| /* |
| * Based on arch/arm/mm/init.c |
| * |
| * Copyright (C) 1995-2005 Russell King |
| * Copyright (C) 2012 ARM Ltd. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/errno.h> |
| #include <linux/swap.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/cache.h> |
| #include <linux/mman.h> |
| #include <linux/nodemask.h> |
| #include <linux/initrd.h> |
| #include <linux/gfp.h> |
| #include <linux/memblock.h> |
| #include <linux/sort.h> |
| #include <linux/of.h> |
| #include <linux/of_fdt.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dma-contiguous.h> |
| #include <linux/efi.h> |
| #include <linux/swiotlb.h> |
| #include <linux/vmalloc.h> |
| #include <linux/mm.h> |
| #include <linux/kexec.h> |
| #include <linux/crash_dump.h> |
| |
| #include <asm/boot.h> |
| #include <asm/fixmap.h> |
| #include <asm/kasan.h> |
| #include <asm/kernel-pgtable.h> |
| #include <asm/memory.h> |
| #include <asm/numa.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/sizes.h> |
| #include <asm/tlb.h> |
| #include <asm/alternative.h> |
| |
| /* |
| * We need to be able to catch inadvertent references to memstart_addr |
| * that occur (potentially in generic code) before arm64_memblock_init() |
| * executes, which assigns it its actual value. So use a default value |
| * that cannot be mistaken for a real physical address. |
| */ |
| s64 memstart_addr __ro_after_init = -1; |
| phys_addr_t arm64_dma_phys_limit __ro_after_init; |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| static int __init early_initrd(char *p) |
| { |
| unsigned long start, size; |
| char *endp; |
| |
| start = memparse(p, &endp); |
| if (*endp == ',') { |
| size = memparse(endp + 1, NULL); |
| |
| initrd_start = start; |
| initrd_end = start + size; |
| } |
| return 0; |
| } |
| early_param("initrd", early_initrd); |
| #endif |
| |
| #ifdef CONFIG_KEXEC_CORE |
| /* |
| * reserve_crashkernel() - reserves memory for crash kernel |
| * |
| * This function reserves memory area given in "crashkernel=" kernel command |
| * line parameter. The memory reserved is used by dump capture kernel when |
| * primary kernel is crashing. |
| */ |
| static void __init reserve_crashkernel(void) |
| { |
| unsigned long long crash_base, crash_size; |
| int ret; |
| |
| ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), |
| &crash_size, &crash_base); |
| /* no crashkernel= or invalid value specified */ |
| if (ret || !crash_size) |
| return; |
| |
| crash_size = PAGE_ALIGN(crash_size); |
| |
| if (crash_base == 0) { |
| /* Current arm64 boot protocol requires 2MB alignment */ |
| crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT, |
| crash_size, SZ_2M); |
| if (crash_base == 0) { |
| pr_warn("cannot allocate crashkernel (size:0x%llx)\n", |
| crash_size); |
| return; |
| } |
| } else { |
| /* User specifies base address explicitly. */ |
| if (!memblock_is_region_memory(crash_base, crash_size)) { |
| pr_warn("cannot reserve crashkernel: region is not memory\n"); |
| return; |
| } |
| |
| if (memblock_is_region_reserved(crash_base, crash_size)) { |
| pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); |
| return; |
| } |
| |
| if (!IS_ALIGNED(crash_base, SZ_2M)) { |
| pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); |
| return; |
| } |
| } |
| memblock_reserve(crash_base, crash_size); |
| |
| pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", |
| crash_base, crash_base + crash_size, crash_size >> 20); |
| |
| crashk_res.start = crash_base; |
| crashk_res.end = crash_base + crash_size - 1; |
| } |
| |
| static void __init kexec_reserve_crashkres_pages(void) |
| { |
| #ifdef CONFIG_HIBERNATION |
| phys_addr_t addr; |
| struct page *page; |
| |
| if (!crashk_res.end) |
| return; |
| |
| /* |
| * To reduce the size of hibernation image, all the pages are |
