| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/fb.h> |
| #include <asm/div64.h> |
| #include "linux/delay.h" |
| #include "pp_acpi.h" |
| #include "hwmgr.h" |
| #include "polaris10_hwmgr.h" |
| #include "polaris10_powertune.h" |
| #include "polaris10_dyn_defaults.h" |
| #include "polaris10_smumgr.h" |
| #include "pp_debug.h" |
| #include "ppatomctrl.h" |
| #include "atombios.h" |
| #include "tonga_pptable.h" |
| #include "pppcielanes.h" |
| #include "amd_pcie_helpers.h" |
| #include "hardwaremanager.h" |
| #include "tonga_processpptables.h" |
| #include "cgs_common.h" |
| #include "smu74.h" |
| #include "smu_ucode_xfer_vi.h" |
| #include "smu74_discrete.h" |
| #include "smu/smu_7_1_3_d.h" |
| #include "smu/smu_7_1_3_sh_mask.h" |
| #include "gmc/gmc_8_1_d.h" |
| #include "gmc/gmc_8_1_sh_mask.h" |
| #include "oss/oss_3_0_d.h" |
| #include "gca/gfx_8_0_d.h" |
| #include "bif/bif_5_0_d.h" |
| #include "bif/bif_5_0_sh_mask.h" |
| #include "gmc/gmc_8_1_d.h" |
| #include "gmc/gmc_8_1_sh_mask.h" |
| #include "bif/bif_5_0_d.h" |
| #include "bif/bif_5_0_sh_mask.h" |
| #include "dce/dce_10_0_d.h" |
| #include "dce/dce_10_0_sh_mask.h" |
| |
| #include "polaris10_thermal.h" |
| #include "polaris10_clockpowergating.h" |
| |
| #define MC_CG_ARB_FREQ_F0 0x0a |
| #define MC_CG_ARB_FREQ_F1 0x0b |
| #define MC_CG_ARB_FREQ_F2 0x0c |
| #define MC_CG_ARB_FREQ_F3 0x0d |
| |
| #define MC_CG_SEQ_DRAMCONF_S0 0x05 |
| #define MC_CG_SEQ_DRAMCONF_S1 0x06 |
| #define MC_CG_SEQ_YCLK_SUSPEND 0x04 |
| #define MC_CG_SEQ_YCLK_RESUME 0x0a |
| |
| |
| #define SMC_RAM_END 0x40000 |
| |
| #define SMC_CG_IND_START 0xc0030000 |
| #define SMC_CG_IND_END 0xc0040000 |
| |
| #define VOLTAGE_SCALE 4 |
| #define VOLTAGE_VID_OFFSET_SCALE1 625 |
| #define VOLTAGE_VID_OFFSET_SCALE2 100 |
| |
| #define VDDC_VDDCI_DELTA 200 |
| |
| #define MEM_FREQ_LOW_LATENCY 25000 |
| #define MEM_FREQ_HIGH_LATENCY 80000 |
| |
| #define MEM_LATENCY_HIGH 45 |
| #define MEM_LATENCY_LOW 35 |
| #define MEM_LATENCY_ERR 0xFFFF |
| |
| #define MC_SEQ_MISC0_GDDR5_SHIFT 28 |
| #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000 |
| #define MC_SEQ_MISC0_GDDR5_VALUE 5 |
| |
| |
| #define PCIE_BUS_CLK 10000 |
| #define TCLK (PCIE_BUS_CLK / 10) |
| |
| |
| static const uint16_t polaris10_clock_stretcher_lookup_table[2][4] = |
| { {600, 1050, 3, 0}, {600, 1050, 6, 1} }; |
| |
| /* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */ |
| static const uint32_t polaris10_clock_stretcher_ddt_table[2][4][4] = |
| { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, |
| { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } }; |
| |
| /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */ |
| static const uint8_t polaris10_clock_stretch_amount_conversion[2][6] = |
| { {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} }; |
| |
| /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */ |
| enum DPM_EVENT_SRC { |
| DPM_EVENT_SRC_ANALOG = 0, |
| DPM_EVENT_SRC_EXTERNAL = 1, |
| DPM_EVENT_SRC_DIGITAL = 2, |
| DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, |
| DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 |
| }; |
| |
| static const unsigned long PhwPolaris10_Magic = (unsigned long)(PHM_VIslands_Magic); |
| |
| struct polaris10_power_state *cast_phw_polaris10_power_state( |
| struct pp_hw_power_state *hw_ps) |
| { |
| PP_ASSERT_WITH_CODE((PhwPolaris10_Magic == hw_ps->magic), |
| "Invalid Powerstate Type!", |
| return NULL); |
| |
| return (struct polaris10_power_state *)hw_ps; |
| } |
| |
| const struct polaris10_power_state *cast_const_phw_polaris10_power_state( |
| const struct pp_hw_power_state *hw_ps) |
| { |
| PP_ASSERT_WITH_CODE((PhwPolaris10_Magic == hw_ps->magic), |
| "Invalid Powerstate Type!", |
| return NULL); |
| |
| return (const struct polaris10_power_state *)hw_ps; |
| } |
| |
| static bool polaris10_is_dpm_running(struct pp_hwmgr *hwmgr) |
| { |
| return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) |
| ? true : false; |
| } |
| |
| /** |
| * Find the MC microcode version and store it in the HwMgr struct |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int phm_get_mc_microcode_version (struct pp_hwmgr *hwmgr) |
| { |
| cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F); |
| |
| hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); |
| |
| return 0; |
| } |
| |
| uint16_t phm_get_current_pcie_speed(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t speedCntl = 0; |
| |
| /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ |
| speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE, |
| ixPCIE_LC_SPEED_CNTL); |
| return((uint16_t)PHM_GET_FIELD(speedCntl, |
| PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); |
| } |
| |
| int phm_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t link_width; |
| |
| /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ |
| link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, |
| PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD); |
| |
| PP_ASSERT_WITH_CODE((7 >= link_width), |
| "Invalid PCIe lane width!", return 0); |
| |
| return decode_pcie_lane_width(link_width); |
| } |
| |
| /** |
| * Enable voltage control |
| * |
| * @param pHwMgr the address of the powerplay hardware manager. |
| * @return always PP_Result_OK |
| */ |
| int polaris10_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr) |
| { |
| PP_ASSERT_WITH_CODE( |
| (hwmgr->smumgr->smumgr_funcs->send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_Voltage_Cntl_Enable) == 0), |
| "Failed to enable voltage DPM during DPM Start Function!", |
| return 1; |
| ); |
| |
| return 0; |
| } |
| |
| /** |
| * Checks if we want to support voltage control |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| */ |
| static bool polaris10_voltage_control(const struct pp_hwmgr *hwmgr) |
| { |
| const struct polaris10_hwmgr *data = |
| (const struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| return (POLARIS10_VOLTAGE_CONTROL_NONE != data->voltage_control); |
| } |
| |
| /** |
| * Enable voltage control |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_enable_voltage_control(struct pp_hwmgr *hwmgr) |
| { |
| /* enable voltage control */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1); |
| |
| return 0; |
| } |
| |
| /** |
| * Create Voltage Tables. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_construct_voltage_tables(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)hwmgr->pptable; |
| int result; |
| |
| if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| result = atomctrl_get_voltage_table_v3(hwmgr, |
| VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, |
| &(data->mvdd_voltage_table)); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve MVDD table.", |
| return result); |
| } else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { |
| result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table), |
| table_info->vdd_dep_on_mclk); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 MVDD table from dependancy table.", |
| return result;); |
| } |
| |
| if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| result = atomctrl_get_voltage_table_v3(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, |
| &(data->vddci_voltage_table)); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve VDDCI table.", |
| return result); |
| } else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
| result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table), |
| table_info->vdd_dep_on_mclk); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 VDDCI table from dependancy table.", |
| return result); |
| } |
| |
| if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table), |
| table_info->vddc_lookup_table); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 VDDC table from lookup table.", |
| return result); |
| } |
| |
| PP_ASSERT_WITH_CODE( |
| (data->vddc_voltage_table.count <= (SMU74_MAX_LEVELS_VDDC)), |
| "Too many voltage values for VDDC. Trimming to fit state table.", |
| phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDC, |
| &(data->vddc_voltage_table))); |
| |
| PP_ASSERT_WITH_CODE( |
| (data->vddci_voltage_table.count <= (SMU74_MAX_LEVELS_VDDCI)), |
| "Too many voltage values for VDDCI. Trimming to fit state table.", |
| phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDCI, |
| &(data->vddci_voltage_table))); |
| |
| PP_ASSERT_WITH_CODE( |
| (data->mvdd_voltage_table.count <= (SMU74_MAX_LEVELS_MVDD)), |
| "Too many voltage values for MVDD. Trimming to fit state table.", |
| phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_MVDD, |
| &(data->mvdd_voltage_table))); |
| |
| return 0; |
| } |
| |
| /** |
| * Programs static screed detection parameters |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_program_static_screen_threshold_parameters( |
| struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| /* Set static screen threshold unit */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT, |
| data->static_screen_threshold_unit); |
| /* Set static screen threshold */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD, |
| data->static_screen_threshold); |
| |
| return 0; |
| } |
| |
| /** |
| * Setup display gap for glitch free memory clock switching. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_enable_display_gap(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t display_gap = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_DISPLAY_GAP_CNTL); |
| |
| display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, |
| DISP_GAP, DISPLAY_GAP_IGNORE); |
| |
| display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, |
| DISP_GAP_MCHG, DISPLAY_GAP_VBLANK); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_DISPLAY_GAP_CNTL, display_gap); |
| |
| return 0; |
| } |
| |
| /** |
| * Programs activity state transition voting clients |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_program_voting_clients(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| /* Clear reset for voting clients before enabling DPM */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7); |
| |
| return 0; |
| } |
| |
| /** |
| * Get the location of various tables inside the FW image. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_process_firmware_header(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t tmp; |
| int result; |
| bool error = false; |
| |
| result = polaris10_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU74_Firmware_Header, DpmTable), |
| &tmp, data->sram_end); |
| |
| if (0 == result) |
| data->dpm_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = polaris10_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU74_Firmware_Header, SoftRegisters), |
| &tmp, data->sram_end); |
| |
| if (!result) { |
| data->soft_regs_start = tmp; |
| smu_data->soft_regs_start = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| result = polaris10_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU74_Firmware_Header, mcRegisterTable), |
| &tmp, data->sram_end); |
| |
| if (!result) |
| data->mc_reg_table_start = tmp; |
| |
| result = polaris10_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU74_Firmware_Header, FanTable), |
| &tmp, data->sram_end); |
| |
| if (!result) |
| data->fan_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = polaris10_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU74_Firmware_Header, mcArbDramTimingTable), |
| &tmp, data->sram_end); |
| |
| if (!result) |
| data->arb_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = polaris10_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU74_Firmware_Header, Version), |
| &tmp, data->sram_end); |
| |
| if (!result) |
| hwmgr->microcode_version_info.SMC = tmp; |
| |
| error |= (0 != result); |
| |
| return error ? -1 : 0; |
| } |
| |
| /* Copy one arb setting to another and then switch the active set. |
| * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants. |
| */ |
| static int polaris10_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr, |
| uint32_t arb_src, uint32_t arb_dest) |
| { |
| uint32_t mc_arb_dram_timing; |
| uint32_t mc_arb_dram_timing2; |
| uint32_t burst_time; |
| uint32_t mc_cg_config; |
| |
| switch (arb_src) { |
| case MC_CG_ARB_FREQ_F0: |
| mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
| mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
| burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); |
| break; |
| case MC_CG_ARB_FREQ_F1: |
| mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1); |
| mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1); |
| burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (arb_dest) { |
| case MC_CG_ARB_FREQ_F0: |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing); |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); |
| PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time); |
| break; |
| case MC_CG_ARB_FREQ_F1: |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); |
| PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG); |
| mc_cg_config |= 0x0000000F; |
| cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config); |
| PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest); |
| |
| return 0; |
| } |
| |
| /** |
| * Initial switch from ARB F0->F1 |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| * This function is to be called from the SetPowerState table. |
| */ |
| static int polaris10_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr) |
| { |
| return polaris10_copy_and_switch_arb_sets(hwmgr, |
| MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); |
| } |
| |
| static int polaris10_setup_default_pcie_table(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
| uint32_t i, max_entry; |
| |
| PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels || |
| data->use_pcie_power_saving_levels), "No pcie performance levels!", |
| return -EINVAL); |
| |
| if (data->use_pcie_performance_levels && |
| !data->use_pcie_power_saving_levels) { |
| data->pcie_gen_power_saving = data->pcie_gen_performance; |
| data->pcie_lane_power_saving = data->pcie_lane_performance; |
| } else if (!data->use_pcie_performance_levels && |
| data->use_pcie_power_saving_levels) { |
| data->pcie_gen_performance = data->pcie_gen_power_saving; |
| data->pcie_lane_performance = data->pcie_lane_power_saving; |
| } |
| |
| phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table, |
| SMU74_MAX_LEVELS_LINK, |
| MAX_REGULAR_DPM_NUMBER); |
| |
| if (pcie_table != NULL) { |
| /* max_entry is used to make sure we reserve one PCIE level |
| * for boot level (fix for A+A PSPP issue). |
| * If PCIE table from PPTable have ULV entry + 8 entries, |
| * then ignore the last entry.*/ |
| max_entry = (SMU74_MAX_LEVELS_LINK < pcie_table->count) ? |
| SMU74_MAX_LEVELS_LINK : pcie_table->count; |
| for (i = 1; i < max_entry; i++) { |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| pcie_table->entries[i].gen_speed), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| pcie_table->entries[i].lane_width)); |
| } |
| data->dpm_table.pcie_speed_table.count = max_entry - 1; |
| |
| /* Setup BIF_SCLK levels */ |
| for (i = 0; i < max_entry; i++) |
| data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk; |
| } else { |
| /* Hardcode Pcie Table */ |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Min_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Min_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| |
| data->dpm_table.pcie_speed_table.count = 6; |
| } |
| /* Populate last level for boot PCIE level, but do not increment count. */ |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, |
| data->dpm_table.pcie_speed_table.count, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Min_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| |
| return 0; |
| } |
| |
| /* |
| * This function is to initalize all DPM state tables |
| * for SMU7 based on the dependency table. |
| * Dynamic state patching function will then trim these |
| * state tables to the allowed range based |
| * on the power policy or external client requests, |
| * such as UVD request, etc. |
| */ |
| int polaris10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t i; |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = |
| table_info->vdd_dep_on_sclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = |
| table_info->vdd_dep_on_mclk; |
| |
| PP_ASSERT_WITH_CODE(dep_sclk_table != NULL, |
| "SCLK dependency table is missing. This table is mandatory", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1, |
| "SCLK dependency table has to have is missing." |
| "This table is mandatory", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(dep_mclk_table != NULL, |
| "MCLK dependency table is missing. This table is mandatory", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, |
| "MCLK dependency table has to have is missing." |
| "This table is mandatory", |
| return -EINVAL); |
| |
| /* clear the state table to reset everything to default */ |
| phm_reset_single_dpm_table( |
| &data->dpm_table.sclk_table, SMU74_MAX_LEVELS_GRAPHICS, MAX_REGULAR_DPM_NUMBER); |
| phm_reset_single_dpm_table( |
| &data->dpm_table.mclk_table, SMU74_MAX_LEVELS_MEMORY, MAX_REGULAR_DPM_NUMBER); |
| |
| |
| /* Initialize Sclk DPM table based on allow Sclk values */ |
| data->dpm_table.sclk_table.count = 0; |
| for (i = 0; i < dep_sclk_table->count; i++) { |
| if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value != |
| dep_sclk_table->entries[i].clk) { |
| |
| data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = |
| dep_sclk_table->entries[i].clk; |
| |
| data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = |
| (i == 0) ? true : false; |
| data->dpm_table.sclk_table.count++; |
| } |
| } |
| |
| /* Initialize Mclk DPM table based on allow Mclk values */ |
| data->dpm_table.mclk_table.count = 0; |
| for (i = 0; i < dep_mclk_table->count; i++) { |
| if (i == 0 || data->dpm_table.mclk_table.dpm_levels |
| [data->dpm_table.mclk_table.count - 1].value != |
| dep_mclk_table->entries[i].clk) { |
| data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = |
| dep_mclk_table->entries[i].clk; |
| data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = |
| (i == 0) ? true : false; |
| data->dpm_table.mclk_table.count++; |
| } |
| } |
| |
| /* setup PCIE gen speed levels */ |
| polaris10_setup_default_pcie_table(hwmgr); |
| |
| /* save a copy of the default DPM table */ |
| memcpy(&(data->golden_dpm_table), &(data->dpm_table), |
| sizeof(struct polaris10_dpm_table)); |
| |
| return 0; |
| } |
| |
| uint8_t convert_to_vid(uint16_t vddc) |
| { |
| return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25); |
| } |
| |
| /** |
| * Mvdd table preparation for SMC. |
| * |
| * @param *hwmgr The address of the hardware manager. |
| * @param *table The SMC DPM table structure to be populated. |
| * @return 0 |
| */ |
| static int polaris10_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
| SMU74_Discrete_DpmTable *table) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t count, level; |
| |
| if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| count = data->mvdd_voltage_table.count; |
