blob: 031175113dd41240aa455d0d1e24453b240cfd00 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* i2c_adap_pxa.c
*
* I2C adapter for the PXA I2C bus access.
*
* Copyright (C) 2002 Intrinsyc Software Inc.
* Copyright (C) 2004-2005 Deep Blue Solutions Ltd.
*
* History:
* Apr 2002: Initial version [CS]
* Jun 2002: Properly separated algo/adap [FB]
* Jan 2003: Fixed several bugs concerning interrupt handling [Kai-Uwe Bloem]
* Jan 2003: added limited signal handling [Kai-Uwe Bloem]
* Sep 2004: Major rework to ensure efficient bus handling [RMK]
* Dec 2004: Added support for PXA27x and slave device probing [Liam Girdwood]
* Feb 2005: Rework slave mode handling [RMK]
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/platform_data/i2c-pxa.h>
#include <linux/property.h>
#include <linux/slab.h>
/* I2C register field definitions */
#define IBMR_SDAS (1 << 0)
#define IBMR_SCLS (1 << 1)
#define ICR_START (1 << 0) /* start bit */
#define ICR_STOP (1 << 1) /* stop bit */
#define ICR_ACKNAK (1 << 2) /* send ACK(0) or NAK(1) */
#define ICR_TB (1 << 3) /* transfer byte bit */
#define ICR_MA (1 << 4) /* master abort */
#define ICR_SCLE (1 << 5) /* master clock enable */
#define ICR_IUE (1 << 6) /* unit enable */
#define ICR_GCD (1 << 7) /* general call disable */
#define ICR_ITEIE (1 << 8) /* enable tx interrupts */
#define ICR_IRFIE (1 << 9) /* enable rx interrupts */
#define ICR_BEIE (1 << 10) /* enable bus error ints */
#define ICR_SSDIE (1 << 11) /* slave STOP detected int enable */
#define ICR_ALDIE (1 << 12) /* enable arbitration interrupt */
#define ICR_SADIE (1 << 13) /* slave address detected int enable */
#define ICR_UR (1 << 14) /* unit reset */
#define ICR_FM (1 << 15) /* fast mode */
#define ICR_HS (1 << 16) /* High Speed mode */
#define ICR_A3700_FM (1 << 16) /* fast mode for armada-3700 */
#define ICR_A3700_HS (1 << 17) /* high speed mode for armada-3700 */
#define ICR_GPIOEN (1 << 19) /* enable GPIO mode for SCL in HS */
#define ISR_RWM (1 << 0) /* read/write mode */
#define ISR_ACKNAK (1 << 1) /* ack/nak status */
#define ISR_UB (1 << 2) /* unit busy */
#define ISR_IBB (1 << 3) /* bus busy */
#define ISR_SSD (1 << 4) /* slave stop detected */
#define ISR_ALD (1 << 5) /* arbitration loss detected */
#define ISR_ITE (1 << 6) /* tx buffer empty */
#define ISR_IRF (1 << 7) /* rx buffer full */
#define ISR_GCAD (1 << 8) /* general call address detected */
#define ISR_SAD (1 << 9) /* slave address detected */
#define ISR_BED (1 << 10) /* bus error no ACK/NAK */
#define ILCR_SLV_SHIFT 0
#define ILCR_SLV_MASK (0x1FF << ILCR_SLV_SHIFT)
#define ILCR_FLV_SHIFT 9
#define ILCR_FLV_MASK (0x1FF << ILCR_FLV_SHIFT)
#define ILCR_HLVL_SHIFT 18
#define ILCR_HLVL_MASK (0x1FF << ILCR_HLVL_SHIFT)
#define ILCR_HLVH_SHIFT 27
#define ILCR_HLVH_MASK (0x1F << ILCR_HLVH_SHIFT)
#define IWCR_CNT_SHIFT 0
#define IWCR_CNT_MASK (0x1F << IWCR_CNT_SHIFT)
#define IWCR_HS_CNT1_SHIFT 5
#define IWCR_HS_CNT1_MASK (0x1F << IWCR_HS_CNT1_SHIFT)
