blob: 59ad24a71141f6dfbea06444a058fb6e639866de [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright(c) 2015 - 2017 Intel Deutschland GmbH
* Copyright (C) 2018-2024 Intel Corporation
*/
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/rcupdate.h>
#include <linux/export.h>
#include <linux/kcov.h>
#include <linux/bitops.h>
#include <kunit/visibility.h>
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>
#include <asm/unaligned.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "led.h"
#include "mesh.h"
#include "wep.h"
#include "wpa.h"
#include "tkip.h"
#include "wme.h"
#include "rate.h"
/*
* monitor mode reception
*
* This function cleans up the SKB, i.e. it removes all the stuff
* only useful for monitoring.
*/
static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
unsigned int present_fcs_len,
unsigned int rtap_space)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr;
unsigned int hdrlen;
__le16 fc;
if (present_fcs_len)
__pskb_trim(skb, skb->len - present_fcs_len);
pskb_pull(skb, rtap_space);
/* After pulling radiotap header, clear all flags that indicate
* info in skb->data.
*/
status->flag &= ~(RX_FLAG_RADIOTAP_TLV_AT_END |
RX_FLAG_RADIOTAP_LSIG |
RX_FLAG_RADIOTAP_HE_MU |
RX_FLAG_RADIOTAP_HE);
hdr = (void *)skb->data;
fc = hdr->frame_control;
/*
* Remove the HT-Control field (if present) on management
* frames after we've sent the frame to monitoring. We
* (currently) don't need it, and don't properly parse
* frames with it present, due to the assumption of a
* fixed management header length.
*/
if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
return skb;
hdrlen = ieee80211_hdrlen(fc);
hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
if (!pskb_may_pull(skb, hdrlen)) {
dev_kfree_skb(skb);
return NULL;
}
memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
hdrlen - IEEE80211_HT_CTL_LEN);
pskb_pull(skb, IEEE80211_HT_CTL_LEN);
return skb;
}
static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
unsigned int rtap_space)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr;
hdr = (void *)(skb->data + rtap_space);
if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
RX_FLAG_FAILED_PLCP_CRC |
RX_FLAG_ONLY_MONITOR |
RX_FLAG_NO_PSDU))
return true;
if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
return true;
if (ieee80211_is_ctl(hdr->frame_control) &&
!ieee80211_is_pspoll(hdr->frame_control) &&
!ieee80211_is_back_req(hdr->frame_control))
return true;
return false;
}
static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
struct ieee80211_rx_status *status,
struct sk_buff *skb)
{
int len;
/* always present fields */
len = sizeof(struct ieee80211_radiotap_header) + 8;
/* allocate extra bitmaps */
if (status->chains)
len += 4 * hweight8(status->chains);
if (ieee80211_have_rx_timestamp(status)) {
len = ALIGN(len, 8);
len += 8;
}
if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
len += 1;
/* antenna field, if we don't have per-chain info */
if (!status->chains)
len += 1;
/* padding for RX_FLAGS if necessary */
len = ALIGN(len, 2);
if (status->encoding == RX_ENC_HT) /* HT info */
len += 3;
if (status->flag & RX_FLAG_AMPDU_DETAILS) {
len = ALIGN(len, 4);
len += 8;
}
if (status->encoding == RX_ENC_VHT) {
len = ALIGN(len, 2);
len += 12;
}
if (local->hw.radiotap_timestamp.units_pos >= 0) {
len = ALIGN(len, 8);
len += 12;
}
if (status->encoding == RX_ENC_HE &&
status->flag & RX_FLAG_RADIOTAP_HE) {
len = ALIGN(len, 2);
len += 12;
BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
}
if (status->encoding == RX_ENC_HE &&
status->flag & RX_FLAG_RADIOTAP_HE_MU) {
len = ALIGN(len, 2);
len += 12;
BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
}
if (status->flag & RX_FLAG_NO_PSDU)
len += 1;
if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
len = ALIGN(len, 2);
len += 4;
BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
}
if (status->chains) {
/* antenna and antenna signal fields */
len += 2 * hweight8(status->chains);
}
if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) {
int tlv_offset = 0;
/*
* The position to look at depends on the existence (or non-
* existence) of other elements, so take that into account...
*/
if (status->flag & RX_FLAG_RADIOTAP_HE)
tlv_offset +=
sizeof(struct ieee80211_radiotap_he);
if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
tlv_offset +=
sizeof(struct ieee80211_radiotap_he_mu);
if (status->flag & RX_FLAG_RADIOTAP_LSIG)
tlv_offset +=
sizeof(struct ieee80211_radiotap_lsig);
/* ensure 4 byte alignment for TLV */
len = ALIGN(len, 4);
/* TLVs until the mac header */
len += skb_mac_header(skb) - &skb->data[tlv_offset];
}
return len;
}
static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
int link_id,
struct sta_info *sta,
struct sk_buff *skb)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
if (link_id >= 0) {
status->link_valid = 1;
status->link_id = link_id;
} else {
status->link_valid = 0;
}
skb_queue_tail(&sdata->skb_queue, skb);
wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work);
if (sta)
sta->deflink.rx_stats.packets++;
}
static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
int link_id,
struct sta_info *sta,
struct sk_buff *skb)
{
skb->protocol = 0;
__ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb);
}
static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb,
int rtap_space)
{
struct {
struct ieee80211_hdr_3addr hdr;
u8 category;
u8 action_code;
} __packed __aligned(2) action;
if (!sdata)
return;
BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
if (skb->len < rtap_space + sizeof(action) +
VHT_MUMIMO_GROUPS_DATA_LEN)
return;
if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
return;
skb_copy_bits(skb, rtap_space, &action, sizeof(action));
if (!ieee80211_is_action(action.hdr.frame_control))
return;
if (action.category != WLAN_CATEGORY_VHT)
return;
if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
return;
if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
return;
skb = skb_copy(skb, GFP_ATOMIC);
if (!skb)
return;
ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb);
}
/*
* ieee80211_add_rx_radiotap_header - add radiotap header
*
* add a radiotap header containing all the fields which the hardware provided.
*/
static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
struct sk_buff *skb,
struct ieee80211_rate *rate,
int rtap_len, bool has_fcs)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_header *rthdr;
unsigned char *pos;
__le32 *it_present;
u32 it_present_val;
u16 rx_flags = 0;
u16 channel_flags = 0;
u32 tlvs_len = 0;
int mpdulen, chain;
unsigned long chains = status->chains;
struct ieee80211_radiotap_he he = {};
struct ieee80211_radiotap_he_mu he_mu = {};
struct ieee80211_radiotap_lsig lsig = {};
if (status->flag & RX_FLAG_RADIOTAP_HE) {
he = *(struct ieee80211_radiotap_he *)skb->data;
skb_pull(skb, sizeof(he));
WARN_ON_ONCE(status->encoding != RX_ENC_HE);
}
if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
skb_pull(skb, sizeof(he_mu));
}
if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
skb_pull(skb, sizeof(lsig));
}
if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) {
/* data is pointer at tlv all other info was pulled off */
tlvs_len = skb_mac_header(skb) - skb->data;
}
mpdulen = skb->len;
if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
mpdulen += FCS_LEN;
rthdr = skb_push(skb, rtap_len - tlvs_len);
memset(rthdr, 0, rtap_len - tlvs_len);
it_present = &rthdr->it_present;
/* radiotap header, set always present flags */
rthdr->it_len = cpu_to_le16(rtap_len);
it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
BIT(IEEE80211_RADIOTAP_CHANNEL) |
BIT(IEEE80211_RADIOTAP_RX_FLAGS);
if (!status->chains)
it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
it_present_val |=
BIT(IEEE80211_RADIOTAP_EXT) |
BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
put_unaligned_le32(it_present_val, it_present);
it_present++;
it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
}
if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END)
it_present_val |= BIT(IEEE80211_RADIOTAP_TLV);
put_unaligned_le32(it_present_val, it_present);
/* This references through an offset into it_optional[] rather
* than via it_present otherwise later uses of pos will cause
* the compiler to think we have walked past the end of the
* struct member.
*/
pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional];
/* the order of the following fields is important */
/* IEEE80211_RADIOTAP_TSFT */
if (ieee80211_have_rx_timestamp(status)) {
/* padding */
while ((pos - (u8 *)rthdr) & 7)
*pos++ = 0;
put_unaligned_le64(
ieee80211_calculate_rx_timestamp(local, status,
mpdulen, 0),
pos);
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT));
pos += 8;
}
/* IEEE80211_RADIOTAP_FLAGS */
if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
*pos |= IEEE80211_RADIOTAP_F_FCS;
if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
*pos |= IEEE80211_RADIOTAP_F_BADFCS;
if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
pos++;
/* IEEE80211_RADIOTAP_RATE */
if (!rate || status->encoding != RX_ENC_LEGACY) {
/*
* Without rate information don't add it. If we have,
* MCS information is a separate field in radiotap,
* added below. The byte here is needed as padding
* for the channel though, so initialise it to 0.
*/
*pos = 0;
} else {
int shift = 0;
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE));
if (status->bw == RATE_INFO_BW_10)
shift = 1;
else if (status->bw == RATE_INFO_BW_5)
shift = 2;
*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
}
pos++;
/* IEEE80211_RADIOTAP_CHANNEL */
/* TODO: frequency offset in KHz */
put_unaligned_le16(status->freq, pos);
pos += 2;
if (status->bw == RATE_INFO_BW_10)
channel_flags |= IEEE80211_CHAN_HALF;
else if (status->bw == RATE_INFO_BW_5)
channel_flags |= IEEE80211_CHAN_QUARTER;
if (status->band == NL80211_BAND_5GHZ ||
status->band == NL80211_BAND_6GHZ)
channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
else if (status->encoding != RX_ENC_LEGACY)
channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
else if (rate)
channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
else
channel_flags |= IEEE80211_CHAN_2GHZ;
put_unaligned_le16(channel_flags, pos);
pos += 2;
/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
*pos = status->signal;
rthdr->it_present |=
cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL));
pos++;
}
/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
if (!status->chains) {
/* IEEE80211_RADIOTAP_ANTENNA */
*pos = status->antenna;
pos++;
}
/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
/* IEEE80211_RADIOTAP_RX_FLAGS */
/* ensure 2 byte alignment for the 2 byte field as required */
if ((pos - (u8 *)rthdr) & 1)
*pos++ = 0;
if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
put_unaligned_le16(rx_flags, pos);
pos += 2;
if (status->encoding == RX_ENC_HT) {
unsigned int stbc;
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS));
*pos = local->hw.radiotap_mcs_details;
if (status->enc_flags & RX_ENC_FLAG_HT_GF)
*pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT;
if (status->enc_flags & RX_ENC_FLAG_LDPC)
*pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC;
pos++;
*pos = 0;
if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
*pos |= IEEE80211_RADIOTAP_MCS_SGI;
if (status->bw == RATE_INFO_BW_40)
*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
if (status->enc_flags & RX_ENC_FLAG_HT_GF)
*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
if (status->enc_flags & RX_ENC_FLAG_LDPC)
*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
pos++;
*pos++ = status->rate_idx;
}
if (status->flag & RX_FLAG_AMPDU_DETAILS) {
u16 flags = 0;
/* ensure 4 byte alignment */
while ((pos - (u8 *)rthdr) & 3)
pos++;
rthdr->it_present |=
cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS));
put_unaligned_le32(status->ampdu_reference, pos);
pos += 4;
if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
if (status->flag & RX_FLAG_AMPDU_IS_LAST)
flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
put_unaligned_le16(flags, pos);
pos += 2;
if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
*pos++ = status->ampdu_delimiter_crc;
else
*pos++ = 0;
*pos++ = 0;
}
if (status->encoding == RX_ENC_VHT) {
u16 known = local->hw.radiotap_vht_details;
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT));
put_unaligned_le16(known, pos);
pos += 2;
/* flags */
if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
/* in VHT, STBC is binary */
if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
if (status->enc_flags & RX_ENC_FLAG_BF)
*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
pos++;
/* bandwidth */
switch (status->bw) {
case RATE_INFO_BW_80:
*pos++ = 4;
break;
case RATE_INFO_BW_160:
*pos++ = 11;
break;
case RATE_INFO_BW_40:
*pos++ = 1;
break;
default:
*pos++ = 0;
}
/* MCS/NSS */
*pos = (status->rate_idx << 4) | status->nss;
pos += 4;
/* coding field */
if (status->enc_flags & RX_ENC_FLAG_LDPC)
*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
pos++;
/* group ID */
pos++;
/* partial_aid */
pos += 2;
}
if (local->hw.radiotap_timestamp.units_pos >= 0) {
u16 accuracy = 0;
u8 flags;
u64 ts;
rthdr->it_present |=
cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP));
/* ensure 8 byte alignment */
while ((pos - (u8 *)rthdr) & 7)
pos++;
if (status->flag & RX_FLAG_MACTIME_IS_RTAP_TS64) {
flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_64BIT;
ts = status->mactime;
} else {
flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
ts = status->device_timestamp;
}
put_unaligned_le64(ts, pos);
pos += sizeof(u64);
if (local->hw.radiotap_timestamp.accuracy >= 0) {
accuracy = local->hw.radiotap_timestamp.accuracy;
flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
}
put_unaligned_le16(accuracy, pos);
pos += sizeof(u16);
*pos++ = local->hw.radiotap_timestamp.units_pos;
*pos++ = flags;
}
if (status->encoding == RX_ENC_HE &&
status->flag & RX_FLAG_RADIOTAP_HE) {
#define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
he.data6 |= HE_PREP(DATA6_NSTS,
FIELD_GET(RX_ENC_FLAG_STBC_MASK,
status->enc_flags));
he.data3 |= HE_PREP(DATA3_STBC, 1);
} else {
he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
}
#define CHECK_GI(s) \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
(int)NL80211_RATE_INFO_HE_GI_##s)
CHECK_GI(0_8);
CHECK_GI(1_6);
CHECK_GI(3_2);
he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
he.data3 |= HE_PREP(DATA3_CODING,
!!(status->enc_flags & RX_ENC_FLAG_LDPC));
he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
switch (status->bw) {
case RATE_INFO_BW_20:
he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
break;
case RATE_INFO_BW_40:
he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
break;
case RATE_INFO_BW_80:
he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
break;
case RATE_INFO_BW_160:
he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
break;
case RATE_INFO_BW_HE_RU:
#define CHECK_RU_ALLOC(s) \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
CHECK_RU_ALLOC(26);
CHECK_RU_ALLOC(52);
CHECK_RU_ALLOC(106);
CHECK_RU_ALLOC(242);
CHECK_RU_ALLOC(484);
CHECK_RU_ALLOC(996);
CHECK_RU_ALLOC(2x996);
he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
status->he_ru + 4);
break;
default:
WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
}
/* ensure 2 byte alignment */
while ((pos - (u8 *)rthdr) & 1)
pos++;
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE));
memcpy(pos, &he, sizeof(he));
pos += sizeof(he);
}
if (status->encoding == RX_ENC_HE &&
status->flag & RX_FLAG_RADIOTAP_HE_MU) {
/* ensure 2 byte alignment */
while ((pos - (u8 *)rthdr) & 1)
pos++;
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU));
memcpy(pos, &he_mu, sizeof(he_mu));
pos += sizeof(he_mu);
}
if (status->flag & RX_FLAG_NO_PSDU) {
rthdr->it_present |=
cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU));
*pos++ = status->zero_length_psdu_type;
}
if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
/* ensure 2 byte alignment */
while ((pos - (u8 *)rthdr) & 1)
pos++;
rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG));
memcpy(pos, &lsig, sizeof(lsig));
pos += sizeof(lsig);
}
for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
*pos++ = status->chain_signal[chain];
*pos++ = chain;
}
}
static struct sk_buff *
ieee80211_make_monitor_skb(struct ieee80211_local *local,
struct sk_buff **origskb,
struct ieee80211_rate *rate,
int rtap_space, bool use_origskb)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
int rt_hdrlen, needed_headroom;
struct sk_buff *skb;
/* room for the radiotap header based on driver features */
rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
needed_headroom = rt_hdrlen - rtap_space;
if (use_origskb) {
/* only need to expand headroom if necessary */
skb = *origskb;
*origskb = NULL;
/*
* This shouldn't trigger often because most devices have an
* RX header they pull before we get here, and that should
* be big enough for our radiotap information. We should
* probably export the length to drivers so that we can have
* them allocate enough headroom to start with.