| if (count > SMU_MAX_SMIO_LEVELS) |
| count = SMU_MAX_SMIO_LEVELS; |
| for (level = 0; level < count; level++) { |
| table->SmioTable2.Pattern[level].Voltage = |
| PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ |
| table->SmioTable2.Pattern[level].Smio = |
| (uint8_t) level; |
| table->Smio[level] |= |
| data->mvdd_voltage_table.entries[level].smio_low; |
| } |
| table->SmioMask2 = data->mvdd_voltage_table.mask_low; |
| |
| table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count); |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_populate_smc_vddci_table(struct pp_hwmgr *hwmgr, |
| struct SMU74_Discrete_DpmTable *table) |
| { |
| uint32_t count, level; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| count = data->vddci_voltage_table.count; |
| |
| if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| if (count > SMU_MAX_SMIO_LEVELS) |
| count = SMU_MAX_SMIO_LEVELS; |
| for (level = 0; level < count; ++level) { |
| table->SmioTable1.Pattern[level].Voltage = |
| PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE); |
| table->SmioTable1.Pattern[level].Smio = (uint8_t) level; |
| |
| table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low; |
| } |
| } |
| |
| table->SmioMask1 = data->vddci_voltage_table.mask_low; |
| |
| return 0; |
| } |
| |
| /** |
| * Preparation of vddc and vddgfx CAC tables for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int polaris10_populate_cac_table(struct pp_hwmgr *hwmgr, |
| struct SMU74_Discrete_DpmTable *table) |
| { |
| uint32_t count; |
| uint8_t index; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_voltage_lookup_table *lookup_table = |
| table_info->vddc_lookup_table; |
| /* tables is already swapped, so in order to use the value from it, |
| * we need to swap it back. |
| * We are populating vddc CAC data to BapmVddc table |
| * in split and merged mode |
| */ |
| for (count = 0; count < lookup_table->count; count++) { |
| index = phm_get_voltage_index(lookup_table, |
| data->vddc_voltage_table.entries[count].value); |
| table->BapmVddcVidLoSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_low); |
| table->BapmVddcVidHiSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_mid); |
| table->BapmVddcVidHiSidd2[count] = convert_to_vid(lookup_table->entries[index].us_cac_high); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Preparation of voltage tables for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| |
| int polaris10_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
| struct SMU74_Discrete_DpmTable *table) |
| { |
| polaris10_populate_smc_vddci_table(hwmgr, table); |
| polaris10_populate_smc_mvdd_table(hwmgr, table); |
| polaris10_populate_cac_table(hwmgr, table); |
| |
| return 0; |
| } |
| |
| static int polaris10_populate_ulv_level(struct pp_hwmgr *hwmgr, |
| struct SMU74_Discrete_Ulv *state) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| state->CcPwrDynRm = 0; |
| state->CcPwrDynRm1 = 0; |
| |
| state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; |
| state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * |
| VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); |
| |
| state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); |
| CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); |
| |
| return 0; |
| } |
| |
| static int polaris10_populate_ulv_state(struct pp_hwmgr *hwmgr, |
| struct SMU74_Discrete_DpmTable *table) |
| { |
| return polaris10_populate_ulv_level(hwmgr, &table->Ulv); |
| } |
| |
| static int polaris10_populate_smc_link_level(struct pp_hwmgr *hwmgr, |
| struct SMU74_Discrete_DpmTable *table) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct polaris10_dpm_table *dpm_table = &data->dpm_table; |
| int i; |
| |
| /* Index (dpm_table->pcie_speed_table.count) |
| * is reserved for PCIE boot level. */ |
| for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
| table->LinkLevel[i].PcieGenSpeed = |
| (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
| table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( |
| dpm_table->pcie_speed_table.dpm_levels[i].param1); |
| table->LinkLevel[i].EnabledForActivity = 1; |
| table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); |
| table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); |
| table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); |
| } |
| |
| data->smc_state_table.LinkLevelCount = |
| (uint8_t)dpm_table->pcie_speed_table.count; |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
| |
| return 0; |
| } |
| |
| static uint32_t polaris10_get_xclk(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t reference_clock, tmp; |
| struct cgs_display_info info = {0}; |
| struct cgs_mode_info mode_info; |
| |
| info.mode_info = &mode_info; |
| |
| tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK); |
| |
| if (tmp) |
| return TCLK; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| reference_clock = mode_info.ref_clock; |
| |
| tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE); |
| |
| if (0 != tmp) |
| return reference_clock / 4; |
| |
| return reference_clock; |
| } |
| |
| /** |
| * Calculates the SCLK dividers using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param clock the engine clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int polaris10_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
| uint32_t clock, SMU_SclkSetting *sclk_setting) |
| { |
| const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| const SMU74_Discrete_DpmTable *table = &(data->smc_state_table); |
| struct pp_atomctrl_clock_dividers_ai dividers; |
| |
| uint32_t ref_clock; |
| uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq; |
| uint8_t i; |
| int result; |
| uint64_t temp; |
| |
| sclk_setting->SclkFrequency = clock; |
| /* get the engine clock dividers for this clock value */ |
| result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, ÷rs); |
| if (result == 0) { |
| sclk_setting->Fcw_int = dividers.usSclk_fcw_int; |
| sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac; |
| sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int; |
| sclk_setting->PllRange = dividers.ucSclkPllRange; |
| sclk_setting->Sclk_slew_rate = 0x400; |
| sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac; |
| sclk_setting->Pcc_down_slew_rate = 0xffff; |
| sclk_setting->SSc_En = dividers.ucSscEnable; |
| sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int; |
| sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac; |
| sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac; |
| return result; |
| } |
| |
| ref_clock = polaris10_get_xclk(hwmgr); |
| |
| for (i = 0; i < NUM_SCLK_RANGE; i++) { |
| if (clock > data->range_table[i].trans_lower_frequency |
| && clock <= data->range_table[i].trans_upper_frequency) { |
| sclk_setting->PllRange = i; |
| break; |
| } |
| } |
| |
| sclk_setting->Fcw_int = (uint16_t)((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); |
| temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; |
| temp <<= 0x10; |
| do_div(temp, ref_clock); |
| sclk_setting->Fcw_frac = temp & 0xffff; |
| |
| pcc_target_percent = 10; /* Hardcode 10% for now. */ |
| pcc_target_freq = clock - (clock * pcc_target_percent / 100); |
| sclk_setting->Pcc_fcw_int = (uint16_t)((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); |
| |
| ss_target_percent = 2; /* Hardcode 2% for now. */ |
| sclk_setting->SSc_En = 0; |
| if (ss_target_percent) { |
| sclk_setting->SSc_En = 1; |
| ss_target_freq = clock - (clock * ss_target_percent / 100); |
| sclk_setting->Fcw1_int = (uint16_t)((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); |
| temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; |
| temp <<= 0x10; |
| do_div(temp, ref_clock); |
| sclk_setting->Fcw1_frac = temp & 0xffff; |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
| uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) |
| { |
| uint32_t i; |
| uint16_t vddci; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| *voltage = *mvdd = 0; |
| |
| /* clock - voltage dependency table is empty table */ |
| if (dep_table->count == 0) |
| return -EINVAL; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| /* find first sclk bigger than request */ |
| if (dep_table->entries[i].clk >= clock) { |
| *voltage |= (dep_table->entries[i].vddc * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| if (POLARIS10_VOLTAGE_CONTROL_NONE == data->vddci_control) |
| *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| else if (dep_table->entries[i].vddci) |
| *voltage |= (dep_table->entries[i].vddci * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| else { |
| vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
| (dep_table->entries[i].vddc - |
| (uint16_t)data->vddc_vddci_delta)); |
| *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| } |
| |
| if (POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control) |
| *mvdd = data->vbios_boot_state.mvdd_bootup_value * |
| VOLTAGE_SCALE; |
| else if (dep_table->entries[i].mvdd) |
| *mvdd = (uint32_t) dep_table->entries[i].mvdd * |
| VOLTAGE_SCALE; |
| |
| *voltage |= 1 << PHASES_SHIFT; |
| return 0; |
| } |
| } |
| |
| /* sclk is bigger than max sclk in the dependence table */ |
| *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
| |
| if (POLARIS10_VOLTAGE_CONTROL_NONE == data->vddci_control) |
| *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| else if (dep_table->entries[i-1].vddci) { |
| vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
| (dep_table->entries[i].vddc - |
| (uint16_t)data->vddc_vddci_delta)); |
| *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| } |
| |
| if (POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control) |
| *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; |
| else if (dep_table->entries[i].mvdd) |
| *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE; |
| |
| return 0; |
| } |
| |
| static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = |
| { {VCO_2_4, POSTDIV_DIV_BY_16, 75, 160, 112}, |
| {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160}, |
| {VCO_2_4, POSTDIV_DIV_BY_8, 75, 160, 112}, |
| {VCO_3_6, POSTDIV_DIV_BY_8, 112, 224, 160}, |
| {VCO_2_4, POSTDIV_DIV_BY_4, 75, 160, 112}, |
| {VCO_3_6, POSTDIV_DIV_BY_4, 112, 216, 160}, |
| {VCO_2_4, POSTDIV_DIV_BY_2, 75, 160, 108}, |
| {VCO_3_6, POSTDIV_DIV_BY_2, 112, 216, 160} }; |
| |
| static void polaris10_get_sclk_range_table(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t i, ref_clk; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| SMU74_Discrete_DpmTable *table = &(data->smc_state_table); |
| struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } }; |
| |
| ref_clk = polaris10_get_xclk(hwmgr); |
| |
| if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) { |
| for (i = 0; i < NUM_SCLK_RANGE; i++) { |
| table->SclkFcwRangeTable[i].vco_setting = range_table_from_vbios.entry[i].ucVco_setting; |
| table->SclkFcwRangeTable[i].postdiv = range_table_from_vbios.entry[i].ucPostdiv; |
| table->SclkFcwRangeTable[i].fcw_pcc = range_table_from_vbios.entry[i].usFcw_pcc; |
| |
| table->SclkFcwRangeTable[i].fcw_trans_upper = range_table_from_vbios.entry[i].usFcw_trans_upper; |
| table->SclkFcwRangeTable[i].fcw_trans_lower = range_table_from_vbios.entry[i].usRcw_trans_lower; |
| |
| CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc); |
| CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper); |
| CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower); |
| } |
| return; |
| } |
| |
| for (i = 0; i < NUM_SCLK_RANGE; i++) { |
| |
| data->range_table[i].trans_lower_frequency = (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv; |
| data->range_table[i].trans_upper_frequency = (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv; |
| |
| table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting; |
| table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv; |
| table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc; |
| |
| table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper; |
| table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower; |
| |
| CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc); |
| CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper); |
| CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower); |
| } |
| } |
| |
| /** |
| * Populates single SMC SCLK structure using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param clock the engine clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| |
| static int polaris10_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
| uint32_t clock, uint16_t sclk_al_threshold, |
| struct SMU74_Discrete_GraphicsLevel *level) |
| { |
| int result, i, temp; |
| /* PP_Clocks minClocks; */ |
| uint32_t mvdd; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| SMU_SclkSetting curr_sclk_setting = { 0 }; |
| |
| result = polaris10_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting); |
| |
| /* populate graphics levels */ |
| result = polaris10_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_sclk, clock, |
| &level->MinVoltage, &mvdd); |
| |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find VDDC voltage value for " |
| "VDDC engine clock dependency table", |
| return result); |
| level->ActivityLevel = sclk_al_threshold; |
| |
| level->CcPwrDynRm = 0; |
| level->CcPwrDynRm1 = 0; |
| level->EnabledForActivity = 0; |
| level->EnabledForThrottle = 1; |
| level->UpHyst = 10; |
| level->DownHyst = 0; |
| level->VoltageDownHyst = 0; |
| level->PowerThrottle = 0; |
| |
| /* |
| * TODO: get minimum clocks from dal configaration |
| * PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks); |
| */ |
| /* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */ |
| |
| /* get level->DeepSleepDivId |
| if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) |
| level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR); |
| */ |
| PP_ASSERT_WITH_CODE((clock >= POLARIS10_MINIMUM_ENGINE_CLOCK), "Engine clock can't satisfy stutter requirement!", return 0); |
| for (i = POLARIS10_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { |
| temp = clock >> i; |
| |
| if (temp >= POLARIS10_MINIMUM_ENGINE_CLOCK || i == 0) |
| break; |
| } |
| |
| level->DeepSleepDivId = i; |
| |
| /* Default to slow, highest DPM level will be |
| * set to PPSMC_DISPLAY_WATERMARK_LOW later. |
| */ |
| if (data->update_up_hyst) |
| level->UpHyst = (uint8_t)data->up_hyst; |
| if (data->update_down_hyst) |
| level->DownHyst = (uint8_t)data->down_hyst; |
| |
| level->SclkSetting = curr_sclk_setting; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); |
| CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate); |
| return 0; |
| } |
| |
| /** |
| * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states |
| * |
| * @param hwmgr the address of the hardware manager |
| */ |
| static int polaris10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct polaris10_dpm_table *dpm_table = &data->dpm_table; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
| uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count; |
| int result = 0; |
| uint32_t array = data->dpm_table_start + |
| offsetof(SMU74_Discrete_DpmTable, GraphicsLevel); |
| uint32_t array_size = sizeof(struct SMU74_Discrete_GraphicsLevel) * |
| SMU74_MAX_LEVELS_GRAPHICS; |
| struct SMU74_Discrete_GraphicsLevel *levels = |
| data->smc_state_table.GraphicsLevel; |
| uint32_t i, max_entry; |
| uint8_t hightest_pcie_level_enabled = 0, |
| lowest_pcie_level_enabled = 0, |
| mid_pcie_level_enabled = 0, |
| count = 0; |
| |
| polaris10_get_sclk_range_table(hwmgr); |
| |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| |
| result = polaris10_populate_single_graphic_level(hwmgr, |
| dpm_table->sclk_table.dpm_levels[i].value, |
| (uint16_t)data->activity_target[i], |
| &(data->smc_state_table.GraphicsLevel[i])); |
| if (result) |
| return result; |
| |
| /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
| if (i > 1) |
| levels[i].DeepSleepDivId = 0; |
| } |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SPLLShutdownSupport)) |
| data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0; |
| |
| data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; |
| data->smc_state_table.GraphicsDpmLevelCount = |
| (uint8_t)dpm_table->sclk_table.count; |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
| |
| |
| if (pcie_table != NULL) { |
| PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt), |
| "There must be 1 or more PCIE levels defined in PPTable.", |
| return -EINVAL); |
| max_entry = pcie_entry_cnt - 1; |
| for (i = 0; i < dpm_table->sclk_table.count; i++) |
| levels[i].pcieDpmLevel = |
| (uint8_t) ((i < max_entry) ? i : max_entry); |
| } else { |
| while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << (hightest_pcie_level_enabled + 1))) != 0)) |
| hightest_pcie_level_enabled++; |
| |
| while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << lowest_pcie_level_enabled)) == 0)) |
| lowest_pcie_level_enabled++; |
| |
| while ((count < hightest_pcie_level_enabled) && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) |
| count++; |
| |
| mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < |
| hightest_pcie_level_enabled ? |
| (lowest_pcie_level_enabled + 1 + count) : |
| hightest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to hightest_pcie_level_enabled */ |
| for (i = 2; i < dpm_table->sclk_table.count; i++) |
| levels[i].pcieDpmLevel = hightest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to lowest_pcie_level_enabled */ |
| levels[0].pcieDpmLevel = lowest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to mid_pcie_level_enabled */ |
| levels[1].pcieDpmLevel = mid_pcie_level_enabled; |
| } |
| /* level count will send to smc once at init smc table and never change */ |
| result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels, |
| (uint32_t)array_size, data->sram_end); |
| |
| return result; |
| } |
| |
| static int polaris10_populate_single_memory_level(struct pp_hwmgr *hwmgr, |
| uint32_t clock, struct SMU74_Discrete_MemoryLevel *mem_level) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| int result = 0; |
| struct cgs_display_info info = {0, 0, NULL}; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| |
| if (table_info->vdd_dep_on_mclk) { |
| result = polaris10_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_mclk, clock, |
| &mem_level->MinVoltage, &mem_level->MinMvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find MinVddc voltage value from memory " |
| "VDDC voltage dependency table", return result); |
| } |
| |
| mem_level->MclkFrequency = clock; |
| mem_level->EnabledForThrottle = 1; |
| mem_level->EnabledForActivity = 0; |
| mem_level->UpHyst = 0; |
| mem_level->DownHyst = 100; |
| mem_level->VoltageDownHyst = 0; |
| mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target; |
| mem_level->StutterEnable = false; |
| mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| data->display_timing.num_existing_displays = info.display_count; |
| |