#define IWCR_HS_CNT2_SHIFT 10
#define IWCR_HS_CNT2_MASK (0x1F << IWCR_HS_CNT2_SHIFT)
/* need a longer timeout if we're dealing with the fact we may well be
* looking at a multi-master environment
*/
#define DEF_TIMEOUT 32
#define NO_SLAVE (-ENXIO)
#define BUS_ERROR (-EREMOTEIO)
#define XFER_NAKED (-ECONNREFUSED)
#define I2C_RETRY (-2000) /* an error has occurred retry transmit */
/* ICR initialize bit values
*
* 15 FM 0 (100 kHz operation)
* 14 UR 0 (No unit reset)
* 13 SADIE 0 (Disables the unit from interrupting on slave addresses
* matching its slave address)
* 12 ALDIE 0 (Disables the unit from interrupt when it loses arbitration
* in master mode)
* 11 SSDIE 0 (Disables interrupts from a slave stop detected, in slave mode)
* 10 BEIE 1 (Enable interrupts from detected bus errors, no ACK sent)
* 9 IRFIE 1 (Enable interrupts from full buffer received)
* 8 ITEIE 1 (Enables the I2C unit to interrupt when transmit buffer empty)
* 7 GCD 1 (Disables i2c unit response to general call messages as a slave)
* 6 IUE 0 (Disable unit until we change settings)
* 5 SCLE 1 (Enables the i2c clock output for master mode (drives SCL)
* 4 MA 0 (Only send stop with the ICR stop bit)
* 3 TB 0 (We are not transmitting a byte initially)
* 2 ACKNAK 0 (Send an ACK after the unit receives a byte)
* 1 STOP 0 (Do not send a STOP)
* 0 START 0 (Do not send a START)
*/
#define I2C_ICR_INIT (ICR_BEIE | ICR_IRFIE | ICR_ITEIE | ICR_GCD | ICR_SCLE)
/* I2C status register init values
*
* 10 BED 1 (Clear bus error detected)
* 9 SAD 1 (Clear slave address detected)
* 7 IRF 1 (Clear IDBR Receive Full)
* 6 ITE 1 (Clear IDBR Transmit Empty)
* 5 ALD 1 (Clear Arbitration Loss Detected)
* 4 SSD 1 (Clear Slave Stop Detected)
*/
#define I2C_ISR_INIT 0x7FF /* status register init */
struct pxa_reg_layout {
u32 ibmr;
u32 idbr;
u32 icr;
u32 isr;
u32 isar;
u32 ilcr;
u32 iwcr;
u32 fm;
u32 hs;
};
enum pxa_i2c_types {
REGS_PXA2XX,
REGS_PXA3XX,
REGS_CE4100,
REGS_PXA910,
REGS_A3700,
};
/* I2C register layout definitions */
static struct pxa_reg_layout pxa_reg_layout[] = {
[REGS_PXA2XX] = {
.ibmr = 0x00,
.idbr = 0x08,
.icr = 0x10,
.isr = 0x18,
.isar = 0x20,
.fm = ICR_FM,
.hs = ICR_HS,
},
[REGS_PXA3XX] = {
.ibmr = 0x00,
.idbr = 0x04,
.icr = 0x08,
.isr = 0x0c,
.isar = 0x10,
.fm = ICR_FM,
.hs = ICR_HS,
},
[REGS_CE4100] = {
.ibmr = 0x14,
.idbr = 0x0c,
.icr = 0x00,
.isr = 0x04,
/* no isar register */
.fm = ICR_FM,
.hs = ICR_HS,
},
[REGS_PXA910] = {
.ibmr = 0x00,
.idbr = 0x08,
.icr = 0x10,
.isr = 0x18,
.isar = 0x20,
.ilcr = 0x28,
.iwcr = 0x30,
.fm = ICR_FM,
.hs = ICR_HS,
},
[REGS_A3700] = {
.ibmr = 0x00,
.idbr = 0x04,
.icr = 0x08,
.isr = 0x0c,
.isar = 0x10,
.fm = ICR_A3700_FM,
.hs = ICR_A3700_HS,
},
};
static const struct of_device_id i2c_pxa_dt_ids[] = {
{ .compatible = "mrvl,pxa-i2c", .data = (void *)REGS_PXA2XX },
{ .compatible = "mrvl,pwri2c", .data = (void *)REGS_PXA3XX },
{ .compatible = "mrvl,mmp-twsi", .data = (void *)REGS_PXA910 },