*/
if (skb_headroom(skb) < needed_headroom &&
pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return NULL;
}
} else {
/*
* Need to make a copy and possibly remove radiotap header
* and FCS from the original.
*/
skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD,
0, GFP_ATOMIC);
if (!skb)
return NULL;
}
/* prepend radiotap information */
ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
return skb;
}
/*
* This function copies a received frame to all monitor interfaces and
* returns a cleaned-up SKB that no longer includes the FCS nor the
* radiotap header the driver might have added.
*/
static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
struct ieee80211_rate *rate)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
struct ieee80211_sub_if_data *sdata;
struct sk_buff *monskb = NULL;
int present_fcs_len = 0;
unsigned int rtap_space = 0;
struct ieee80211_sub_if_data *monitor_sdata =
rcu_dereference(local->monitor_sdata);
bool only_monitor = false;
unsigned int min_head_len;
if (WARN_ON_ONCE(status->flag & RX_FLAG_RADIOTAP_TLV_AT_END &&
!skb_mac_header_was_set(origskb))) {
/* with this skb no way to know where frame payload starts */
dev_kfree_skb(origskb);
return NULL;
}
if (status->flag & RX_FLAG_RADIOTAP_HE)
rtap_space += sizeof(struct ieee80211_radiotap_he);
if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
if (status->flag & RX_FLAG_RADIOTAP_LSIG)
rtap_space += sizeof(struct ieee80211_radiotap_lsig);
if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END)
rtap_space += skb_mac_header(origskb) - &origskb->data[rtap_space];
min_head_len = rtap_space;
/*
* First, we may need to make a copy of the skb because
* (1) we need to modify it for radiotap (if not present), and
* (2) the other RX handlers will modify the skb we got.
*
* We don't need to, of course, if we aren't going to return
* the SKB because it has a bad FCS/PLCP checksum.
*/
if (!(status->flag & RX_FLAG_NO_PSDU)) {
if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
/* driver bug */
WARN_ON(1);
dev_kfree_skb(origskb);
return NULL;
}
present_fcs_len = FCS_LEN;
}
/* also consider the hdr->frame_control */
min_head_len += 2;
}
/* ensure that the expected data elements are in skb head */
if (!pskb_may_pull(origskb, min_head_len)) {
dev_kfree_skb(origskb);
return NULL;
}
only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
if (only_monitor) {
dev_kfree_skb(origskb);
return NULL;
}
return ieee80211_clean_skb(origskb, present_fcs_len,
rtap_space);
}
ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
bool last_monitor = list_is_last(&sdata->u.mntr.list,
&local->mon_list);
if (!monskb)
monskb = ieee80211_make_monitor_skb(local, &origskb,
rate, rtap_space,
only_monitor &&
last_monitor);
if (monskb) {
struct sk_buff *skb;
if (last_monitor) {
skb = monskb;
monskb = NULL;
} else {
skb = skb_clone(monskb, GFP_ATOMIC);
}
if (skb) {
skb->dev = sdata->dev;
dev_sw_netstats_rx_add(skb->dev, skb->len);
netif_receive_skb(skb);
}
}
if (last_monitor)
break;
}
/* this happens if last_monitor was erroneously false */
dev_kfree_skb(monskb);
/* ditto */
if (!origskb)
return NULL;
return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
}
static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
int tid, seqno_idx, security_idx;
/* does the frame have a qos control field? */
if (ieee80211_is_data_qos(hdr->frame_control)) {
u8 *qc = ieee80211_get_qos_ctl(hdr);
/* frame has qos control */
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
status->rx_flags |= IEEE80211_RX_AMSDU;
seqno_idx = tid;
security_idx = tid;
} else {
/*
* IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
*
* Sequence numbers for management frames, QoS data
* frames with a broadcast/multicast address in the
* Address 1 field, and all non-QoS data frames sent
* by QoS STAs are assigned using an additional single
* modulo-4096 counter, [...]
*
* We also use that counter for non-QoS STAs.
*/
seqno_idx = IEEE80211_NUM_TIDS;
security_idx = 0;
if (ieee80211_is_mgmt(hdr->frame_control))
security_idx = IEEE80211_NUM_TIDS;
tid = 0;
}
rx->seqno_idx = seqno_idx;
rx->security_idx = security_idx;
/* Set skb->priority to 1d tag if highest order bit of TID is not set.
* For now, set skb->priority to 0 for other cases. */
rx->skb->priority = (tid > 7) ? 0 : tid;
}
/**
* DOC: Packet alignment
*
* Drivers always need to pass packets that are aligned to two-byte boundaries
* to the stack.
*
* Additionally, they should, if possible, align the payload data in a way that
* guarantees that the contained IP header is aligned to a four-byte
* boundary. In the case of regular frames, this simply means aligning the
* payload to a four-byte boundary (because either the IP header is directly
* contained, or IV/RFC1042 headers that have a length divisible by four are
* in front of it). If the payload data is not properly aligned and the
* architecture doesn't support efficient unaligned operations, mac80211
* will align the data.
*
* With A-MSDU frames, however, the payload data address must yield two modulo
* four because there are 14-byte 802.3 headers within the A-MSDU frames that
* push the IP header further back to a multiple of four again. Thankfully, the
* specs were sane enough this time around to require padding each A-MSDU
* subframe to a length that is a multiple of four.
*
* Padding like Atheros hardware adds which is between the 802.11 header and
* the payload is not supported; the driver is required to move the 802.11
* header to be directly in front of the payload in that case.
*/
static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
{
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
#endif
}
/* rx handlers */
static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
if (is_multicast_ether_addr(hdr->addr1))
return 0;
return ieee80211_is_robust_mgmt_frame(skb);
}
static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
if (!is_multicast_ether_addr(hdr->addr1))
return 0;
return ieee80211_is_robust_mgmt_frame(skb);
}
/* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
{
struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
struct ieee80211_mmie *mmie;
struct ieee80211_mmie_16 *mmie16;
if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
return -1;
if (!ieee80211_is_robust_mgmt_frame(skb) &&
!ieee80211_is_beacon(hdr->frame_control))
return -1; /* not a robust management frame */
mmie = (struct ieee80211_mmie *)
(skb->data + skb->len - sizeof(*mmie));
if (mmie->element_id == WLAN_EID_MMIE &&
mmie->length == sizeof(*mmie) - 2)
return le16_to_cpu(mmie->key_id);
mmie16 = (struct ieee80211_mmie_16 *)
(skb->data + skb->len - sizeof(*mmie16));
if (skb->len >= 24 + sizeof(*mmie16) &&
mmie16->element_id == WLAN_EID_MMIE &&
mmie16->length == sizeof(*mmie16) - 2)
return le16_to_cpu(mmie16->key_id);
return -1;
}
static int ieee80211_get_keyid(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
__le16 fc = hdr->frame_control;
int hdrlen = ieee80211_hdrlen(fc);
u8 keyid;
/* WEP, TKIP, CCMP and GCMP */
if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN))
return -EINVAL;
skb_copy_bits(skb, hdrlen + 3, &keyid, 1);
keyid >>= 6;
return keyid;
}
static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
char *dev_addr = rx->sdata->vif.addr;
if (ieee80211_is_data(hdr->frame_control)) {
if (is_multicast_ether_addr(hdr->addr1)) {
if (ieee80211_has_tods(hdr->frame_control) ||
!ieee80211_has_fromds(hdr->frame_control))
return RX_DROP_MONITOR;
if (ether_addr_equal(hdr->addr3, dev_addr))
return RX_DROP_MONITOR;
} else {
if (!ieee80211_has_a4(hdr->frame_control))
return RX_DROP_MONITOR;
if (ether_addr_equal(hdr->addr4, dev_addr))
return RX_DROP_MONITOR;
}
}
/* If there is not an established peer link and this is not a peer link
* establisment frame, beacon or probe, drop the frame.
*/
if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
struct ieee80211_mgmt *mgmt;
if (!ieee80211_is_mgmt(hdr->frame_control))
return RX_DROP_MONITOR;
if (ieee80211_is_action(hdr->frame_control)) {
u8 category;
/* make sure category field is present */
if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
return RX_DROP_MONITOR;
mgmt = (struct ieee80211_mgmt *)hdr;
category = mgmt->u.action.category;
if (category != WLAN_CATEGORY_MESH_ACTION &&
category != WLAN_CATEGORY_SELF_PROTECTED)
return RX_DROP_MONITOR;
return RX_CONTINUE;
}
if (ieee80211_is_probe_req(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control) ||
ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_auth(hdr->frame_control))
return RX_CONTINUE;
return RX_DROP_MONITOR;
}
return RX_CONTINUE;
}
static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
int index)
{
struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
struct sk_buff *tail = skb_peek_tail(frames);
struct ieee80211_rx_status *status;
if (tid_agg_rx->reorder_buf_filtered &&
tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
return true;
if (!tail)
return false;
status = IEEE80211_SKB_RXCB(tail);
if (status->flag & RX_FLAG_AMSDU_MORE)
return false;
return true;
}
static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
struct tid_ampdu_rx *tid_agg_rx,
int index,
struct sk_buff_head *frames)
{
struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
struct sk_buff *skb;
struct ieee80211_rx_status *status;
lockdep_assert_held(&tid_agg_rx->reorder_lock);
if (skb_queue_empty(skb_list))
goto no_frame;
if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
__skb_queue_purge(skb_list);
goto no_frame;
}
/* release frames from the reorder ring buffer */
tid_agg_rx->stored_mpdu_num--;
while ((skb = __skb_dequeue(skb_list))) {
status = IEEE80211_SKB_RXCB(skb);
status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
__skb_queue_tail(frames, skb);
}
no_frame:
if (tid_agg_rx->reorder_buf_filtered)
tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
}
static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
struct tid_ampdu_rx *tid_agg_rx,
u16 head_seq_num,
struct sk_buff_head *frames)
{
int index;
lockdep_assert_held(&tid_agg_rx->reorder_lock);
while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
frames);
}
}
/*
* Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
* the skb was added to the buffer longer than this time ago, the earlier
* frames that have not yet been received are assumed to be lost and the skb
* can be released for processing. This may also release other skb's from the
* reorder buffer if there are no additional gaps between the frames.
*
* Callers must hold tid_agg_rx->reorder_lock.
*/
#define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
struct tid_ampdu_rx *tid_agg_rx,
struct sk_buff_head *frames)
{
int index, i, j;
lockdep_assert_held(&tid_agg_rx->reorder_lock);
/* release the buffer until next missing frame */
index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
tid_agg_rx->stored_mpdu_num) {
/*
* No buffers ready to be released, but check whether any
* frames in the reorder buffer have timed out.
*/
int skipped = 1;
for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
j = (j + 1) % tid_agg_rx->buf_size) {
if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
skipped++;
continue;
}
if (skipped &&
!time_after(jiffies, tid_agg_rx->reorder_time[j] +
HT_RX_REORDER_BUF_TIMEOUT))
goto set_release_timer;
/* don't leave incomplete A-MSDUs around */
for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
i = (i + 1) % tid_agg_rx->buf_size)
__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
ht_dbg_ratelimited(sdata,
"release an RX reorder frame due to timeout on earlier frames\n");
ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
frames);
/*
* Increment the head seq# also for the skipped slots.
*/
tid_agg_rx->head_seq_num =
(tid_agg_rx->head_seq_num +
skipped) & IEEE80211_SN_MASK;
skipped = 0;
}
} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
frames);
index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
}
if (tid_agg_rx->stored_mpdu_num) {
j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
for (; j != (index - 1) % tid_agg_rx->buf_size;
j = (j + 1) % tid_agg_rx->buf_size) {
if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
break;
}
set_release_timer:
if (!tid_agg_rx->removed)
mod_timer(&tid_agg_rx->reorder_timer,
tid_agg_rx->reorder_time[j] + 1 +
HT_RX_REORDER_BUF_TIMEOUT);
} else {
del_timer(&tid_agg_rx->reorder_timer);
}
}
/*
* As this function belongs to the RX path it must be under
* rcu_read_lock protection. It returns false if the frame
* can be processed immediately, true if it was consumed.
*/
static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
struct tid_ampdu_rx *tid_agg_rx,
struct sk_buff *skb,
struct sk_buff_head *frames)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
u16 mpdu_seq_num = ieee80211_get_sn(hdr);
u16 head_seq_num, buf_size;
int index;
bool ret = true;
spin_lock(&tid_agg_rx->reorder_lock);
/*
* Offloaded BA sessions have no known starting sequence number so pick
* one from first Rxed frame for this tid after BA was started.
*/
if (unlikely(tid_agg_rx->auto_seq)) {
tid_agg_rx->auto_seq = false;
tid_agg_rx->ssn = mpdu_seq_num;
tid_agg_rx->head_seq_num = mpdu_seq_num;
}
buf_size = tid_agg_rx->buf_size;
head_seq_num = tid_agg_rx->head_seq_num;
/*
* If the current MPDU's SN is smaller than the SSN, it shouldn't
* be reordered.
*/
if (unlikely(!tid_agg_rx->started)) {
if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
ret = false;
goto out;
}
tid_agg_rx->started = true;
}
/* frame with out of date sequence number */
if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
dev_kfree_skb(skb);
goto out;
}
/*
* If frame the sequence number exceeds our buffering window
* size release some previous frames to make room for this one.
*/
if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
head_seq_num = ieee80211_sn_inc(
ieee80211_sn_sub(mpdu_seq_num, buf_size));
/* release stored frames up to new head to stack */
ieee80211_release_reorder_frames(sdata, tid_agg_rx,
head_seq_num, frames);
}
/* Now the new frame is always in the range of the reordering buffer */
index = mpdu_seq_num % tid_agg_rx->buf_size;
/* check if we already stored this frame */
if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
dev_kfree_skb(skb);
goto out;
}
/*
* If the current MPDU is in the right order and nothing else
* is stored we can process it directly, no need to buffer it.
* If it is first but there's something stored, we may be able
* to release frames after this one.
*/
if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
tid_agg_rx->stored_mpdu_num == 0) {
if (!(status->flag & RX_FLAG_AMSDU_MORE))
tid_agg_rx->head_seq_num =
ieee80211_sn_inc(tid_agg_rx->head_seq_num);
ret = false;
goto out;
}
/* put the frame in the reordering buffer */
__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
tid_agg_rx->reorder_time[index] = jiffies;
tid_agg_rx->stored_mpdu_num++;
ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
}
out:
spin_unlock(&tid_agg_rx->reorder_lock);
return ret;
}
/*
* Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
* true if the MPDU was buffered, false if it should be processed.
*/
static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
struct sk_buff_head *frames)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct sta_info *sta = rx->sta;
struct tid_ampdu_rx *tid_agg_rx;
u16 sc;
u8 tid, ack_policy;
if (!ieee80211_is_data_qos(hdr->frame_control) ||
is_multicast_ether_addr(hdr->addr1))
goto dont_reorder;
/*
* filter the QoS data rx stream according to
* STA/TID and check if this STA/TID is on aggregation
*/
if (!sta)
goto dont_reorder;
ack_policy = *ieee80211_get_qos_ctl(hdr) &
IEEE80211_QOS_CTL_ACK_POLICY_MASK;
tid = ieee80211_get_tid(hdr);
tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
if (!tid_agg_rx) {
if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
!test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
WLAN_BACK_RECIPIENT,
WLAN_REASON_QSTA_REQUIRE_SETUP);
goto dont_reorder;
}
/* qos null data frames are excluded */
if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
goto dont_reorder;
/* not part of a BA session */
if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
goto dont_reorder;
/* new, potentially un-ordered, ampdu frame - process it */
/* reset session timer */
if (tid_agg_rx->timeout)
tid_agg_rx->last_rx = jiffies;
/* if this mpdu is fragmented - terminate rx aggregation session */
sc = le16_to_cpu(hdr->seq_ctrl);
if (sc & IEEE80211_SCTL_FRAG) {
ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb);
return;
}
/*
* No locking needed -- we will only ever process one
* RX packet at a time, and thus own tid_agg_rx. All
* other code manipulating it needs to (and does) make
* sure that we cannot get to it any more before doing
* anything with it.