| if ((data->mclk_stutter_mode_threshold) && |
| (clock <= data->mclk_stutter_mode_threshold) && |
| (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, |
| STUTTER_ENABLE) & 0x1)) |
| mem_level->StutterEnable = true; |
| |
| if (!result) { |
| CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd); |
| CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage); |
| } |
| return result; |
| } |
| |
| /** |
| * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states |
| * |
| * @param hwmgr the address of the hardware manager |
| */ |
| static int polaris10_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct polaris10_dpm_table *dpm_table = &data->dpm_table; |
| int result; |
| /* populate MCLK dpm table to SMU7 */ |
| uint32_t array = data->dpm_table_start + |
| offsetof(SMU74_Discrete_DpmTable, MemoryLevel); |
| uint32_t array_size = sizeof(SMU74_Discrete_MemoryLevel) * |
| SMU74_MAX_LEVELS_MEMORY; |
| struct SMU74_Discrete_MemoryLevel *levels = |
| data->smc_state_table.MemoryLevel; |
| uint32_t i; |
| |
| for (i = 0; i < dpm_table->mclk_table.count; i++) { |
| PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), |
| "can not populate memory level as memory clock is zero", |
| return -EINVAL); |
| result = polaris10_populate_single_memory_level(hwmgr, |
| dpm_table->mclk_table.dpm_levels[i].value, |
| &levels[i]); |
| if (i == dpm_table->mclk_table.count - 1) { |
| levels[i].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; |
| levels[i].EnabledForActivity = 1; |
| } |
| if (result) |
| return result; |
| } |
| |
| /* in order to prevent MC activity from stutter mode to push DPM up. |
| * the UVD change complements this by putting the MCLK in |
| * a higher state by default such that we are not effected by |
| * up threshold or and MCLK DPM latency. |
| */ |
| levels[0].ActivityLevel = 0x1f; |
| CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel); |
| |
| data->smc_state_table.MemoryDpmLevelCount = |
| (uint8_t)dpm_table->mclk_table.count; |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
| |
| /* level count will send to smc once at init smc table and never change */ |
| result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels, |
| (uint32_t)array_size, data->sram_end); |
| |
| return result; |
| } |
| |
| /** |
| * Populates the SMC MVDD structure using the provided memory clock. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param mclk the MCLK value to be used in the decision if MVDD should be high or low. |
| * @param voltage the SMC VOLTAGE structure to be populated |
| */ |
| int polaris10_populate_mvdd_value(struct pp_hwmgr *hwmgr, |
| uint32_t mclk, SMIO_Pattern *smio_pat) |
| { |
| const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t i = 0; |
| |
| if (POLARIS10_VOLTAGE_CONTROL_NONE != data->mvdd_control) { |
| /* find mvdd value which clock is more than request */ |
| for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { |
| if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { |
| smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; |
| break; |
| } |
| } |
| PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, |
| "MVDD Voltage is outside the supported range.", |
| return -EINVAL); |
| } else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int polaris10_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
| SMU74_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| uint32_t sclk_frequency; |
| const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| SMIO_Pattern vol_level; |
| uint32_t mvdd; |
| uint16_t us_mvdd; |
| |
| table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; |
| |
| |
| /* Get MinVoltage and Frequency from DPM0, |
| * already converted to SMC_UL */ |
| sclk_frequency = data->dpm_table.sclk_table.dpm_levels[0].value; |
| result = polaris10_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_sclk, |
| sclk_frequency, |
| &table->ACPILevel.MinVoltage, &mvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Cannot find ACPI VDDC voltage value " |
| "in Clock Dependency Table", |
| ); |
| |
| |
| result = polaris10_calculate_sclk_params(hwmgr, sclk_frequency, &(table->ACPILevel.SclkSetting)); |
| PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); |
| |
| table->ACPILevel.DeepSleepDivId = 0; |
| table->ACPILevel.CcPwrDynRm = 0; |
| table->ACPILevel.CcPwrDynRm1 = 0; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate); |
| |
| |
| /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ |
| table->MemoryACPILevel.MclkFrequency = |
| data->dpm_table.mclk_table.dpm_levels[0].value; |
| result = polaris10_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_mclk, |
| table->MemoryACPILevel.MclkFrequency, |
| &table->MemoryACPILevel.MinVoltage, &mvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Cannot find ACPI VDDCI voltage value " |
| "in Clock Dependency Table", |
| ); |
| |
| us_mvdd = 0; |
| if ((POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control) || |
| (data->mclk_dpm_key_disabled)) |
| us_mvdd = data->vbios_boot_state.mvdd_bootup_value; |
| else { |
| if (!polaris10_populate_mvdd_value(hwmgr, |
| data->dpm_table.mclk_table.dpm_levels[0].value, |
| &vol_level)) |
| us_mvdd = vol_level.Voltage; |
| } |
| |
| if (0 == polaris10_populate_mvdd_value(hwmgr, 0, &vol_level)) |
| table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage); |
| else |
| table->MemoryACPILevel.MinMvdd = 0; |
| |
| table->MemoryACPILevel.StutterEnable = false; |
| |
| table->MemoryACPILevel.EnabledForThrottle = 0; |
| table->MemoryACPILevel.EnabledForActivity = 0; |
| table->MemoryACPILevel.UpHyst = 0; |
| table->MemoryACPILevel.DownHyst = 100; |
| table->MemoryACPILevel.VoltageDownHyst = 0; |
| table->MemoryACPILevel.ActivityLevel = |
| PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage); |
| |
| return result; |
| } |
| |
| static int polaris10_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
| SMU74_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t vddci; |
| |
| table->VceLevelCount = (uint8_t)(mm_table->count); |
| table->VceBootLevel = 0; |
| |
| for (count = 0; count < table->VceLevelCount; count++) { |
| table->VceLevel[count].Frequency = mm_table->entries[count].eclk; |
| table->VceLevel[count].MinVoltage = 0; |
| table->VceLevel[count].MinVoltage |= |
| (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
| |
| if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) |
| vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), |
| mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
| else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) |
| vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA; |
| else |
| vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| |
| |
| table->VceLevel[count].MinVoltage |= |
| (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /*retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->VceLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for VCE engine clock", |
| return result); |
| |
| table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage); |
| } |
| return result; |
| } |
| |
| static int polaris10_populate_smc_samu_level(struct pp_hwmgr *hwmgr, |
| SMU74_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t vddci; |
| |
| table->SamuBootLevel = 0; |
| table->SamuLevelCount = (uint8_t)(mm_table->count); |
| |
| for (count = 0; count < table->SamuLevelCount; count++) { |
| /* not sure whether we need evclk or not */ |
| table->SamuLevel[count].MinVoltage = 0; |
| table->SamuLevel[count].Frequency = mm_table->entries[count].samclock; |
| table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| |
| if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) |
| vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), |
| mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
| else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) |
| vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA; |
| else |
| vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| |
| table->SamuLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->SamuLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for samu clock", return result); |
| |
| table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage); |
| } |
| return result; |
| } |
| |
| static int polaris10_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, |
| int32_t eng_clock, int32_t mem_clock, |
| SMU74_Discrete_MCArbDramTimingTableEntry *arb_regs) |
| { |
| uint32_t dram_timing; |
| uint32_t dram_timing2; |
| uint32_t burst_time; |
| int result; |
| |
| result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
| eng_clock, mem_clock); |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error calling VBIOS to set DRAM_TIMING.", return result); |
| |
| dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
| dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
| burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); |
| |
| |
| arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing); |
| arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2); |
| arb_regs->McArbBurstTime = (uint8_t)burst_time; |
| |
| return 0; |
| } |
| |
| static int polaris10_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct SMU74_Discrete_MCArbDramTimingTable arb_regs; |
| uint32_t i, j; |
| int result = 0; |
| |
| for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
| for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
| result = polaris10_populate_memory_timing_parameters(hwmgr, |
| data->dpm_table.sclk_table.dpm_levels[i].value, |
| data->dpm_table.mclk_table.dpm_levels[j].value, |
| &arb_regs.entries[i][j]); |
| if (result == 0) |
| result = atomctrl_set_ac_timing_ai(hwmgr, data->dpm_table.mclk_table.dpm_levels[j].value, j); |
| if (result != 0) |
| return result; |
| } |
| } |
| |
| result = polaris10_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| data->arb_table_start, |
| (uint8_t *)&arb_regs, |
| sizeof(SMU74_Discrete_MCArbDramTimingTable), |
| data->sram_end); |
| return result; |
| } |
| |
| static int polaris10_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
| struct SMU74_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t vddci; |
| |
| table->UvdLevelCount = (uint8_t)(mm_table->count); |
| table->UvdBootLevel = 0; |
| |
| for (count = 0; count < table->UvdLevelCount; count++) { |
| table->UvdLevel[count].MinVoltage = 0; |
| table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; |
| table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; |
| table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| |
| if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) |
| vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), |
| mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
| else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) |
| vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA; |
| else |
| vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| |
| table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].VclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for Vclk clock", return result); |
| |
| table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
| |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].DclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for Dclk clock", return result); |
| |
| table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage); |
| } |
| |
| return result; |
| } |
| |
| static int polaris10_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
| struct SMU74_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| table->GraphicsBootLevel = 0; |
| table->MemoryBootLevel = 0; |
| |
| /* find boot level from dpm table */ |
| result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
| data->vbios_boot_state.sclk_bootup_value, |
| (uint32_t *)&(table->GraphicsBootLevel)); |
| |
| result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
| data->vbios_boot_state.mclk_bootup_value, |
| (uint32_t *)&(table->MemoryBootLevel)); |
| |
| table->BootVddc = data->vbios_boot_state.vddc_bootup_value * |
| VOLTAGE_SCALE; |
| table->BootVddci = data->vbios_boot_state.vddci_bootup_value * |
| VOLTAGE_SCALE; |
| table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * |
| VOLTAGE_SCALE; |
| |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc); |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci); |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); |
| |
| return 0; |
| } |
| |
| |
| static int polaris10_populate_smc_initailial_state(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint8_t count, level; |
| |
| count = (uint8_t)(table_info->vdd_dep_on_sclk->count); |
| |
| for (level = 0; level < count; level++) { |
| if (table_info->vdd_dep_on_sclk->entries[level].clk >= |
| data->vbios_boot_state.sclk_bootup_value) { |
| data->smc_state_table.GraphicsBootLevel = level; |
| break; |
| } |
| } |
| |
| count = (uint8_t)(table_info->vdd_dep_on_mclk->count); |
| for (level = 0; level < count; level++) { |
| if (table_info->vdd_dep_on_mclk->entries[level].clk >= |
| data->vbios_boot_state.mclk_bootup_value) { |
| data->smc_state_table.MemoryBootLevel = level; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint8_t i, stretch_amount, stretch_amount2, volt_offset = 0; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| table_info->vdd_dep_on_sclk; |
| |
| stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; |
| |
| /* Read SMU_Eefuse to read and calculate RO and determine |
| * if the part is SS or FF. if RO >= 1660MHz, part is FF. |
| */ |
| efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixSMU_EFUSE_0 + (67 * 4)); |
| efuse &= 0xFF000000; |
| efuse = efuse >> 24; |
| |
| if (hwmgr->chip_id == CHIP_POLARIS10) { |
| min = 1000; |
| max = 2300; |
| } else { |
| min = 1100; |
| max = 2100; |
| } |
| |
| ro = efuse * (max -min)/255 + min; |
| |
| /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ |
| for (i = 0; i < sclk_table->count; i++) { |
| data->smc_state_table.Sclk_CKS_masterEn0_7 |= |
| sclk_table->entries[i].cks_enable << i; |
| if (hwmgr->chip_id == CHIP_POLARIS10) { |
| volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) * 136418 -(ro - 70) * 1000000) / \ |
| (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000)); |
| volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 * 3232 - (ro - 65) * 1000000) / \ |
| (2522480 - sclk_table->entries[i].clk/100 * 115764/100)); |
| } else { |
| volt_without_cks = (uint32_t)((2416794800U + (sclk_table->entries[i].clk/100) * 1476925/10 -(ro - 50) * 1000000) / \ |
| (2625416 - (sclk_table->entries[i].clk/100) * (12586807/10000))); |
| volt_with_cks = (uint32_t)((2999656000U - sclk_table->entries[i].clk/100 * 392803 - (ro - 44) * 1000000) / \ |
| (3422454 - sclk_table->entries[i].clk/100 * (18886376/10000))); |
| } |
| |
| if (volt_without_cks >= volt_with_cks) |
| volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + |
| sclk_table->entries[i].cks_voffset) * 100 + 624) / 625); |
| |
| data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; |
| } |
| |
| data->smc_state_table.LdoRefSel = (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ? table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 6; |
| /* Populate CKS Lookup Table */ |
| if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) |
| stretch_amount2 = 0; |
| else if (stretch_amount == 3 || stretch_amount == 4) |
| stretch_amount2 = 1; |
| else { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher); |
| PP_ASSERT_WITH_CODE(false, |
| "Stretch Amount in PPTable not supported\n", |
| return -EINVAL); |
| } |
| |
| value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); |
| value &= 0xFFFFFFFE; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); |
| |
| return 0; |
| } |
| |
| /** |
| * Populates the SMC VRConfig field in DPM table. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int polaris10_populate_vr_config(struct pp_hwmgr *hwmgr, |
| struct SMU74_Discrete_DpmTable *table) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint16_t config; |
| |
| config = VR_MERGED_WITH_VDDC; |
| table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT); |
| |
| /* Set Vddc Voltage Controller */ |
| if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| config = VR_SVI2_PLANE_1; |
| table->VRConfig |= config; |
| } else { |
| PP_ASSERT_WITH_CODE(false, |
| "VDDC should be on SVI2 control in merged mode!", |
| ); |
| } |
| /* Set Vddci Voltage Controller */ |
| if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
| config = VR_SVI2_PLANE_2; /* only in merged mode */ |
| table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
| } else if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| config = VR_SMIO_PATTERN_1; |
| table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
| } else { |
| config = VR_STATIC_VOLTAGE; |
| table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
| } |
| /* Set Mvdd Voltage Controller */ |
| if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { |
| config = VR_SVI2_PLANE_2; |
| table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
| } else if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| config = VR_SMIO_PATTERN_2; |
| table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
| } else { |
| config = VR_STATIC_VOLTAGE; |
| table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
| } |
| |
| return 0; |
| } |
| |
| |
| int polaris10_populate_avfs_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| SMU74_Discrete_DpmTable *table = &(data->smc_state_table); |
| int result = 0; |
| struct pp_atom_ctrl__avfs_parameters avfs_params = {0}; |
| AVFS_meanNsigma_t AVFS_meanNsigma = { {0} }; |
| AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} }; |
| uint32_t tmp, i; |
| struct pp_smumgr *smumgr = hwmgr->smumgr; |
| struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend); |
| |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| table_info->vdd_dep_on_sclk; |
| |
| |
| if (smu_data->avfs.avfs_btc_status == AVFS_BTC_NOTSUPPORTED) |
| return result; |
| |
| result = atomctrl_get_avfs_information(hwmgr, &avfs_params); |
| |
| if (0 == result) { |
| table->BTCGB_VDROOP_TABLE[0].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0); |
| table->BTCGB_VDROOP_TABLE[0].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1); |
| table->BTCGB_VDROOP_TABLE[0].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2); |
| table->BTCGB_VDROOP_TABLE[1].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0); |
| table->BTCGB_VDROOP_TABLE[1].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1); |
| table->BTCGB_VDROOP_TABLE[1].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2); |
| table->AVFSGB_VDROOP_TABLE[0].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1); |
| table->AVFSGB_VDROOP_TABLE[0].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2); |
| table->AVFSGB_VDROOP_TABLE[0].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b); |
| table->AVFSGB_VDROOP_TABLE[0].m1_shift = 24; |
| table->AVFSGB_VDROOP_TABLE[0].m2_shift = 12; |
| table->AVFSGB_VDROOP_TABLE[1].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1); |
