| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright 2013 Emilio López |
| * |
| * Emilio López <emilio@elopez.com.ar> |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/clk-provider.h> |
| #include <linux/io.h> |
| #include <linux/of_address.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| |
| #include "clk-factors.h" |
| |
| /* |
| * sun4i_a10_get_mod0_factors() - calculates m, n factors for MOD0-style clocks |
| * MOD0 rate is calculated as follows |
| * rate = (parent_rate >> p) / (m + 1); |
| */ |
| |
| static void sun4i_a10_get_mod0_factors(struct factors_request *req) |
| { |
| u8 div, calcm, calcp; |
| |
| /* These clocks can only divide, so we will never be able to achieve |
| * frequencies higher than the parent frequency */ |
| if (req->rate > req->parent_rate) |
| req->rate = req->parent_rate; |
| |
| div = DIV_ROUND_UP(req->parent_rate, req->rate); |
| |
| if (div < 16) |
| calcp = 0; |
| else if (div / 2 < 16) |
| calcp = 1; |
| else if (div / 4 < 16) |
| calcp = 2; |
| else |
| calcp = 3; |
| |
| calcm = DIV_ROUND_UP(div, 1 << calcp); |
| |
| req->rate = (req->parent_rate >> calcp) / calcm; |
| req->m = calcm - 1; |
| req->p = calcp; |
| } |
| |
| /* user manual says "n" but it's really "p" */ |
| static const struct clk_factors_config sun4i_a10_mod0_config = { |
| .mshift = 0, |
| .mwidth = 4, |
| .pshift = 16, |
| .pwidth = 2, |
| }; |
| |
| static const struct factors_data sun4i_a10_mod0_data = { |
| .enable = 31, |
| .mux = 24, |
| .muxmask = BIT(1) | BIT(0), |
| .table = &sun4i_a10_mod0_config, |
| .getter = sun4i_a10_get_mod0_factors, |
| }; |
| |
| static DEFINE_SPINLOCK(sun4i_a10_mod0_lock); |
| |
| static void __init sun4i_a10_mod0_setup(struct device_node *node) |
| { |
| void __iomem *reg; |
| |
| reg = of_iomap(node, 0); |
| if (!reg) { |
| /* |
| * This happens with mod0 clk nodes instantiated through |
| * mfd, as those do not have their resources assigned at |
| * CLK_OF_DECLARE time yet, so do not print an error. |
| */ |
| return; |
| } |
| |
| sunxi_factors_register(node, &sun4i_a10_mod0_data, |
| &sun4i_a10_mod0_lock, reg); |
| } |
| CLK_OF_DECLARE_DRIVER(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk", |
| sun4i_a10_mod0_setup); |
| |
| static int sun4i_a10_mod0_clk_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct resource *r; |
| void __iomem *reg; |
| |
| if (!np) |
| return -ENODEV; |
| |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| reg = devm_ioremap_resource(&pdev->dev, r); |
| if (IS_ERR(reg)) |
| return PTR_ERR(reg); |
| |
| sunxi_factors_register(np, &sun4i_a10_mod0_data, |
| &sun4i_a10_mod0_lock, reg); |
| return 0; |
| } |
| |
| static const struct of_device_id sun4i_a10_mod0_clk_dt_ids[] = { |
| { .compatible = "allwinner,sun4i-a10-mod0-clk" }, |
| { /* sentinel */ } |
| }; |
| |
| static struct platform_driver sun4i_a10_mod0_clk_driver = { |
| .driver = { |
| .name = "sun4i-a10-mod0-clk", |
| .of_match_table = sun4i_a10_mod0_clk_dt_ids, |
| }, |
| .probe = sun4i_a10_mod0_clk_probe, |
| }; |
| builtin_platform_driver(sun4i_a10_mod0_clk_driver); |
| |
| static const struct factors_data sun9i_a80_mod0_data __initconst = { |
| .enable = 31, |
| .mux = 24, |
| .muxmask = BIT(3) | BIT(2) | BIT(1) | BIT(0), |
| .table = &sun4i_a10_mod0_config, |