*/
if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
frames))
return;
dont_reorder:
__skb_queue_tail(frames, skb);
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
if (status->flag & RX_FLAG_DUP_VALIDATED)
return RX_CONTINUE;
/*
* Drop duplicate 802.11 retransmissions
* (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
*/
if (rx->skb->len < 24)
return RX_CONTINUE;
if (ieee80211_is_ctl(hdr->frame_control) ||
ieee80211_is_any_nullfunc(hdr->frame_control))
return RX_CONTINUE;
if (!rx->sta)
return RX_CONTINUE;
if (unlikely(is_multicast_ether_addr(hdr->addr1))) {
struct ieee80211_sub_if_data *sdata = rx->sdata;
u16 sn = ieee80211_get_sn(hdr);
if (!ieee80211_is_data_present(hdr->frame_control))
return RX_CONTINUE;
if (!ieee80211_vif_is_mld(&sdata->vif) ||
sdata->vif.type != NL80211_IFTYPE_STATION)
return RX_CONTINUE;
if (sdata->u.mgd.mcast_seq_last != IEEE80211_SN_MODULO &&
ieee80211_sn_less_eq(sn, sdata->u.mgd.mcast_seq_last))
return RX_DROP_U_DUP;
sdata->u.mgd.mcast_seq_last = sn;
return RX_CONTINUE;
}
if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
rx->link_sta->rx_stats.num_duplicates++;
return RX_DROP_U_DUP;
} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
}
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
/* Drop disallowed frame classes based on STA auth/assoc state;
* IEEE 802.11, Chap 5.5.
*
* mac80211 filters only based on association state, i.e. it drops
* Class 3 frames from not associated stations. hostapd sends
* deauth/disassoc frames when needed. In addition, hostapd is
* responsible for filtering on both auth and assoc states.
*/
if (ieee80211_vif_is_mesh(&rx->sdata->vif))
return ieee80211_rx_mesh_check(rx);
if (unlikely((ieee80211_is_data(hdr->frame_control) ||
ieee80211_is_pspoll(hdr->frame_control)) &&
rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
/*
* accept port control frames from the AP even when it's not
* yet marked ASSOC to prevent a race where we don't set the
* assoc bit quickly enough before it sends the first frame
*/
if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
ieee80211_is_data_present(hdr->frame_control)) {
unsigned int hdrlen;
__be16 ethertype;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
if (rx->skb->len < hdrlen + 8)
return RX_DROP_MONITOR;
skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
if (ethertype == rx->sdata->control_port_protocol)
return RX_CONTINUE;
}
if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
cfg80211_rx_spurious_frame(rx->sdata->dev,
hdr->addr2,
GFP_ATOMIC))
return RX_DROP_U_SPURIOUS;
return RX_DROP_MONITOR;
}
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
{
struct ieee80211_local *local;
struct ieee80211_hdr *hdr;
struct sk_buff *skb;
local = rx->local;
skb = rx->skb;
hdr = (struct ieee80211_hdr *) skb->data;
if (!local->pspolling)
return RX_CONTINUE;
if (!ieee80211_has_fromds(hdr->frame_control))
/* this is not from AP */
return RX_CONTINUE;
if (!ieee80211_is_data(hdr->frame_control))
return RX_CONTINUE;
if (!ieee80211_has_moredata(hdr->frame_control)) {
/* AP has no more frames buffered for us */
local->pspolling = false;
return RX_CONTINUE;
}
/* more data bit is set, let's request a new frame from the AP */
ieee80211_send_pspoll(local, rx->sdata);
return RX_CONTINUE;
}
static void sta_ps_start(struct sta_info *sta)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
struct ps_data *ps;
int tid;
if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
ps = &sdata->bss->ps;
else
return;
atomic_inc(&ps->num_sta_ps);
set_sta_flag(sta, WLAN_STA_PS_STA);
if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
sta->sta.addr, sta->sta.aid);
ieee80211_clear_fast_xmit(sta);
for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
struct ieee80211_txq *txq = sta->sta.txq[tid];
struct txq_info *txqi = to_txq_info(txq);
spin_lock(&local->active_txq_lock[txq->ac]);
if (!list_empty(&txqi->schedule_order))
list_del_init(&txqi->schedule_order);
spin_unlock(&local->active_txq_lock[txq->ac]);
if (txq_has_queue(txq))
set_bit(tid, &sta->txq_buffered_tids);
else
clear_bit(tid, &sta->txq_buffered_tids);
}
}
static void sta_ps_end(struct sta_info *sta)
{
ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
sta->sta.addr, sta->sta.aid);
if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
/*
* Clear the flag only if the other one is still set
* so that the TX path won't start TX'ing new frames
* directly ... In the case that the driver flag isn't
* set ieee80211_sta_ps_deliver_wakeup() will clear it.
*/
clear_sta_flag(sta, WLAN_STA_PS_STA);
ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
sta->sta.addr, sta->sta.aid);
return;
}
set_sta_flag(sta, WLAN_STA_PS_DELIVER);
clear_sta_flag(sta, WLAN_STA_PS_STA);
ieee80211_sta_ps_deliver_wakeup(sta);
}
int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
{
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
bool in_ps;
WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
/* Don't let the same PS state be set twice */
in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
if ((start && in_ps) || (!start && !in_ps))
return -EINVAL;
if (start)
sta_ps_start(sta);
else
sta_ps_end(sta);
return 0;
}
EXPORT_SYMBOL(ieee80211_sta_ps_transition);
void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
{
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
if (test_sta_flag(sta, WLAN_STA_SP))
return;
if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
ieee80211_sta_ps_deliver_poll_response(sta);
else
set_sta_flag(sta, WLAN_STA_PSPOLL);
}
EXPORT_SYMBOL(ieee80211_sta_pspoll);
void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
{
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
int ac = ieee80211_ac_from_tid(tid);
/*
* If this AC is not trigger-enabled do nothing unless the
* driver is calling us after it already checked.
*
* NB: This could/should check a separate bitmap of trigger-
* enabled queues, but for now we only implement uAPSD w/o
* TSPEC changes to the ACs, so they're always the same.
*/
if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
tid != IEEE80211_NUM_TIDS)
return;
/* if we are in a service period, do nothing */
if (test_sta_flag(sta, WLAN_STA_SP))
return;
if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
ieee80211_sta_ps_deliver_uapsd(sta);
else
set_sta_flag(sta, WLAN_STA_UAPSD);
}
EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_hdr *hdr = (void *)rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
if (!rx->sta)
return RX_CONTINUE;
if (sdata->vif.type != NL80211_IFTYPE_AP &&
sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
return RX_CONTINUE;
/*
* The device handles station powersave, so don't do anything about
* uAPSD and PS-Poll frames (the latter shouldn't even come up from
* it to mac80211 since they're handled.)
*/
if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
return RX_CONTINUE;
/*
* Don't do anything if the station isn't already asleep. In
* the uAPSD case, the station will probably be marked asleep,
* in the PS-Poll case the station must be confused ...
*/
if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
return RX_CONTINUE;
if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
ieee80211_sta_pspoll(&rx->sta->sta);
/* Free PS Poll skb here instead of returning RX_DROP that would
* count as an dropped frame. */
dev_kfree_skb(rx->skb);
return RX_QUEUED;
} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
!(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
ieee80211_has_pm(hdr->frame_control) &&
(ieee80211_is_data_qos(hdr->frame_control) ||
ieee80211_is_qos_nullfunc(hdr->frame_control))) {
u8 tid = ieee80211_get_tid(hdr);
ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
}
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
{
struct sta_info *sta = rx->sta;
struct link_sta_info *link_sta = rx->link_sta;
struct sk_buff *skb = rx->skb;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
int i;
if (!sta || !link_sta)
return RX_CONTINUE;
/*
* Update last_rx only for IBSS packets which are for the current
* BSSID and for station already AUTHORIZED to avoid keeping the
* current IBSS network alive in cases where other STAs start
* using different BSSID. This will also give the station another
* chance to restart the authentication/authorization in case
* something went wrong the first time.
*/
if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
NL80211_IFTYPE_ADHOC);
if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
link_sta->rx_stats.last_rx = jiffies;
if (ieee80211_is_data_present(hdr->frame_control) &&
!is_multicast_ether_addr(hdr->addr1))
link_sta->rx_stats.last_rate =
sta_stats_encode_rate(status);
}
} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
link_sta->rx_stats.last_rx = jiffies;
} else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
!is_multicast_ether_addr(hdr->addr1)) {
/*
* Mesh beacons will update last_rx when if they are found to
* match the current local configuration when processed.
*/
link_sta->rx_stats.last_rx = jiffies;
if (ieee80211_is_data_present(hdr->frame_control))
link_sta->rx_stats.last_rate = sta_stats_encode_rate(status);
}
link_sta->rx_stats.fragments++;
u64_stats_update_begin(&link_sta->rx_stats.syncp);
link_sta->rx_stats.bytes += rx->skb->len;
u64_stats_update_end(&link_sta->rx_stats.syncp);
if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
link_sta->rx_stats.last_signal = status->signal;
ewma_signal_add(&link_sta->rx_stats_avg.signal,
-status->signal);
}
if (status->chains) {
link_sta->rx_stats.chains = status->chains;
for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
int signal = status->chain_signal[i];
if (!(status->chains & BIT(i)))
continue;
link_sta->rx_stats.chain_signal_last[i] = signal;
ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i],
-signal);
}
}
if (ieee80211_is_s1g_beacon(hdr->frame_control))
return RX_CONTINUE;
/*
* Change STA power saving mode only at the end of a frame
* exchange sequence, and only for a data or management
* frame as specified in IEEE 802.11-2016 11.2.3.2
*/
if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
!ieee80211_has_morefrags(hdr->frame_control) &&
!is_multicast_ether_addr(hdr->addr1) &&
(ieee80211_is_mgmt(hdr->frame_control) ||
ieee80211_is_data(hdr->frame_control)) &&
!(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
(rx->sdata->vif.type == NL80211_IFTYPE_AP ||
rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
if (!ieee80211_has_pm(hdr->frame_control))
sta_ps_end(sta);
} else {
if (ieee80211_has_pm(hdr->frame_control))
sta_ps_start(sta);
}
}
/* mesh power save support */
if (ieee80211_vif_is_mesh(&rx->sdata->vif))
ieee80211_mps_rx_h_sta_process(sta, hdr);
/*
* Drop (qos-)data::nullfunc frames silently, since they
* are used only to control station power saving mode.
*/
if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
/*
* If we receive a 4-addr nullfunc frame from a STA
* that was not moved to a 4-addr STA vlan yet send
* the event to userspace and for older hostapd drop
* the frame to the monitor interface.
*/
if (ieee80211_has_a4(hdr->frame_control) &&
(rx->sdata->vif.type == NL80211_IFTYPE_AP ||
(rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
!rx->sdata->u.vlan.sta))) {
if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
cfg80211_rx_unexpected_4addr_frame(
rx->sdata->dev, sta->sta.addr,
GFP_ATOMIC);
return RX_DROP_M_UNEXPECTED_4ADDR_FRAME;
}
/*
* Update counter and free packet here to avoid
* counting this as a dropped packed.
*/
link_sta->rx_stats.packets++;
dev_kfree_skb(rx->skb);
return RX_QUEUED;
}
return RX_CONTINUE;
} /* ieee80211_rx_h_sta_process */
static struct ieee80211_key *
ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
{
struct ieee80211_key *key = NULL;
int idx2;
/* Make sure key gets set if either BIGTK key index is set so that
* ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
* Beacon frames and Beacon frames that claim to use another BIGTK key
* index (i.e., a key that we do not have).
*/
if (idx < 0) {
idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
idx2 = idx + 1;
} else {
if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
idx2 = idx + 1;
else
idx2 = idx - 1;
}
if (rx->link_sta)
key = rcu_dereference(rx->link_sta->gtk[idx]);
if (!key)
key = rcu_dereference(rx->link->gtk[idx]);
if (!key && rx->link_sta)
key = rcu_dereference(rx->link_sta->gtk[idx2]);
if (!key)
key = rcu_dereference(rx->link->gtk[idx2]);
return key;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
int keyidx;
ieee80211_rx_result result = RX_DROP_U_DECRYPT_FAIL;
struct ieee80211_key *sta_ptk = NULL;
struct ieee80211_key *ptk_idx = NULL;
int mmie_keyidx = -1;
__le16 fc;
if (ieee80211_is_ext(hdr->frame_control))
return RX_CONTINUE;
/*
* Key selection 101
*
* There are five types of keys:
* - GTK (group keys)
* - IGTK (group keys for management frames)
* - BIGTK (group keys for Beacon frames)
* - PTK (pairwise keys)
* - STK (station-to-station pairwise keys)
*
* When selecting a key, we have to distinguish between multicast
* (including broadcast) and unicast frames, the latter can only
* use PTKs and STKs while the former always use GTKs, IGTKs, and
* BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
* then unicast frames can also use key indices like GTKs. Hence, if we
* don't have a PTK/STK we check the key index for a WEP key.
*
* Note that in a regular BSS, multicast frames are sent by the
* AP only, associated stations unicast the frame to the AP first
* which then multicasts it on their behalf.
*
* There is also a slight problem in IBSS mode: GTKs are negotiated
* with each station, that is something we don't currently handle.
* The spec seems to expect that one negotiates the same key with
* every station but there's no such requirement; VLANs could be
* possible.
*/
/* start without a key */
rx->key = NULL;
fc = hdr->frame_control;
if (rx->sta) {
int keyid = rx->sta->ptk_idx;
sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
if (ieee80211_has_protected(fc) &&
!(status->flag & RX_FLAG_IV_STRIPPED)) {
keyid = ieee80211_get_keyid(rx->skb);
if (unlikely(keyid < 0))
return RX_DROP_U_NO_KEY_ID;
ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
}
}
if (!ieee80211_has_protected(fc))
mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
rx->key = ptk_idx ? ptk_idx : sta_ptk;
if ((status->flag & RX_FLAG_DECRYPTED) &&
(status->flag & RX_FLAG_IV_STRIPPED))
return RX_CONTINUE;
/* Skip decryption if the frame is not protected. */
if (!ieee80211_has_protected(fc))
return RX_CONTINUE;
} else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
/* Broadcast/multicast robust management frame / BIP */
if ((status->flag & RX_FLAG_DECRYPTED) &&
(status->flag & RX_FLAG_IV_STRIPPED))
return RX_CONTINUE;
if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
NUM_DEFAULT_BEACON_KEYS) {
if (rx->sdata->dev)
cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
skb->data,
skb->len);
return RX_DROP_M_BAD_BCN_KEYIDX;
}
rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
if (!rx->key)
return RX_CONTINUE; /* Beacon protection not in use */
} else if (mmie_keyidx >= 0) {
/* Broadcast/multicast robust management frame / BIP */
if ((status->flag & RX_FLAG_DECRYPTED) &&
(status->flag & RX_FLAG_IV_STRIPPED))
return RX_CONTINUE;
if (mmie_keyidx < NUM_DEFAULT_KEYS ||
mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
return RX_DROP_M_BAD_MGMT_KEYIDX; /* unexpected BIP keyidx */
if (rx->link_sta) {
if (ieee80211_is_group_privacy_action(skb) &&
test_sta_flag(rx->sta, WLAN_STA_MFP))
return RX_DROP_MONITOR;
rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]);
}
if (!rx->key)
rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]);
} else if (!ieee80211_has_protected(fc)) {
/*
* The frame was not protected, so skip decryption. However, we
* need to set rx->key if there is a key that could have been
* used so that the frame may be dropped if encryption would
* have been expected.
*/
struct ieee80211_key *key = NULL;
int i;
if (ieee80211_is_beacon(fc)) {
key = ieee80211_rx_get_bigtk(rx, -1);
} else if (ieee80211_is_mgmt(fc) &&
is_multicast_ether_addr(hdr->addr1)) {
key = rcu_dereference(rx->link->default_mgmt_key);
} else {
if (rx->link_sta) {
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
key = rcu_dereference(rx->link_sta->gtk[i]);
if (key)
break;
}
}
if (!key) {
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
key = rcu_dereference(rx->link->gtk[i]);
if (key)
break;
}
}
}
if (key)
rx->key = key;
return RX_CONTINUE;
} else {
/*
* The device doesn't give us the IV so we won't be
* able to look up the key. That's ok though, we
* don't need to decrypt the frame, we just won't
* be able to keep statistics accurate.
* Except for key threshold notifications, should
* we somehow allow the driver to tell us which key
* the hardware used if this flag is set?
