
| } |
| udelay(100); |
| } while (--retry); |
| |
| if (retry == 0) |
| dev_warn(&easrc->pdev->dev, "RUN STOP fail\n"); |
| } |
| |
| regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), |
| EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0); |
| regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), |
| EASRC_CC_FWMDE_MASK, 0); |
| regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), |
| EASRC_COC_FWMDE_MASK, 0); |
| return 0; |
| } |
| |
| static struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx, |
| bool dir) |
| { |
| struct fsl_asrc *easrc = ctx->asrc; |
| enum asrc_pair_index index = ctx->index; |
| char name[8]; |
| |
| /* Example of dma name: ctx0_rx */ |
| sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't'); |
| |
| return dma_request_slave_channel(&easrc->pdev->dev, name); |
| }; |
| |
| static const unsigned int easrc_rates[] = { |
| 8000, 11025, 12000, 16000, |
| 22050, 24000, 32000, 44100, |
| 48000, 64000, 88200, 96000, |
| 128000, 176400, 192000, 256000, |
| 352800, 384000, 705600, 768000, |
| }; |
| |
| static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = { |
| .count = ARRAY_SIZE(easrc_rates), |
| .list = easrc_rates, |
| }; |
| |
| static int fsl_easrc_startup(struct snd_pcm_substream *substream, |
| struct snd_soc_dai *dai) |
| { |
| return snd_pcm_hw_constraint_list(substream->runtime, 0, |
| SNDRV_PCM_HW_PARAM_RATE, |
| &easrc_rate_constraints); |
| } |
| |
| static int fsl_easrc_trigger(struct snd_pcm_substream *substream, |
| int cmd, struct snd_soc_dai *dai) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct fsl_asrc_pair *ctx = runtime->private_data; |
| int ret; |
| |
| switch (cmd) { |
| case SNDRV_PCM_TRIGGER_START: |
| case SNDRV_PCM_TRIGGER_RESUME: |
| case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: |
| ret = fsl_easrc_start_context(ctx); |
| if (ret) |
| return ret; |
| break; |
| case SNDRV_PCM_TRIGGER_STOP: |
| case SNDRV_PCM_TRIGGER_SUSPEND: |
| case SNDRV_PCM_TRIGGER_PAUSE_PUSH: |
| ret = fsl_easrc_stop_context(ctx); |
| if (ret) |
| return ret; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int fsl_easrc_hw_params(struct snd_pcm_substream *substream, |
| struct snd_pcm_hw_params *params, |
| struct snd_soc_dai *dai) |
| { |
| struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai); |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct device *dev = &easrc->pdev->dev; |
| struct fsl_asrc_pair *ctx = runtime->private_data; |
| struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; |
| unsigned int channels = params_channels(params); |
| unsigned int rate = params_rate(params); |
| snd_pcm_format_t format = params_format(params); |
| int ret; |
| |
| ret = fsl_easrc_request_context(channels, ctx); |
| if (ret) { |
| dev_err(dev, "failed to request context\n"); |
| return ret; |
| } |
| |
| ctx_priv->ctx_streams |= BIT(substream->stream); |
| |
| /* |
| * Set the input and output ratio so we can compute |
| * the resampling ratio in RS_LOW/HIGH |
| */ |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { |
| ctx_priv->in_params.sample_rate = rate; |
| ctx_priv->in_params.sample_format = format; |
| ctx_priv->out_params.sample_rate = easrc->asrc_rate; |