{ .compatible = "marvell,armada-3700-i2c", .data = (void *)REGS_A3700 },
{}
};
MODULE_DEVICE_TABLE(of, i2c_pxa_dt_ids);
static const struct platform_device_id i2c_pxa_id_table[] = {
{ "pxa2xx-i2c", REGS_PXA2XX },
{ "pxa3xx-pwri2c", REGS_PXA3XX },
{ "ce4100-i2c", REGS_CE4100 },
{ "pxa910-i2c", REGS_PXA910 },
{ "armada-3700-i2c", REGS_A3700 },
{ },
};
MODULE_DEVICE_TABLE(platform, i2c_pxa_id_table);
struct pxa_i2c {
spinlock_t lock;
wait_queue_head_t wait;
struct i2c_msg *msg;
unsigned int msg_num;
unsigned int msg_idx;
unsigned int msg_ptr;
unsigned int slave_addr;
unsigned int req_slave_addr;
struct i2c_adapter adap;
struct clk *clk;
#ifdef CONFIG_I2C_PXA_SLAVE
struct i2c_client *slave;
#endif
unsigned int irqlogidx;
u32 isrlog[32];
u32 icrlog[32];
void __iomem *reg_base;
void __iomem *reg_ibmr;
void __iomem *reg_idbr;
void __iomem *reg_icr;
void __iomem *reg_isr;
void __iomem *reg_isar;
void __iomem *reg_ilcr;
void __iomem *reg_iwcr;
unsigned long iobase;
unsigned long iosize;
int irq;
unsigned int use_pio :1;
unsigned int fast_mode :1;
unsigned int high_mode:1;
unsigned char master_code;
unsigned long rate;
bool highmode_enter;
u32 fm_mask;
u32 hs_mask;
struct i2c_bus_recovery_info recovery;
struct pinctrl *pinctrl;
struct pinctrl_state *pinctrl_default;
struct pinctrl_state *pinctrl_recovery;
};
#define _IBMR(i2c) ((i2c)->reg_ibmr)
#define _IDBR(i2c) ((i2c)->reg_idbr)
#define _ICR(i2c) ((i2c)->reg_icr)
#define _ISR(i2c) ((i2c)->reg_isr)
#define _ISAR(i2c) ((i2c)->reg_isar)
#define _ILCR(i2c) ((i2c)->reg_ilcr)
#define _IWCR(i2c) ((i2c)->reg_iwcr)
/*
* I2C Slave mode address
*/
#define I2C_PXA_SLAVE_ADDR 0x1
#ifdef DEBUG
struct bits {
u32 mask;
const char *set;
const char *unset;
};
#define PXA_BIT(m, s, u) { .mask = m, .set = s, .unset = u }
static inline void
decode_bits(const char *prefix, const struct bits *bits, int num, u32 val)
{
printk("%s %08x:", prefix, val);
while (num--) {
const char *str = val & bits->mask ? bits->set : bits->unset;
if (str)
pr_cont(" %s", str);
bits++;
}
pr_cont("\n");
}
static const struct bits isr_bits[] = {
PXA_BIT(ISR_RWM, "RX", "TX"),
PXA_BIT(ISR_ACKNAK, "NAK", "ACK"),
PXA_BIT(ISR_UB, "Bsy", "Rdy"),
PXA_BIT(ISR_IBB, "BusBsy", "BusRdy"),
PXA_BIT(ISR_SSD, "SlaveStop", NULL),
PXA_BIT(ISR_ALD, "ALD", NULL),
PXA_BIT(ISR_ITE, "TxEmpty", NULL),
PXA_BIT(ISR_IRF, "RxFull", NULL),
PXA_BIT(ISR_GCAD, "GenCall", NULL),
PXA_BIT(ISR_SAD, "SlaveAddr", NULL),
PXA_BIT(ISR_BED, "BusErr", NULL),
};
static void decode_ISR(unsigned int val)
{
decode_bits(KERN_DEBUG "ISR", isr_bits, ARRAY_SIZE(isr_bits), val);
}
#ifdef CONFIG_I2C_PXA_SLAVE
static const struct bits icr_bits[] = {
PXA_BIT(ICR_START, "START", NULL),
PXA_BIT(ICR_STOP, "STOP", NULL),
PXA_BIT(ICR_ACKNAK, "ACKNAK", NULL),
PXA_BIT(ICR_TB, "TB", NULL),
PXA_BIT(ICR_MA, "MA", NULL),
PXA_BIT(ICR_SCLE, "SCLE", "scle"),
PXA_BIT(ICR_IUE, "IUE", "iue"),
PXA_BIT(ICR_GCD, "GCD", NULL),
PXA_BIT(ICR_ITEIE, "ITEIE", NULL),
PXA_BIT(ICR_IRFIE, "IRFIE", NULL),