*/
if ((status->flag & RX_FLAG_DECRYPTED) &&
(status->flag & RX_FLAG_IV_STRIPPED))
return RX_CONTINUE;
keyidx = ieee80211_get_keyid(rx->skb);
if (unlikely(keyidx < 0))
return RX_DROP_U_NO_KEY_ID;
/* check per-station GTK first, if multicast packet */
if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta)
rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]);
/* if not found, try default key */
if (!rx->key) {
if (is_multicast_ether_addr(hdr->addr1))
rx->key = rcu_dereference(rx->link->gtk[keyidx]);
if (!rx->key)
rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
/*
* RSNA-protected unicast frames should always be
* sent with pairwise or station-to-station keys,
* but for WEP we allow using a key index as well.
*/
if (rx->key &&
rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
!is_multicast_ether_addr(hdr->addr1))
rx->key = NULL;
}
}
if (rx->key) {
if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
return RX_DROP_MONITOR;
/* TODO: add threshold stuff again */
} else {
return RX_DROP_MONITOR;
}
switch (rx->key->conf.cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
result = ieee80211_crypto_wep_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_TKIP:
result = ieee80211_crypto_tkip_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_CCMP:
result = ieee80211_crypto_ccmp_decrypt(
rx, IEEE80211_CCMP_MIC_LEN);
break;
case WLAN_CIPHER_SUITE_CCMP_256:
result = ieee80211_crypto_ccmp_decrypt(
rx, IEEE80211_CCMP_256_MIC_LEN);
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
result = ieee80211_crypto_aes_cmac_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
result = ieee80211_crypto_aes_gmac_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
result = ieee80211_crypto_gcmp_decrypt(rx);
break;
default:
result = RX_DROP_U_BAD_CIPHER;
}
/* the hdr variable is invalid after the decrypt handlers */
/* either the frame has been decrypted or will be dropped */
status->flag |= RX_FLAG_DECRYPTED;
if (unlikely(ieee80211_is_beacon(fc) && RX_RES_IS_UNUSABLE(result) &&
rx->sdata->dev))
cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
skb->data, skb->len);
return result;
}
void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
{
int i;
for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
skb_queue_head_init(&cache->entries[i].skb_list);
}
void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
{
int i;
for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
__skb_queue_purge(&cache->entries[i].skb_list);
}
static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
unsigned int frag, unsigned int seq, int rx_queue,
struct sk_buff **skb)
{
struct ieee80211_fragment_entry *entry;
entry = &cache->entries[cache->next++];
if (cache->next >= IEEE80211_FRAGMENT_MAX)
cache->next = 0;
__skb_queue_purge(&entry->skb_list);
__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
*skb = NULL;
entry->first_frag_time = jiffies;
entry->seq = seq;
entry->rx_queue = rx_queue;
entry->last_frag = frag;
entry->check_sequential_pn = false;
entry->extra_len = 0;
return entry;
}
static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
unsigned int frag, unsigned int seq,
int rx_queue, struct ieee80211_hdr *hdr)
{
struct ieee80211_fragment_entry *entry;
int i, idx;
idx = cache->next;
for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
struct ieee80211_hdr *f_hdr;
struct sk_buff *f_skb;
idx--;
if (idx < 0)
idx = IEEE80211_FRAGMENT_MAX - 1;
entry = &cache->entries[idx];
if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
entry->rx_queue != rx_queue ||
entry->last_frag + 1 != frag)
continue;
f_skb = __skb_peek(&entry->skb_list);
f_hdr = (struct ieee80211_hdr *) f_skb->data;
/*
* Check ftype and addresses are equal, else check next fragment
*/
if (((hdr->frame_control ^ f_hdr->frame_control) &
cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
!ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
!ether_addr_equal(hdr->addr2, f_hdr->addr2))
continue;
if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
__skb_queue_purge(&entry->skb_list);
continue;
}
return entry;
}
return NULL;
}
static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
{
return rx->key &&
(rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
ieee80211_has_protected(fc);
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
{
struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
struct ieee80211_hdr *hdr;
u16 sc;
__le16 fc;
unsigned int frag, seq;
struct ieee80211_fragment_entry *entry;
struct sk_buff *skb;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
hdr = (struct ieee80211_hdr *)rx->skb->data;
fc = hdr->frame_control;
if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
return RX_CONTINUE;
sc = le16_to_cpu(hdr->seq_ctrl);
frag = sc & IEEE80211_SCTL_FRAG;
if (rx->sta)
cache = &rx->sta->frags;
if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
goto out;
if (is_multicast_ether_addr(hdr->addr1))
return RX_DROP_MONITOR;
I802_DEBUG_INC(rx->local->rx_handlers_fragments);
if (skb_linearize(rx->skb))
return RX_DROP_U_OOM;
/*
* skb_linearize() might change the skb->data and
* previously cached variables (in this case, hdr) need to
* be refreshed with the new data.
*/
hdr = (struct ieee80211_hdr *)rx->skb->data;
seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
if (frag == 0) {
/* This is the first fragment of a new frame. */
entry = ieee80211_reassemble_add(cache, frag, seq,
rx->seqno_idx, &(rx->skb));
if (requires_sequential_pn(rx, fc)) {
int queue = rx->security_idx;
/* Store CCMP/GCMP PN so that we can verify that the
* next fragment has a sequential PN value.
*/
entry->check_sequential_pn = true;
entry->is_protected = true;
entry->key_color = rx->key->color;
memcpy(entry->last_pn,
rx->key->u.ccmp.rx_pn[queue],
IEEE80211_CCMP_PN_LEN);
BUILD_BUG_ON(offsetof(struct ieee80211_key,
u.ccmp.rx_pn) !=
offsetof(struct ieee80211_key,
u.gcmp.rx_pn));
BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
sizeof(rx->key->u.gcmp.rx_pn[queue]));
BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
IEEE80211_GCMP_PN_LEN);
} else if (rx->key &&
(ieee80211_has_protected(fc) ||
(status->flag & RX_FLAG_DECRYPTED))) {
entry->is_protected = true;
entry->key_color = rx->key->color;
}
return RX_QUEUED;
}
/* This is a fragment for a frame that should already be pending in
* fragment cache. Add this fragment to the end of the pending entry.
*/
entry = ieee80211_reassemble_find(cache, frag, seq,
rx->seqno_idx, hdr);
if (!entry) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
return RX_DROP_MONITOR;
}
/* "The receiver shall discard MSDUs and MMPDUs whose constituent
* MPDU PN values are not incrementing in steps of 1."
* see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
* and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
*/
if (entry->check_sequential_pn) {
int i;
u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
if (!requires_sequential_pn(rx, fc))
return RX_DROP_U_NONSEQ_PN;
/* Prevent mixed key and fragment cache attacks */
if (entry->key_color != rx->key->color)
return RX_DROP_U_BAD_KEY_COLOR;
memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
pn[i]++;
if (pn[i])
break;
}
rpn = rx->ccm_gcm.pn;
if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
return RX_DROP_U_REPLAY;
memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
} else if (entry->is_protected &&
(!rx->key ||
(!ieee80211_has_protected(fc) &&
!(status->flag & RX_FLAG_DECRYPTED)) ||
rx->key->color != entry->key_color)) {
/* Drop this as a mixed key or fragment cache attack, even
* if for TKIP Michael MIC should protect us, and WEP is a
* lost cause anyway.
*/
return RX_DROP_U_EXPECT_DEFRAG_PROT;
} else if (entry->is_protected && rx->key &&
entry->key_color != rx->key->color &&
(status->flag & RX_FLAG_DECRYPTED)) {
return RX_DROP_U_BAD_KEY_COLOR;
}
skb_pull(rx->skb, ieee80211_hdrlen(fc));
__skb_queue_tail(&entry->skb_list, rx->skb);
entry->last_frag = frag;
entry->extra_len += rx->skb->len;
if (ieee80211_has_morefrags(fc)) {
rx->skb = NULL;
return RX_QUEUED;
}
rx->skb = __skb_dequeue(&entry->skb_list);
if (skb_tailroom(rx->skb) < entry->extra_len) {
I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
GFP_ATOMIC))) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
__skb_queue_purge(&entry->skb_list);
return RX_DROP_U_OOM;
}
}
while ((skb = __skb_dequeue(&entry->skb_list))) {
skb_put_data(rx->skb, skb->data, skb->len);
dev_kfree_skb(skb);
}
out:
ieee80211_led_rx(rx->local);
if (rx->sta)
rx->link_sta->rx_stats.packets++;
return RX_CONTINUE;
}
static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
{
if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
return -EACCES;
return 0;
}
static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
/*
* Pass through unencrypted frames if the hardware has
* decrypted them already.
*/
if (status->flag & RX_FLAG_DECRYPTED)
return 0;
/* Drop unencrypted frames if key is set. */
if (unlikely(!ieee80211_has_protected(fc) &&
!ieee80211_is_any_nullfunc(fc) &&
ieee80211_is_data(fc) && rx->key))
return -EACCES;
return 0;
}
VISIBLE_IF_MAC80211_KUNIT ieee80211_rx_result
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
__le16 fc = mgmt->frame_control;
/*
* Pass through unencrypted frames if the hardware has
* decrypted them already.
*/
if (status->flag & RX_FLAG_DECRYPTED)
return RX_CONTINUE;
/* drop unicast protected dual (that wasn't protected) */
if (ieee80211_is_action(fc) &&
mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
return RX_DROP_U_UNPROT_DUAL;
if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
if (unlikely(!ieee80211_has_protected(fc) &&
ieee80211_is_unicast_robust_mgmt_frame(rx->skb))) {
if (ieee80211_is_deauth(fc) ||
ieee80211_is_disassoc(fc)) {
/*
* Permit unprotected deauth/disassoc frames
* during 4-way-HS (key is installed after HS).
*/
if (!rx->key)
return RX_CONTINUE;
cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
rx->skb->data,
rx->skb->len);
}
return RX_DROP_U_UNPROT_UCAST_MGMT;
}
/* BIP does not use Protected field, so need to check MMIE */
if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
if (ieee80211_is_deauth(fc) ||
ieee80211_is_disassoc(fc))
cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
rx->skb->data,
rx->skb->len);
return RX_DROP_U_UNPROT_MCAST_MGMT;
}
if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
rx->skb->data,
rx->skb->len);
return RX_DROP_U_UNPROT_BEACON;
}
/*
* When using MFP, Action frames are not allowed prior to
* having configured keys.
*/
if (unlikely(ieee80211_is_action(fc) && !rx->key &&
ieee80211_is_robust_mgmt_frame(rx->skb)))
return RX_DROP_U_UNPROT_ACTION;
/* drop unicast public action frames when using MPF */
if (is_unicast_ether_addr(mgmt->da) &&
ieee80211_is_protected_dual_of_public_action(rx->skb))
return RX_DROP_U_UNPROT_UNICAST_PUB_ACTION;
}
/*
* Drop robust action frames before assoc regardless of MFP state,
* after assoc we also have decided on MFP or not.
*/
if (ieee80211_is_action(fc) &&
ieee80211_is_robust_mgmt_frame(rx->skb) &&
(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))
return RX_DROP_U_UNPROT_ROBUST_ACTION;
return RX_CONTINUE;
}
EXPORT_SYMBOL_IF_MAC80211_KUNIT(ieee80211_drop_unencrypted_mgmt);
static ieee80211_rx_result
__ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
bool check_port_control = false;
struct ethhdr *ehdr;
int ret;
*port_control = false;
if (ieee80211_has_a4(hdr->frame_control) &&
sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
return RX_DROP_U_UNEXPECTED_VLAN_4ADDR;
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
!!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
if (!sdata->u.mgd.use_4addr)
return RX_DROP_U_UNEXPECTED_STA_4ADDR;
else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
check_port_control = true;
}
if (is_multicast_ether_addr(hdr->addr1) &&
sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
return RX_DROP_U_UNEXPECTED_VLAN_MCAST;
ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
if (ret < 0)
return RX_DROP_U_INVALID_8023;
ehdr = (struct ethhdr *) rx->skb->data;
if (ehdr->h_proto == rx->sdata->control_port_protocol)
*port_control = true;
else if (check_port_control)
return RX_DROP_U_NOT_PORT_CONTROL;
return RX_CONTINUE;
}
bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata,
const u8 *addr, int *out_link_id)
{
unsigned int link_id;
/* non-MLO, or MLD address replaced by hardware */
if (ether_addr_equal(sdata->vif.addr, addr))
return true;
if (!ieee80211_vif_is_mld(&sdata->vif))
return false;
for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) {
struct ieee80211_bss_conf *conf;
conf = rcu_dereference(sdata->vif.link_conf[link_id]);
if (!conf)
continue;
if (ether_addr_equal(conf->addr, addr)) {
if (out_link_id)
*out_link_id = link_id;
return true;
}
}
return false;
}
/*
* requires that rx->skb is a frame with ethernet header
*/
static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
{
static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
/*
* Allow EAPOL frames to us/the PAE group address regardless of
* whether the frame was encrypted or not, and always disallow
* all other destination addresses for them.
*/
if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) ||
ether_addr_equal(ehdr->h_dest, pae_group_addr);
if (ieee80211_802_1x_port_control(rx) ||
ieee80211_drop_unencrypted(rx, fc))
return false;
return true;
}
static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct net_device *dev = sdata->dev;
if (unlikely((skb->protocol == sdata->control_port_protocol ||
(skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
!sdata->control_port_no_preauth)) &&
sdata->control_port_over_nl80211)) {
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
cfg80211_rx_control_port(dev, skb, noencrypt, rx->link_id);
dev_kfree_skb(skb);
} else {
struct ethhdr *ehdr = (void *)skb_mac_header(skb);
memset(skb->cb, 0, sizeof(skb->cb));
/*
* 802.1X over 802.11 requires that the authenticator address
* be used for EAPOL frames. However, 802.1X allows the use of
* the PAE group address instead. If the interface is part of
* a bridge and we pass the frame with the PAE group address,
* then the bridge will forward it to the network (even if the
* client was not associated yet), which isn't supposed to
* happen.
* To avoid that, rewrite the destination address to our own
* address, so that the authenticator (e.g. hostapd) will see
* the frame, but bridge won't forward it anywhere else. Note
* that due to earlier filtering, the only other address can
* be the PAE group address, unless the hardware allowed them
* through in 802.3 offloaded mode.
*/
if (unlikely(skb->protocol == sdata->control_port_protocol &&
!ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
/* deliver to local stack */
if (rx->list)
list_add_tail(&skb->list, rx->list);
else
netif_receive_skb(skb);
}
}
/*
* requires that rx->skb is a frame with ethernet header
*/
static void
ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct net_device *dev = sdata->dev;
struct sk_buff *skb, *xmit_skb;
struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
struct sta_info *dsta;
skb = rx->skb;
xmit_skb = NULL;
dev_sw_netstats_rx_add(dev, skb->len);
if (rx->sta) {
/* The seqno index has the same property as needed
* for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
* for non-QoS-data frames. Here we know it's a data
* frame, so count MSDUs.
*/
u64_stats_update_begin(&rx->link_sta->rx_stats.syncp);
rx->link_sta->rx_stats.msdu[rx->seqno_idx]++;
u64_stats_update_end(&rx->link_sta->rx_stats.syncp);
}
if ((sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
ehdr->h_proto != rx->sdata->control_port_protocol &&
(sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
if (is_multicast_ether_addr(ehdr->h_dest) &&
ieee80211_vif_get_num_mcast_if(sdata) != 0) {
/*
* send multicast frames both to higher layers in
* local net stack and back to the wireless medium
*/
xmit_skb = skb_copy(skb, GFP_ATOMIC);
if (!xmit_skb)
net_info_ratelimited("%s: failed to clone multicast frame\n",
dev->name);
} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
!ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
dsta = sta_info_get(sdata, ehdr->h_dest);
if (dsta) {
/*
* The destination station is associated to
* this AP (in this VLAN), so send the frame
* directly to it and do not pass it to local
* net stack.
*/
xmit_skb = skb;
skb = NULL;
}
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (skb) {
/* 'align' will only take the values 0 or 2 here since all
* frames are required to be aligned to 2-byte boundaries
* when being passed to mac80211; the code here works just
* as well if that isn't true, but mac80211 assumes it can
* access fields as 2-byte aligned (e.g. for ether_addr_equal)
*/
int align;
align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
if (align) {
if (WARN_ON(skb_headroom(skb) < 3)) {
dev_kfree_skb(skb);
skb = NULL;
} else {
u8 *data = skb->data;
size_t len = skb_headlen(skb);
skb->data -= align;
memmove(skb->data, data, len);
skb_set_tail_pointer(skb, len);
}
}
}
#endif
if (skb) {
skb->protocol = eth_type_trans(skb, dev);
ieee80211_deliver_skb_to_local_stack(skb, rx);
}
if (xmit_skb) {
/*
* Send to wireless media and increase priority by 256 to
* keep the received priority instead of reclassifying
* the frame (see cfg80211_classify8021d).