| .getter = sun4i_a10_get_mod0_factors, |
| }; |
| |
| static void __init sun9i_a80_mod0_setup(struct device_node *node) |
| { |
| void __iomem *reg; |
| |
| reg = of_io_request_and_map(node, 0, of_node_full_name(node)); |
| if (IS_ERR(reg)) { |
| pr_err("Could not get registers for mod0-clk: %pOFn\n", |
| node); |
| return; |
| } |
| |
| sunxi_factors_register(node, &sun9i_a80_mod0_data, |
| &sun4i_a10_mod0_lock, reg); |
| } |
| CLK_OF_DECLARE(sun9i_a80_mod0, "allwinner,sun9i-a80-mod0-clk", sun9i_a80_mod0_setup); |
| |
| static DEFINE_SPINLOCK(sun5i_a13_mbus_lock); |
| |
| static void __init sun5i_a13_mbus_setup(struct device_node *node) |
| { |
| void __iomem *reg; |
| |
| reg = of_iomap(node, 0); |
| if (!reg) { |
| pr_err("Could not get registers for a13-mbus-clk\n"); |
| return; |
| } |
| |
| /* The MBUS clocks needs to be always enabled */ |
| sunxi_factors_register_critical(node, &sun4i_a10_mod0_data, |
| &sun5i_a13_mbus_lock, reg); |
| } |
| CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup); |
| |
| struct mmc_phase { |
| struct clk_hw hw; |
| u8 offset; |
| void __iomem *reg; |
| spinlock_t *lock; |
| }; |
| |
| #define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw) |
| |
| static int mmc_get_phase(struct clk_hw *hw) |
| { |
| struct clk *mmc, *mmc_parent, *clk = hw->clk; |
| struct mmc_phase *phase = to_mmc_phase(hw); |
| unsigned int mmc_rate, mmc_parent_rate; |
| u16 step, mmc_div; |
| u32 value; |
| u8 delay; |
| |
| value = readl(phase->reg); |
| delay = (value >> phase->offset) & 0x3; |
| |
| if (!delay) |
| return 180; |
| |
| /* Get the main MMC clock */ |
| mmc = clk_get_parent(clk); |
| if (!mmc) |
| return -EINVAL; |
| |
| /* And its rate */ |
| mmc_rate = clk_get_rate(mmc); |
| if (!mmc_rate) |
| return -EINVAL; |
| |
| /* Now, get the MMC parent (most likely some PLL) */ |
| mmc_parent = clk_get_parent(mmc); |
| if (!mmc_parent) |
| return -EINVAL; |
| |
| /* And its rate */ |
| mmc_parent_rate = clk_get_rate(mmc_parent); |
| if (!mmc_parent_rate) |
| return -EINVAL; |
| |
| /* Get MMC clock divider */ |
| mmc_div = mmc_parent_rate / mmc_rate; |
| |
| step = DIV_ROUND_CLOSEST(360, mmc_div); |
| return delay * step; |
| } |
| |
| static int mmc_set_phase(struct clk_hw *hw, int degrees) |
| { |
| struct clk *mmc, *mmc_parent, *clk = hw->clk; |
| struct mmc_phase *phase = to_mmc_phase(hw); |
| unsigned int mmc_rate, mmc_parent_rate; |
| unsigned long flags; |
| u32 value; |
| u8 delay; |
| |
| /* Get the main MMC clock */ |
| mmc = clk_get_parent(clk); |
| if (!mmc) |
| return -EINVAL; |
| |
| /* And its rate */ |
| mmc_rate = clk_get_rate(mmc); |
| if (!mmc_rate) |
| return -EINVAL; |
| |
| /* Now, get the MMC parent (most likely some PLL) */ |
| mmc_parent = clk_get_parent(mmc); |
| if (!mmc_parent) |
| return -EINVAL; |
| |
| /* And its rate */ |
| mmc_parent_rate = clk_get_rate(mmc_parent); |
| if (!mmc_parent_rate) |
| return -EINVAL; |
| |
| if (degrees != 180) { |
| u16 step, mmc_div; |
| |
| /* Get MMC clock divider */ |
| mmc_div = mmc_parent_rate / mmc_rate; |
| |
| /* |
| * We can only outphase the clocks by multiple of the |
| * PLL's period. |
| * |
| * Since the MMC clock in only a divider, and the |
| * formula to get the outphasing in degrees is deg = |
| * 360 * delta / period |
| * |