| ctx_priv->out_params.sample_format = easrc->asrc_format; |
| } else { |
| ctx_priv->out_params.sample_rate = rate; |
| ctx_priv->out_params.sample_format = format; |
| ctx_priv->in_params.sample_rate = easrc->asrc_rate; |
| ctx_priv->in_params.sample_format = easrc->asrc_format; |
| } |
| |
| ctx->channels = channels; |
| ctx_priv->in_params.fifo_wtmk = 0x20; |
| ctx_priv->out_params.fifo_wtmk = 0x20; |
| |
| /* |
| * Do only rate conversion and keep the same format for input |
| * and output data |
| */ |
| ret = fsl_easrc_set_ctx_format(ctx, |
| &ctx_priv->in_params.sample_format, |
| &ctx_priv->out_params.sample_format); |
| if (ret) { |
| dev_err(dev, "failed to set format %d", ret); |
| return ret; |
| } |
| |
| ret = fsl_easrc_config_context(easrc, ctx->index); |
| if (ret) { |
| dev_err(dev, "failed to config context\n"); |
| return ret; |
| } |
| |
| ctx_priv->in_params.iterations = 1; |
| ctx_priv->in_params.group_len = ctx->channels; |
| ctx_priv->in_params.access_len = ctx->channels; |
| ctx_priv->out_params.iterations = 1; |
| ctx_priv->out_params.group_len = ctx->channels; |
| ctx_priv->out_params.access_len = ctx->channels; |
| |
| ret = fsl_easrc_set_ctx_organziation(ctx); |
| if (ret) { |
| dev_err(dev, "failed to set fifo organization\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int fsl_easrc_hw_free(struct snd_pcm_substream *substream, |
| struct snd_soc_dai *dai) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct fsl_asrc_pair *ctx = runtime->private_data; |
| struct fsl_easrc_ctx_priv *ctx_priv; |
| |
| if (!ctx) |
| return -EINVAL; |
| |
| ctx_priv = ctx->private; |
| |
| if (ctx_priv->ctx_streams & BIT(substream->stream)) { |
| ctx_priv->ctx_streams &= ~BIT(substream->stream); |
| fsl_easrc_release_context(ctx); |
| } |
| |
| return 0; |
| } |
| |
| static const struct snd_soc_dai_ops fsl_easrc_dai_ops = { |
| .startup = fsl_easrc_startup, |
| .trigger = fsl_easrc_trigger, |
| .hw_params = fsl_easrc_hw_params, |
| .hw_free = fsl_easrc_hw_free, |
| }; |
| |
| static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai) |
| { |
| struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev); |
| |
| snd_soc_dai_init_dma_data(cpu_dai, |
| &easrc->dma_params_tx, |
| &easrc->dma_params_rx); |
| return 0; |
| } |
| |
| static struct snd_soc_dai_driver fsl_easrc_dai = { |
| .probe = fsl_easrc_dai_probe, |
| .playback = { |
| .stream_name = "ASRC-Playback", |
| .channels_min = 1, |
| .channels_max = 32, |
| .rate_min = 8000, |
| .rate_max = 768000, |
| .rates = SNDRV_PCM_RATE_KNOT, |
| .formats = FSL_EASRC_FORMATS, |
| }, |
| .capture = { |
| .stream_name = "ASRC-Capture", |
| .channels_min = 1, |
| .channels_max = 32, |
| .rate_min = 8000, |
| .rate_max = 768000, |
| .rates = SNDRV_PCM_RATE_KNOT, |
| .formats = FSL_EASRC_FORMATS | |
| SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, |
| }, |
| .ops = &fsl_easrc_dai_ops, |
| }; |
| |
| static const struct snd_soc_component_driver fsl_easrc_component = { |
| .name = "fsl-easrc-dai", |
| .controls = fsl_easrc_snd_controls, |
| .num_controls = ARRAY_SIZE(fsl_easrc_snd_controls), |
| }; |
| |
| static const struct reg_default fsl_easrc_reg_defaults[] = { |