| * marked as Reserved initially. |
| */ |
| for (addr = crashk_res.start; addr < (crashk_res.end + 1); |
| addr += PAGE_SIZE) { |
| page = phys_to_page(addr); |
| SetPageReserved(page); |
| } |
| #endif |
| } |
| #else |
| static void __init reserve_crashkernel(void) |
| { |
| } |
| |
| static void __init kexec_reserve_crashkres_pages(void) |
| { |
| } |
| #endif /* CONFIG_KEXEC_CORE */ |
| |
| #ifdef CONFIG_CRASH_DUMP |
| static int __init early_init_dt_scan_elfcorehdr(unsigned long node, |
| const char *uname, int depth, void *data) |
| { |
| const __be32 *reg; |
| int len; |
| |
| if (depth != 1 || strcmp(uname, "chosen") != 0) |
| return 0; |
| |
| reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); |
| if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) |
| return 1; |
| |
| elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); |
| elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); |
| |
| return 1; |
| } |
| |
| /* |
| * reserve_elfcorehdr() - reserves memory for elf core header |
| * |
| * This function reserves the memory occupied by an elf core header |
| * described in the device tree. This region contains all the |
| * information about primary kernel's core image and is used by a dump |
| * capture kernel to access the system memory on primary kernel. |
| */ |
| static void __init reserve_elfcorehdr(void) |
| { |
| of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); |
| |
| if (!elfcorehdr_size) |
| return; |
| |
| if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { |
| pr_warn("elfcorehdr is overlapped\n"); |
| return; |
| } |
| |
| memblock_reserve(elfcorehdr_addr, elfcorehdr_size); |
| |
| pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", |
| elfcorehdr_size >> 10, elfcorehdr_addr); |
| } |
| #else |
| static void __init reserve_elfcorehdr(void) |
| { |
| } |
| #endif /* CONFIG_CRASH_DUMP */ |
| /* |
| * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It |
| * currently assumes that for memory starting above 4G, 32-bit devices will |
| * use a DMA offset. |
| */ |
| static phys_addr_t __init max_zone_dma_phys(void) |
| { |
| phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32); |
| return min(offset + (1ULL << 32), memblock_end_of_DRAM()); |
| } |
| |
| #ifdef CONFIG_NUMA |
| |
| static void __init zone_sizes_init(unsigned long min, unsigned long max) |
| { |
| unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; |
| |
| if (IS_ENABLED(CONFIG_ZONE_DMA32)) |
| max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys()); |
| max_zone_pfns[ZONE_NORMAL] = max; |
| |
| free_area_init_nodes(max_zone_pfns); |
| } |
| |
| #else |
| |
| static void __init zone_sizes_init(unsigned long min, unsigned long max) |
| { |
| struct memblock_region *reg; |
| unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; |
| unsigned long max_dma = min; |
| |
| memset(zone_size, 0, sizeof(zone_size)); |
| |
| /* 4GB maximum for 32-bit only capable devices */ |
| #ifdef CONFIG_ZONE_DMA32 |
| max_dma = PFN_DOWN(arm64_dma_phys_limit); |
| zone_size[ZONE_DMA32] = max_dma - min; |
| #endif |
| zone_size[ZONE_NORMAL] = max - max_dma; |
| |
| memcpy(zhole_size, zone_size, sizeof(zhole_size)); |
| |
| for_each_memblock(memory, reg) { |
| unsigned long start = memblock_region_memory_base_pfn(reg); |
| unsigned long end = memblock_region_memory_end_pfn(reg); |
| |
| if (start >= max) |
| continue; |
| |
| #ifdef CONFIG_ZONE_DMA32 |
| if (start < max_dma) { |
| unsigned long dma_end = min(end, max_dma); |
| zhole_size[ZONE_DMA32] -= dma_end - start; |
| } |
| #endif |
| if (end > max_dma) { |
| unsigned long normal_end = min(end, max); |
| unsigned long normal_start = max(start, max_dma); |
| zhole_size[ZONE_NORMAL] -= normal_end - normal_start; |
| } |
| } |
| |
| free_area_init_node(0, zone_size, min, zhole_size); |