| * If we simplify this formula, we can see that the |
| * only thing that we're concerned about is the number |
| * of period we want to outphase our clock from, and |
| * the divider set by the MMC clock. |
| */ |
| step = DIV_ROUND_CLOSEST(360, mmc_div); |
| delay = DIV_ROUND_CLOSEST(degrees, step); |
| } else { |
| delay = 0; |
| } |
| |
| spin_lock_irqsave(phase->lock, flags); |
| value = readl(phase->reg); |
| value &= ~GENMASK(phase->offset + 3, phase->offset); |
| value |= delay << phase->offset; |
| writel(value, phase->reg); |
| spin_unlock_irqrestore(phase->lock, flags); |
| |
| return 0; |
| } |
| |
| static const struct clk_ops mmc_clk_ops = { |
| .get_phase = mmc_get_phase, |
| .set_phase = mmc_set_phase, |
| }; |
| |
| /* |
| * sunxi_mmc_setup - Common setup function for mmc module clocks |
| * |
| * The only difference between module clocks on different platforms is the |
| * width of the mux register bits and the valid values, which are passed in |
| * through struct factors_data. The phase clocks parts are identical. |
| */ |
| static void __init sunxi_mmc_setup(struct device_node *node, |
| const struct factors_data *data, |
| spinlock_t *lock) |
| { |
| struct clk_onecell_data *clk_data; |
| const char *parent; |
| void __iomem *reg; |
| int i; |
| |
| reg = of_io_request_and_map(node, 0, of_node_full_name(node)); |
| if (IS_ERR(reg)) { |
| pr_err("Couldn't map the %pOFn clock registers\n", node); |
| return; |
| } |
| |
| clk_data = kmalloc(sizeof(*clk_data), GFP_KERNEL); |
| if (!clk_data) |
| return; |
| |
| clk_data->clks = kcalloc(3, sizeof(*clk_data->clks), GFP_KERNEL); |
| if (!clk_data->clks) |
| goto err_free_data; |
| |
| clk_data->clk_num = 3; |
| clk_data->clks[0] = sunxi_factors_register(node, data, lock, reg); |
| if (!clk_data->clks[0]) |
| goto err_free_clks; |
| |
| parent = __clk_get_name(clk_data->clks[0]); |
| |
| for (i = 1; i < 3; i++) { |
| struct clk_init_data init = { |
| .num_parents = 1, |
| .parent_names = &parent, |
| .ops = &mmc_clk_ops, |
| }; |
| struct mmc_phase *phase; |
| |
| phase = kmalloc(sizeof(*phase), GFP_KERNEL); |
| if (!phase) |
| continue; |
| |
| phase->hw.init = &init; |
| phase->reg = reg; |
| phase->lock = lock; |
| |
| if (i == 1) |
| phase->offset = 8; |
| else |
| phase->offset = 20; |
| |
| if (of_property_read_string_index(node, "clock-output-names", |
| i, &init.name)) |
| init.name = node->name; |
| |
| clk_data->clks[i] = clk_register(NULL, &phase->hw); |
| if (IS_ERR(clk_data->clks[i])) { |
| kfree(phase); |
| continue; |
| } |
| } |
| |
| of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); |
| |
| return; |
| |
| err_free_clks: |
| kfree(clk_data->clks); |
| err_free_data: |
| kfree(clk_data); |
| } |
| |
| static DEFINE_SPINLOCK(sun4i_a10_mmc_lock); |
| |
| static void __init sun4i_a10_mmc_setup(struct device_node *node) |
| { |
| sunxi_mmc_setup(node, &sun4i_a10_mod0_data, &sun4i_a10_mmc_lock); |
| } |
| CLK_OF_DECLARE(sun4i_a10_mmc, "allwinner,sun4i-a10-mmc-clk", sun4i_a10_mmc_setup); |
| |
| static DEFINE_SPINLOCK(sun9i_a80_mmc_lock); |
| |
| static void __init sun9i_a80_mmc_setup(struct device_node *node) |
| { |
| sunxi_mmc_setup(node, &sun9i_a80_mod0_data, &sun9i_a80_mmc_lock); |
| } |
| CLK_OF_DECLARE(sun9i_a80_mmc, "allwinner,sun9i-a80-mmc-clk", sun9i_a80_mmc_setup); |