*/
xmit_skb->priority += 256;
xmit_skb->protocol = htons(ETH_P_802_3);
skb_reset_network_header(xmit_skb);
skb_reset_mac_header(xmit_skb);
dev_queue_xmit(xmit_skb);
}
}
#ifdef CONFIG_MAC80211_MESH
static bool
ieee80211_rx_mesh_fast_forward(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb, int hdrlen)
{
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
struct ieee80211_mesh_fast_tx_key key = {
.type = MESH_FAST_TX_TYPE_FORWARDED
};
struct ieee80211_mesh_fast_tx *entry;
struct ieee80211s_hdr *mesh_hdr;
struct tid_ampdu_tx *tid_tx;
struct sta_info *sta;
struct ethhdr eth;
u8 tid;
mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(eth));
if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6)
ether_addr_copy(key.addr, mesh_hdr->eaddr1);
else if (!(mesh_hdr->flags & MESH_FLAGS_AE))
ether_addr_copy(key.addr, skb->data);
else
return false;
entry = mesh_fast_tx_get(sdata, &key);
if (!entry)
return false;
sta = rcu_dereference(entry->mpath->next_hop);
if (!sta)
return false;
if (skb_linearize(skb))
return false;
tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK;
tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]);
if (tid_tx) {
if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state))
return false;
if (tid_tx->timeout)
tid_tx->last_tx = jiffies;
}
ieee80211_aggr_check(sdata, sta, skb);
if (ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
&skb->protocol))
hdrlen += ETH_ALEN;
else
skb->protocol = htons(skb->len - hdrlen);
skb_set_network_header(skb, hdrlen + 2);
skb->dev = sdata->dev;
memcpy(&eth, skb->data, ETH_HLEN - 2);
skb_pull(skb, 2);
__ieee80211_xmit_fast(sdata, sta, &entry->fast_tx, skb, tid_tx,
eth.h_dest, eth.h_source);
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
return true;
}
#endif
static ieee80211_rx_result
ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta,
struct sk_buff *skb)
{
#ifdef CONFIG_MAC80211_MESH
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
struct ieee80211_local *local = sdata->local;
uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA;
struct ieee80211_hdr hdr = {
.frame_control = cpu_to_le16(fc)
};
struct ieee80211_hdr *fwd_hdr;
struct ieee80211s_hdr *mesh_hdr;
struct ieee80211_tx_info *info;
struct sk_buff *fwd_skb;
struct ethhdr *eth;
bool multicast;
int tailroom = 0;
int hdrlen, mesh_hdrlen;
u8 *qos;
if (!ieee80211_vif_is_mesh(&sdata->vif))
return RX_CONTINUE;
if (!pskb_may_pull(skb, sizeof(*eth) + 6))
return RX_DROP_MONITOR;
mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth));
mesh_hdrlen = ieee80211_get_mesh_hdrlen(mesh_hdr);
if (!pskb_may_pull(skb, sizeof(*eth) + mesh_hdrlen))
return RX_DROP_MONITOR;
eth = (struct ethhdr *)skb->data;
multicast = is_multicast_ether_addr(eth->h_dest);
mesh_hdr = (struct ieee80211s_hdr *)(eth + 1);
if (!mesh_hdr->ttl)
return RX_DROP_MONITOR;
/* frame is in RMC, don't forward */
if (is_multicast_ether_addr(eth->h_dest) &&
mesh_rmc_check(sdata, eth->h_source, mesh_hdr))
return RX_DROP_MONITOR;
/* forward packet */
if (sdata->crypto_tx_tailroom_needed_cnt)
tailroom = IEEE80211_ENCRYPT_TAILROOM;
if (mesh_hdr->flags & MESH_FLAGS_AE) {
struct mesh_path *mppath;
char *proxied_addr;
bool update = false;
if (multicast)
proxied_addr = mesh_hdr->eaddr1;
else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6)
/* has_a4 already checked in ieee80211_rx_mesh_check */
proxied_addr = mesh_hdr->eaddr2;
else
return RX_DROP_MONITOR;
rcu_read_lock();
mppath = mpp_path_lookup(sdata, proxied_addr);
if (!mppath) {
mpp_path_add(sdata, proxied_addr, eth->h_source);
} else {
spin_lock_bh(&mppath->state_lock);
if (!ether_addr_equal(mppath->mpp, eth->h_source)) {
memcpy(mppath->mpp, eth->h_source, ETH_ALEN);
update = true;
}
mppath->exp_time = jiffies;
spin_unlock_bh(&mppath->state_lock);
}
/* flush fast xmit cache if the address path changed */
if (update)
mesh_fast_tx_flush_addr(sdata, proxied_addr);
rcu_read_unlock();
}
/* Frame has reached destination. Don't forward */
if (ether_addr_equal(sdata->vif.addr, eth->h_dest))
goto rx_accept;
if (!--mesh_hdr->ttl) {
if (multicast)
goto rx_accept;
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
return RX_DROP_MONITOR;
}
if (!ifmsh->mshcfg.dot11MeshForwarding) {
if (is_multicast_ether_addr(eth->h_dest))
goto rx_accept;
return RX_DROP_MONITOR;
}
skb_set_queue_mapping(skb, ieee802_1d_to_ac[skb->priority]);
if (!multicast &&
ieee80211_rx_mesh_fast_forward(sdata, skb, mesh_hdrlen))
return RX_QUEUED;
ieee80211_fill_mesh_addresses(&hdr, &hdr.frame_control,
eth->h_dest, eth->h_source);
hdrlen = ieee80211_hdrlen(hdr.frame_control);
if (multicast) {
int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth);
fwd_skb = skb_copy_expand(skb, local->tx_headroom + extra_head +
IEEE80211_ENCRYPT_HEADROOM,
tailroom, GFP_ATOMIC);
if (!fwd_skb)
goto rx_accept;
} else {
fwd_skb = skb;
skb = NULL;
if (skb_cow_head(fwd_skb, hdrlen - sizeof(struct ethhdr)))
return RX_DROP_U_OOM;
if (skb_linearize(fwd_skb))
return RX_DROP_U_OOM;
}
fwd_hdr = skb_push(fwd_skb, hdrlen - sizeof(struct ethhdr));
memcpy(fwd_hdr, &hdr, hdrlen - 2);
qos = ieee80211_get_qos_ctl(fwd_hdr);
qos[0] = qos[1] = 0;
skb_reset_mac_header(fwd_skb);
hdrlen += mesh_hdrlen;
if (ieee80211_get_8023_tunnel_proto(fwd_skb->data + hdrlen,
&fwd_skb->protocol))
hdrlen += ETH_ALEN;
else
fwd_skb->protocol = htons(fwd_skb->len - hdrlen);
skb_set_network_header(fwd_skb, hdrlen + 2);
info = IEEE80211_SKB_CB(fwd_skb);
memset(info, 0, sizeof(*info));
info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
info->control.vif = &sdata->vif;
info->control.jiffies = jiffies;
fwd_skb->dev = sdata->dev;
if (multicast) {
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
/* update power mode indication when forwarding */
ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
/* mesh power mode flags updated in mesh_nexthop_lookup */
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
} else {
/* unable to resolve next hop */
if (sta)
mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
hdr.addr3, 0,
WLAN_REASON_MESH_PATH_NOFORWARD,
sta->sta.addr);
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
kfree_skb(fwd_skb);
goto rx_accept;
}
IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
ieee80211_add_pending_skb(local, fwd_skb);
rx_accept:
if (!skb)
return RX_QUEUED;
ieee80211_strip_8023_mesh_hdr(skb);
#endif
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
__ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
{
struct net_device *dev = rx->sdata->dev;
struct sk_buff *skb = rx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
__le16 fc = hdr->frame_control;
struct sk_buff_head frame_list;
ieee80211_rx_result res;
struct ethhdr ethhdr;
const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
check_da = NULL;
check_sa = NULL;
} else switch (rx->sdata->vif.type) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
check_da = NULL;
break;
case NL80211_IFTYPE_STATION:
if (!rx->sta ||
!test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
check_sa = NULL;
break;
case NL80211_IFTYPE_MESH_POINT:
check_sa = NULL;
check_da = NULL;
break;
default:
break;
}
skb->dev = dev;
__skb_queue_head_init(&frame_list);
if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
rx->sdata->vif.addr,
rx->sdata->vif.type,
data_offset, true))
return RX_DROP_U_BAD_AMSDU;
if (rx->sta->amsdu_mesh_control < 0) {
s8 valid = -1;
int i;
for (i = 0; i <= 2; i++) {
if (!ieee80211_is_valid_amsdu(skb, i))
continue;
if (valid >= 0) {
/* ambiguous */
valid = -1;
break;
}
valid = i;
}
rx->sta->amsdu_mesh_control = valid;
}
ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
rx->sdata->vif.type,
rx->local->hw.extra_tx_headroom,
check_da, check_sa,
rx->sta->amsdu_mesh_control);
while (!skb_queue_empty(&frame_list)) {
rx->skb = __skb_dequeue(&frame_list);
res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb);
switch (res) {
case RX_QUEUED:
continue;
case RX_CONTINUE:
break;
default:
goto free;
}
if (!ieee80211_frame_allowed(rx, fc))
goto free;
ieee80211_deliver_skb(rx);
continue;
free:
dev_kfree_skb(rx->skb);
}
return RX_QUEUED;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
__le16 fc = hdr->frame_control;
if (!(status->rx_flags & IEEE80211_RX_AMSDU))
return RX_CONTINUE;
if (unlikely(!ieee80211_is_data(fc)))
return RX_CONTINUE;
if (unlikely(!ieee80211_is_data_present(fc)))
return RX_DROP_MONITOR;
if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
switch (rx->sdata->vif.type) {
case NL80211_IFTYPE_AP_VLAN:
if (!rx->sdata->u.vlan.sta)
return RX_DROP_U_BAD_4ADDR;
break;
case NL80211_IFTYPE_STATION:
if (!rx->sdata->u.mgd.use_4addr)
return RX_DROP_U_BAD_4ADDR;
break;
case NL80211_IFTYPE_MESH_POINT:
break;
default:
return RX_DROP_U_BAD_4ADDR;
}
}
if (is_multicast_ether_addr(hdr->addr1) || !rx->sta)
return RX_DROP_U_BAD_AMSDU;
if (rx->key) {
/*
* We should not receive A-MSDUs on pre-HT connections,
* and HT connections cannot use old ciphers. Thus drop
* them, as in those cases we couldn't even have SPP
* A-MSDUs or such.
*/
switch (rx->key->conf.cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
case WLAN_CIPHER_SUITE_TKIP:
return RX_DROP_U_BAD_AMSDU_CIPHER;
default:
break;
}
}
return __ieee80211_rx_h_amsdu(rx, 0);
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_local *local = rx->local;
struct net_device *dev = sdata->dev;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
__le16 fc = hdr->frame_control;
ieee80211_rx_result res;
bool port_control;
if (unlikely(!ieee80211_is_data(hdr->frame_control)))
return RX_CONTINUE;
if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
return RX_DROP_MONITOR;
/*
* Send unexpected-4addr-frame event to hostapd. For older versions,
* also drop the frame to cooked monitor interfaces.
*/
if (ieee80211_has_a4(hdr->frame_control) &&
sdata->vif.type == NL80211_IFTYPE_AP) {
if (rx->sta &&
!test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
cfg80211_rx_unexpected_4addr_frame(
rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
return RX_DROP_MONITOR;
}
res = __ieee80211_data_to_8023(rx, &port_control);
if (unlikely(res != RX_CONTINUE))
return res;
res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb);
if (res != RX_CONTINUE)
return res;
if (!ieee80211_frame_allowed(rx, fc))
return RX_DROP_MONITOR;
/* directly handle TDLS channel switch requests/responses */
if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
cpu_to_be16(ETH_P_TDLS))) {
struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
if (pskb_may_pull(rx->skb,
offsetof(struct ieee80211_tdls_data, u)) &&
tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
tf->category == WLAN_CATEGORY_TDLS &&
(tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
rx->skb->protocol = cpu_to_be16(ETH_P_TDLS);
__ieee80211_queue_skb_to_iface(sdata, rx->link_id,
rx->sta, rx->skb);
return RX_QUEUED;
}
}
if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
unlikely(port_control) && sdata->bss) {
sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
u.ap);
dev = sdata->dev;
rx->sdata = sdata;
}
rx->skb->dev = dev;
if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
!is_multicast_ether_addr(
((struct ethhdr *)rx->skb->data)->h_dest) &&
(!local->scanning &&
!test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
mod_timer(&local->dynamic_ps_timer, jiffies +
msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
ieee80211_deliver_skb(rx);
return RX_QUEUED;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
struct tid_ampdu_rx *tid_agg_rx;
u16 start_seq_num;
u16 tid;
if (likely(!ieee80211_is_ctl(bar->frame_control)))
return RX_CONTINUE;
if (ieee80211_is_back_req(bar->frame_control)) {
struct {
__le16 control, start_seq_num;
} __packed bar_data;
struct ieee80211_event event = {
.type = BAR_RX_EVENT,
};
if (!rx->sta)
return RX_DROP_MONITOR;
if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
&bar_data, sizeof(bar_data)))
return RX_DROP_MONITOR;
tid = le16_to_cpu(bar_data.control) >> 12;
if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
!test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
WLAN_BACK_RECIPIENT,
WLAN_REASON_QSTA_REQUIRE_SETUP);
tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
if (!tid_agg_rx)
return RX_DROP_MONITOR;
start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
event.u.ba.tid = tid;
event.u.ba.ssn = start_seq_num;
event.u.ba.sta = &rx->sta->sta;
/* reset session timer */
if (tid_agg_rx->timeout)
mod_timer(&tid_agg_rx->session_timer,
TU_TO_EXP_TIME(tid_agg_rx->timeout));
spin_lock(&tid_agg_rx->reorder_lock);
/* release stored frames up to start of BAR */
ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
start_seq_num, frames);
spin_unlock(&tid_agg_rx->reorder_lock);
drv_event_callback(rx->local, rx->sdata, &event);
kfree_skb(skb);
return RX_QUEUED;
}
/*
* After this point, we only want management frames,
* so we can drop all remaining control frames to
* cooked monitor interfaces.
*/
return RX_DROP_MONITOR;
}
static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgmt *mgmt,
size_t len)
{
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
struct ieee80211_mgmt *resp;
if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
/* Not to own unicast address */
return;
}
if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) ||
!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) {
/* Not from the current AP or not associated yet. */
return;
}
if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
/* Too short SA Query request frame */
return;
}
skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
if (skb == NULL)
return;
skb_reserve(skb, local->hw.extra_tx_headroom);
resp = skb_put_zero(skb, 24);
memcpy(resp->da, mgmt->sa, ETH_ALEN);
memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN);
resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
memcpy(resp->u.action.u.sa_query.trans_id,
mgmt->u.action.u.sa_query.trans_id,
WLAN_SA_QUERY_TR_ID_LEN);
ieee80211_tx_skb(sdata, skb);
}
static void
ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx)
{
struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
struct ieee80211_bss_conf *bss_conf;
const struct element *ie;
size_t baselen;
if (!wiphy_ext_feature_isset(rx->local->hw.wiphy,
NL80211_EXT_FEATURE_BSS_COLOR))
return;
if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION))
return;
bss_conf = rx->link->conf;
if (bss_conf->csa_active || bss_conf->color_change_active ||
!bss_conf->he_bss_color.enabled)
return;
baselen = mgmt->u.beacon.variable - rx->skb->data;
if (baselen > rx->skb->len)
return;
ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
mgmt->u.beacon.variable,
rx->skb->len - baselen);
if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) &&
ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) {
const struct ieee80211_he_operation *he_oper;
u8 color;
he_oper = (void *)(ie->data + 1);
if (le32_get_bits(he_oper->he_oper_params,
IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED))
return;
color = le32_get_bits(he_oper->he_oper_params,
IEEE80211_HE_OPERATION_BSS_COLOR_MASK);
if (color == bss_conf->he_bss_color.color)
ieee80211_obss_color_collision_notify(&rx->sdata->vif,
BIT_ULL(color),
bss_conf->link_id);
}
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
{
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
if (ieee80211_is_s1g_beacon(mgmt->frame_control))
return RX_CONTINUE;
/*
* From here on, look only at management frames.