| } |
| |
| #endif /* CONFIG_NUMA */ |
| |
| #ifdef CONFIG_HAVE_ARCH_PFN_VALID |
| int pfn_valid(unsigned long pfn) |
| { |
| return memblock_is_map_memory(pfn << PAGE_SHIFT); |
| } |
| EXPORT_SYMBOL(pfn_valid); |
| #endif |
| |
| #ifndef CONFIG_SPARSEMEM |
| static void __init arm64_memory_present(void) |
| { |
| } |
| #else |
| static void __init arm64_memory_present(void) |
| { |
| struct memblock_region *reg; |
| |
| for_each_memblock(memory, reg) { |
| int nid = memblock_get_region_node(reg); |
| |
| memory_present(nid, memblock_region_memory_base_pfn(reg), |
| memblock_region_memory_end_pfn(reg)); |
| } |
| } |
| #endif |
| |
| static phys_addr_t memory_limit = (phys_addr_t)ULLONG_MAX; |
| |
| /* |
| * Limit the memory size that was specified via FDT. |
| */ |
| static int __init early_mem(char *p) |
| { |
| if (!p) |
| return 1; |
| |
| memory_limit = memparse(p, &p) & PAGE_MASK; |
| pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); |
| |
| return 0; |
| } |
| early_param("mem", early_mem); |
| |
| static int __init early_init_dt_scan_usablemem(unsigned long node, |
| const char *uname, int depth, void *data) |
| { |
| struct memblock_region *usablemem = data; |
| const __be32 *reg; |
| int len; |
| |
| if (depth != 1 || strcmp(uname, "chosen") != 0) |
| return 0; |
| |
| reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); |
| if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) |
| return 1; |
| |
| usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); |
| usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); |
| |
| return 1; |
| } |
| |
| static void __init fdt_enforce_memory_region(void) |
| { |
| struct memblock_region reg = { |
| .size = 0, |
| }; |
| |
| of_scan_flat_dt(early_init_dt_scan_usablemem, ®); |
| |
| if (reg.size) |
| memblock_cap_memory_range(reg.base, reg.size); |
| } |
| |
| void __init arm64_memblock_init(void) |
| { |
| const s64 linear_region_size = -(s64)PAGE_OFFSET; |
| |
| /* Handle linux,usable-memory-range property */ |
| fdt_enforce_memory_region(); |
| |
| /* Remove memory above our supported physical address size */ |
| memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); |
| |
| /* |
| * Ensure that the linear region takes up exactly half of the kernel |
| * virtual address space. This way, we can distinguish a linear address |
| * from a kernel/module/vmalloc address by testing a single bit. |
| */ |
| BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1)); |
| |
| /* |
| * Select a suitable value for the base of physical memory. |
| */ |
| memstart_addr = round_down(memblock_start_of_DRAM(), |
| ARM64_MEMSTART_ALIGN); |
| |
| /* |
| * Remove the memory that we will not be able to cover with the |
| * linear mapping. Take care not to clip the kernel which may be |
| * high in memory. |
| */ |
| memblock_remove(max_t(u64, memstart_addr + linear_region_size, |
| __pa_symbol(_end)), ULLONG_MAX); |
| if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { |
| /* ensure that memstart_addr remains sufficiently aligned */ |
| memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, |
| ARM64_MEMSTART_ALIGN); |
| memblock_remove(0, memstart_addr); |
| } |
| |
| /* |
| * Apply the memory limit if it was set. Since the kernel may be loaded |
| * high up in memory, add back the kernel region that must be accessible |
| * via the linear mapping. |
| */ |
| if (memory_limit != (phys_addr_t)ULLONG_MAX) { |
| memblock_mem_limit_remove_map(memory_limit); |
| memblock_add(__pa_symbol(_text), (u64)(_end - _text)); |
| } |
| |
| if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) { |
| /* |
| * Add back the memory we just removed if it results in the |
| * initrd to become inaccessible via the linear mapping. |
| * Otherwise, this is a no-op |
| */ |
| u64 base = initrd_start & PAGE_MASK; |