| table->AVFSGB_VDROOP_TABLE[1].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2); |
| table->AVFSGB_VDROOP_TABLE[1].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b); |
| table->AVFSGB_VDROOP_TABLE[1].m1_shift = 24; |
| table->AVFSGB_VDROOP_TABLE[1].m2_shift = 12; |
| table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv); |
| AVFS_meanNsigma.Aconstant[0] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0); |
| AVFS_meanNsigma.Aconstant[1] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1); |
| AVFS_meanNsigma.Aconstant[2] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2); |
| AVFS_meanNsigma.DC_tol_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma); |
| AVFS_meanNsigma.Platform_mean = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean); |
| AVFS_meanNsigma.PSM_Age_CompFactor = PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor); |
| AVFS_meanNsigma.Platform_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma); |
| |
| for (i = 0; i < NUM_VFT_COLUMNS; i++) { |
| AVFS_meanNsigma.Static_Voltage_Offset[i] = (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625); |
| AVFS_SclkOffset.Sclk_Offset[i] = PP_HOST_TO_SMC_US((uint16_t)(sclk_table->entries[i].sclk_offset) / 100); |
| } |
| |
| result = polaris10_read_smc_sram_dword(smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, AvfsMeanNSigma), |
| &tmp, data->sram_end); |
| |
| polaris10_copy_bytes_to_smc(smumgr, |
| tmp, |
| (uint8_t *)&AVFS_meanNsigma, |
| sizeof(AVFS_meanNsigma_t), |
| data->sram_end); |
| |
| result = polaris10_read_smc_sram_dword(smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, AvfsSclkOffsetTable), |
| &tmp, data->sram_end); |
| polaris10_copy_bytes_to_smc(smumgr, |
| tmp, |
| (uint8_t *)&AVFS_SclkOffset, |
| sizeof(AVFS_Sclk_Offset_t), |
| data->sram_end); |
| |
| data->avfs_vdroop_override_setting = (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) | |
| (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) | |
| (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) | |
| (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT); |
| data->apply_avfs_cks_off_voltage = (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false; |
| } |
| return result; |
| } |
| |
| |
| /** |
| * Initializes the SMC table and uploads it |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_init_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct SMU74_Discrete_DpmTable *table = &(data->smc_state_table); |
| const struct polaris10_ulv_parm *ulv = &(data->ulv); |
| uint8_t i; |
| struct pp_atomctrl_gpio_pin_assignment gpio_pin; |
| pp_atomctrl_clock_dividers_vi dividers; |
| |
| result = polaris10_setup_default_dpm_tables(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to setup default DPM tables!", return result); |
| |
| if (POLARIS10_VOLTAGE_CONTROL_NONE != data->voltage_control) |
| polaris10_populate_smc_voltage_tables(hwmgr, table); |
| |
| table->SystemFlags = 0; |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StepVddc)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; |
| |
| if (data->is_memory_gddr5) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; |
| |
| if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) { |
| result = polaris10_populate_ulv_state(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ULV state!", return result); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_ULV_PARAMETER, PPPOLARIS10_CGULVPARAMETER_DFLT); |
| } |
| |
| result = polaris10_populate_smc_link_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Link Level!", return result); |
| |
| result = polaris10_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Graphics Level!", return result); |
| |
| result = polaris10_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Memory Level!", return result); |
| |
| result = polaris10_populate_smc_acpi_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ACPI Level!", return result); |
| |
| result = polaris10_populate_smc_vce_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize VCE Level!", return result); |
| |
| result = polaris10_populate_smc_samu_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize SAMU Level!", return result); |
| |
| /* Since only the initial state is completely set up at this point |
| * (the other states are just copies of the boot state) we only |
| * need to populate the ARB settings for the initial state. |
| */ |
| result = polaris10_program_memory_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to Write ARB settings for the initial state.", return result); |
| |
| result = polaris10_populate_smc_uvd_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize UVD Level!", return result); |
| |
| result = polaris10_populate_smc_boot_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Boot Level!", return result); |
| |
| result = polaris10_populate_smc_initailial_state(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Boot State!", return result); |
| |
| result = polaris10_populate_bapm_parameters_in_dpm_table(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate BAPM Parameters!", return result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher)) { |
| result = polaris10_populate_clock_stretcher_data_table(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate Clock Stretcher Data Table!", |
| return result); |
| } |
| |
| result = polaris10_populate_avfs_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, "Failed to populate AVFS Parameters!", return result;); |
| |
| table->CurrSclkPllRange = 0xff; |
| table->GraphicsVoltageChangeEnable = 1; |
| table->GraphicsThermThrottleEnable = 1; |
| table->GraphicsInterval = 1; |
| table->VoltageInterval = 1; |
| table->ThermalInterval = 1; |
| table->TemperatureLimitHigh = |
| table_info->cac_dtp_table->usTargetOperatingTemp * |
| POLARIS10_Q88_FORMAT_CONVERSION_UNIT; |
| table->TemperatureLimitLow = |
| (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * |
| POLARIS10_Q88_FORMAT_CONVERSION_UNIT; |
| table->MemoryVoltageChangeEnable = 1; |
| table->MemoryInterval = 1; |
| table->VoltageResponseTime = 0; |
| table->PhaseResponseTime = 0; |
| table->MemoryThermThrottleEnable = 1; |
| table->PCIeBootLinkLevel = 0; |
| table->PCIeGenInterval = 1; |
| table->VRConfig = 0; |
| |
| result = polaris10_populate_vr_config(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate VRConfig setting!", return result); |
| |
| table->ThermGpio = 17; |
| table->SclkStepSize = 0x4000; |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { |
| table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| } else { |
| table->VRHotGpio = POLARIS10_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| } |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, |
| &gpio_pin)) { |
| table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| } else { |
| table->AcDcGpio = POLARIS10_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| } |
| |
| /* Thermal Output GPIO */ |
| if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID, |
| &gpio_pin)) { |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalOutGPIO); |
| |
| table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| |
| /* For porlarity read GPIOPAD_A with assigned Gpio pin |
| * since VBIOS will program this register to set 'inactive state', |
| * driver can then determine 'active state' from this and |
| * program SMU with correct polarity |
| */ |
| table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) |
| & (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; |
| |
| /* if required, combine VRHot/PCC with thermal out GPIO */ |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot) |
| && phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal)) |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; |
| } else { |
| table->ThermOutGpio = 17; |
| table->ThermOutPolarity = 1; |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; |
| } |
| |
| /* Populate BIF_SCLK levels into SMC DPM table */ |
| for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++) { |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, data->bif_sclk_table[i], ÷rs); |
| PP_ASSERT_WITH_CODE((result == 0), "Can not find DFS divide id for Sclk", return result); |
| |
| if (i == 0) |
| table->Ulv.BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider)); |
| else |
| table->LinkLevel[i-1].BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider)); |
| } |
| |
| for (i = 0; i < SMU74_MAX_ENTRIES_SMIO; i++) |
| table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); |
| CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); |
| CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); |
| |
| /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
| result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, |
| data->dpm_table_start + |
| offsetof(SMU74_Discrete_DpmTable, SystemFlags), |
| (uint8_t *)&(table->SystemFlags), |
| sizeof(SMU74_Discrete_DpmTable) - 3 * sizeof(SMU74_PIDController), |
| data->sram_end); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to upload dpm data to SMC memory!", return result); |
| |
| return 0; |
| } |
| |
| /** |
| * Initialize the ARB DRAM timing table's index field. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_init_arb_table_index(struct pp_hwmgr *hwmgr) |
| { |
| const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t tmp; |
| int result; |
| |
| /* This is a read-modify-write on the first byte of the ARB table. |
| * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure |
| * is the field 'current'. |
| * This solution is ugly, but we never write the whole table only |
| * individual fields in it. |
| * In reality this field should not be in that structure |
| * but in a soft register. |
| */ |
| result = polaris10_read_smc_sram_dword(hwmgr->smumgr, |
| data->arb_table_start, &tmp, data->sram_end); |
| |
| if (result) |
| return result; |
| |
| tmp &= 0x00FFFFFF; |
| tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; |
| |
| return polaris10_write_smc_sram_dword(hwmgr->smumgr, |
| data->arb_table_start, tmp, data->sram_end); |
| } |
| |
| static int polaris10_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr) |
| { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot)) |
| return smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_EnableVRHotGPIOInterrupt); |
| |
| return 0; |
| } |
| |
| static int polaris10_enable_sclk_control(struct pp_hwmgr *hwmgr) |
| { |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, |
| SCLK_PWRMGT_OFF, 0); |
| return 0; |
| } |
| |
| static int polaris10_enable_ulv(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct polaris10_ulv_parm *ulv = &(data->ulv); |
| |
| if (ulv->ulv_supported) |
| return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV); |
| |
| return 0; |
| } |
| |
| static int polaris10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) |
| { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkDeepSleep)) { |
| if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to enable Master Deep Sleep switch failed!", |
| return -1); |
| } else { |
| if (smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_MASTER_DeepSleep_OFF)) { |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to disable Master Deep Sleep switch failed!", |
| return -1); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t soft_register_value = 0; |
| uint32_t handshake_disables_offset = data->soft_regs_start |
| + offsetof(SMU74_SoftRegisters, HandshakeDisables); |
| |
| /* enable SCLK dpm */ |
| if (!data->sclk_dpm_key_disabled) |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)), |
| "Failed to enable SCLK DPM during DPM Start Function!", |
| return -1); |
| |
| /* enable MCLK dpm */ |
| if (0 == data->mclk_dpm_key_disabled) { |
| /* Disable UVD - SMU handshake for MCLK. */ |
| soft_register_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, handshake_disables_offset); |
| soft_register_value |= SMU7_UVD_MCLK_HANDSHAKE_DISABLE; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| handshake_disables_offset, soft_register_value); |
| |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_Enable)), |
| "Failed to enable MCLK DPM during DPM Start Function!", |
| return -1); |
| |
| PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005); |
| udelay(10); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005); |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_start_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| /*enable general power management */ |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, |
| GLOBAL_PWRMGT_EN, 1); |
| |
| /* enable sclk deep sleep */ |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, |
| DYNAMIC_PM_EN, 1); |
| |
| /* prepare for PCIE DPM */ |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| data->soft_regs_start + offsetof(SMU74_SoftRegisters, |
| VoltageChangeTimeout), 0x1000); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, |
| SWRST_COMMAND_1, RESETLC, 0x0); |
| /* |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_Voltage_Cntl_Enable)), |
| "Failed to enable voltage DPM during DPM Start Function!", |
| return -1); |
| */ |
| |
| if (polaris10_enable_sclk_mclk_dpm(hwmgr)) { |
| printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!"); |
| return -1; |
| } |
| |
| /* enable PCIE dpm */ |
| if (0 == data->pcie_dpm_key_disabled) { |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_Enable)), |
| "Failed to enable pcie DPM during DPM Start Function!", |
| return -1); |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_Falcon_QuickTransition)) { |
| PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_EnableACDCGPIOInterrupt)), |
| "Failed to enable AC DC GPIO Interrupt!", |
| ); |
| } |
| |
| return 0; |
| } |
| |
| static void polaris10_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources) |
| { |
| bool protection; |
| enum DPM_EVENT_SRC src; |
| |
| switch (sources) { |
| default: |
| printk(KERN_ERR "Unknown throttling event sources."); |
| /* fall through */ |
| case 0: |
| protection = false; |
| /* src is unused */ |
| break; |
| case (1 << PHM_AutoThrottleSource_Thermal): |
| protection = true; |
| src = DPM_EVENT_SRC_DIGITAL; |
| break; |
| case (1 << PHM_AutoThrottleSource_External): |
| protection = true; |
| src = DPM_EVENT_SRC_EXTERNAL; |
| break; |
| case (1 << PHM_AutoThrottleSource_External) | |
| (1 << PHM_AutoThrottleSource_Thermal): |
| protection = true; |
| src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL; |
| break; |
| } |
| /* Order matters - don't enable thermal protection for the wrong source. */ |
| if (protection) { |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL, |
| DPM_EVENT_SRC, src); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, |
| THERMAL_PROTECTION_DIS, |
| !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalController)); |
| } else |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, |
| THERMAL_PROTECTION_DIS, 1); |
| } |
| |
| static int polaris10_enable_auto_throttle_source(struct pp_hwmgr *hwmgr, |
| PHM_AutoThrottleSource source) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| if (!(data->active_auto_throttle_sources & (1 << source))) { |
| data->active_auto_throttle_sources |= 1 << source; |
| polaris10_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); |
| } |
| return 0; |
| } |
| |
| static int polaris10_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) |
| { |
| return polaris10_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); |
| } |
| |
| int polaris10_pcie_performance_request(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| data->pcie_performance_request = true; |
| |
| return 0; |
| } |
| |
| int polaris10_enable_dpm_tasks(struct pp_hwmgr *hwmgr) |
| { |
| int tmp_result, result = 0; |
| tmp_result = (!polaris10_is_dpm_running(hwmgr)) ? 0 : -1; |
| PP_ASSERT_WITH_CODE(result == 0, |
| "DPM is already running right now, no need to enable DPM!", |
| return 0); |
| |
| if (polaris10_voltage_control(hwmgr)) { |
| tmp_result = polaris10_enable_voltage_control(hwmgr); |
| PP_ASSERT_WITH_CODE(tmp_result == 0, |
| "Failed to enable voltage control!", |
| result = tmp_result); |
| |
| tmp_result = polaris10_construct_voltage_tables(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to contruct voltage tables!", |
| result = tmp_result); |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EngineSpreadSpectrumSupport)) |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalController)) |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0); |
| |
| tmp_result = polaris10_program_static_screen_threshold_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to program static screen threshold parameters!", |
| result = tmp_result); |
| |
| tmp_result = polaris10_enable_display_gap(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable display gap!", result = tmp_result); |
| |
| tmp_result = polaris10_program_voting_clients(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to program voting clients!", result = tmp_result); |
| |
| tmp_result = polaris10_process_firmware_header(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to process firmware header!", result = tmp_result); |
| |
| tmp_result = polaris10_initial_switch_from_arbf0_to_f1(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize switch from ArbF0 to F1!", |
| result = tmp_result); |
| |
| tmp_result = polaris10_init_smc_table(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize SMC table!", result = tmp_result); |
| |
| tmp_result = polaris10_init_arb_table_index(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize ARB table index!", result = tmp_result); |
| |
| tmp_result = polaris10_populate_pm_fuses(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to populate PM fuses!", result = tmp_result); |
| |
| tmp_result = polaris10_enable_vrhot_gpio_interrupt(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable VR hot GPIO interrupt!", result = tmp_result); |
| |
| smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)PPSMC_HasDisplay); |
| |
| tmp_result = polaris10_enable_sclk_control(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable SCLK control!", result = tmp_result); |
| |
| tmp_result = polaris10_enable_smc_voltage_controller(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable voltage control!", result = tmp_result); |
| |
| tmp_result = polaris10_enable_ulv(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable ULV!", result = tmp_result); |
| |
| tmp_result = polaris10_enable_deep_sleep_master_switch(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable deep sleep master switch!", result = tmp_result); |
| |
| tmp_result = polaris10_start_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to start DPM!", result = tmp_result); |
| |
| tmp_result = polaris10_enable_smc_cac(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable SMC CAC!", result = tmp_result); |
| |
| tmp_result = polaris10_enable_power_containment(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable power containment!", result = tmp_result); |