| {REG_EASRC_WRFIFO(0), 0x00000000}, |
| {REG_EASRC_WRFIFO(1), 0x00000000}, |
| {REG_EASRC_WRFIFO(2), 0x00000000}, |
| {REG_EASRC_WRFIFO(3), 0x00000000}, |
| {REG_EASRC_RDFIFO(0), 0x00000000}, |
| {REG_EASRC_RDFIFO(1), 0x00000000}, |
| {REG_EASRC_RDFIFO(2), 0x00000000}, |
| {REG_EASRC_RDFIFO(3), 0x00000000}, |
| {REG_EASRC_CC(0), 0x00000000}, |
| {REG_EASRC_CC(1), 0x00000000}, |
| {REG_EASRC_CC(2), 0x00000000}, |
| {REG_EASRC_CC(3), 0x00000000}, |
| {REG_EASRC_CCE1(0), 0x00000000}, |
| {REG_EASRC_CCE1(1), 0x00000000}, |
| {REG_EASRC_CCE1(2), 0x00000000}, |
| {REG_EASRC_CCE1(3), 0x00000000}, |
| {REG_EASRC_CCE2(0), 0x00000000}, |
| {REG_EASRC_CCE2(1), 0x00000000}, |
| {REG_EASRC_CCE2(2), 0x00000000}, |
| {REG_EASRC_CCE2(3), 0x00000000}, |
| {REG_EASRC_CIA(0), 0x00000000}, |
| {REG_EASRC_CIA(1), 0x00000000}, |
| {REG_EASRC_CIA(2), 0x00000000}, |
| {REG_EASRC_CIA(3), 0x00000000}, |
| {REG_EASRC_DPCS0R0(0), 0x00000000}, |
| {REG_EASRC_DPCS0R0(1), 0x00000000}, |
| {REG_EASRC_DPCS0R0(2), 0x00000000}, |
| {REG_EASRC_DPCS0R0(3), 0x00000000}, |
| {REG_EASRC_DPCS0R1(0), 0x00000000}, |
| {REG_EASRC_DPCS0R1(1), 0x00000000}, |
| {REG_EASRC_DPCS0R1(2), 0x00000000}, |
| {REG_EASRC_DPCS0R1(3), 0x00000000}, |
| {REG_EASRC_DPCS0R2(0), 0x00000000}, |
| {REG_EASRC_DPCS0R2(1), 0x00000000}, |
| {REG_EASRC_DPCS0R2(2), 0x00000000}, |
| {REG_EASRC_DPCS0R2(3), 0x00000000}, |
| {REG_EASRC_DPCS0R3(0), 0x00000000}, |
| {REG_EASRC_DPCS0R3(1), 0x00000000}, |
| {REG_EASRC_DPCS0R3(2), 0x00000000}, |
| {REG_EASRC_DPCS0R3(3), 0x00000000}, |
| {REG_EASRC_DPCS1R0(0), 0x00000000}, |
| {REG_EASRC_DPCS1R0(1), 0x00000000}, |
| {REG_EASRC_DPCS1R0(2), 0x00000000}, |
| {REG_EASRC_DPCS1R0(3), 0x00000000}, |
| {REG_EASRC_DPCS1R1(0), 0x00000000}, |
| {REG_EASRC_DPCS1R1(1), 0x00000000}, |
| {REG_EASRC_DPCS1R1(2), 0x00000000}, |
| {REG_EASRC_DPCS1R1(3), 0x00000000}, |
| {REG_EASRC_DPCS1R2(0), 0x00000000}, |
| {REG_EASRC_DPCS1R2(1), 0x00000000}, |
| {REG_EASRC_DPCS1R2(2), 0x00000000}, |
| {REG_EASRC_DPCS1R2(3), 0x00000000}, |
| {REG_EASRC_DPCS1R3(0), 0x00000000}, |
| {REG_EASRC_DPCS1R3(1), 0x00000000}, |
| {REG_EASRC_DPCS1R3(2), 0x00000000}, |
| {REG_EASRC_DPCS1R3(3), 0x00000000}, |
| {REG_EASRC_COC(0), 0x00000000}, |
| {REG_EASRC_COC(1), 0x00000000}, |
| {REG_EASRC_COC(2), 0x00000000}, |
| {REG_EASRC_COC(3), 0x00000000}, |
| {REG_EASRC_COA(0), 0x00000000}, |
| {REG_EASRC_COA(1), 0x00000000}, |
| {REG_EASRC_COA(2), 0x00000000}, |
| {REG_EASRC_COA(3), 0x00000000}, |
| {REG_EASRC_SFS(0), 0x00000000}, |
| {REG_EASRC_SFS(1), 0x00000000}, |
| {REG_EASRC_SFS(2), 0x00000000}, |
| {REG_EASRC_SFS(3), 0x00000000}, |
| {REG_EASRC_RRL(0), 0x00000000}, |
| {REG_EASRC_RRL(1), 0x00000000}, |
| {REG_EASRC_RRL(2), 0x00000000}, |
| {REG_EASRC_RRL(3), 0x00000000}, |
| {REG_EASRC_RRH(0), 0x00000000}, |
| {REG_EASRC_RRH(1), 0x00000000}, |
| {REG_EASRC_RRH(2), 0x00000000}, |
| {REG_EASRC_RRH(3), 0x00000000}, |
| {REG_EASRC_RUC(0), 0x00000000}, |
| {REG_EASRC_RUC(1), 0x00000000}, |
| {REG_EASRC_RUC(2), 0x00000000}, |
| {REG_EASRC_RUC(3), 0x00000000}, |
| {REG_EASRC_RUR(0), 0x7FFFFFFF}, |
| {REG_EASRC_RUR(1), 0x7FFFFFFF}, |
| {REG_EASRC_RUR(2), 0x7FFFFFFF}, |
| {REG_EASRC_RUR(3), 0x7FFFFFFF}, |
| {REG_EASRC_RCTCL, 0x00000000}, |