PXA_BIT(ICR_BEIE, "BEIE", NULL),
PXA_BIT(ICR_SSDIE, "SSDIE", NULL),
PXA_BIT(ICR_ALDIE, "ALDIE", NULL),
PXA_BIT(ICR_SADIE, "SADIE", NULL),
PXA_BIT(ICR_UR, "UR", "ur"),
};
static void decode_ICR(unsigned int val)
{
decode_bits(KERN_DEBUG "ICR", icr_bits, ARRAY_SIZE(icr_bits), val);
}
#endif
static unsigned int i2c_debug = DEBUG;
static void i2c_pxa_show_state(struct pxa_i2c *i2c, int lno, const char *fname)
{
dev_dbg(&i2c->adap.dev, "state:%s:%d: ISR=%08x, ICR=%08x, IBMR=%02x\n", fname, lno,
readl(_ISR(i2c)), readl(_ICR(i2c)), readl(_IBMR(i2c)));
}
#define show_state(i2c) i2c_pxa_show_state(i2c, __LINE__, __func__)
static void i2c_pxa_scream_blue_murder(struct pxa_i2c *i2c, const char *why)
{
unsigned int i;
struct device *dev = &i2c->adap.dev;
dev_err(dev, "slave_0x%x error: %s\n",
i2c->req_slave_addr >> 1, why);
dev_err(dev, "msg_num: %d msg_idx: %d msg_ptr: %d\n",
i2c->msg_num, i2c->msg_idx, i2c->msg_ptr);
dev_err(dev, "IBMR: %08x IDBR: %08x ICR: %08x ISR: %08x\n",
readl(_IBMR(i2c)), readl(_IDBR(i2c)), readl(_ICR(i2c)),
readl(_ISR(i2c)));
dev_err(dev, "log:");
for (i = 0; i < i2c->irqlogidx; i++)
pr_cont(" [%03x:%05x]", i2c->isrlog[i], i2c->icrlog[i]);
pr_cont("\n");
}
#else /* ifdef DEBUG */
#define i2c_debug 0
#define show_state(i2c) do { } while (0)
#define decode_ISR(val) do { } while (0)
#define decode_ICR(val) do { } while (0)
#define i2c_pxa_scream_blue_murder(i2c, why) do { } while (0)
#endif /* ifdef DEBUG / else */
static void i2c_pxa_master_complete(struct pxa_i2c *i2c, int ret);
static inline int i2c_pxa_is_slavemode(struct pxa_i2c *i2c)
{
return !(readl(_ICR(i2c)) & ICR_SCLE);
}
static void i2c_pxa_abort(struct pxa_i2c *i2c)
{
int i = 250;
if (i2c_pxa_is_slavemode(i2c)) {
dev_dbg(&i2c->adap.dev, "%s: called in slave mode\n", __func__);
return;
}
while ((i > 0) && (readl(_IBMR(i2c)) & IBMR_SDAS) == 0) {
unsigned long icr = readl(_ICR(i2c));
icr &= ~ICR_START;
icr |= ICR_ACKNAK | ICR_STOP | ICR_TB;
writel(icr, _ICR(i2c));
show_state(i2c);
mdelay(1);
i --;
}
writel(readl(_ICR(i2c)) & ~(ICR_MA | ICR_START | ICR_STOP),
_ICR(i2c));
}
static int i2c_pxa_wait_bus_not_busy(struct pxa_i2c *i2c)
{
int timeout = DEF_TIMEOUT;
u32 isr;
while (1) {
isr = readl(_ISR(i2c));
if (!(isr & (ISR_IBB | ISR_UB)))
return 0;
if (isr & ISR_SAD)
timeout += 4;
if (!timeout--)
break;
msleep(2);
show_state(i2c);
}
show_state(i2c);
return I2C_RETRY;
}
static int i2c_pxa_wait_master(struct pxa_i2c *i2c)
{
unsigned long timeout = jiffies + HZ*4;
while (time_before(jiffies, timeout)) {
if (i2c_debug > 1)
dev_dbg(&i2c->adap.dev, "%s: %ld: ISR=%08x, ICR=%08x, IBMR=%02x\n",
__func__, (long)jiffies, readl(_ISR(i2c)), readl(_ICR(i2c)), readl(_IBMR(i2c)));
if (readl(_ISR(i2c)) & ISR_SAD) {
if (i2c_debug > 0)
dev_dbg(&i2c->adap.dev, "%s: Slave detected\n", __func__);
goto out;
}
/* wait for unit and bus being not busy, and we also do a
* quick check of the i2c lines themselves to ensure they've
* gone high...