| u64 size = PAGE_ALIGN(initrd_end) - base; |
| |
| /* |
| * We can only add back the initrd memory if we don't end up |
| * with more memory than we can address via the linear mapping. |
| * It is up to the bootloader to position the kernel and the |
| * initrd reasonably close to each other (i.e., within 32 GB of |
| * each other) so that all granule/#levels combinations can |
| * always access both. |
| */ |
| if (WARN(base < memblock_start_of_DRAM() || |
| base + size > memblock_start_of_DRAM() + |
| linear_region_size, |
| "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { |
| initrd_start = 0; |
| } else { |
| memblock_remove(base, size); /* clear MEMBLOCK_ flags */ |
| memblock_add(base, size); |
| memblock_reserve(base, size); |
| } |
| } |
| |
| if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { |
| extern u16 memstart_offset_seed; |
| u64 range = linear_region_size - |
| (memblock_end_of_DRAM() - memblock_start_of_DRAM()); |
| |
| /* |
| * If the size of the linear region exceeds, by a sufficient |
| * margin, the size of the region that the available physical |
| * memory spans, randomize the linear region as well. |
| */ |
| if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { |
| range = range / ARM64_MEMSTART_ALIGN + 1; |
| memstart_addr -= ARM64_MEMSTART_ALIGN * |
| ((range * memstart_offset_seed) >> 16); |
| } |
| } |
| |
| /* |
| * Register the kernel text, kernel data, initrd, and initial |
| * pagetables with memblock. |
| */ |
| memblock_reserve(__pa_symbol(_text), _end - _text); |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (initrd_start) { |
| memblock_reserve(initrd_start, initrd_end - initrd_start); |
| |
| /* the generic initrd code expects virtual addresses */ |
| initrd_start = __phys_to_virt(initrd_start); |
| initrd_end = __phys_to_virt(initrd_end); |
| } |
| #endif |
| |
| early_init_fdt_scan_reserved_mem(); |
| |
| /* 4GB maximum for 32-bit only capable devices */ |
| if (IS_ENABLED(CONFIG_ZONE_DMA32)) |
| arm64_dma_phys_limit = max_zone_dma_phys(); |
| else |
| arm64_dma_phys_limit = PHYS_MASK + 1; |
| |
| reserve_crashkernel(); |
| |
| reserve_elfcorehdr(); |
| |
| high_memory = __va(memblock_end_of_DRAM() - 1) + 1; |
| |
| dma_contiguous_reserve(arm64_dma_phys_limit); |
| |
| memblock_allow_resize(); |
| } |
| |
| void __init bootmem_init(void) |
| { |
| unsigned long min, max; |
| |
| min = PFN_UP(memblock_start_of_DRAM()); |
| max = PFN_DOWN(memblock_end_of_DRAM()); |
| |
| early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); |
| |
| max_pfn = max_low_pfn = max; |
| |
| arm64_numa_init(); |
| /* |
| * Sparsemem tries to allocate bootmem in memory_present(), so must be |
| * done after the fixed reservations. |
| */ |
| arm64_memory_present(); |
| |
| sparse_init(); |
| zone_sizes_init(min, max); |
| |
| memblock_dump_all(); |
| } |
| |
| #ifndef CONFIG_SPARSEMEM_VMEMMAP |
| static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| struct page *start_pg, *end_pg; |
| unsigned long pg, pgend; |
| |
| /* |
| * Convert start_pfn/end_pfn to a struct page pointer. |
| */ |
| start_pg = pfn_to_page(start_pfn - 1) + 1; |
| end_pg = pfn_to_page(end_pfn - 1) + 1; |
| |
| /* |
| * Convert to physical addresses, and round start upwards and end |
| * downwards. |
| */ |
| pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); |
| pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; |
| |
| /* |
| * If there are free pages between these, free the section of the |
| * memmap array. |
| */ |
| if (pg < pgend) |
| free_bootmem(pg, pgend - pg); |
| } |
| |
| /* |
| * The mem_map array can get very big. Free the unused area of the memory map. |
| */ |
| static void __init free_unused_memmap(void) |
| { |
| unsigned long start, prev_end = 0; |
| struct memblock_region *reg; |