* Data and control frames are already handled,
* and unknown (reserved) frames are useless.
*/
if (rx->skb->len < 24)
return RX_DROP_MONITOR;
if (!ieee80211_is_mgmt(mgmt->frame_control))
return RX_DROP_MONITOR;
/* drop too small action frames */
if (ieee80211_is_action(mgmt->frame_control) &&
rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
return RX_DROP_U_RUNT_ACTION;
if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
ieee80211_is_beacon(mgmt->frame_control) &&
!(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
int sig = 0;
/* sw bss color collision detection */
ieee80211_rx_check_bss_color_collision(rx);
if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
!(status->flag & RX_FLAG_NO_SIGNAL_VAL))
sig = status->signal;
cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
rx->skb->data, rx->skb->len,
ieee80211_rx_status_to_khz(status),
sig);
rx->flags |= IEEE80211_RX_BEACON_REPORTED;
}
return ieee80211_drop_unencrypted_mgmt(rx);
}
static bool
ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx)
{
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data;
struct ieee80211_sub_if_data *sdata = rx->sdata;
/* TWT actions are only supported in AP for the moment */
if (sdata->vif.type != NL80211_IFTYPE_AP)
return false;
if (!rx->local->ops->add_twt_setup)
return false;
if (!sdata->vif.bss_conf.twt_responder)
return false;
if (!rx->sta)
return false;
switch (mgmt->u.action.u.s1g.action_code) {
case WLAN_S1G_TWT_SETUP: {
struct ieee80211_twt_setup *twt;
if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
1 + /* action code */
sizeof(struct ieee80211_twt_setup) +
2 /* TWT req_type agrt */)
break;
twt = (void *)mgmt->u.action.u.s1g.variable;
if (twt->element_id != WLAN_EID_S1G_TWT)
break;
if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
4 + /* action code + token + tlv */
twt->length)
break;
return true; /* queue the frame */
}
case WLAN_S1G_TWT_TEARDOWN:
if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2)
break;
return true; /* queue the frame */
default:
break;
}
return false;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
int len = rx->skb->len;
if (!ieee80211_is_action(mgmt->frame_control))
return RX_CONTINUE;
if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
return RX_DROP_U_ACTION_UNKNOWN_SRC;
switch (mgmt->u.action.category) {
case WLAN_CATEGORY_HT:
/* reject HT action frames from stations not supporting HT */
if (!rx->link_sta->pub->ht_cap.ht_supported)
goto invalid;
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_AP &&
sdata->vif.type != NL80211_IFTYPE_ADHOC)
break;
/* verify action & smps_control/chanwidth are present */
if (len < IEEE80211_MIN_ACTION_SIZE + 2)
goto invalid;
switch (mgmt->u.action.u.ht_smps.action) {
case WLAN_HT_ACTION_SMPS: {
struct ieee80211_supported_band *sband;
enum ieee80211_smps_mode smps_mode;
struct sta_opmode_info sta_opmode = {};
if (sdata->vif.type != NL80211_IFTYPE_AP &&
sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
goto handled;
/* convert to HT capability */
switch (mgmt->u.action.u.ht_smps.smps_control) {
case WLAN_HT_SMPS_CONTROL_DISABLED:
smps_mode = IEEE80211_SMPS_OFF;
break;
case WLAN_HT_SMPS_CONTROL_STATIC:
smps_mode = IEEE80211_SMPS_STATIC;
break;
case WLAN_HT_SMPS_CONTROL_DYNAMIC:
smps_mode = IEEE80211_SMPS_DYNAMIC;
break;
default:
goto invalid;
}
/* if no change do nothing */
if (rx->link_sta->pub->smps_mode == smps_mode)
goto handled;
rx->link_sta->pub->smps_mode = smps_mode;
sta_opmode.smps_mode =
ieee80211_smps_mode_to_smps_mode(smps_mode);
sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
sband = rx->local->hw.wiphy->bands[status->band];
rate_control_rate_update(local, sband, rx->sta, 0,
IEEE80211_RC_SMPS_CHANGED);
cfg80211_sta_opmode_change_notify(sdata->dev,
rx->sta->addr,
&sta_opmode,
GFP_ATOMIC);
goto handled;
}
case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
struct ieee80211_supported_band *sband;
u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
struct sta_opmode_info sta_opmode = {};
/* If it doesn't support 40 MHz it can't change ... */
if (!(rx->link_sta->pub->ht_cap.cap &
IEEE80211_HT_CAP_SUP_WIDTH_20_40))
goto handled;
if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
max_bw = IEEE80211_STA_RX_BW_20;
else
max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta);
/* set cur_max_bandwidth and recalc sta bw */
rx->link_sta->cur_max_bandwidth = max_bw;
new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta);
if (rx->link_sta->pub->bandwidth == new_bw)
goto handled;
rx->link_sta->pub->bandwidth = new_bw;
sband = rx->local->hw.wiphy->bands[status->band];
sta_opmode.bw =
ieee80211_sta_rx_bw_to_chan_width(rx->link_sta);
sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
rate_control_rate_update(local, sband, rx->sta, 0,
IEEE80211_RC_BW_CHANGED);
cfg80211_sta_opmode_change_notify(sdata->dev,
rx->sta->addr,
&sta_opmode,
GFP_ATOMIC);
goto handled;
}
default:
goto invalid;
}
break;
case WLAN_CATEGORY_PUBLIC:
case WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION:
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
goto invalid;
if (sdata->vif.type != NL80211_IFTYPE_STATION)
break;
if (!rx->sta)
break;
if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid))
break;
if (mgmt->u.action.u.ext_chan_switch.action_code !=
WLAN_PUB_ACTION_EXT_CHANSW_ANN)
break;
if (len < offsetof(struct ieee80211_mgmt,
u.action.u.ext_chan_switch.variable))
goto invalid;
goto queue;
case WLAN_CATEGORY_VHT:
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_AP &&
sdata->vif.type != NL80211_IFTYPE_ADHOC)
break;
/* verify action code is present */
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
goto invalid;
switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
case WLAN_VHT_ACTION_OPMODE_NOTIF: {
/* verify opmode is present */
if (len < IEEE80211_MIN_ACTION_SIZE + 2)
goto invalid;
goto queue;
}
case WLAN_VHT_ACTION_GROUPID_MGMT: {
if (len < IEEE80211_MIN_ACTION_SIZE + 25)
goto invalid;
goto queue;
}
default:
break;
}
break;
case WLAN_CATEGORY_BACK:
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_AP &&
sdata->vif.type != NL80211_IFTYPE_ADHOC)
break;
/* verify action_code is present */
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
break;
switch (mgmt->u.action.u.addba_req.action_code) {
case WLAN_ACTION_ADDBA_REQ:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.addba_req)))
goto invalid;
break;
case WLAN_ACTION_ADDBA_RESP:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.addba_resp)))
goto invalid;
break;
case WLAN_ACTION_DELBA:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.delba)))
goto invalid;
break;
default:
goto invalid;
}
goto queue;
case WLAN_CATEGORY_SPECTRUM_MGMT:
/* verify action_code is present */
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
break;
switch (mgmt->u.action.u.measurement.action_code) {
case WLAN_ACTION_SPCT_MSR_REQ:
if (status->band != NL80211_BAND_5GHZ)
break;
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.measurement)))
break;
if (sdata->vif.type != NL80211_IFTYPE_STATION)
break;
ieee80211_process_measurement_req(sdata, mgmt, len);
goto handled;
case WLAN_ACTION_SPCT_CHL_SWITCH: {
u8 *bssid;
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.chan_switch)))
break;
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
sdata->vif.type != NL80211_IFTYPE_ADHOC &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
break;
if (sdata->vif.type == NL80211_IFTYPE_STATION)
bssid = sdata->deflink.u.mgd.bssid;
else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
bssid = sdata->u.ibss.bssid;
else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
bssid = mgmt->sa;
else
break;
if (!ether_addr_equal(mgmt->bssid, bssid))
break;
goto queue;
}
}
break;
case WLAN_CATEGORY_SELF_PROTECTED:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.self_prot.action_code)))
break;
switch (mgmt->u.action.u.self_prot.action_code) {
case WLAN_SP_MESH_PEERING_OPEN:
case WLAN_SP_MESH_PEERING_CLOSE:
case WLAN_SP_MESH_PEERING_CONFIRM:
if (!ieee80211_vif_is_mesh(&sdata->vif))
goto invalid;
if (sdata->u.mesh.user_mpm)
/* userspace handles this frame */
break;
goto queue;
case WLAN_SP_MGK_INFORM:
case WLAN_SP_MGK_ACK:
if (!ieee80211_vif_is_mesh(&sdata->vif))
goto invalid;
break;
}
break;
case WLAN_CATEGORY_MESH_ACTION:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.mesh_action.action_code)))
break;
if (!ieee80211_vif_is_mesh(&sdata->vif))
break;
if (mesh_action_is_path_sel(mgmt) &&
!mesh_path_sel_is_hwmp(sdata))
break;
goto queue;
case WLAN_CATEGORY_S1G:
if (len < offsetofend(typeof(*mgmt),
u.action.u.s1g.action_code))
break;
switch (mgmt->u.action.u.s1g.action_code) {
case WLAN_S1G_TWT_SETUP:
case WLAN_S1G_TWT_TEARDOWN:
if (ieee80211_process_rx_twt_action(rx))
goto queue;
break;
default:
break;
}
break;
case WLAN_CATEGORY_PROTECTED_EHT:
if (len < offsetofend(typeof(*mgmt),
u.action.u.ttlm_req.action_code))
break;
switch (mgmt->u.action.u.ttlm_req.action_code) {
case WLAN_PROTECTED_EHT_ACTION_TTLM_REQ:
if (sdata->vif.type != NL80211_IFTYPE_STATION)
break;
if (len < offsetofend(typeof(*mgmt),
u.action.u.ttlm_req))
goto invalid;
goto queue;
case WLAN_PROTECTED_EHT_ACTION_TTLM_RES:
if (sdata->vif.type != NL80211_IFTYPE_STATION)
break;
if (len < offsetofend(typeof(*mgmt),
u.action.u.ttlm_res))
goto invalid;
goto queue;
default:
break;
}
break;
}
return RX_CONTINUE;
invalid:
status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
/* will return in the next handlers */
return RX_CONTINUE;
handled:
if (rx->sta)
rx->link_sta->rx_stats.packets++;
dev_kfree_skb(rx->skb);
return RX_QUEUED;
queue:
ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb);
return RX_QUEUED;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
struct cfg80211_rx_info info = {
.freq = ieee80211_rx_status_to_khz(status),
.buf = rx->skb->data,
.len = rx->skb->len,
.link_id = rx->link_id,
.have_link_id = rx->link_id >= 0,
};
/* skip known-bad action frames and return them in the next handler */
if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
return RX_CONTINUE;
/*
* Getting here means the kernel doesn't know how to handle
* it, but maybe userspace does ... include returned frames
* so userspace can register for those to know whether ones
* it transmitted were processed or returned.
*/
if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
!(status->flag & RX_FLAG_NO_SIGNAL_VAL))
info.sig_dbm = status->signal;
if (ieee80211_is_timing_measurement(rx->skb) ||
ieee80211_is_ftm(rx->skb)) {
info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp);
info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp);
}
if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) {
if (rx->sta)
rx->link_sta->rx_stats.packets++;
dev_kfree_skb(rx->skb);
return RX_QUEUED;
}
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
int len = rx->skb->len;
if (!ieee80211_is_action(mgmt->frame_control))
return RX_CONTINUE;
switch (mgmt->u.action.category) {
case WLAN_CATEGORY_SA_QUERY:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.sa_query)))
break;
switch (mgmt->u.action.u.sa_query.action) {
case WLAN_ACTION_SA_QUERY_REQUEST:
if (sdata->vif.type != NL80211_IFTYPE_STATION)
break;
ieee80211_process_sa_query_req(sdata, mgmt, len);
goto handled;
}
break;
}
return RX_CONTINUE;
handled:
if (rx->sta)
rx->link_sta->rx_stats.packets++;
dev_kfree_skb(rx->skb);
return RX_QUEUED;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
struct sk_buff *nskb;
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
if (!ieee80211_is_action(mgmt->frame_control))
return RX_CONTINUE;
/*
* For AP mode, hostapd is responsible for handling any action
* frames that we didn't handle, including returning unknown
* ones. For all other modes we will return them to the sender,
* setting the 0x80 bit in the action category, as required by
* 802.11-2012 9.24.4.
* Newer versions of hostapd shall also use the management frame
* registration mechanisms, but older ones still use cooked
* monitor interfaces so push all frames there.
*/
if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
(sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
return RX_DROP_MONITOR;
if (is_multicast_ether_addr(mgmt->da))
return RX_DROP_MONITOR;
/* do not return rejected action frames */
if (mgmt->u.action.category & 0x80)
return RX_DROP_U_REJECTED_ACTION_RESPONSE;
nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
GFP_ATOMIC);
if (nskb) {
struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
nmgmt->u.action.category |= 0x80;
memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
memset(nskb->cb, 0, sizeof(nskb->cb));
if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
IEEE80211_TX_CTL_NO_CCK_RATE;
if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
info->hw_queue =
local->hw.offchannel_tx_hw_queue;
}
__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1,
status->band);
}
return RX_DROP_U_UNKNOWN_ACTION_REJECTED;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_hdr *hdr = (void *)rx->skb->data;
if (!ieee80211_is_ext(hdr->frame_control))
return RX_CONTINUE;
if (sdata->vif.type != NL80211_IFTYPE_STATION)
return RX_DROP_MONITOR;
/* for now only beacons are ext, so queue them */
ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb);
return RX_QUEUED;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
__le16 stype;
stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
if (!ieee80211_vif_is_mesh(&sdata->vif) &&
sdata->vif.type != NL80211_IFTYPE_ADHOC &&
sdata->vif.type != NL80211_IFTYPE_OCB &&
sdata->vif.type != NL80211_IFTYPE_STATION)
return RX_DROP_MONITOR;
switch (stype) {
case cpu_to_le16(IEEE80211_STYPE_AUTH):
case cpu_to_le16(IEEE80211_STYPE_BEACON):
case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
/* process for all: mesh, mlme, ibss */
break;
case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
if (is_multicast_ether_addr(mgmt->da) &&
!is_broadcast_ether_addr(mgmt->da))
return RX_DROP_MONITOR;
/* process only for station/IBSS */
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
sdata->vif.type != NL80211_IFTYPE_ADHOC)
return RX_DROP_MONITOR;
break;
case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
if (is_multicast_ether_addr(mgmt->da) &&
!is_broadcast_ether_addr(mgmt->da))
return RX_DROP_MONITOR;
/* process only for station */
if (sdata->vif.type != NL80211_IFTYPE_STATION)
return RX_DROP_MONITOR;
break;
case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
/* process only for ibss and mesh */
if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
return RX_DROP_MONITOR;
break;
default:
return RX_DROP_MONITOR;
}
ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb);
return RX_QUEUED;
}
static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
struct ieee80211_rate *rate,
ieee80211_rx_result reason)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_local *local = rx->local;
struct sk_buff *skb = rx->skb, *skb2;
struct net_device *prev_dev = NULL;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
int needed_headroom;
/*
* If cooked monitor has been processed already, then
* don't do it again. If not, set the flag.