*/
if ((readl(_ISR(i2c)) & (ISR_UB | ISR_IBB)) == 0 &&
readl(_IBMR(i2c)) == (IBMR_SCLS | IBMR_SDAS)) {
if (i2c_debug > 0)
dev_dbg(&i2c->adap.dev, "%s: done\n", __func__);
return 1;
}
msleep(1);
}
if (i2c_debug > 0)
dev_dbg(&i2c->adap.dev, "%s: did not free\n", __func__);
out:
return 0;
}
static int i2c_pxa_set_master(struct pxa_i2c *i2c)
{
if (i2c_debug)
dev_dbg(&i2c->adap.dev, "setting to bus master\n");
if ((readl(_ISR(i2c)) & (ISR_UB | ISR_IBB)) != 0) {
dev_dbg(&i2c->adap.dev, "%s: unit is busy\n", __func__);
if (!i2c_pxa_wait_master(i2c)) {
dev_dbg(&i2c->adap.dev, "%s: error: unit busy\n", __func__);
return I2C_RETRY;
}
}
writel(readl(_ICR(i2c)) | ICR_SCLE, _ICR(i2c));
return 0;
}
#ifdef CONFIG_I2C_PXA_SLAVE
static int i2c_pxa_wait_slave(struct pxa_i2c *i2c)
{
unsigned long timeout = jiffies + HZ*1;
/* wait for stop */
show_state(i2c);
while (time_before(jiffies, timeout)) {
if (i2c_debug > 1)
dev_dbg(&i2c->adap.dev, "%s: %ld: ISR=%08x, ICR=%08x, IBMR=%02x\n",
__func__, (long)jiffies, readl(_ISR(i2c)), readl(_ICR(i2c)), readl(_IBMR(i2c)));
if ((readl(_ISR(i2c)) & (ISR_UB|ISR_IBB)) == 0 ||
(readl(_ISR(i2c)) & ISR_SAD) != 0 ||
(readl(_ICR(i2c)) & ICR_SCLE) == 0) {
if (i2c_debug > 1)
dev_dbg(&i2c->adap.dev, "%s: done\n", __func__);
return 1;
}
msleep(1);
}
if (i2c_debug > 0)
dev_dbg(&i2c->adap.dev, "%s: did not free\n", __func__);
return 0;
}
/*
* clear the hold on the bus, and take of anything else
* that has been configured
*/
static void i2c_pxa_set_slave(struct pxa_i2c *i2c, int errcode)
{
show_state(i2c);
if (errcode < 0) {
udelay(100); /* simple delay */
} else {
/* we need to wait for the stop condition to end */
/* if we where in stop, then clear... */
if (readl(_ICR(i2c)) & ICR_STOP) {
udelay(100);
writel(readl(_ICR(i2c)) & ~ICR_STOP, _ICR(i2c));
}
if (!i2c_pxa_wait_slave(i2c)) {
dev_err(&i2c->adap.dev, "%s: wait timedout\n",
__func__);
return;
}
}
writel(readl(_ICR(i2c)) & ~(ICR_STOP|ICR_ACKNAK|ICR_MA), _ICR(i2c));
writel(readl(_ICR(i2c)) & ~ICR_SCLE, _ICR(i2c));
if (i2c_debug) {
dev_dbg(&i2c->adap.dev, "ICR now %08x, ISR %08x\n", readl(_ICR(i2c)), readl(_ISR(i2c)));
decode_ICR(readl(_ICR(i2c)));
}
}
#else
#define i2c_pxa_set_slave(i2c, err) do { } while (0)
#endif
static void i2c_pxa_do_reset(struct pxa_i2c *i2c)
{
/* reset according to 9.8 */
writel(ICR_UR, _ICR(i2c));
writel(I2C_ISR_INIT, _ISR(i2c));
writel(readl(_ICR(i2c)) & ~ICR_UR, _ICR(i2c));
if (i2c->reg_isar && IS_ENABLED(CONFIG_I2C_PXA_SLAVE))
writel(i2c->slave_addr, _ISAR(i2c));
/* set control register values */
writel(I2C_ICR_INIT | (i2c->fast_mode ? i2c->fm_mask : 0), _ICR(i2c));
writel(readl(_ICR(i2c)) | (i2c->high_mode ? i2c->hs_mask : 0), _ICR(i2c));
#ifdef CONFIG_I2C_PXA_SLAVE
dev_info(&i2c->adap.dev, "Enabling slave mode\n");
writel(readl(_ICR(i2c)) | ICR_SADIE | ICR_ALDIE | ICR_SSDIE, _ICR(i2c));
#endif
i2c_pxa_set_slave(i2c, 0);
}
static void i2c_pxa_enable(struct pxa_i2c *i2c)
{
/* enable unit */
writel(readl(_ICR(i2c)) | ICR_IUE, _ICR(i2c));
udelay(100);
}
static void i2c_pxa_reset(struct pxa_i2c *i2c)
{
pr_debug("Resetting I2C Controller Unit\n");
/* abort any transfer currently under way */
i2c_pxa_abort(i2c);
i2c_pxa_do_reset(i2c);
i2c_pxa_enable(i2c);
}
#ifdef CONFIG_I2C_PXA_SLAVE
/*
* PXA I2C Slave mode
*/
static void i2c_pxa_slave_txempty(struct pxa_i2c *i2c, u32 isr)
{
if (isr & ISR_BED) {
/* what should we do here? */
} else {
u8 byte = 0;
if (i2c->slave != NULL)
i2c_slave_event(i2c->slave, I2C_SLAVE_READ_PROCESSED,
&byte);