| |
| tmp_result = polaris10_power_control_set_level(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to power control set level!", result = tmp_result); |
| |
| tmp_result = polaris10_enable_thermal_auto_throttle(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable thermal auto throttle!", result = tmp_result); |
| |
| tmp_result = polaris10_pcie_performance_request(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "pcie performance request failed!", result = tmp_result); |
| |
| return result; |
| } |
| |
| int polaris10_disable_dpm_tasks(struct pp_hwmgr *hwmgr) |
| { |
| |
| return 0; |
| } |
| |
| int polaris10_reset_asic_tasks(struct pp_hwmgr *hwmgr) |
| { |
| |
| return 0; |
| } |
| |
| int polaris10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| if (data->soft_pp_table) { |
| kfree(data->soft_pp_table); |
| data->soft_pp_table = NULL; |
| } |
| |
| return phm_hwmgr_backend_fini(hwmgr); |
| } |
| |
| int polaris10_set_features_platform_caps(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkDeepSleep); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicPatchPowerState); |
| |
| if (data->mvdd_control == POLARIS10_VOLTAGE_CONTROL_NONE) |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableMVDDControl); |
| |
| if (data->vddci_control == POLARIS10_VOLTAGE_CONTROL_NONE) |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDCI); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TablelessHardwareInterface); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableSMU7ThermalManagement); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicPowerManagement); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UnTabledHardwareInterface); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TablelessHardwareInterface); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SMC); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_NonABMSupportInPPLib); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicUVDState); |
| |
| /* power tune caps Assume disabled */ |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SQRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DBRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TDRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TCPRamping); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PowerContainment); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_CAC); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ODFuzzyFanControlSupport); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_FanSpeedInTableIsRPM); |
| |
| if (hwmgr->chip_id == CHIP_POLARIS11) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SPLLShutdownSupport); |
| return 0; |
| } |
| |
| static void polaris10_init_dpm_defaults(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| polaris10_initialize_power_tune_defaults(hwmgr); |
| |
| data->pcie_gen_performance.max = PP_PCIEGen1; |
| data->pcie_gen_performance.min = PP_PCIEGen3; |
| data->pcie_gen_power_saving.max = PP_PCIEGen1; |
| data->pcie_gen_power_saving.min = PP_PCIEGen3; |
| data->pcie_lane_performance.max = 0; |
| data->pcie_lane_performance.min = 16; |
| data->pcie_lane_power_saving.max = 0; |
| data->pcie_lane_power_saving.min = 16; |
| } |
| |
| /** |
| * Get Leakage VDDC based on leakage ID. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_get_evv_voltages(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint16_t vv_id; |
| uint32_t vddc = 0; |
| uint16_t i, j; |
| uint32_t sclk = 0; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| table_info->vdd_dep_on_sclk; |
| int result; |
| |
| for (i = 0; i < POLARIS10_MAX_LEAKAGE_COUNT; i++) { |
| vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; |
| if (!phm_get_sclk_for_voltage_evv(hwmgr, |
| table_info->vddc_lookup_table, vv_id, &sclk)) { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher)) { |
| for (j = 1; j < sclk_table->count; j++) { |
| if (sclk_table->entries[j].clk == sclk && |
| sclk_table->entries[j].cks_enable == 0) { |
| sclk += 5000; |
| break; |
| } |
| } |
| } |
| |
| |
| PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, |
| VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc), |
| "Error retrieving EVV voltage value!", |
| continue); |
| |
| |
| /* need to make sure vddc is less than 2v or else, it could burn the ASIC. |
| * real voltage level in unit of 0.01mv */ |
| PP_ASSERT_WITH_CODE((vddc < 200000 && vddc != 0), |
| "Invalid VDDC value", result = -EINVAL;); |
| |
| /* the voltage should not be zero nor equal to leakage ID */ |
| if (vddc != 0 && vddc != vv_id) { |
| data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100); |
| data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; |
| data->vddc_leakage.count++; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Change virtual leakage voltage to actual value. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pointer to changing voltage |
| * @param pointer to leakage table |
| */ |
| static void polaris10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, |
| uint16_t *voltage, struct polaris10_leakage_voltage *leakage_table) |
| { |
| uint32_t index; |
| |
| /* search for leakage voltage ID 0xff01 ~ 0xff08 */ |
| for (index = 0; index < leakage_table->count; index++) { |
| /* if this voltage matches a leakage voltage ID */ |
| /* patch with actual leakage voltage */ |
| if (leakage_table->leakage_id[index] == *voltage) { |
| *voltage = leakage_table->actual_voltage[index]; |
| break; |
| } |
| } |
| |
| if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) |
| printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n"); |
| } |
| |
| /** |
| * Patch voltage lookup table by EVV leakages. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pointer to voltage lookup table |
| * @param pointer to leakage table |
| * @return always 0 |
| */ |
| static int polaris10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *lookup_table, |
| struct polaris10_leakage_voltage *leakage_table) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < lookup_table->count; i++) |
| polaris10_patch_with_vdd_leakage(hwmgr, |
| &lookup_table->entries[i].us_vdd, leakage_table); |
| |
| return 0; |
| } |
| |
| static int polaris10_patch_clock_voltage_limits_with_vddc_leakage( |
| struct pp_hwmgr *hwmgr, struct polaris10_leakage_voltage *leakage_table, |
| uint16_t *vddc) |
| { |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| polaris10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); |
| hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = |
| table_info->max_clock_voltage_on_dc.vddc; |
| return 0; |
| } |
| |
| static int polaris10_patch_voltage_dependency_tables_with_lookup_table( |
| struct pp_hwmgr *hwmgr) |
| { |
| uint8_t entryId; |
| uint8_t voltageId; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| table_info->vdd_dep_on_sclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = |
| table_info->vdd_dep_on_mclk; |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| |
| for (entryId = 0; entryId < sclk_table->count; ++entryId) { |
| voltageId = sclk_table->entries[entryId].vddInd; |
| sclk_table->entries[entryId].vddc = |
| table_info->vddc_lookup_table->entries[voltageId].us_vdd; |
| } |
| |
| for (entryId = 0; entryId < mclk_table->count; ++entryId) { |
| voltageId = mclk_table->entries[entryId].vddInd; |
| mclk_table->entries[entryId].vddc = |
| table_info->vddc_lookup_table->entries[voltageId].us_vdd; |
| } |
| |
| for (entryId = 0; entryId < mm_table->count; ++entryId) { |
| voltageId = mm_table->entries[entryId].vddcInd; |
| mm_table->entries[entryId].vddc = |
| table_info->vddc_lookup_table->entries[voltageId].us_vdd; |
| } |
| |
| return 0; |
| |
| } |
| |
| static int polaris10_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr) |
| { |
| /* Need to determine if we need calculated voltage. */ |
| return 0; |
| } |
| |
| static int polaris10_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr) |
| { |
| /* Need to determine if we need calculated voltage from mm table. */ |
| return 0; |
| } |
| |
| static int polaris10_sort_lookup_table(struct pp_hwmgr *hwmgr, |
| struct phm_ppt_v1_voltage_lookup_table *lookup_table) |
| { |
| uint32_t table_size, i, j; |
| struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record; |
| table_size = lookup_table->count; |
| |
| PP_ASSERT_WITH_CODE(0 != lookup_table->count, |
| "Lookup table is empty", return -EINVAL); |
| |
| /* Sorting voltages */ |
| for (i = 0; i < table_size - 1; i++) { |
| for (j = i + 1; j > 0; j--) { |
| if (lookup_table->entries[j].us_vdd < |
| lookup_table->entries[j - 1].us_vdd) { |
| tmp_voltage_lookup_record = lookup_table->entries[j - 1]; |
| lookup_table->entries[j - 1] = lookup_table->entries[j]; |
| lookup_table->entries[j] = tmp_voltage_lookup_record; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_complete_dependency_tables(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| int tmp_result; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| tmp_result = polaris10_patch_lookup_table_with_leakage(hwmgr, |
| table_info->vddc_lookup_table, &(data->vddc_leakage)); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = polaris10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, |
| &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = polaris10_patch_voltage_dependency_tables_with_lookup_table(hwmgr); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = polaris10_calc_voltage_dependency_tables(hwmgr); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = polaris10_calc_mm_voltage_dependency_table(hwmgr); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = polaris10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); |
| if (tmp_result) |
| result = tmp_result; |
| |
| return result; |
| } |
| |
| static int polaris10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) |
| { |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = |
| table_info->vdd_dep_on_sclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = |
| table_info->vdd_dep_on_mclk; |
| |
| PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL, |
| "VDD dependency on SCLK table is missing. \ |
| This table is mandatory", return -EINVAL); |
| PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, |
| "VDD dependency on SCLK table has to have is missing. \ |
| This table is mandatory", return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL, |
| "VDD dependency on MCLK table is missing. \ |
| This table is mandatory", return -EINVAL); |
| PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, |
| "VDD dependency on MCLK table has to have is missing. \ |
| This table is mandatory", return -EINVAL); |
| |
| table_info->max_clock_voltage_on_ac.sclk = |
| allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; |
| table_info->max_clock_voltage_on_ac.mclk = |
| allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; |
| table_info->max_clock_voltage_on_ac.vddc = |
| allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; |
| table_info->max_clock_voltage_on_ac.vddci = |
| allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; |
| |
| hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =table_info->max_clock_voltage_on_ac.vddci; |
| |
| return 0; |
| } |
| |
| int polaris10_patch_voltage_workaround(struct pp_hwmgr *hwmgr) |
| { |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = |
| table_info->vdd_dep_on_mclk; |
| struct phm_ppt_v1_voltage_lookup_table *lookup_table = |
| table_info->vddc_lookup_table; |
| uint32_t i; |
| |
| if (hwmgr->chip_id == CHIP_POLARIS10 && hwmgr->hw_revision == 0xC7) { |
| if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000) |
| return 0; |
| |
| for (i = 0; i < lookup_table->count; i++) { |
| if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) { |
| dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i; |
| return 0; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| |
| int polaris10_hwmgr_backend_init(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; |
| uint32_t temp_reg; |
| int result; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| data->dll_default_on = false; |
| data->sram_end = SMC_RAM_END; |
| data->mclk_dpm0_activity_target = 0xa; |
| data->disable_dpm_mask = 0xFF; |
| data->static_screen_threshold = PPPOLARIS10_STATICSCREENTHRESHOLD_DFLT; |
| data->static_screen_threshold_unit = PPPOLARIS10_STATICSCREENTHRESHOLD_DFLT; |
| data->activity_target[0] = PPPOLARIS10_TARGETACTIVITY_DFLT; |
| data->activity_target[1] = PPPOLARIS10_TARGETACTIVITY_DFLT; |
| data->activity_target[2] = PPPOLARIS10_TARGETACTIVITY_DFLT; |
| data->activity_target[3] = PPPOLARIS10_TARGETACTIVITY_DFLT; |
| data->activity_target[4] = PPPOLARIS10_TARGETACTIVITY_DFLT; |
| data->activity_target[5] = PPPOLARIS10_TARGETACTIVITY_DFLT; |
| data->activity_target[6] = PPPOLARIS10_TARGETACTIVITY_DFLT; |
| data->activity_target[7] = PPPOLARIS10_TARGETACTIVITY_DFLT; |
| |
| data->voting_rights_clients0 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT0; |
| data->voting_rights_clients1 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT1; |
| data->voting_rights_clients2 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT2; |
| data->voting_rights_clients3 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT3; |
| data->voting_rights_clients4 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT4; |
| data->voting_rights_clients5 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT5; |
| data->voting_rights_clients6 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT6; |
| data->voting_rights_clients7 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT7; |
| |
| data->vddc_vddci_delta = VDDC_VDDCI_DELTA; |
| |
| data->mclk_activity_target = PPPOLARIS10_MCLK_TARGETACTIVITY_DFLT; |
| |
| /* need to set voltage control types before EVV patching */ |
| data->voltage_control = POLARIS10_VOLTAGE_CONTROL_NONE; |
| data->vddci_control = POLARIS10_VOLTAGE_CONTROL_NONE; |
| data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_NONE; |
| |
| data->enable_tdc_limit_feature = true; |
| data->enable_pkg_pwr_tracking_feature = true; |
| data->force_pcie_gen = PP_PCIEGenInvalid; |
| data->mclk_stutter_mode_threshold = 40000; |
| |
| if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) |
| data->voltage_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableMVDDControl)) { |
| if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) |
| data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_BY_GPIO; |
| else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) |
| data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2; |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDCI)) { |
| if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) |
| data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_GPIO; |
| else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) |
| data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2; |
| } |
| |
| if (table_info->cac_dtp_table->usClockStretchAmount != 0) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher); |
| |
| polaris10_set_features_platform_caps(hwmgr); |
| |
| polaris10_patch_voltage_workaround(hwmgr); |
| polaris10_init_dpm_defaults(hwmgr); |
| |
| /* Get leakage voltage based on leakage ID. */ |
| result = polaris10_get_evv_voltages(hwmgr); |
| |
| if (result) { |
| printk("Get EVV Voltage Failed. Abort Driver loading!\n"); |
| return -1; |
| } |
| |
| polaris10_complete_dependency_tables(hwmgr); |
| polaris10_set_private_data_based_on_pptable(hwmgr); |
| |
| /* Initalize Dynamic State Adjustment Rule Settings */ |
| result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr); |
| |
| if (0 == result) { |
| struct cgs_system_info sys_info = {0}; |
| |
| data->is_tlu_enabled = 0; |
| |
| hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = |
| POLARIS10_MAX_HARDWARE_POWERLEVELS; |
| hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; |
| hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; |
| |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) { |
| temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL); |
| switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) { |
| case 0: |
| temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1); |
| break; |
| case 1: |
| temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2); |
| break; |
| case 2: |
| temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1); |
| break; |
| case 3: |
| temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1); |
| break; |
| case 4: |
| temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1); |
| break; |
| default: |
| PP_ASSERT_WITH_CODE(0, |
| "Failed to setup PCC HW register! Wrong GPIO assigned for VDDC_PCC_GPIO_PINID!", |
| ); |
| break; |
| } |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg); |
| } |
| |
| if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 && |
| hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) { |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit = |
| (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit = |
| (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit = |
| (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1; |
| |
| table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ? |
| (table_info->cac_dtp_table->usDefaultTargetOperatingTemp -50) : 0; |
| |
| table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp; |
| table_info->cac_dtp_table->usOperatingTempStep = 1; |
| table_info->cac_dtp_table->usOperatingTempHyst = 1; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM; |
| |
| hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit = |
| table_info->cac_dtp_table->usOperatingTempMinLimit; |
| |
| hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit = |
| table_info->cac_dtp_table->usOperatingTempMaxLimit; |
| |
| hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp = |
| table_info->cac_dtp_table->usDefaultTargetOperatingTemp; |
| |
| hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep = |
| table_info->cac_dtp_table->usOperatingTempStep; |
| |
| hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp = |
| table_info->cac_dtp_table->usTargetOperatingTemp; |
| } |
| |
| sys_info.size = sizeof(struct cgs_system_info); |
| sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO; |
| result = cgs_query_system_info(hwmgr->device, &sys_info); |
| if (result) |
| data->pcie_gen_cap = 0x30007; |
| else |
| data->pcie_gen_cap = (uint32_t)sys_info.value; |
| if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) |
| data->pcie_spc_cap = 20; |
| sys_info.size = sizeof(struct cgs_system_info); |
| sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW; |
| result = cgs_query_system_info(hwmgr->device, &sys_info); |
| if (result) |
| data->pcie_lane_cap = 0x2f0000; |
| else |
| data->pcie_lane_cap = (uint32_t)sys_info.value; |
| |
| hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ |
| /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ |
| hwmgr->platform_descriptor.clockStep.engineClock = 500; |