*/
if (rx->flags & IEEE80211_RX_CMNTR)
goto out_free_skb;
rx->flags |= IEEE80211_RX_CMNTR;
/* If there are no cooked monitor interfaces, just free the SKB */
if (!local->cooked_mntrs)
goto out_free_skb;
/* room for the radiotap header based on driver features */
needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
if (skb_headroom(skb) < needed_headroom &&
pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
goto out_free_skb;
/* prepend radiotap information */
ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
false);
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
!(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
continue;
if (prev_dev) {
skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2) {
skb2->dev = prev_dev;
netif_receive_skb(skb2);
}
}
prev_dev = sdata->dev;
dev_sw_netstats_rx_add(sdata->dev, skb->len);
}
if (prev_dev) {
skb->dev = prev_dev;
netif_receive_skb(skb);
return;
}
out_free_skb:
kfree_skb_reason(skb, (__force u32)reason);
}
static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
ieee80211_rx_result res)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
struct ieee80211_supported_band *sband;
struct ieee80211_rate *rate = NULL;
if (res == RX_QUEUED) {
I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
return;
}
if (res != RX_CONTINUE) {
I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
if (rx->sta)
rx->link_sta->rx_stats.dropped++;
}
if (u32_get_bits((__force u32)res, SKB_DROP_REASON_SUBSYS_MASK) ==
SKB_DROP_REASON_SUBSYS_MAC80211_UNUSABLE) {
kfree_skb_reason(rx->skb, (__force u32)res);
return;
}
sband = rx->local->hw.wiphy->bands[status->band];
if (status->encoding == RX_ENC_LEGACY)
rate = &sband->bitrates[status->rate_idx];
ieee80211_rx_cooked_monitor(rx, rate, res);
}
static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
struct sk_buff_head *frames)
{
ieee80211_rx_result res = RX_DROP_MONITOR;
struct sk_buff *skb;
#define CALL_RXH(rxh) \
do { \
res = rxh(rx); \
if (res != RX_CONTINUE) \
goto rxh_next; \
} while (0)
/* Lock here to avoid hitting all of the data used in the RX
* path (e.g. key data, station data, ...) concurrently when
* a frame is released from the reorder buffer due to timeout
* from the timer, potentially concurrently with RX from the
* driver.
*/
spin_lock_bh(&rx->local->rx_path_lock);
while ((skb = __skb_dequeue(frames))) {
/*
* all the other fields are valid across frames
* that belong to an aMPDU since they are on the
* same TID from the same station
*/
rx->skb = skb;
if (WARN_ON_ONCE(!rx->link))
goto rxh_next;
CALL_RXH(ieee80211_rx_h_check_more_data);
CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
CALL_RXH(ieee80211_rx_h_sta_process);
CALL_RXH(ieee80211_rx_h_decrypt);
CALL_RXH(ieee80211_rx_h_defragment);
CALL_RXH(ieee80211_rx_h_michael_mic_verify);
/* must be after MMIC verify so header is counted in MPDU mic */
CALL_RXH(ieee80211_rx_h_amsdu);
CALL_RXH(ieee80211_rx_h_data);
/* special treatment -- needs the queue */
res = ieee80211_rx_h_ctrl(rx, frames);
if (res != RX_CONTINUE)
goto rxh_next;
CALL_RXH(ieee80211_rx_h_mgmt_check);
CALL_RXH(ieee80211_rx_h_action);
CALL_RXH(ieee80211_rx_h_userspace_mgmt);
CALL_RXH(ieee80211_rx_h_action_post_userspace);
CALL_RXH(ieee80211_rx_h_action_return);
CALL_RXH(ieee80211_rx_h_ext);
CALL_RXH(ieee80211_rx_h_mgmt);
rxh_next:
ieee80211_rx_handlers_result(rx, res);
#undef CALL_RXH
}
spin_unlock_bh(&rx->local->rx_path_lock);
}
static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
{
struct sk_buff_head reorder_release;
ieee80211_rx_result res = RX_DROP_MONITOR;
__skb_queue_head_init(&reorder_release);
#define CALL_RXH(rxh) \
do { \
res = rxh(rx); \
if (res != RX_CONTINUE) \
goto rxh_next; \
} while (0)
CALL_RXH(ieee80211_rx_h_check_dup);
CALL_RXH(ieee80211_rx_h_check);
ieee80211_rx_reorder_ampdu(rx, &reorder_release);
ieee80211_rx_handlers(rx, &reorder_release);
return;
rxh_next:
ieee80211_rx_handlers_result(rx, res);
#undef CALL_RXH
}
static bool
ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id)
{
return !!(sta->valid_links & BIT(link_id));
}
static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx,
u8 link_id)
{
rx->link_id = link_id;
rx->link = rcu_dereference(rx->sdata->link[link_id]);
if (!rx->sta)
return rx->link;
if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id))
return false;
rx->link_sta = rcu_dereference(rx->sta->link[link_id]);
return rx->link && rx->link_sta;
}
static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx,
struct sta_info *sta, int link_id)
{
rx->link_id = link_id;
rx->sta = sta;
if (sta) {
rx->local = sta->sdata->local;
if (!rx->sdata)
rx->sdata = sta->sdata;
rx->link_sta = &sta->deflink;
} else {
rx->link_sta = NULL;
}
if (link_id < 0)
rx->link = &rx->sdata->deflink;
else if (!ieee80211_rx_data_set_link(rx, link_id))
return false;
return true;
}
/*
* This function makes calls into the RX path, therefore
* it has to be invoked under RCU read lock.
*/
void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
{
struct sk_buff_head frames;
struct ieee80211_rx_data rx = {
/* This is OK -- must be QoS data frame */
.security_idx = tid,
.seqno_idx = tid,
};
struct tid_ampdu_rx *tid_agg_rx;
int link_id = -1;
/* FIXME: statistics won't be right with this */
if (sta->sta.valid_links)
link_id = ffs(sta->sta.valid_links) - 1;
if (!ieee80211_rx_data_set_sta(&rx, sta, link_id))
return;
tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
if (!tid_agg_rx)
return;
__skb_queue_head_init(&frames);
spin_lock(&tid_agg_rx->reorder_lock);
ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
spin_unlock(&tid_agg_rx->reorder_lock);
if (!skb_queue_empty(&frames)) {
struct ieee80211_event event = {
.type = BA_FRAME_TIMEOUT,
.u.ba.tid = tid,
.u.ba.sta = &sta->sta,
};
drv_event_callback(rx.local, rx.sdata, &event);
}
ieee80211_rx_handlers(&rx, &frames);
}
void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
u16 ssn, u64 filtered,
u16 received_mpdus)
{
struct ieee80211_local *local;
struct sta_info *sta;
struct tid_ampdu_rx *tid_agg_rx;
struct sk_buff_head frames;
struct ieee80211_rx_data rx = {
/* This is OK -- must be QoS data frame */
.security_idx = tid,
.seqno_idx = tid,
};
int i, diff;
if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
return;
__skb_queue_head_init(&frames);
sta = container_of(pubsta, struct sta_info, sta);
local = sta->sdata->local;
WARN_ONCE(local->hw.max_rx_aggregation_subframes > 64,
"RX BA marker can't support max_rx_aggregation_subframes %u > 64\n",
local->hw.max_rx_aggregation_subframes);
if (!ieee80211_rx_data_set_sta(&rx, sta, -1))
return;
rcu_read_lock();
tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
if (!tid_agg_rx)
goto out;
spin_lock_bh(&tid_agg_rx->reorder_lock);
if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
int release;
/* release all frames in the reorder buffer */
release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
IEEE80211_SN_MODULO;
ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
release, &frames);
/* update ssn to match received ssn */
tid_agg_rx->head_seq_num = ssn;
} else {
ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
&frames);
}
/* handle the case that received ssn is behind the mac ssn.
* it can be tid_agg_rx->buf_size behind and still be valid */
diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
if (diff >= tid_agg_rx->buf_size) {
tid_agg_rx->reorder_buf_filtered = 0;
goto release;
}
filtered = filtered >> diff;
ssn += diff;
/* update bitmap */
for (i = 0; i < tid_agg_rx->buf_size; i++) {
int index = (ssn + i) % tid_agg_rx->buf_size;
tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
if (filtered & BIT_ULL(i))
tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
}
/* now process also frames that the filter marking released */
ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
release:
spin_unlock_bh(&tid_agg_rx->reorder_lock);
ieee80211_rx_handlers(&rx, &frames);
out:
rcu_read_unlock();
}
EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
/* main receive path */
static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr)
{
return ether_addr_equal(raddr, addr) ||
is_broadcast_ether_addr(raddr);
}
static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct sk_buff *skb = rx->skb;
struct ieee80211_hdr *hdr = (void *)skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
bool multicast = is_multicast_ether_addr(hdr->addr1) ||
ieee80211_is_s1g_beacon(hdr->frame_control);
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
if (!bssid && !sdata->u.mgd.use_4addr)
return false;
if (ieee80211_is_first_frag(hdr->seq_ctrl) &&
ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
return false;
if (multicast)
return true;
return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id);
case NL80211_IFTYPE_ADHOC:
if (!bssid)
return false;
if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
!is_valid_ether_addr(hdr->addr2))
return false;
if (ieee80211_is_beacon(hdr->frame_control))
return true;
if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
return false;
if (!multicast &&
!ether_addr_equal(sdata->vif.addr, hdr->addr1))
return false;
if (!rx->sta) {
int rate_idx;
if (status->encoding != RX_ENC_LEGACY)
rate_idx = 0; /* TODO: HT/VHT rates */
else
rate_idx = status->rate_idx;
ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
BIT(rate_idx));
}
return true;
case NL80211_IFTYPE_OCB:
if (!bssid)
return false;
if (!ieee80211_is_data_present(hdr->frame_control))
return false;
if (!is_broadcast_ether_addr(bssid))
return false;
if (!multicast &&
!ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
return false;
if (!rx->sta) {
int rate_idx;
if (status->encoding != RX_ENC_LEGACY)
rate_idx = 0; /* TODO: HT rates */
else
rate_idx = status->rate_idx;
ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
BIT(rate_idx));
}
return true;
case NL80211_IFTYPE_MESH_POINT:
if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
return false;
if (multicast)
return true;
return ether_addr_equal(sdata->vif.addr, hdr->addr1);
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_AP:
if (!bssid)
return ieee80211_is_our_addr(sdata, hdr->addr1,
&rx->link_id);
if (!is_broadcast_ether_addr(bssid) &&
!ieee80211_is_our_addr(sdata, bssid, NULL)) {
/*
* Accept public action frames even when the
* BSSID doesn't match, this is used for P2P
* and location updates. Note that mac80211
* itself never looks at these frames.
*/
if (!multicast &&
!ieee80211_is_our_addr(sdata, hdr->addr1,
&rx->link_id))
return false;
if (ieee80211_is_public_action(hdr, skb->len))
return true;
return ieee80211_is_beacon(hdr->frame_control);
}
if (!ieee80211_has_tods(hdr->frame_control)) {
/* ignore data frames to TDLS-peers */
if (ieee80211_is_data(hdr->frame_control))
return false;
/* ignore action frames to TDLS-peers */
if (ieee80211_is_action(hdr->frame_control) &&
!is_broadcast_ether_addr(bssid) &&
!ether_addr_equal(bssid, hdr->addr1))
return false;
}
/*
* 802.11-2016 Table 9-26 says that for data frames, A1 must be
* the BSSID - we've checked that already but may have accepted
* the wildcard (ff:ff:ff:ff:ff:ff).
*
* It also says:
* The BSSID of the Data frame is determined as follows:
* a) If the STA is contained within an AP or is associated
* with an AP, the BSSID is the address currently in use
* by the STA contained in the AP.
*
* So we should not accept data frames with an address that's
* multicast.
*
* Accepting it also opens a security problem because stations
* could encrypt it with the GTK and inject traffic that way.
*/
if (ieee80211_is_data(hdr->frame_control) && multicast)
return false;
return true;
case NL80211_IFTYPE_P2P_DEVICE:
return ieee80211_is_public_action(hdr, skb->len) ||
ieee80211_is_probe_req(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control) ||
ieee80211_is_beacon(hdr->frame_control);
case NL80211_IFTYPE_NAN:
/* Currently no frames on NAN interface are allowed */
return false;
default:
break;
}
WARN_ON_ONCE(1);
return false;
}
void ieee80211_check_fast_rx(struct sta_info *sta)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
struct ieee80211_key *key;
struct ieee80211_fast_rx fastrx = {
.dev = sdata->dev,
.vif_type = sdata->vif.type,
.control_port_protocol = sdata->control_port_protocol,
}, *old, *new = NULL;
u32 offload_flags;
bool set_offload = false;
bool assign = false;
bool offload;
/* use sparse to check that we don't return without updating */
__acquire(check_fast_rx);
BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
/* fast-rx doesn't do reordering */
if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
!ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
goto clear;
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
if (sta->sta.tdls) {
fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
fastrx.expected_ds_bits = 0;
} else {
fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
fastrx.expected_ds_bits =
cpu_to_le16(IEEE80211_FCTL_FROMDS);
}
if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
fastrx.expected_ds_bits |=
cpu_to_le16(IEEE80211_FCTL_TODS);
fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
}
if (!sdata->u.mgd.powersave)
break;
/* software powersave is a huge mess, avoid all of it */
if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
goto clear;
if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
goto clear;
break;
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_AP:
/* parallel-rx requires this, at least with calls to
* ieee80211_sta_ps_transition()
*/
if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
goto clear;
fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
fastrx.internal_forward =
!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
!sdata->u.vlan.sta);
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
sdata->u.vlan.sta) {
fastrx.expected_ds_bits |=
cpu_to_le16(IEEE80211_FCTL_FROMDS);
fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
fastrx.internal_forward = 0;
}
break;
case NL80211_IFTYPE_MESH_POINT:
fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS |
IEEE80211_FCTL_TODS);
fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
break;
default:
goto clear;
}
if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
goto clear;
rcu_read_lock();
key = rcu_dereference(sta->ptk[sta->ptk_idx]);
if (!key)
key = rcu_dereference(sdata->default_unicast_key);
if (key) {
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_TKIP:
/* we don't want to deal with MMIC in fast-rx */
goto clear_rcu;
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
break;
default:
/* We also don't want to deal with
* WEP or cipher scheme.
*/
goto clear_rcu;
}
fastrx.key = true;
fastrx.icv_len = key->conf.icv_len;
}
assign = true;
clear_rcu:
rcu_read_unlock();
clear:
__release(check_fast_rx);
if (assign)
new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
offload_flags = get_bss_sdata(sdata)->vif.offload_flags;
offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED;
if (assign && offload)
set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
else
set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
if (set_offload)
drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
spin_lock_bh(&sta->lock);
old = rcu_dereference_protected(sta->fast_rx, true);
rcu_assign_pointer(sta->fast_rx, new);
spin_unlock_bh(&sta->lock);
if (old)
kfree_rcu(old, rcu_head);
}
void ieee80211_clear_fast_rx(struct sta_info *sta)
{
struct ieee80211_fast_rx *old;
spin_lock_bh(&sta->lock);
old = rcu_dereference_protected(sta->fast_rx, true);
RCU_INIT_POINTER(sta->fast_rx, NULL);
spin_unlock_bh(&sta->lock);
if (old)
kfree_rcu(old, rcu_head);
}
void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
lockdep_assert_wiphy(local->hw.wiphy);
list_for_each_entry(sta, &local->sta_list, list) {
if (sdata != sta->sdata &&
(!sta->sdata->bss || sta->sdata->bss != sdata->bss))
continue;
ieee80211_check_fast_rx(sta);
}
}
void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
lockdep_assert_wiphy(local->hw.wiphy);
__ieee80211_check_fast_rx_iface(sdata);
}
static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
struct ieee80211_fast_rx *fast_rx,
int orig_len)
{
struct ieee80211_sta_rx_stats *stats;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
struct sta_info *sta = rx->sta;
struct link_sta_info *link_sta;
struct sk_buff *skb = rx->skb;
void *sa = skb->data + ETH_ALEN;
void *da = skb->data;
if (rx->link_id >= 0) {
link_sta = rcu_dereference(sta->link[rx->link_id]);
if (WARN_ON_ONCE(!link_sta)) {
dev_kfree_skb(rx->skb);
return;
}
} else {
link_sta = &sta->deflink;
}
stats = &link_sta->rx_stats;
if (fast_rx->uses_rss)
stats = this_cpu_ptr(link_sta->pcpu_rx_stats);
/* statistics part of ieee80211_rx_h_sta_process() */
if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
stats->last_signal = status->signal;
if (!fast_rx->uses_rss)
ewma_signal_add(&link_sta->rx_stats_avg.signal,
-status->signal);
}
if (status->chains) {
int i;
stats->chains = status->chains;
for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
int signal = status->chain_signal[i];
if (!(status->chains & BIT(i)))
continue;
stats->chain_signal_last[i] = signal;
if (!fast_rx->uses_rss)
ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i],
-signal);
}
}
/* end of statistics */
stats->last_rx = jiffies;
stats->last_rate = sta_stats_encode_rate(status);
stats->fragments++;
stats->packets++;
skb->dev = fast_rx->dev;
dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
/* The seqno index has the same property as needed
* for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
* for non-QoS-data frames. Here we know it's a data
* frame, so count MSDUs.