writel(byte, _IDBR(i2c));
writel(readl(_ICR(i2c)) | ICR_TB, _ICR(i2c)); /* allow next byte */
}
}
static void i2c_pxa_slave_rxfull(struct pxa_i2c *i2c, u32 isr)
{
u8 byte = readl(_IDBR(i2c));
if (i2c->slave != NULL)
i2c_slave_event(i2c->slave, I2C_SLAVE_WRITE_RECEIVED, &byte);
writel(readl(_ICR(i2c)) | ICR_TB, _ICR(i2c));
}
static void i2c_pxa_slave_start(struct pxa_i2c *i2c, u32 isr)
{
int timeout;
if (i2c_debug > 0)
dev_dbg(&i2c->adap.dev, "SAD, mode is slave-%cx\n",
(isr & ISR_RWM) ? 'r' : 't');
if (i2c->slave != NULL) {
if (isr & ISR_RWM) {
u8 byte = 0;
i2c_slave_event(i2c->slave, I2C_SLAVE_READ_REQUESTED,
&byte);
writel(byte, _IDBR(i2c));
} else {
i2c_slave_event(i2c->slave, I2C_SLAVE_WRITE_REQUESTED,
NULL);
}
}
/*
* slave could interrupt in the middle of us generating a
* start condition... if this happens, we'd better back off
* and stop holding the poor thing up
*/
writel(readl(_ICR(i2c)) & ~(ICR_START|ICR_STOP), _ICR(i2c));
writel(readl(_ICR(i2c)) | ICR_TB, _ICR(i2c));
timeout = 0x10000;
while (1) {
if ((readl(_IBMR(i2c)) & IBMR_SCLS) == IBMR_SCLS)
break;
timeout--;
if (timeout <= 0) {
dev_err(&i2c->adap.dev, "timeout waiting for SCL high\n");
break;
}
}
writel(readl(_ICR(i2c)) & ~ICR_SCLE, _ICR(i2c));
}
static void i2c_pxa_slave_stop(struct pxa_i2c *i2c)
{
if (i2c_debug > 2)
dev_dbg(&i2c->adap.dev, "ISR: SSD (Slave Stop)\n");
if (i2c->slave != NULL)
i2c_slave_event(i2c->slave, I2C_SLAVE_STOP, NULL);
if (i2c_debug > 2)
dev_dbg(&i2c->adap.dev, "ISR: SSD (Slave Stop) acked\n");
/*
* If we have a master-mode message waiting,
* kick it off now that the slave has completed.
*/
if (i2c->msg)
i2c_pxa_master_complete(i2c, I2C_RETRY);
}
static int i2c_pxa_slave_reg(struct i2c_client *slave)
{
struct pxa_i2c *i2c = slave->adapter->algo_data;
if (i2c->slave)
return -EBUSY;
if (!i2c->reg_isar)
return -EAFNOSUPPORT;
i2c->slave = slave;
i2c->slave_addr = slave->addr;
writel(i2c->slave_addr, _ISAR(i2c));
return 0;
}
static int i2c_pxa_slave_unreg(struct i2c_client *slave)
{
struct pxa_i2c *i2c = slave->adapter->algo_data;
WARN_ON(!i2c->slave);
i2c->slave_addr = I2C_PXA_SLAVE_ADDR;
writel(i2c->slave_addr, _ISAR(i2c));
i2c->slave = NULL;
return 0;
}
#else
static void i2c_pxa_slave_txempty(struct pxa_i2c *i2c, u32 isr)
{
if (isr & ISR_BED) {
/* what should we do here? */
} else {
writel(0, _IDBR(i2c));
writel(readl(_ICR(i2c)) | ICR_TB, _ICR(i2c));
}
}
static void i2c_pxa_slave_rxfull(struct pxa_i2c *i2c, u32 isr)
{
writel(readl(_ICR(i2c)) | ICR_TB | ICR_ACKNAK, _ICR(i2c));
}
static void i2c_pxa_slave_start(struct pxa_i2c *i2c, u32 isr)
{
int timeout;
/*
* slave could interrupt in the middle of us generating a
* start condition... if this happens, we'd better back off
* and stop holding the poor thing up
*/
writel(readl(_ICR(i2c)) & ~(ICR_START|ICR_STOP), _ICR(i2c));
writel(readl(_ICR(i2c)) | ICR_TB | ICR_ACKNAK, _ICR(i2c));
timeout = 0x10000;
while (1) {
if ((readl(_IBMR(i2c)) & IBMR_SCLS) == IBMR_SCLS)
break;
timeout--;
if (timeout <= 0) {
dev_err(&i2c->adap.dev, "timeout waiting for SCL high\n");
break;
}
}
writel(readl(_ICR(i2c)) & ~ICR_SCLE, _ICR(i2c));
}
static void i2c_pxa_slave_stop(struct pxa_i2c *i2c)
{
if (i2c->msg)
i2c_pxa_master_complete(i2c, I2C_RETRY);
}
#endif
/*
* PXA I2C Master mode
*/
static inline void i2c_pxa_start_message(struct pxa_i2c *i2c)
{
u32 icr;
/*
* Step 1: target slave address into IDBR
*/
i2c->req_slave_addr = i2c_8bit_addr_from_msg(i2c->msg);
writel(i2c->req_slave_addr, _IDBR(i2c));
/*
* Step 2: initiate the write.