| hwmgr->platform_descriptor.clockStep.memoryClock = 500; |
| } else { |
| /* Ignore return value in here, we are cleaning up a mess. */ |
| polaris10_hwmgr_backend_fini(hwmgr); |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_force_dpm_highest(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t level, tmp; |
| |
| if (!data->pcie_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++; |
| |
| if (level) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_ForceLevel, level); |
| } |
| } |
| |
| if (!data->sclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++; |
| |
| if (level) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| (1 << level)); |
| } |
| } |
| |
| if (!data->mclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++; |
| |
| if (level) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| (1 << level)); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| phm_apply_dal_min_voltage_request(hwmgr); |
| |
| if (!data->sclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask); |
| } |
| |
| if (!data->mclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask); |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_unforce_dpm_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| if (!polaris10_is_dpm_running(hwmgr)) |
| return -EINVAL; |
| |
| if (!data->pcie_dpm_key_disabled) { |
| smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_UnForceLevel); |
| } |
| |
| return polaris10_upload_dpm_level_enable_mask(hwmgr); |
| } |
| |
| static int polaris10_force_dpm_lowest(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = |
| (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t level; |
| |
| if (!data->sclk_dpm_key_disabled) |
| if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { |
| level = phm_get_lowest_enabled_level(hwmgr, |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask); |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| (1 << level)); |
| |
| } |
| |
| if (!data->mclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { |
| level = phm_get_lowest_enabled_level(hwmgr, |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask); |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| (1 << level)); |
| } |
| } |
| |
| if (!data->pcie_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { |
| level = phm_get_lowest_enabled_level(hwmgr, |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask); |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_ForceLevel, |
| (level)); |
| } |
| } |
| |
| return 0; |
| |
| } |
| static int polaris10_force_dpm_level(struct pp_hwmgr *hwmgr, |
| enum amd_dpm_forced_level level) |
| { |
| int ret = 0; |
| |
| switch (level) { |
| case AMD_DPM_FORCED_LEVEL_HIGH: |
| ret = polaris10_force_dpm_highest(hwmgr); |
| if (ret) |
| return ret; |
| break; |
| case AMD_DPM_FORCED_LEVEL_LOW: |
| ret = polaris10_force_dpm_lowest(hwmgr); |
| if (ret) |
| return ret; |
| break; |
| case AMD_DPM_FORCED_LEVEL_AUTO: |
| ret = polaris10_unforce_dpm_levels(hwmgr); |
| if (ret) |
| return ret; |
| break; |
| default: |
| break; |
| } |
| |
| hwmgr->dpm_level = level; |
| |
| return ret; |
| } |
| |
| static int polaris10_get_power_state_size(struct pp_hwmgr *hwmgr) |
| { |
| return sizeof(struct polaris10_power_state); |
| } |
| |
| |
| static int polaris10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, |
| struct pp_power_state *request_ps, |
| const struct pp_power_state *current_ps) |
| { |
| |
| struct polaris10_power_state *polaris10_ps = |
| cast_phw_polaris10_power_state(&request_ps->hardware); |
| uint32_t sclk; |
| uint32_t mclk; |
| struct PP_Clocks minimum_clocks = {0}; |
| bool disable_mclk_switching; |
| bool disable_mclk_switching_for_frame_lock; |
| struct cgs_display_info info = {0}; |
| const struct phm_clock_and_voltage_limits *max_limits; |
| uint32_t i; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| int32_t count; |
| int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; |
| |
| data->battery_state = (PP_StateUILabel_Battery == |
| request_ps->classification.ui_label); |
| |
| PP_ASSERT_WITH_CODE(polaris10_ps->performance_level_count == 2, |
| "VI should always have 2 performance levels", |
| ); |
| |
| max_limits = (PP_PowerSource_AC == hwmgr->power_source) ? |
| &(hwmgr->dyn_state.max_clock_voltage_on_ac) : |
| &(hwmgr->dyn_state.max_clock_voltage_on_dc); |
| |
| /* Cap clock DPM tables at DC MAX if it is in DC. */ |
| if (PP_PowerSource_DC == hwmgr->power_source) { |
| for (i = 0; i < polaris10_ps->performance_level_count; i++) { |
| if (polaris10_ps->performance_levels[i].memory_clock > max_limits->mclk) |
| polaris10_ps->performance_levels[i].memory_clock = max_limits->mclk; |
| if (polaris10_ps->performance_levels[i].engine_clock > max_limits->sclk) |
| polaris10_ps->performance_levels[i].engine_clock = max_limits->sclk; |
| } |
| } |
| |
| polaris10_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk; |
| polaris10_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| |
| /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ |
| |
| /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */ |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) { |
| max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); |
| stable_pstate_sclk = (max_limits->sclk * 75) / 100; |
| |
| for (count = table_info->vdd_dep_on_sclk->count - 1; |
| count >= 0; count--) { |
| if (stable_pstate_sclk >= |
| table_info->vdd_dep_on_sclk->entries[count].clk) { |
| stable_pstate_sclk = |
| table_info->vdd_dep_on_sclk->entries[count].clk; |
| break; |
| } |
| } |
| |
| if (count < 0) |
| stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; |
| |
| stable_pstate_mclk = max_limits->mclk; |
| |
| minimum_clocks.engineClock = stable_pstate_sclk; |
| minimum_clocks.memoryClock = stable_pstate_mclk; |
| } |
| |
| if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk) |
| minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk; |
| |
| if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk) |
| minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk; |
| |
| polaris10_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold; |
| |
| if (0 != hwmgr->gfx_arbiter.sclk_over_drive) { |
| PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= |
| hwmgr->platform_descriptor.overdriveLimit.engineClock), |
| "Overdrive sclk exceeds limit", |
| hwmgr->gfx_arbiter.sclk_over_drive = |
| hwmgr->platform_descriptor.overdriveLimit.engineClock); |
| |
| if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk) |
| polaris10_ps->performance_levels[1].engine_clock = |
| hwmgr->gfx_arbiter.sclk_over_drive; |
| } |
| |
| if (0 != hwmgr->gfx_arbiter.mclk_over_drive) { |
| PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock), |
| "Overdrive mclk exceeds limit", |
| hwmgr->gfx_arbiter.mclk_over_drive = |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock); |
| |
| if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk) |
| polaris10_ps->performance_levels[1].memory_clock = |
| hwmgr->gfx_arbiter.mclk_over_drive; |
| } |
| |
| disable_mclk_switching_for_frame_lock = phm_cap_enabled( |
| hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); |
| |
| disable_mclk_switching = (1 < info.display_count) || |
| disable_mclk_switching_for_frame_lock; |
| |
| sclk = polaris10_ps->performance_levels[0].engine_clock; |
| mclk = polaris10_ps->performance_levels[0].memory_clock; |
| |
| if (disable_mclk_switching) |
| mclk = polaris10_ps->performance_levels |
| [polaris10_ps->performance_level_count - 1].memory_clock; |
| |
| if (sclk < minimum_clocks.engineClock) |
| sclk = (minimum_clocks.engineClock > max_limits->sclk) ? |
| max_limits->sclk : minimum_clocks.engineClock; |
| |
| if (mclk < minimum_clocks.memoryClock) |
| mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? |
| max_limits->mclk : minimum_clocks.memoryClock; |
| |
| polaris10_ps->performance_levels[0].engine_clock = sclk; |
| polaris10_ps->performance_levels[0].memory_clock = mclk; |
| |
| polaris10_ps->performance_levels[1].engine_clock = |
| (polaris10_ps->performance_levels[1].engine_clock >= |
| polaris10_ps->performance_levels[0].engine_clock) ? |
| polaris10_ps->performance_levels[1].engine_clock : |
| polaris10_ps->performance_levels[0].engine_clock; |
| |
| if (disable_mclk_switching) { |
| if (mclk < polaris10_ps->performance_levels[1].memory_clock) |
| mclk = polaris10_ps->performance_levels[1].memory_clock; |
| |
| polaris10_ps->performance_levels[0].memory_clock = mclk; |
| polaris10_ps->performance_levels[1].memory_clock = mclk; |
| } else { |
| if (polaris10_ps->performance_levels[1].memory_clock < |
| polaris10_ps->performance_levels[0].memory_clock) |
| polaris10_ps->performance_levels[1].memory_clock = |
| polaris10_ps->performance_levels[0].memory_clock; |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) { |
| for (i = 0; i < polaris10_ps->performance_level_count; i++) { |
| polaris10_ps->performance_levels[i].engine_clock = stable_pstate_sclk; |
| polaris10_ps->performance_levels[i].memory_clock = stable_pstate_mclk; |
| polaris10_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max; |
| polaris10_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max; |
| } |
| } |
| return 0; |
| } |
| |
| |
| static int polaris10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) |
| { |
| struct pp_power_state *ps; |
| struct polaris10_power_state *polaris10_ps; |
| |
| if (hwmgr == NULL) |
| return -EINVAL; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| polaris10_ps = cast_phw_polaris10_power_state(&ps->hardware); |
| |
| if (low) |
| return polaris10_ps->performance_levels[0].memory_clock; |
| else |
| return polaris10_ps->performance_levels |
| [polaris10_ps->performance_level_count-1].memory_clock; |
| } |
| |
| static int polaris10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) |
| { |
| struct pp_power_state *ps; |
| struct polaris10_power_state *polaris10_ps; |
| |
| if (hwmgr == NULL) |
| return -EINVAL; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| polaris10_ps = cast_phw_polaris10_power_state(&ps->hardware); |
| |
| if (low) |
| return polaris10_ps->performance_levels[0].engine_clock; |
| else |
| return polaris10_ps->performance_levels |
| [polaris10_ps->performance_level_count-1].engine_clock; |
| } |
| |
| static int polaris10_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, |
| struct pp_hw_power_state *hw_ps) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct polaris10_power_state *ps = (struct polaris10_power_state *)hw_ps; |
| ATOM_FIRMWARE_INFO_V2_2 *fw_info; |
| uint16_t size; |
| uint8_t frev, crev; |
| int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); |
| |
| /* First retrieve the Boot clocks and VDDC from the firmware info table. |
| * We assume here that fw_info is unchanged if this call fails. |
| */ |
| fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table( |
| hwmgr->device, index, |
| &size, &frev, &crev); |
| if (!fw_info) |
| /* During a test, there is no firmware info table. */ |
| return 0; |
| |
| /* Patch the state. */ |
| data->vbios_boot_state.sclk_bootup_value = |
| le32_to_cpu(fw_info->ulDefaultEngineClock); |
| data->vbios_boot_state.mclk_bootup_value = |
| le32_to_cpu(fw_info->ulDefaultMemoryClock); |
| data->vbios_boot_state.mvdd_bootup_value = |
| le16_to_cpu(fw_info->usBootUpMVDDCVoltage); |
| data->vbios_boot_state.vddc_bootup_value = |
| le16_to_cpu(fw_info->usBootUpVDDCVoltage); |
| data->vbios_boot_state.vddci_bootup_value = |
| le16_to_cpu(fw_info->usBootUpVDDCIVoltage); |
| data->vbios_boot_state.pcie_gen_bootup_value = |
| phm_get_current_pcie_speed(hwmgr); |
| |
| data->vbios_boot_state.pcie_lane_bootup_value = |
| (uint16_t)phm_get_current_pcie_lane_number(hwmgr); |
| |
| /* set boot power state */ |
| ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value; |
| ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value; |
| ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value; |
| ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value; |
| |
| return 0; |
| } |
| |
| static int polaris10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, |
| void *state, struct pp_power_state *power_state, |
| void *pp_table, uint32_t classification_flag) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct polaris10_power_state *polaris10_power_state = |
| (struct polaris10_power_state *)(&(power_state->hardware)); |
| struct polaris10_performance_level *performance_level; |
| ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state; |
| ATOM_Tonga_POWERPLAYTABLE *powerplay_table = |
| (ATOM_Tonga_POWERPLAYTABLE *)pp_table; |
| PPTable_Generic_SubTable_Header *sclk_dep_table = |
| (PPTable_Generic_SubTable_Header *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); |
| |
| ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = |
| (ATOM_Tonga_MCLK_Dependency_Table *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); |
| |
| /* The following fields are not initialized here: id orderedList allStatesList */ |
| power_state->classification.ui_label = |
| (le16_to_cpu(state_entry->usClassification) & |
| ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> |
| ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; |
| power_state->classification.flags = classification_flag; |
| /* NOTE: There is a classification2 flag in BIOS that is not being used right now */ |
| |
| power_state->classification.temporary_state = false; |
| power_state->classification.to_be_deleted = false; |
| |
| power_state->validation.disallowOnDC = |
| (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & |
| ATOM_Tonga_DISALLOW_ON_DC)); |
| |
| power_state->pcie.lanes = 0; |
| |
| power_state->display.disableFrameModulation = false; |
| power_state->display.limitRefreshrate = false; |
| power_state->display.enableVariBright = |
| (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & |
| ATOM_Tonga_ENABLE_VARIBRIGHT)); |
| |
| power_state->validation.supportedPowerLevels = 0; |
| power_state->uvd_clocks.VCLK = 0; |
| power_state->uvd_clocks.DCLK = 0; |
| power_state->temperatures.min = 0; |
| power_state->temperatures.max = 0; |
| |
| performance_level = &(polaris10_power_state->performance_levels |
| [polaris10_power_state->performance_level_count++]); |
| |
| PP_ASSERT_WITH_CODE( |
| (polaris10_power_state->performance_level_count < SMU74_MAX_LEVELS_GRAPHICS), |
| "Performance levels exceeds SMC limit!", |
| return -1); |
| |
| PP_ASSERT_WITH_CODE( |
| (polaris10_power_state->performance_level_count <= |
| hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), |
| "Performance levels exceeds Driver limit!", |
| return -1); |
| |
| /* Performance levels are arranged from low to high. */ |
| performance_level->memory_clock = mclk_dep_table->entries |
| [state_entry->ucMemoryClockIndexLow].ulMclk; |
| if (sclk_dep_table->ucRevId == 0) |
| performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries |
| [state_entry->ucEngineClockIndexLow].ulSclk; |
| else if (sclk_dep_table->ucRevId == 1) |
| performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries |
| [state_entry->ucEngineClockIndexLow].ulSclk; |
| performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, |
| state_entry->ucPCIEGenLow); |
| performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, |
| state_entry->ucPCIELaneHigh); |
| |
| performance_level = &(polaris10_power_state->performance_levels |
| [polaris10_power_state->performance_level_count++]); |
| performance_level->memory_clock = mclk_dep_table->entries |
| [state_entry->ucMemoryClockIndexHigh].ulMclk; |
| |
| if (sclk_dep_table->ucRevId == 0) |
| performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries |
| [state_entry->ucEngineClockIndexHigh].ulSclk; |
| else if (sclk_dep_table->ucRevId == 1) |
| performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries |
| [state_entry->ucEngineClockIndexHigh].ulSclk; |
| |
| performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, |
| state_entry->ucPCIEGenHigh); |
| performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, |
| state_entry->ucPCIELaneHigh); |
| |
| return 0; |
| } |
| |
| static int polaris10_get_pp_table_entry(struct pp_hwmgr *hwmgr, |
| unsigned long entry_index, struct pp_power_state *state) |
| { |
| int result; |
| struct polaris10_power_state *ps; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = |
| table_info->vdd_dep_on_mclk; |
| |
| state->hardware.magic = PHM_VIslands_Magic; |
| |
| ps = (struct polaris10_power_state *)(&state->hardware); |
| |
| result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state, |
| polaris10_get_pp_table_entry_callback_func); |
| |
| /* This is the earliest time we have all the dependency table and the VBIOS boot state |
| * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state |
| * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state |
| */ |
| if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { |
| if (dep_mclk_table->entries[0].clk != |
| data->vbios_boot_state.mclk_bootup_value) |
| printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table " |
| "does not match VBIOS boot MCLK level"); |
| if (dep_mclk_table->entries[0].vddci != |
| data->vbios_boot_state.vddci_bootup_value) |
| printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table " |
| "does not match VBIOS boot VDDCI level"); |
| } |
| |
| /* set DC compatible flag if this state supports DC */ |
| if (!state->validation.disallowOnDC) |
| ps->dc_compatible = true; |
| |
| if (state->classification.flags & PP_StateClassificationFlag_ACPI) |
| data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; |
| |
| ps->uvd_clks.vclk = state->uvd_clocks.VCLK; |
| ps->uvd_clks.dclk = state->uvd_clocks.DCLK; |
| |
| if (!result) { |
| uint32_t i; |
| |
| switch (state->classification.ui_label) { |
| case PP_StateUILabel_Performance: |
| data->use_pcie_performance_levels = true; |
| for (i = 0; i < ps->performance_level_count; i++) { |
| if (data->pcie_gen_performance.max < |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_performance.max = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_gen_performance.min > |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_performance.min = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_lane_performance.max < |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_performance.max = |
| ps->performance_levels[i].pcie_lane; |
| if (data->pcie_lane_performance.min > |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_performance.min = |
| ps->performance_levels[i].pcie_lane; |
| } |
| break; |
| case PP_StateUILabel_Battery: |
| data->use_pcie_power_saving_levels = true; |
| |
| for (i = 0; i < ps->performance_level_count; i++) { |
| if (data->pcie_gen_power_saving.max < |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_power_saving.max = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_gen_power_saving.min > |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_power_saving.min = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_lane_power_saving.max < |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_power_saving.max = |