| |
| for_each_memblock(memory, reg) { |
| start = __phys_to_pfn(reg->base); |
| |
| #ifdef CONFIG_SPARSEMEM |
| /* |
| * Take care not to free memmap entries that don't exist due |
| * to SPARSEMEM sections which aren't present. |
| */ |
| start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); |
| #endif |
| /* |
| * If we had a previous bank, and there is a space between the |
| * current bank and the previous, free it. |
| */ |
| if (prev_end && prev_end < start) |
| free_memmap(prev_end, start); |
| |
| /* |
| * Align up here since the VM subsystem insists that the |
| * memmap entries are valid from the bank end aligned to |
| * MAX_ORDER_NR_PAGES. |
| */ |
| prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size), |
| MAX_ORDER_NR_PAGES); |
| } |
| |
| #ifdef CONFIG_SPARSEMEM |
| if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) |
| free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); |
| #endif |
| } |
| #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ |
| |
| /* |
| * mem_init() marks the free areas in the mem_map and tells us how much memory |
| * is free. This is done after various parts of the system have claimed their |
| * memory after the kernel image. |
| */ |
| void __init mem_init(void) |
| { |
| if (swiotlb_force == SWIOTLB_FORCE || |
| max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) |
| swiotlb_init(1); |
| else |
| swiotlb_force = SWIOTLB_NO_FORCE; |
| |
| set_max_mapnr(pfn_to_page(max_pfn) - mem_map); |
| |
| #ifndef CONFIG_SPARSEMEM_VMEMMAP |
| free_unused_memmap(); |
| #endif |
| /* this will put all unused low memory onto the freelists */ |
| free_all_bootmem(); |
| |
| kexec_reserve_crashkres_pages(); |
| |
| mem_init_print_info(NULL); |
| |
| /* |
| * Check boundaries twice: Some fundamental inconsistencies can be |
| * detected at build time already. |
| */ |
| #ifdef CONFIG_COMPAT |
| BUILD_BUG_ON(TASK_SIZE_32 > TASK_SIZE_64); |
| #endif |
| |
| /* |
| * Make sure we chose the upper bound of sizeof(struct page) |
| * correctly. |
| */ |
| BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT)); |
| |
| if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { |
| extern int sysctl_overcommit_memory; |
| /* |
| * On a machine this small we won't get anywhere without |
| * overcommit, so turn it on by default. |
| */ |
| sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; |
| } |
| } |
| |
| void free_initmem(void) |
| { |
| free_reserved_area(lm_alias(__init_begin), |
| lm_alias(__init_end), |
| 0, "unused kernel"); |
| /* |
| * Unmap the __init region but leave the VM area in place. This |
| * prevents the region from being reused for kernel modules, which |
| * is not supported by kallsyms. |
| */ |
| unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| |
| static int keep_initrd __initdata; |
| |
| void __init free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| if (!keep_initrd) |
| free_reserved_area((void *)start, (void *)end, 0, "initrd"); |
| } |
| |
| static int __init keepinitrd_setup(char *__unused) |
| { |
| keep_initrd = 1; |
| return 1; |
| } |
| |
| __setup("keepinitrd", keepinitrd_setup); |
| #endif |
| |
| /* |
| * Dump out memory limit information on panic. |
| */ |
| static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p) |
| { |
| if (memory_limit != (phys_addr_t)ULLONG_MAX) { |
| pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); |
| } else { |
| pr_emerg("Memory Limit: none\n"); |
| } |
| return 0; |
| } |
| |
| static struct notifier_block mem_limit_notifier = { |
| .notifier_call = dump_mem_limit, |
| }; |
| |
| static int __init register_mem_limit_dumper(void) |
| { |
| atomic_notifier_chain_register(&panic_notifier_list, |
| &mem_limit_notifier); |
| return 0; |
| } |
| __initcall(register_mem_limit_dumper); |