*/
icr = readl(_ICR(i2c)) & ~(ICR_STOP | ICR_ALDIE);
writel(icr | ICR_START | ICR_TB, _ICR(i2c));
}
static inline void i2c_pxa_stop_message(struct pxa_i2c *i2c)
{
u32 icr;
/* Clear the START, STOP, ACK, TB and MA flags */
icr = readl(_ICR(i2c));
icr &= ~(ICR_START | ICR_STOP | ICR_ACKNAK | ICR_TB | ICR_MA);
writel(icr, _ICR(i2c));
}
/*
* PXA I2C send master code
* 1. Load master code to IDBR and send it.
* Note for HS mode, set ICR [GPIOEN].
* 2. Wait until win arbitration.
*/
static int i2c_pxa_send_mastercode(struct pxa_i2c *i2c)
{
u32 icr;
long time_left;
spin_lock_irq(&i2c->lock);
i2c->highmode_enter = true;
writel(i2c->master_code, _IDBR(i2c));
icr = readl(_ICR(i2c)) & ~(ICR_STOP | ICR_ALDIE);
icr |= ICR_GPIOEN | ICR_START | ICR_TB | ICR_ITEIE;
writel(icr, _ICR(i2c));
spin_unlock_irq(&i2c->lock);
time_left = wait_event_timeout(i2c->wait,
i2c->highmode_enter == false, HZ * 1);
i2c->highmode_enter = false;
return (time_left == 0) ? I2C_RETRY : 0;
}
/*
* i2c_pxa_master_complete - complete the message and wake up.
*/
static void i2c_pxa_master_complete(struct pxa_i2c *i2c, int ret)
{
i2c->msg_ptr = 0;
i2c->msg = NULL;
i2c->msg_idx ++;
i2c->msg_num = 0;
if (ret)
i2c->msg_idx = ret;
if (!i2c->use_pio)
wake_up(&i2c->wait);
}
static void i2c_pxa_irq_txempty(struct pxa_i2c *i2c, u32 isr)
{
u32 icr = readl(_ICR(i2c)) & ~(ICR_START|ICR_STOP|ICR_ACKNAK|ICR_TB);
again:
/*
* If ISR_ALD is set, we lost arbitration.
*/
if (isr & ISR_ALD) {
/*
* Do we need to do anything here? The PXA docs
* are vague about what happens.
*/
i2c_pxa_scream_blue_murder(i2c, "ALD set");
/*
* We ignore this error. We seem to see spurious ALDs
* for seemingly no reason. If we handle them as I think
* they should, we end up causing an I2C error, which
* is painful for some systems.
*/
return; /* ignore */
}
if ((isr & ISR_BED) &&
(!((i2c->msg->flags & I2C_M_IGNORE_NAK) &&
(isr & ISR_ACKNAK)))) {
int ret = BUS_ERROR;
/*
* I2C bus error - either the device NAK'd us, or
* something more serious happened. If we were NAK'd
* on the initial address phase, we can retry.
*/
if (isr & ISR_ACKNAK) {
if (i2c->msg_ptr == 0 && i2c->msg_idx == 0)
ret = NO_SLAVE;
else
ret = XFER_NAKED;
}
i2c_pxa_master_complete(i2c, ret);
} else if (isr & ISR_RWM) {
/*
* Read mode. We have just sent the address byte, and
* now we must initiate the transfer.
*/
if (i2c->msg_ptr == i2c->msg->len - 1 &&
i2c->msg_idx == i2c->msg_num - 1)
icr |= ICR_STOP | ICR_ACKNAK;
icr |= ICR_ALDIE | ICR_TB;
} else if (i2c->msg_ptr < i2c->msg->len) {
/*
* Write mode. Write the next data byte.
*/
writel(i2c->msg->buf[i2c->msg_ptr++], _IDBR(i2c));
icr |= ICR_ALDIE | ICR_TB;
/*
* If this is the last byte of the last message or last byte
* of any message with I2C_M_STOP (e.g. SCCB), send a STOP.
*/
if ((i2c->msg_ptr == i2c->msg->len) &&
((i2c->msg->flags & I2C_M_STOP) ||
(i2c->msg_idx == i2c->msg_num - 1)))
icr |= ICR_STOP;
} else if (i2c->msg_idx < i2c->msg_num - 1) {
/*
* Next segment of the message.
*/
i2c->msg_ptr = 0;
i2c->msg_idx ++;
i2c->msg++;
/*
* If we aren't doing a repeated start and address,
* go back and try to send the next byte. Note that
* we do not support switching the R/W direction here.
*/
if (i2c->msg->flags & I2C_M_NOSTART)
goto again;
/*
* Write the next address.
*/
i2c->req_slave_addr = i2c_8bit_addr_from_msg(i2c->msg);
writel(i2c->req_slave_addr, _IDBR(i2c));
/*
* And trigger a repeated start, and send the byte.