| {REG_EASRC_RCTCH, 0x00000000}, |
| {REG_EASRC_PCF(0), 0x00000000}, |
| {REG_EASRC_PCF(1), 0x00000000}, |
| {REG_EASRC_PCF(2), 0x00000000}, |
| {REG_EASRC_PCF(3), 0x00000000}, |
| {REG_EASRC_CRCM, 0x00000000}, |
| {REG_EASRC_CRCC, 0x00000000}, |
| {REG_EASRC_IRQC, 0x00000FFF}, |
| {REG_EASRC_IRQF, 0x00000000}, |
| {REG_EASRC_CS0(0), 0x00000000}, |
| {REG_EASRC_CS0(1), 0x00000000}, |
| {REG_EASRC_CS0(2), 0x00000000}, |
| {REG_EASRC_CS0(3), 0x00000000}, |
| {REG_EASRC_CS1(0), 0x00000000}, |
| {REG_EASRC_CS1(1), 0x00000000}, |
| {REG_EASRC_CS1(2), 0x00000000}, |
| {REG_EASRC_CS1(3), 0x00000000}, |
| {REG_EASRC_CS2(0), 0x00000000}, |
| {REG_EASRC_CS2(1), 0x00000000}, |
| {REG_EASRC_CS2(2), 0x00000000}, |
| {REG_EASRC_CS2(3), 0x00000000}, |
| {REG_EASRC_CS3(0), 0x00000000}, |
| {REG_EASRC_CS3(1), 0x00000000}, |
| {REG_EASRC_CS3(2), 0x00000000}, |
| {REG_EASRC_CS3(3), 0x00000000}, |
| {REG_EASRC_CS4(0), 0x00000000}, |
| {REG_EASRC_CS4(1), 0x00000000}, |
| {REG_EASRC_CS4(2), 0x00000000}, |
| {REG_EASRC_CS4(3), 0x00000000}, |
| {REG_EASRC_CS5(0), 0x00000000}, |
| {REG_EASRC_CS5(1), 0x00000000}, |
| {REG_EASRC_CS5(2), 0x00000000}, |
| {REG_EASRC_CS5(3), 0x00000000}, |
| {REG_EASRC_DBGC, 0x00000000}, |
| {REG_EASRC_DBGS, 0x00000000}, |
| }; |
| |
| static const struct regmap_range fsl_easrc_readable_ranges[] = { |
| regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH), |
| regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)), |
| regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS), |
| }; |
| |
| static const struct regmap_access_table fsl_easrc_readable_table = { |
| .yes_ranges = fsl_easrc_readable_ranges, |
| .n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges), |
| }; |
| |
| static const struct regmap_range fsl_easrc_writeable_ranges[] = { |
| regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)), |
| regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)), |
| regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH), |
| regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC), |
| }; |
| |
| static const struct regmap_access_table fsl_easrc_writeable_table = { |
| .yes_ranges = fsl_easrc_writeable_ranges, |
| .n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges), |
| }; |
| |
| static const struct regmap_range fsl_easrc_volatileable_ranges[] = { |
| regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)), |
| regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)), |
| regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF), |
| regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS), |
| }; |
| |
| static const struct regmap_access_table fsl_easrc_volatileable_table = { |
| .yes_ranges = fsl_easrc_volatileable_ranges, |
| .n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges), |
| }; |
| |
| static const struct regmap_config fsl_easrc_regmap_config = { |
| .reg_bits = 32, |
| .reg_stride = 4, |
| .val_bits = 32, |
| |
| .max_register = REG_EASRC_DBGS, |
| .reg_defaults = fsl_easrc_reg_defaults, |
| .num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults), |
| .rd_table = &fsl_easrc_readable_table, |
| .wr_table = &fsl_easrc_writeable_table, |
| .volatile_table = &fsl_easrc_volatileable_table, |