| ps->performance_levels[i].pcie_lane; |
| |
| if (data->pcie_lane_power_saving.min > |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_power_saving.min = |
| ps->performance_levels[i].pcie_lane; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| static void |
| polaris10_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m) |
| { |
| uint32_t sclk, mclk, activity_percent; |
| uint32_t offset; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency); |
| |
| sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); |
| |
| smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency); |
| |
| mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); |
| seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", |
| mclk / 100, sclk / 100); |
| |
| offset = data->soft_regs_start + offsetof(SMU74_SoftRegisters, AverageGraphicsActivity); |
| activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset); |
| activity_percent += 0x80; |
| activity_percent >>= 8; |
| |
| seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent); |
| |
| seq_printf(m, "uvd %sabled\n", data->uvd_power_gated ? "dis" : "en"); |
| |
| seq_printf(m, "vce %sabled\n", data->vce_power_gated ? "dis" : "en"); |
| } |
| |
| static int polaris10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| const struct polaris10_power_state *polaris10_ps = |
| cast_const_phw_polaris10_power_state(states->pnew_state); |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct polaris10_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); |
| uint32_t sclk = polaris10_ps->performance_levels |
| [polaris10_ps->performance_level_count - 1].engine_clock; |
| struct polaris10_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); |
| uint32_t mclk = polaris10_ps->performance_levels |
| [polaris10_ps->performance_level_count - 1].memory_clock; |
| struct PP_Clocks min_clocks = {0}; |
| uint32_t i; |
| struct cgs_display_info info = {0}; |
| |
| data->need_update_smu7_dpm_table = 0; |
| |
| for (i = 0; i < sclk_table->count; i++) { |
| if (sclk == sclk_table->dpm_levels[i].value) |
| break; |
| } |
| |
| if (i >= sclk_table->count) |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; |
| else { |
| /* TODO: Check SCLK in DAL's minimum clocks |
| * in case DeepSleep divider update is required. |
| */ |
| if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR && |
| (min_clocks.engineClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK || |
| data->display_timing.min_clock_in_sr >= POLARIS10_MINIMUM_ENGINE_CLOCK)) |
| data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; |
| } |
| |
| for (i = 0; i < mclk_table->count; i++) { |
| if (mclk == mclk_table->dpm_levels[i].value) |
| break; |
| } |
| |
| if (i >= mclk_table->count) |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| |
| if (data->display_timing.num_existing_displays != info.display_count) |
| data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; |
| |
| return 0; |
| } |
| |
| static uint16_t polaris10_get_maximum_link_speed(struct pp_hwmgr *hwmgr, |
| const struct polaris10_power_state *polaris10_ps) |
| { |
| uint32_t i; |
| uint32_t sclk, max_sclk = 0; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct polaris10_dpm_table *dpm_table = &data->dpm_table; |
| |
| for (i = 0; i < polaris10_ps->performance_level_count; i++) { |
| sclk = polaris10_ps->performance_levels[i].engine_clock; |
| if (max_sclk < sclk) |
| max_sclk = sclk; |
| } |
| |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk) |
| return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ? |
| dpm_table->pcie_speed_table.dpm_levels |
| [dpm_table->pcie_speed_table.count - 1].value : |
| dpm_table->pcie_speed_table.dpm_levels[i].value); |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_request_link_speed_change_before_state_change( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| const struct polaris10_power_state *polaris10_nps = |
| cast_const_phw_polaris10_power_state(states->pnew_state); |
| const struct polaris10_power_state *polaris10_cps = |
| cast_const_phw_polaris10_power_state(states->pcurrent_state); |
| |
| uint16_t target_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_nps); |
| uint16_t current_link_speed; |
| |
| if (data->force_pcie_gen == PP_PCIEGenInvalid) |
| current_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_cps); |
| else |
| current_link_speed = data->force_pcie_gen; |
| |
| data->force_pcie_gen = PP_PCIEGenInvalid; |
| data->pspp_notify_required = false; |
| |
| if (target_link_speed > current_link_speed) { |
| switch (target_link_speed) { |
| case PP_PCIEGen3: |
| if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false)) |
| break; |
| data->force_pcie_gen = PP_PCIEGen2; |
| if (current_link_speed == PP_PCIEGen2) |
| break; |
| case PP_PCIEGen2: |
| if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false)) |
| break; |
| default: |
| data->force_pcie_gen = phm_get_current_pcie_speed(hwmgr); |
| break; |
| } |
| } else { |
| if (target_link_speed < current_link_speed) |
| data->pspp_notify_required = true; |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| if (0 == data->need_update_smu7_dpm_table) |
| return 0; |
| |
| if ((0 == data->sclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { |
| PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr), |
| "Trying to freeze SCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_FreezeLevel), |
| "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!", |
| return -1); |
| } |
| |
| if ((0 == data->mclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & |
| DPMTABLE_OD_UPDATE_MCLK)) { |
| PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr), |
| "Trying to freeze MCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_FreezeLevel), |
| "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!", |
| return -1); |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_populate_and_upload_sclk_mclk_dpm_levels( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| int result = 0; |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| const struct polaris10_power_state *polaris10_ps = |
| cast_const_phw_polaris10_power_state(states->pnew_state); |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t sclk = polaris10_ps->performance_levels |
| [polaris10_ps->performance_level_count - 1].engine_clock; |
| uint32_t mclk = polaris10_ps->performance_levels |
| [polaris10_ps->performance_level_count - 1].memory_clock; |
| struct polaris10_dpm_table *dpm_table = &data->dpm_table; |
| |
| struct polaris10_dpm_table *golden_dpm_table = &data->golden_dpm_table; |
| uint32_t dpm_count, clock_percent; |
| uint32_t i; |
| |
| if (0 == data->need_update_smu7_dpm_table) |
| return 0; |
| |
| if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { |
| dpm_table->sclk_table.dpm_levels |
| [dpm_table->sclk_table.count - 1].value = sclk; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) || |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) { |
| /* Need to do calculation based on the golden DPM table |
| * as the Heatmap GPU Clock axis is also based on the default values |
| */ |
| PP_ASSERT_WITH_CODE( |
| (golden_dpm_table->sclk_table.dpm_levels |
| [golden_dpm_table->sclk_table.count - 1].value != 0), |
| "Divide by 0!", |
| return -1); |
| dpm_count = dpm_table->sclk_table.count < 2 ? 0 : dpm_table->sclk_table.count - 2; |
| |
| for (i = dpm_count; i > 1; i--) { |
| if (sclk > golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value) { |
| clock_percent = |
| ((sclk |
| - golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value |
| ) * 100) |
| / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value; |
| |
| dpm_table->sclk_table.dpm_levels[i].value = |
| golden_dpm_table->sclk_table.dpm_levels[i].value + |
| (golden_dpm_table->sclk_table.dpm_levels[i].value * |
| clock_percent)/100; |
| |
| } else if (golden_dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value > sclk) { |
| clock_percent = |
| ((golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value |
| - sclk) * 100) |
| / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value; |
| |
| dpm_table->sclk_table.dpm_levels[i].value = |
| golden_dpm_table->sclk_table.dpm_levels[i].value - |
| (golden_dpm_table->sclk_table.dpm_levels[i].value * |
| clock_percent) / 100; |
| } else |
| dpm_table->sclk_table.dpm_levels[i].value = |
| golden_dpm_table->sclk_table.dpm_levels[i].value; |
| } |
| } |
| } |
| |
| if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { |
| dpm_table->mclk_table.dpm_levels |
| [dpm_table->mclk_table.count - 1].value = mclk; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) || |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) { |
| |
| PP_ASSERT_WITH_CODE( |
| (golden_dpm_table->mclk_table.dpm_levels |
| [golden_dpm_table->mclk_table.count-1].value != 0), |
| "Divide by 0!", |
| return -1); |
| dpm_count = dpm_table->mclk_table.count < 2 ? 0 : dpm_table->mclk_table.count - 2; |
| for (i = dpm_count; i > 1; i--) { |
| if (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value < mclk) { |
| clock_percent = ((mclk - |
| golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value) * 100) |
| / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value; |
| |
| dpm_table->mclk_table.dpm_levels[i].value = |
| golden_dpm_table->mclk_table.dpm_levels[i].value + |
| (golden_dpm_table->mclk_table.dpm_levels[i].value * |
| clock_percent) / 100; |
| |
| } else if (golden_dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value > mclk) { |
| clock_percent = ( |
| (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value - mclk) |
| * 100) |
| / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value; |
| |
| dpm_table->mclk_table.dpm_levels[i].value = |
| golden_dpm_table->mclk_table.dpm_levels[i].value - |
| (golden_dpm_table->mclk_table.dpm_levels[i].value * |
| clock_percent) / 100; |
| } else |
| dpm_table->mclk_table.dpm_levels[i].value = |
| golden_dpm_table->mclk_table.dpm_levels[i].value; |
| } |
| } |
| } |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) { |
| result = polaris10_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", |
| return result); |
| } |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) { |
| /*populate MCLK dpm table to SMU7 */ |
| result = polaris10_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", |
| return result); |
| } |
| |
| return result; |
| } |
| |
| static int polaris10_trim_single_dpm_states(struct pp_hwmgr *hwmgr, |
| struct polaris10_single_dpm_table *dpm_table, |
| uint32_t low_limit, uint32_t high_limit) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < dpm_table->count; i++) { |
| if ((dpm_table->dpm_levels[i].value < low_limit) |
| || (dpm_table->dpm_levels[i].value > high_limit)) |
| dpm_table->dpm_levels[i].enabled = false; |
| else |
| dpm_table->dpm_levels[i].enabled = true; |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_trim_dpm_states(struct pp_hwmgr *hwmgr, |
| const struct polaris10_power_state *polaris10_ps) |
| { |
| int result = 0; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t high_limit_count; |
| |
| PP_ASSERT_WITH_CODE((polaris10_ps->performance_level_count >= 1), |
| "power state did not have any performance level", |
| return -1); |
| |
| high_limit_count = (1 == polaris10_ps->performance_level_count) ? 0 : 1; |
| |
| polaris10_trim_single_dpm_states(hwmgr, |
| &(data->dpm_table.sclk_table), |
| polaris10_ps->performance_levels[0].engine_clock, |
| polaris10_ps->performance_levels[high_limit_count].engine_clock); |
| |
| polaris10_trim_single_dpm_states(hwmgr, |
| &(data->dpm_table.mclk_table), |
| polaris10_ps->performance_levels[0].memory_clock, |
| polaris10_ps->performance_levels[high_limit_count].memory_clock); |
| |
| return result; |
| } |
| |
| static int polaris10_generate_dpm_level_enable_mask( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| int result; |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| const struct polaris10_power_state *polaris10_ps = |
| cast_const_phw_polaris10_power_state(states->pnew_state); |
| |
| result = polaris10_trim_dpm_states(hwmgr, polaris10_ps); |
| if (result) |
| return result; |
| |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table); |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table); |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table); |
| |
| return 0; |
| } |
| |
| int polaris10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| return smum_send_msg_to_smc(hwmgr->smumgr, enable ? |
| PPSMC_MSG_UVDDPM_Enable : |
| PPSMC_MSG_UVDDPM_Disable); |
| } |
| |
| int polaris10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| return smum_send_msg_to_smc(hwmgr->smumgr, enable? |
| PPSMC_MSG_VCEDPM_Enable : |
| PPSMC_MSG_VCEDPM_Disable); |
| } |
| |
| int polaris10_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| return smum_send_msg_to_smc(hwmgr->smumgr, enable? |
| PPSMC_MSG_SAMUDPM_Enable : |
| PPSMC_MSG_SAMUDPM_Disable); |
| } |
| |
| int polaris10_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (!bgate) { |
| data->smc_state_table.UvdBootLevel = 0; |
| if (table_info->mm_dep_table->count > 0) |
| data->smc_state_table.UvdBootLevel = |
| (uint8_t) (table_info->mm_dep_table->count - 1); |
| mm_boot_level_offset = data->dpm_table_start + |
| offsetof(SMU74_Discrete_DpmTable, UvdBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0x00FFFFFF; |
| mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UVDDPM) || |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_UVDDPM_SetEnabledMask, |
| (uint32_t)(1 << data->smc_state_table.UvdBootLevel)); |
| } |
| |
| return polaris10_enable_disable_uvd_dpm(hwmgr, !bgate); |
| } |
| |
| static int polaris10_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| const struct polaris10_power_state *polaris10_nps = |
| cast_const_phw_polaris10_power_state(states->pnew_state); |
| const struct polaris10_power_state *polaris10_cps = |
| cast_const_phw_polaris10_power_state(states->pcurrent_state); |
| |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (polaris10_nps->vce_clks.evclk > 0 && |
| (polaris10_cps == NULL || polaris10_cps->vce_clks.evclk == 0)) { |
| |
| data->smc_state_table.VceBootLevel = |
| (uint8_t) (table_info->mm_dep_table->count - 1); |
| |
| mm_boot_level_offset = data->dpm_table_start + |
| offsetof(SMU74_Discrete_DpmTable, VceBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0xFF00FFFF; |
| mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_VCEDPM_SetEnabledMask, |
| (uint32_t)1 << data->smc_state_table.VceBootLevel); |
| |
| polaris10_enable_disable_vce_dpm(hwmgr, true); |
| } else if (polaris10_nps->vce_clks.evclk == 0 && |
| polaris10_cps != NULL && |
| polaris10_cps->vce_clks.evclk > 0) |
| polaris10_enable_disable_vce_dpm(hwmgr, false); |
| } |
| |
| return 0; |
| } |
| |
| int polaris10_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| |
| if (!bgate) { |
| data->smc_state_table.SamuBootLevel = 0; |
| mm_boot_level_offset = data->dpm_table_start + |
| offsetof(SMU74_Discrete_DpmTable, SamuBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0xFFFFFF00; |
| mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SAMUDPM_SetEnabledMask, |
| (uint32_t)(1 << data->smc_state_table.SamuBootLevel)); |
| } |
| |
| return polaris10_enable_disable_samu_dpm(hwmgr, !bgate); |
| } |
| |
| static int polaris10_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| int result = 0; |
| uint32_t low_sclk_interrupt_threshold = 0; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkThrottleLowNotification) |
| && (hwmgr->gfx_arbiter.sclk_threshold != |
| data->low_sclk_interrupt_threshold)) { |
| data->low_sclk_interrupt_threshold = |
| hwmgr->gfx_arbiter.sclk_threshold; |
| low_sclk_interrupt_threshold = |
| data->low_sclk_interrupt_threshold; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); |
| |
| result = polaris10_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| data->dpm_table_start + |
| offsetof(SMU74_Discrete_DpmTable, |
| LowSclkInterruptThreshold), |
| (uint8_t *)&low_sclk_interrupt_threshold, |
| sizeof(uint32_t), |
| data->sram_end); |
| } |
| |
| return result; |
| } |
| |
| static int polaris10_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) |
| return polaris10_program_memory_timing_parameters(hwmgr); |
| |
| return 0; |
| } |
| |
| static int polaris10_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| if (0 == data->need_update_smu7_dpm_table) |
| return 0; |
| |
| if ((0 == data->sclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { |
| |
| PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr), |
| "Trying to Unfreeze SCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_UnfreezeLevel), |
| "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!", |
| return -1); |
| } |
| |
| if ((0 == data->mclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { |
| |
| PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr), |
| "Trying to Unfreeze MCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_UnfreezeLevel), |
| "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!", |
| return -1); |
| } |
| |
| data->need_update_smu7_dpm_table = 0; |
| |
| return 0; |
| } |
| |
| static int polaris10_notify_link_speed_change_after_state_change( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| const struct polaris10_power_state *polaris10_ps = |
| cast_const_phw_polaris10_power_state(states->pnew_state); |
| uint16_t target_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_ps); |
| uint8_t request; |
| |
| if (data->pspp_notify_required) { |
| if (target_link_speed == PP_PCIEGen3) |
| request = PCIE_PERF_REQ_GEN3; |
| else if (target_link_speed == PP_PCIEGen2) |
| request = PCIE_PERF_REQ_GEN2; |
| else |
| request = PCIE_PERF_REQ_GEN1; |
| |
| if (request == PCIE_PERF_REQ_GEN1 && |
| phm_get_current_pcie_speed(hwmgr) > 0) |
| return 0; |
| |
| if (acpi_pcie_perf_request(hwmgr->device, request, false)) { |
| if (PP_PCIEGen2 == target_link_speed) |
| printk("PSPP request to switch to Gen2 from Gen3 Failed!"); |
| else |
| printk("PSPP request to switch to Gen1 from Gen2 Failed!"); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int polaris10_notify_smc_display(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| (PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2); |
| return (smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)PPSMC_HasDisplay) == 0) ? 0 : -EINVAL; |
| } |
| |
| static int polaris10_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| int tmp_result, result = 0; |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| tmp_result = polaris10_find_dpm_states_clocks_in_dpm_table(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to find DPM states clocks in DPM table!", |
| result = tmp_result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PCIEPerformanceRequest)) { |
| tmp_result = |
| polaris10_request_link_speed_change_before_state_change(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to request link speed change before state change!", |