*/
u64_stats_update_begin(&stats->syncp);
stats->msdu[rx->seqno_idx]++;
stats->bytes += orig_len;
u64_stats_update_end(&stats->syncp);
if (fast_rx->internal_forward) {
struct sk_buff *xmit_skb = NULL;
if (is_multicast_ether_addr(da)) {
xmit_skb = skb_copy(skb, GFP_ATOMIC);
} else if (!ether_addr_equal(da, sa) &&
sta_info_get(rx->sdata, da)) {
xmit_skb = skb;
skb = NULL;
}
if (xmit_skb) {
/*
* Send to wireless media and increase priority by 256
* to keep the received priority instead of
* reclassifying the frame (see cfg80211_classify8021d).
*/
xmit_skb->priority += 256;
xmit_skb->protocol = htons(ETH_P_802_3);
skb_reset_network_header(xmit_skb);
skb_reset_mac_header(xmit_skb);
dev_queue_xmit(xmit_skb);
}
if (!skb)
return;
}
/* deliver to local stack */
skb->protocol = eth_type_trans(skb, fast_rx->dev);
ieee80211_deliver_skb_to_local_stack(skb, rx);
}
static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
struct ieee80211_fast_rx *fast_rx)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_hdr *hdr = (void *)skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
static ieee80211_rx_result res;
int orig_len = skb->len;
int hdrlen = ieee80211_hdrlen(hdr->frame_control);
int snap_offs = hdrlen;
struct {
u8 snap[sizeof(rfc1042_header)];
__be16 proto;
} *payload __aligned(2);
struct {
u8 da[ETH_ALEN];
u8 sa[ETH_ALEN];
} addrs __aligned(2);
struct ieee80211_sta_rx_stats *stats;
/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
* to a common data structure; drivers can implement that per queue
* but we don't have that information in mac80211
*/
if (!(status->flag & RX_FLAG_DUP_VALIDATED))
return false;
#define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
/* If using encryption, we also need to have:
* - PN_VALIDATED: similar, but the implementation is tricky
* - DECRYPTED: necessary for PN_VALIDATED
*/
if (fast_rx->key &&
(status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
return false;
if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
return false;
if (unlikely(ieee80211_is_frag(hdr)))
return false;
/* Since our interface address cannot be multicast, this
* implicitly also rejects multicast frames without the
* explicit check.
*
* We shouldn't get any *data* frames not addressed to us
* (AP mode will accept multicast *management* frames), but
* punting here will make it go through the full checks in
* ieee80211_accept_frame().
*/
if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
return false;
if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
IEEE80211_FCTL_TODS)) !=
fast_rx->expected_ds_bits)
return false;
/* assign the key to drop unencrypted frames (later)
* and strip the IV/MIC if necessary
*/
if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
/* GCMP header length is the same */
snap_offs += IEEE80211_CCMP_HDR_LEN;
}
if (!ieee80211_vif_is_mesh(&rx->sdata->vif) &&
!(status->rx_flags & IEEE80211_RX_AMSDU)) {
if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
return false;
payload = (void *)(skb->data + snap_offs);
if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
return false;
/* Don't handle these here since they require special code.
* Accept AARP and IPX even though they should come with a
* bridge-tunnel header - but if we get them this way then
* there's little point in discarding them.
*/
if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
payload->proto == fast_rx->control_port_protocol))
return false;
}
/* after this point, don't punt to the slowpath! */
if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
pskb_trim(skb, skb->len - fast_rx->icv_len))
goto drop;
if (rx->key && !ieee80211_has_protected(hdr->frame_control))
goto drop;
if (status->rx_flags & IEEE80211_RX_AMSDU) {
if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
RX_QUEUED)
goto drop;
return true;
}
/* do the header conversion - first grab the addresses */
ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
if (ieee80211_vif_is_mesh(&rx->sdata->vif)) {
skb_pull(skb, snap_offs - 2);
put_unaligned_be16(skb->len - 2, skb->data);
} else {
skb_postpull_rcsum(skb, skb->data + snap_offs,
sizeof(rfc1042_header) + 2);
/* remove the SNAP but leave the ethertype */
skb_pull(skb, snap_offs + sizeof(rfc1042_header));
}
/* push the addresses in front */
memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb);
switch (res) {
case RX_QUEUED:
return true;
case RX_CONTINUE:
break;
default:
goto drop;
}
ieee80211_rx_8023(rx, fast_rx, orig_len);
return true;
drop:
dev_kfree_skb(skb);
if (fast_rx->uses_rss)
stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats);
else
stats = &rx->link_sta->rx_stats;
stats->dropped++;
return true;
}
/*
* This function returns whether or not the SKB
* was destined for RX processing or not, which,
* if consume is true, is equivalent to whether
* or not the skb was consumed.
*/
static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
struct sk_buff *skb, bool consume)
{
struct ieee80211_local *local = rx->local;
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_hdr *hdr = (void *)skb->data;
struct link_sta_info *link_sta = rx->link_sta;
struct ieee80211_link_data *link = rx->link;
rx->skb = skb;
/* See if we can do fast-rx; if we have to copy we already lost,
* so punt in that case. We should never have to deliver a data
* frame to multiple interfaces anyway.
*
* We skip the ieee80211_accept_frame() call and do the necessary
* checking inside ieee80211_invoke_fast_rx().
*/
if (consume && rx->sta) {
struct ieee80211_fast_rx *fast_rx;
fast_rx = rcu_dereference(rx->sta->fast_rx);
if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
return true;
}
if (!ieee80211_accept_frame(rx))
return false;
if (!consume) {
struct skb_shared_hwtstamps *shwt;
rx->skb = skb_copy(skb, GFP_ATOMIC);
if (!rx->skb) {
if (net_ratelimit())
wiphy_debug(local->hw.wiphy,
"failed to copy skb for %s\n",
sdata->name);
return true;
}
/* skb_copy() does not copy the hw timestamps, so copy it
* explicitly
*/
shwt = skb_hwtstamps(rx->skb);
shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
/* Update the hdr pointer to the new skb for translation below */
hdr = (struct ieee80211_hdr *)rx->skb->data;
}
if (unlikely(rx->sta && rx->sta->sta.mlo) &&
is_unicast_ether_addr(hdr->addr1) &&
!ieee80211_is_probe_resp(hdr->frame_control) &&
!ieee80211_is_beacon(hdr->frame_control)) {
/* translate to MLD addresses */
if (ether_addr_equal(link->conf->addr, hdr->addr1))
ether_addr_copy(hdr->addr1, rx->sdata->vif.addr);
if (ether_addr_equal(link_sta->addr, hdr->addr2))
ether_addr_copy(hdr->addr2, rx->sta->addr);
/* translate A3 only if it's the BSSID */
if (!ieee80211_has_tods(hdr->frame_control) &&
!ieee80211_has_fromds(hdr->frame_control)) {
if (ether_addr_equal(link_sta->addr, hdr->addr3))
ether_addr_copy(hdr->addr3, rx->sta->addr);
else if (ether_addr_equal(link->conf->addr, hdr->addr3))
ether_addr_copy(hdr->addr3, rx->sdata->vif.addr);
}
/* not needed for A4 since it can only carry the SA */
}
ieee80211_invoke_rx_handlers(rx);
return true;
}
static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
struct ieee80211_sta *pubsta,
struct sk_buff *skb,
struct list_head *list)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_fast_rx *fast_rx;
struct ieee80211_rx_data rx;
struct sta_info *sta;
int link_id = -1;
memset(&rx, 0, sizeof(rx));
rx.skb = skb;
rx.local = local;
rx.list = list;
rx.link_id = -1;
I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
/* drop frame if too short for header */
if (skb->len < sizeof(struct ethhdr))
goto drop;
if (!pubsta)
goto drop;
if (status->link_valid)
link_id = status->link_id;
/*
* TODO: Should the frame be dropped if the right link_id is not
* available? Or may be it is fine in the current form to proceed with
* the frame processing because with frame being in 802.3 format,
* link_id is used only for stats purpose and updating the stats on
* the deflink is fine?
*/
sta = container_of(pubsta, struct sta_info, sta);
if (!ieee80211_rx_data_set_sta(&rx, sta, link_id))
goto drop;
fast_rx = rcu_dereference(rx.sta->fast_rx);
if (!fast_rx)
goto drop;
ieee80211_rx_8023(&rx, fast_rx, skb->len);
return;
drop:
dev_kfree_skb(skb);
}
static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx,
struct sk_buff *skb, bool consume)
{
struct link_sta_info *link_sta;
struct ieee80211_hdr *hdr = (void *)skb->data;
struct sta_info *sta;
int link_id = -1;
/*
* Look up link station first, in case there's a
* chance that they might have a link address that
* is identical to the MLD address, that way we'll
* have the link information if needed.
*/
link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2);
if (link_sta) {
sta = link_sta->sta;
link_id = link_sta->link_id;
} else {
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
sta = sta_info_get_bss(rx->sdata, hdr->addr2);
if (status->link_valid)
link_id = status->link_id;
}
if (!ieee80211_rx_data_set_sta(rx, sta, link_id))
return false;
return ieee80211_prepare_and_rx_handle(rx, skb, consume);
}
/*
* This is the actual Rx frames handler. as it belongs to Rx path it must
* be called with rcu_read_lock protection.
*/
static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
struct ieee80211_sta *pubsta,
struct sk_buff *skb,
struct list_head *list)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_sub_if_data *sdata;
struct ieee80211_hdr *hdr;
__le16 fc;
struct ieee80211_rx_data rx;
struct ieee80211_sub_if_data *prev;
struct rhlist_head *tmp;
int err = 0;
fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
memset(&rx, 0, sizeof(rx));
rx.skb = skb;
rx.local = local;
rx.list = list;
rx.link_id = -1;
if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
if (ieee80211_is_mgmt(fc)) {
/* drop frame if too short for header */
if (skb->len < ieee80211_hdrlen(fc))
err = -ENOBUFS;
else
err = skb_linearize(skb);
} else {
err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
}
if (err) {
dev_kfree_skb(skb);
return;
}
hdr = (struct ieee80211_hdr *)skb->data;
ieee80211_parse_qos(&rx);
ieee80211_verify_alignment(&rx);
if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_s1g_beacon(hdr->frame_control)))
ieee80211_scan_rx(local, skb);
if (ieee80211_is_data(fc)) {
struct sta_info *sta, *prev_sta;
int link_id = -1;
if (status->link_valid)
link_id = status->link_id;
if (pubsta) {
sta = container_of(pubsta, struct sta_info, sta);
if (!ieee80211_rx_data_set_sta(&rx, sta, link_id))
goto out;
/*
* In MLO connection, fetch the link_id using addr2
* when the driver does not pass link_id in status.
* When the address translation is already performed by
* driver/hw, the valid link_id must be passed in
* status.
*/
if (!status->link_valid && pubsta->mlo) {
struct link_sta_info *link_sta;
link_sta = link_sta_info_get_bss(rx.sdata,
hdr->addr2);
if (!link_sta)
goto out;
ieee80211_rx_data_set_link(&rx, link_sta->link_id);
}
if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
return;
goto out;
}
prev_sta = NULL;
for_each_sta_info(local, hdr->addr2, sta, tmp) {
if (!prev_sta) {
prev_sta = sta;
continue;
}
rx.sdata = prev_sta->sdata;
if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id))
goto out;
if (!status->link_valid && prev_sta->sta.mlo)
continue;
ieee80211_prepare_and_rx_handle(&rx, skb, false);
prev_sta = sta;
}
if (prev_sta) {
rx.sdata = prev_sta->sdata;
if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id))
goto out;
if (!status->link_valid && prev_sta->sta.mlo)
goto out;
if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
return;
goto out;
}
}
prev = NULL;
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
continue;
/*
* frame is destined for this interface, but if it's
* not also for the previous one we handle that after
* the loop to avoid copying the SKB once too much
*/
if (!prev) {
prev = sdata;
continue;
}
rx.sdata = prev;
ieee80211_rx_for_interface(&rx, skb, false);
prev = sdata;
}
if (prev) {
rx.sdata = prev;
if (ieee80211_rx_for_interface(&rx, skb, true))
return;
}
out:
dev_kfree_skb(skb);
}
/*
* This is the receive path handler. It is called by a low level driver when an
* 802.11 MPDU is received from the hardware.
*/
void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
struct sk_buff *skb, struct list_head *list)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rate *rate = NULL;
struct ieee80211_supported_band *sband;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
WARN_ON_ONCE(softirq_count() == 0);
if (WARN_ON(status->band >= NUM_NL80211_BANDS))
goto drop;
sband = local->hw.wiphy->bands[status->band];
if (WARN_ON(!sband))
goto drop;
/*
* If we're suspending, it is possible although not too likely
* that we'd be receiving frames after having already partially
* quiesced the stack. We can't process such frames then since
* that might, for example, cause stations to be added or other
* driver callbacks be invoked.
*/
if (unlikely(local->quiescing || local->suspended))
goto drop;
/* We might be during a HW reconfig, prevent Rx for the same reason */
if (unlikely(local->in_reconfig))
goto drop;
/*
* The same happens when we're not even started,
* but that's worth a warning.
*/
if (WARN_ON(!local->started))
goto drop;
if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
/*
* Validate the rate, unless a PLCP error means that
* we probably can't have a valid rate here anyway.
*/
switch (status->encoding) {
case RX_ENC_HT:
/*
* rate_idx is MCS index, which can be [0-76]
* as documented on:
*
* https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
*
* Anything else would be some sort of driver or
* hardware error. The driver should catch hardware
* errors.
*/
if (WARN(status->rate_idx > 76,
"Rate marked as an HT rate but passed "
"status->rate_idx is not "
"an MCS index [0-76]: %d (0x%02x)\n",
status->rate_idx,
status->rate_idx))
goto drop;
break;
case RX_ENC_VHT:
if (WARN_ONCE(status->rate_idx > 11 ||
!status->nss ||
status->nss > 8,
"Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
status->rate_idx, status->nss))
goto drop;
break;
case RX_ENC_HE:
if (WARN_ONCE(status->rate_idx > 11 ||
!status->nss ||
status->nss > 8,
"Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
status->rate_idx, status->nss))
goto drop;
break;
case RX_ENC_EHT:
if (WARN_ONCE(status->rate_idx > 15 ||
!status->nss ||
status->nss > 8 ||
status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2,
"Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n",
status->rate_idx, status->nss, status->eht.gi))
goto drop;
break;
default:
WARN_ON_ONCE(1);
fallthrough;
case RX_ENC_LEGACY:
if (WARN_ON(status->rate_idx >= sband->n_bitrates))
goto drop;
rate = &sband->bitrates[status->rate_idx];
}
}
if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED))
goto drop;
status->rx_flags = 0;
kcov_remote_start_common(skb_get_kcov_handle(skb));
/*
* Frames with failed FCS/PLCP checksum are not returned,
* all other frames are returned without radiotap header
* if it was previously present.
* Also, frames with less than 16 bytes are dropped.
*/
if (!(status->flag & RX_FLAG_8023))
skb = ieee80211_rx_monitor(local, skb, rate);
if (skb) {
if ((status->flag & RX_FLAG_8023) ||
ieee80211_is_data_present(hdr->frame_control))
ieee80211_tpt_led_trig_rx(local, skb->len);
if (status->flag & RX_FLAG_8023)
__ieee80211_rx_handle_8023(hw, pubsta, skb, list);
else
__ieee80211_rx_handle_packet(hw, pubsta, skb, list);
}
kcov_remote_stop();
return;
drop:
kfree_skb(skb);
}
EXPORT_SYMBOL(ieee80211_rx_list);
void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
struct sk_buff *skb, struct napi_struct *napi)
{
struct sk_buff *tmp;
LIST_HEAD(list);
/*
* key references and virtual interfaces are protected using RCU
* and this requires that we are in a read-side RCU section during
* receive processing
*/
rcu_read_lock();
ieee80211_rx_list(hw, pubsta, skb, &list);
rcu_read_unlock();
if (!napi) {
netif_receive_skb_list(&list);
return;
}
list_for_each_entry_safe(skb, tmp, &list, list) {
skb_list_del_init(skb);
napi_gro_receive(napi, skb);
}
}
EXPORT_SYMBOL(ieee80211_rx_napi);
/* This is a version of the rx handler that can be called from hard irq
* context. Post the skb on the queue and schedule the tasklet */
void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct ieee80211_local *local = hw_to_local(hw);
BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
skb->pkt_type = IEEE80211_RX_MSG;
skb_queue_tail(&local->skb_queue, skb);
tasklet_schedule(&local->tasklet);
}
EXPORT_SYMBOL(ieee80211_rx_irqsafe);