| .cache_type = REGCACHE_RBTREE, |
| }; |
| |
| #ifdef DEBUG |
| static void fsl_easrc_dump_firmware(struct fsl_asrc *easrc) |
| { |
| struct fsl_easrc_priv *easrc_priv = easrc->private; |
| struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr; |
| struct interp_params *interp = easrc_priv->interp; |
| struct prefil_params *prefil = easrc_priv->prefil; |
| struct device *dev = &easrc->pdev->dev; |
| int i; |
| |
| if (firm->magic != FIRMWARE_MAGIC) { |
| dev_err(dev, "Wrong magic. Something went wrong!"); |
| return; |
| } |
| |
| dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version); |
| dev_dbg(dev, "Num prefilter scenarios: %u\n", firm->prefil_scen); |
| dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen); |
| dev_dbg(dev, "\nInterpolation scenarios:\n"); |
| |
| for (i = 0; i < firm->interp_scen; i++) { |
| if (interp[i].magic != FIRMWARE_MAGIC) { |
| dev_dbg(dev, "%d. wrong interp magic: %x\n", |
| i, interp[i].magic); |
| continue; |
| } |
| dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i, |
| interp[i].num_taps, interp[i].num_phases, |
| interp[i].center_tap); |
| } |
| |
| for (i = 0; i < firm->prefil_scen; i++) { |
| if (prefil[i].magic != FIRMWARE_MAGIC) { |
| dev_dbg(dev, "%d. wrong prefil magic: %x\n", |
| i, prefil[i].magic); |
| continue; |
| } |
| dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i, |
| prefil[i].insr, prefil[i].outsr, |
| prefil[i].st1_taps, prefil[i].st2_taps); |
| } |
| |
| dev_dbg(dev, "end of firmware dump\n"); |
| } |
| #endif |
| |
| static int fsl_easrc_get_firmware(struct fsl_asrc *easrc) |
| { |
| struct fsl_easrc_priv *easrc_priv; |
| const struct firmware **fw_p; |
| u32 pnum, inum, offset; |
| const u8 *data; |
| int ret; |
| |
| if (!easrc) |
| return -EINVAL; |
| |
| easrc_priv = easrc->private; |
| fw_p = &easrc_priv->fw; |
| |
| ret = request_firmware(fw_p, easrc_priv->fw_name, &easrc->pdev->dev); |
| if (ret) |
| return ret; |
| |
| data = easrc_priv->fw->data; |
| |
| easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)data; |
| pnum = easrc_priv->firmware_hdr->prefil_scen; |
| inum = easrc_priv->firmware_hdr->interp_scen; |
| |
| if (inum) { |
| offset = sizeof(struct asrc_firmware_hdr); |
| easrc_priv->interp = (struct interp_params *)(data + offset); |
| } |
| |
| if (pnum) { |
| offset = sizeof(struct asrc_firmware_hdr) + |
| inum * sizeof(struct interp_params); |
| easrc_priv->prefil = (struct prefil_params *)(data + offset); |
| } |
| |
| #ifdef DEBUG |
| fsl_easrc_dump_firmware(easrc); |
| #endif |
| |
| return 0; |
| } |
| |
| static irqreturn_t fsl_easrc_isr(int irq, void *dev_id) |
| { |
| struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id; |
| struct device *dev = &easrc->pdev->dev; |
| int val; |
| |
| regmap_read(easrc->regmap, REG_EASRC_IRQF, &val); |
| |
| if (val & EASRC_IRQF_OER_MASK) |
| dev_dbg(dev, "output FIFO underflow\n"); |
| |
| if (val & EASRC_IRQF_IFO_MASK) |
| dev_dbg(dev, "input FIFO overflow\n"); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index) |
| { |
| return REG_EASRC_FIFO(dir, index); |
| } |
| |
| static const struct of_device_id fsl_easrc_dt_ids[] = { |
| { .compatible = "fsl,imx8mn-easrc",}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids); |