| result = tmp_result); |
| } |
| |
| tmp_result = polaris10_freeze_sclk_mclk_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to freeze SCLK MCLK DPM!", result = tmp_result); |
| |
| tmp_result = polaris10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to populate and upload SCLK MCLK DPM levels!", |
| result = tmp_result); |
| |
| tmp_result = polaris10_generate_dpm_level_enable_mask(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to generate DPM level enabled mask!", |
| result = tmp_result); |
| |
| tmp_result = polaris10_update_vce_dpm(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to update VCE DPM!", |
| result = tmp_result); |
| |
| tmp_result = polaris10_update_sclk_threshold(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to update SCLK threshold!", |
| result = tmp_result); |
| |
| tmp_result = polaris10_program_mem_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to program memory timing parameters!", |
| result = tmp_result); |
| |
| tmp_result = polaris10_notify_smc_display(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to notify smc display settings!", |
| result = tmp_result); |
| |
| tmp_result = polaris10_unfreeze_sclk_mclk_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to unfreeze SCLK MCLK DPM!", |
| result = tmp_result); |
| |
| tmp_result = polaris10_upload_dpm_level_enable_mask(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to upload DPM level enabled mask!", |
| result = tmp_result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PCIEPerformanceRequest)) { |
| tmp_result = |
| polaris10_notify_link_speed_change_after_state_change(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to notify link speed change after state change!", |
| result = tmp_result); |
| } |
| data->apply_optimized_settings = false; |
| return result; |
| } |
| |
| static int polaris10_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) |
| { |
| hwmgr->thermal_controller. |
| advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm; |
| |
| if (phm_is_hw_access_blocked(hwmgr)) |
| return 0; |
| |
| return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm); |
| } |
| |
| |
| int polaris10_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display) |
| { |
| PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay; |
| |
| return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1; |
| } |
| |
| int polaris10_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t num_active_displays = 0; |
| struct cgs_display_info info = {0}; |
| info.mode_info = NULL; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| |
| num_active_displays = info.display_count; |
| |
| if (num_active_displays > 1) /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */ |
| polaris10_notify_smc_display_change(hwmgr, false); |
| |
| return 0; |
| } |
| |
| /** |
| * Programs the display gap |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always OK |
| */ |
| int polaris10_program_display_gap(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t num_active_displays = 0; |
| uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); |
| uint32_t display_gap2; |
| uint32_t pre_vbi_time_in_us; |
| uint32_t frame_time_in_us; |
| uint32_t ref_clock; |
| uint32_t refresh_rate = 0; |
| struct cgs_display_info info = {0}; |
| struct cgs_mode_info mode_info; |
| |
| info.mode_info = &mode_info; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| num_active_displays = info.display_count; |
| |
| display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap); |
| |
| ref_clock = mode_info.ref_clock; |
| refresh_rate = mode_info.refresh_rate; |
| |
| if (0 == refresh_rate) |
| refresh_rate = 60; |
| |
| frame_time_in_us = 1000000 / refresh_rate; |
| |
| pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us; |
| data->frame_time_x2 = frame_time_in_us * 2 / 100; |
| |
| display_gap2 = pre_vbi_time_in_us * (ref_clock / 100); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, PreVBlankGap), 0x64); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us)); |
| |
| return 0; |
| } |
| |
| |
| int polaris10_display_configuration_changed_task(struct pp_hwmgr *hwmgr) |
| { |
| return polaris10_program_display_gap(hwmgr); |
| } |
| |
| /** |
| * Set maximum target operating fan output RPM |
| * |
| * @param hwmgr: the address of the powerplay hardware manager. |
| * @param usMaxFanRpm: max operating fan RPM value. |
| * @return The response that came from the SMC. |
| */ |
| static int polaris10_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm) |
| { |
| hwmgr->thermal_controller. |
| advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm; |
| |
| if (phm_is_hw_access_blocked(hwmgr)) |
| return 0; |
| |
| return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm); |
| } |
| |
| int polaris10_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr, |
| const void *thermal_interrupt_info) |
| { |
| return 0; |
| } |
| |
| bool polaris10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| bool is_update_required = false; |
| struct cgs_display_info info = {0, 0, NULL}; |
| |
| cgs_get_active_displays_info(hwmgr->device, &info); |
| |
| if (data->display_timing.num_existing_displays != info.display_count) |
| is_update_required = true; |
| /* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL |
| if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { |
| cgs_get_min_clock_settings(hwmgr->device, &min_clocks); |
| if (min_clocks.engineClockInSR != data->display_timing.minClockInSR && |
| (min_clocks.engineClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK || |
| data->display_timing.minClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK)) |
| is_update_required = true; |
| */ |
| return is_update_required; |
| } |
| |
| static inline bool polaris10_are_power_levels_equal(const struct polaris10_performance_level *pl1, |
| const struct polaris10_performance_level *pl2) |
| { |
| return ((pl1->memory_clock == pl2->memory_clock) && |
| (pl1->engine_clock == pl2->engine_clock) && |
| (pl1->pcie_gen == pl2->pcie_gen) && |
| (pl1->pcie_lane == pl2->pcie_lane)); |
| } |
| |
| int polaris10_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal) |
| { |
| const struct polaris10_power_state *psa = cast_const_phw_polaris10_power_state(pstate1); |
| const struct polaris10_power_state *psb = cast_const_phw_polaris10_power_state(pstate2); |
| int i; |
| |
| if (pstate1 == NULL || pstate2 == NULL || equal == NULL) |
| return -EINVAL; |
| |
| /* If the two states don't even have the same number of performance levels they cannot be the same state. */ |
| if (psa->performance_level_count != psb->performance_level_count) { |
| *equal = false; |
| return 0; |
| } |
| |
| for (i = 0; i < psa->performance_level_count; i++) { |
| if (!polaris10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { |
| /* If we have found even one performance level pair that is different the states are different. */ |
| *equal = false; |
| return 0; |
| } |
| } |
| |
| /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ |
| *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); |
| *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); |
| *equal &= (psa->sclk_threshold == psb->sclk_threshold); |
| |
| return 0; |
| } |
| |
| int polaris10_upload_mc_firmware(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| uint32_t vbios_version; |
| |
| /* Read MC indirect register offset 0x9F bits [3:0] to see if VBIOS has already loaded a full version of MC ucode or not.*/ |
| |
| phm_get_mc_microcode_version(hwmgr); |
| vbios_version = hwmgr->microcode_version_info.MC & 0xf; |
| /* Full version of MC ucode has already been loaded. */ |
| if (vbios_version == 0) { |
| data->need_long_memory_training = false; |
| return 0; |
| } |
| |
| data->need_long_memory_training = false; |
| |
| /* |
| * PPMCME_FirmwareDescriptorEntry *pfd = NULL; |
| pfd = &tonga_mcmeFirmware; |
| if (0 == PHM_READ_FIELD(hwmgr->device, MC_SEQ_SUP_CNTL, RUN)) |
| polaris10_load_mc_microcode(hwmgr, pfd->dpmThreshold, |
| pfd->cfgArray, pfd->cfgSize, pfd->ioDebugArray, |
| pfd->ioDebugSize, pfd->ucodeArray, pfd->ucodeSize); |
| */ |
| return 0; |
| } |
| |
| /** |
| * Read clock related registers. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_read_clock_registers(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| data->clock_registers.vCG_SPLL_FUNC_CNTL = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL) |
| & CG_SPLL_FUNC_CNTL__SPLL_BYPASS_EN_MASK; |
| |
| data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2) |
| & CG_SPLL_FUNC_CNTL_2__SCLK_MUX_SEL_MASK; |
| |
| data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4) |
| & CG_SPLL_FUNC_CNTL_4__SPLL_SPARE_MASK; |
| |
| return 0; |
| } |
| |
| /** |
| * Find out if memory is GDDR5. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_get_memory_type(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| uint32_t temp; |
| |
| temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0); |
| |
| data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE == |
| ((temp & MC_SEQ_MISC0_GDDR5_MASK) >> |
| MC_SEQ_MISC0_GDDR5_SHIFT)); |
| |
| return 0; |
| } |
| |
| /** |
| * Enables Dynamic Power Management by SMC |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_enable_acpi_power_management(struct pp_hwmgr *hwmgr) |
| { |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, STATIC_PM_EN, 1); |
| |
| return 0; |
| } |
| |
| /** |
| * Initialize PowerGating States for different engines |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int polaris10_init_power_gate_state(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| data->uvd_power_gated = false; |
| data->vce_power_gated = false; |
| data->samu_power_gated = false; |
| |
| return 0; |
| } |
| |
| static int polaris10_init_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| data->low_sclk_interrupt_threshold = 0; |
| |
| return 0; |
| } |
| |
| int polaris10_setup_asic_task(struct pp_hwmgr *hwmgr) |
| { |
| int tmp_result, result = 0; |
| |
| polaris10_upload_mc_firmware(hwmgr); |
| |
| tmp_result = polaris10_read_clock_registers(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to read clock registers!", result = tmp_result); |
| |
| tmp_result = polaris10_get_memory_type(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to get memory type!", result = tmp_result); |
| |
| tmp_result = polaris10_enable_acpi_power_management(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable ACPI power management!", result = tmp_result); |
| |
| tmp_result = polaris10_init_power_gate_state(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to init power gate state!", result = tmp_result); |
| |
| tmp_result = phm_get_mc_microcode_version(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to get MC microcode version!", result = tmp_result); |
| |
| tmp_result = polaris10_init_sclk_threshold(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to init sclk threshold!", result = tmp_result); |
| |
| return result; |
| } |
| |
| static int polaris10_get_pp_table(struct pp_hwmgr *hwmgr, char **table) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| if (!data->soft_pp_table) { |
| data->soft_pp_table = kmemdup(hwmgr->soft_pp_table, |
| hwmgr->soft_pp_table_size, |
| GFP_KERNEL); |
| if (!data->soft_pp_table) |
| return -ENOMEM; |
| } |
| |
| *table = (char *)&data->soft_pp_table; |
| |
| return hwmgr->soft_pp_table_size; |
| } |
| |
| static int polaris10_set_pp_table(struct pp_hwmgr *hwmgr, const char *buf, size_t size) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| if (!data->soft_pp_table) { |
| data->soft_pp_table = kzalloc(hwmgr->soft_pp_table_size, GFP_KERNEL); |
| if (!data->soft_pp_table) |
| return -ENOMEM; |
| } |
| |
| memcpy(data->soft_pp_table, buf, size); |
| |
| hwmgr->soft_pp_table = data->soft_pp_table; |
| |
| /* TODO: re-init powerplay to implement modified pptable */ |
| |
| return 0; |
| } |
| |
| static int polaris10_force_clock_level(struct pp_hwmgr *hwmgr, |
| enum pp_clock_type type, uint32_t mask) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| |
| if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) |
| return -EINVAL; |
| |
| switch (type) { |
| case PP_SCLK: |
| if (!data->sclk_dpm_key_disabled) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask); |
| break; |
| case PP_MCLK: |
| if (!data->mclk_dpm_key_disabled) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask); |
| break; |
| case PP_PCIE: |
| { |
| uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask; |
| uint32_t level = 0; |
| |
| while (tmp >>= 1) |
| level++; |
| |
| if (!data->pcie_dpm_key_disabled) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_PCIeDPM_ForceLevel, |
| level); |
| break; |
| } |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static uint16_t polaris10_get_current_pcie_speed(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t speedCntl = 0; |
| |
| /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ |
| speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE, |
| ixPCIE_LC_SPEED_CNTL); |
| return((uint16_t)PHM_GET_FIELD(speedCntl, |
| PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); |
| } |
| |
| static int polaris10_print_clock_levels(struct pp_hwmgr *hwmgr, |
| enum pp_clock_type type, char *buf) |
| { |
| struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend); |
| struct polaris10_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); |
| struct polaris10_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); |
| struct polaris10_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table); |
| int i, now, size = 0; |
| uint32_t clock, pcie_speed; |
| |
| switch (type) { |
| case PP_SCLK: |
| smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency); |
| clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); |
| |
| for (i = 0; i < sclk_table->count; i++) { |
| if (clock > sclk_table->dpm_levels[i].value) |
| continue; |
| break; |
| } |
| now = i; |
| |
| for (i = 0; i < sclk_table->count; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, sclk_table->dpm_levels[i].value / 100, |
| (i == now) ? "*" : ""); |
| break; |
| case PP_MCLK: |
| smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency); |
| clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); |
| |
| for (i = 0; i < mclk_table->count; i++) { |
| if (clock > mclk_table->dpm_levels[i].value) |
| continue; |
| break; |
| } |
| now = i; |
| |
| for (i = 0; i < mclk_table->count; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, mclk_table->dpm_levels[i].value / 100, |
| (i == now) ? "*" : ""); |
| break; |
| case PP_PCIE: |
| pcie_speed = polaris10_get_current_pcie_speed(hwmgr); |
| for (i = 0; i < pcie_table->count; i++) { |
| if (pcie_speed != pcie_table->dpm_levels[i].value) |
| continue; |
| break; |
| } |
| now = i; |
| |
| for (i = 0; i < pcie_table->count; i++) |
| size += sprintf(buf + size, "%d: %s %s\n", i, |
| (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x8" : |
| (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" : |
| (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "", |
| (i == now) ? "*" : ""); |
| break; |
| default: |
| break; |
| } |
| return size; |
| } |
| |
| static int polaris10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) |
| { |
| if (mode) { |
| /* stop auto-manage */ |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl)) |
| polaris10_fan_ctrl_stop_smc_fan_control(hwmgr); |
| polaris10_fan_ctrl_set_static_mode(hwmgr, mode); |
| } else |
| /* restart auto-manage */ |
| polaris10_fan_ctrl_reset_fan_speed_to_default(hwmgr); |
| |
| return 0; |
| } |
| |
| static int polaris10_get_fan_control_mode(struct pp_hwmgr *hwmgr) |
| { |
| if (hwmgr->fan_ctrl_is_in_default_mode) |
| return hwmgr->fan_ctrl_default_mode; |
| else |
| return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| CG_FDO_CTRL2, FDO_PWM_MODE); |
| } |
| |
| static const struct pp_hwmgr_func polaris10_hwmgr_funcs = { |
| .backend_init = &polaris10_hwmgr_backend_init, |
| .backend_fini = &polaris10_hwmgr_backend_fini, |
| .asic_setup = &polaris10_setup_asic_task, |
| .dynamic_state_management_enable = &polaris10_enable_dpm_tasks, |
| .apply_state_adjust_rules = polaris10_apply_state_adjust_rules, |
| .force_dpm_level = &polaris10_force_dpm_level, |
| .power_state_set = polaris10_set_power_state_tasks, |
| .get_power_state_size = polaris10_get_power_state_size, |
| .get_mclk = polaris10_dpm_get_mclk, |
| .get_sclk = polaris10_dpm_get_sclk, |
| .patch_boot_state = polaris10_dpm_patch_boot_state, |
| .get_pp_table_entry = polaris10_get_pp_table_entry, |
| .get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries, |
| .print_current_perforce_level = polaris10_print_current_perforce_level, |
| .powerdown_uvd = polaris10_phm_powerdown_uvd, |
| .powergate_uvd = polaris10_phm_powergate_uvd, |
| .powergate_vce = polaris10_phm_powergate_vce, |
| .disable_clock_power_gating = polaris10_phm_disable_clock_power_gating, |
| .update_clock_gatings = polaris10_phm_update_clock_gatings, |
| .notify_smc_display_config_after_ps_adjustment = polaris10_notify_smc_display_config_after_ps_adjustment, |
| .display_config_changed = polaris10_display_configuration_changed_task, |
| .set_max_fan_pwm_output = polaris10_set_max_fan_pwm_output, |
| .set_max_fan_rpm_output = polaris10_set_max_fan_rpm_output, |
| .get_temperature = polaris10_thermal_get_temperature, |
| .stop_thermal_controller = polaris10_thermal_stop_thermal_controller, |
| .get_fan_speed_info = polaris10_fan_ctrl_get_fan_speed_info, |
| .get_fan_speed_percent = polaris10_fan_ctrl_get_fan_speed_percent, |
| .set_fan_speed_percent = polaris10_fan_ctrl_set_fan_speed_percent, |
| .reset_fan_speed_to_default = polaris10_fan_ctrl_reset_fan_speed_to_default, |
| .get_fan_speed_rpm = polaris10_fan_ctrl_get_fan_speed_rpm, |
| .set_fan_speed_rpm = polaris10_fan_ctrl_set_fan_speed_rpm, |
| .uninitialize_thermal_controller = polaris10_thermal_ctrl_uninitialize_thermal_controller, |
| .register_internal_thermal_interrupt = polaris10_register_internal_thermal_interrupt, |
| .check_smc_update_required_for_display_configuration = polaris10_check_smc_update_required_for_display_configuration, |
| .check_states_equal = polaris10_check_states_equal, |
| .set_fan_control_mode = polaris10_set_fan_control_mode, |
| .get_fan_control_mode = polaris10_get_fan_control_mode, |
| .get_pp_table = polaris10_get_pp_table, |
| .set_pp_table = polaris10_set_pp_table, |
| .force_clock_level = polaris10_force_clock_level, |
| .print_clock_levels = polaris10_print_clock_levels, |
| .enable_per_cu_power_gating = polaris10_phm_enable_per_cu_power_gating, |
| }; |
| |
| int polaris10_hwmgr_init(struct pp_hwmgr *hwmgr) |
| { |
| struct polaris10_hwmgr *data; |
| |
| data = kzalloc (sizeof(struct polaris10_hwmgr), GFP_KERNEL); |
| if (data == NULL) |
| return -ENOMEM; |
| |
| hwmgr->backend = data; |
| hwmgr->hwmgr_func = &polaris10_hwmgr_funcs; |
| hwmgr->pptable_func = &tonga_pptable_funcs; |
| pp_polaris10_thermal_initialize(hwmgr); |
| |
| return 0; |
| } |