| |
| static int fsl_easrc_probe(struct platform_device *pdev) |
| { |
| struct fsl_easrc_priv *easrc_priv; |
| struct device *dev = &pdev->dev; |
| struct fsl_asrc *easrc; |
| struct resource *res; |
| struct device_node *np; |
| void __iomem *regs; |
| int ret, irq; |
| |
| easrc = devm_kzalloc(dev, sizeof(*easrc), GFP_KERNEL); |
| if (!easrc) |
| return -ENOMEM; |
| |
| easrc_priv = devm_kzalloc(dev, sizeof(*easrc_priv), GFP_KERNEL); |
| if (!easrc_priv) |
| return -ENOMEM; |
| |
| easrc->pdev = pdev; |
| easrc->private = easrc_priv; |
| np = dev->of_node; |
| |
| regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res); |
| if (IS_ERR(regs)) |
| return PTR_ERR(regs); |
| |
| easrc->paddr = res->start; |
| |
| easrc->regmap = devm_regmap_init_mmio(dev, regs, &fsl_easrc_regmap_config); |
| if (IS_ERR(easrc->regmap)) { |
| dev_err(dev, "failed to init regmap"); |
| return PTR_ERR(easrc->regmap); |
| } |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0, |
| dev_name(dev), easrc); |
| if (ret) { |
| dev_err(dev, "failed to claim irq %u: %d\n", irq, ret); |
| return ret; |
| } |
| |
| easrc->mem_clk = devm_clk_get(dev, "mem"); |
| if (IS_ERR(easrc->mem_clk)) { |
| dev_err(dev, "failed to get mem clock\n"); |
| return PTR_ERR(easrc->mem_clk); |
| } |
| |
| /* Set default value */ |
| easrc->channel_avail = 32; |
| easrc->get_dma_channel = fsl_easrc_get_dma_channel; |
| easrc->request_pair = fsl_easrc_request_context; |
| easrc->release_pair = fsl_easrc_release_context; |
| easrc->get_fifo_addr = fsl_easrc_get_fifo_addr; |
| easrc->pair_priv_size = sizeof(struct fsl_easrc_ctx_priv); |
| |
| easrc_priv->rs_num_taps = EASRC_RS_32_TAPS; |
| easrc_priv->const_coeff = 0x3FF0000000000000; |
| |
| ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate); |
| if (ret) { |
| dev_err(dev, "failed to asrc rate\n"); |
| return ret; |
| } |
| |
| ret = of_property_read_u32(np, "fsl,asrc-format", &easrc->asrc_format); |
| if (ret) { |
| dev_err(dev, "failed to asrc format\n"); |
| return ret; |
| } |
| |
| if (!(FSL_EASRC_FORMATS & (1ULL << easrc->asrc_format))) { |
| dev_warn(dev, "unsupported format, switching to S24_LE\n"); |
| easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE; |
| } |
| |
| ret = of_property_read_string(np, "firmware-name", |
| &easrc_priv->fw_name); |
| if (ret) { |
| dev_err(dev, "failed to get firmware name\n"); |
| return ret; |
| } |
| |
| platform_set_drvdata(pdev, easrc); |
| pm_runtime_enable(dev); |
| |
| spin_lock_init(&easrc->lock); |
| |
| regcache_cache_only(easrc->regmap, true); |
| |
| ret = devm_snd_soc_register_component(dev, &fsl_easrc_component, |
| &fsl_easrc_dai, 1); |
| if (ret) { |
| dev_err(dev, "failed to register ASoC DAI\n"); |
| return ret; |
| } |
| |
| ret = devm_snd_soc_register_component(dev, &fsl_asrc_component, |
| NULL, 0); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to register ASoC platform\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int fsl_easrc_remove(struct platform_device *pdev) |
| { |
| pm_runtime_disable(&pdev->dev); |
| |
| return 0; |
| } |
| |
| static __maybe_unused int fsl_easrc_runtime_suspend(struct device *dev) |
| { |
| struct fsl_asrc *easrc = dev_get_drvdata(dev); |
| struct fsl_easrc_priv *easrc_priv = easrc->private; |
| unsigned long lock_flags; |
| |
| regcache_cache_only(easrc->regmap, true); |
| |
| clk_disable_unprepare(easrc->mem_clk); |
| |
| spin_lock_irqsave(&easrc->lock, lock_flags); |
| easrc_priv->firmware_loaded = 0; |
| spin_unlock_irqrestore(&easrc->lock, lock_flags); |
| |
| return 0; |
| } |
| |
| static __maybe_unused int fsl_easrc_runtime_resume(struct device *dev) |
| { |
| struct fsl_asrc *easrc = dev_get_drvdata(dev); |
| struct fsl_easrc_priv *easrc_priv = easrc->private; |
| struct fsl_easrc_ctx_priv *ctx_priv; |
| struct fsl_asrc_pair *ctx; |
| unsigned long lock_flags; |
| int ret; |
| int i; |
| |
| ret = clk_prepare_enable(easrc->mem_clk); |
| if (ret) |
| return ret; |
| |
| regcache_cache_only(easrc->regmap, false); |
| regcache_mark_dirty(easrc->regmap); |
| regcache_sync(easrc->regmap); |
| |
| spin_lock_irqsave(&easrc->lock, lock_flags); |
| if (easrc_priv->firmware_loaded) { |
| spin_unlock_irqrestore(&easrc->lock, lock_flags); |
| goto skip_load; |
| } |
| easrc_priv->firmware_loaded = 1; |
| spin_unlock_irqrestore(&easrc->lock, lock_flags); |
| |
| ret = fsl_easrc_get_firmware(easrc); |
| if (ret) { |
| dev_err(dev, "failed to get firmware\n"); |
| goto disable_mem_clk; |
| } |
| |
| /* |
| * Write Resampling Coefficients |
| * The coefficient RAM must be configured prior to beginning of |
| * any context processing within the ASRC |
| */ |
| ret = fsl_easrc_resampler_config(easrc); |
| if (ret) { |
| dev_err(dev, "resampler config failed\n"); |
| goto disable_mem_clk; |
| } |
| |
| for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) { |
| ctx = easrc->pair[i]; |
| if (!ctx) |
| continue; |
| |
| ctx_priv = ctx->private; |
| fsl_easrc_set_rs_ratio(ctx); |
| ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * |
| ctx_priv->out_params.sample_rate / |
| ctx_priv->in_params.sample_rate; |
| if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate |
| % ctx_priv->in_params.sample_rate != 0) |
| ctx_priv->out_missed_sample += 1; |
| |
| ret = fsl_easrc_write_pf_coeff_mem(easrc, i, |
| ctx_priv->st1_coeff, |
| ctx_priv->st1_num_taps, |
| ctx_priv->st1_addexp); |
| if (ret) |
| goto disable_mem_clk; |
| |
| ret = fsl_easrc_write_pf_coeff_mem(easrc, i, |
| ctx_priv->st2_coeff, |
| ctx_priv->st2_num_taps, |
| ctx_priv->st2_addexp); |
| if (ret) |
| goto disable_mem_clk; |
| } |
| |
| skip_load: |
| return 0; |
| |
| disable_mem_clk: |
| clk_disable_unprepare(easrc->mem_clk); |
| return ret; |
| } |
| |
| static const struct dev_pm_ops fsl_easrc_pm_ops = { |
| SET_RUNTIME_PM_OPS(fsl_easrc_runtime_suspend, |
| fsl_easrc_runtime_resume, |
| NULL) |
| SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, |
| pm_runtime_force_resume) |
| }; |
| |
| static struct platform_driver fsl_easrc_driver = { |
| .probe = fsl_easrc_probe, |
| .remove = fsl_easrc_remove, |
| .driver = { |
| .name = "fsl-easrc", |
| .pm = &fsl_easrc_pm_ops, |
| .of_match_table = fsl_easrc_dt_ids, |
| }, |
| }; |
| module_platform_driver(fsl_easrc_driver); |
| |
| MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver"); |
| MODULE_LICENSE("GPL v2"); |