*/
icr &= ~ICR_ALDIE;
icr |= ICR_START | ICR_TB;
} else {
if (i2c->msg->len == 0)
icr |= ICR_MA;
i2c_pxa_master_complete(i2c, 0);
}
i2c->icrlog[i2c->irqlogidx-1] = icr;
writel(icr, _ICR(i2c));
show_state(i2c);
}
static void i2c_pxa_irq_rxfull(struct pxa_i2c *i2c, u32 isr)
{
u32 icr = readl(_ICR(i2c)) & ~(ICR_START|ICR_STOP|ICR_ACKNAK|ICR_TB);
/*
* Read the byte.
*/
i2c->msg->buf[i2c->msg_ptr++] = readl(_IDBR(i2c));
if (i2c->msg_ptr < i2c->msg->len) {
/*
* If this is the last byte of the last
* message, send a STOP.
*/
if (i2c->msg_ptr == i2c->msg->len - 1)
icr |= ICR_STOP | ICR_ACKNAK;
icr |= ICR_ALDIE | ICR_TB;
} else {
i2c_pxa_master_complete(i2c, 0);
}
i2c->icrlog[i2c->irqlogidx-1] = icr;
writel(icr, _ICR(i2c));
}
#define VALID_INT_SOURCE (ISR_SSD | ISR_ALD | ISR_ITE | ISR_IRF | \
ISR_SAD | ISR_BED)
static irqreturn_t i2c_pxa_handler(int this_irq, void *dev_id)
{
struct pxa_i2c *i2c = dev_id;
u32 isr = readl(_ISR(i2c));
if (!(isr & VALID_INT_SOURCE))
return IRQ_NONE;
if (i2c_debug > 2 && 0) {
dev_dbg(&i2c->adap.dev, "%s: ISR=%08x, ICR=%08x, IBMR=%02x\n",
__func__, isr, readl(_ICR(i2c)), readl(_IBMR(i2c)));
decode_ISR(isr);
}
if (i2c->irqlogidx < ARRAY_SIZE(i2c->isrlog))
i2c->isrlog[i2c->irqlogidx++] = isr;
show_state(i2c);
/*
* Always clear all pending IRQs.
*/
writel(isr & VALID_INT_SOURCE, _ISR(i2c));
if (isr & ISR_SAD)
i2c_pxa_slave_start(i2c, isr);
if (isr & ISR_SSD)
i2c_pxa_slave_stop(i2c);
if (i2c_pxa_is_slavemode(i2c)) {
if (isr & ISR_ITE)
i2c_pxa_slave_txempty(i2c, isr);
if (isr & ISR_IRF)
i2c_pxa_slave_rxfull(i2c, isr);
} else if (i2c->msg && (!i2c->highmode_enter)) {
if (isr & ISR_ITE)
i2c_pxa_irq_txempty(i2c, isr);
if (isr & ISR_IRF)
i2c_pxa_irq_rxfull(i2c, isr);
} else if ((isr & ISR_ITE) && i2c->highmode_enter) {
i2c->highmode_enter = false;
wake_up(&i2c->wait);
} else {
i2c_pxa_scream_blue_murder(i2c, "spurious irq");
}
return IRQ_HANDLED;
}
/*
* We are protected by the adapter bus mutex.
*/
static int i2c_pxa_do_xfer(struct pxa_i2c *i2c, struct i2c_msg *msg, int num)
{
long time_left;
int ret;
/*
* Wait for the bus to become free.
*/
ret = i2c_pxa_wait_bus_not_busy(i2c);
if (ret) {
dev_err(&i2c->adap.dev, "i2c_pxa: timeout waiting for bus free\n");
i2c_recover_bus(&i2c->adap);
goto out;
}
/*
* Set master mode.
*/
ret = i2c_pxa_set_master(i2c);
if (ret) {
dev_err(&i2c->adap.dev, "i2c_pxa_set_master: error %d\n", ret);
goto out;
}
if (i2c->high_mode) {
ret = i2c_pxa_send_mastercode(i2c);
if (ret) {
dev_err(&i2c->adap.dev, "i2c_pxa_send_mastercode timeout\n");
goto out;
}
}
spin_lock_irq(&i2c->lock);
i2c->msg = msg;
i2c->msg_num = num;
i2c->msg_idx = 0;
i2c->msg_ptr = 0;
i2c->irqlogidx = 0;
i2c_pxa_start_message(i2c);
spin_unlock_irq(&i2c->lock);
/*
* The rest of the processing occurs in the interrupt handler.
*/
time_left = wait_event_timeout(i2c->wait, i2c->msg_num == 0, HZ * 5);
i2c_pxa_stop_message(i2c);
/*
* We place the return code in i2c->msg_idx.
*/
ret = i2c->msg_idx;
if (!time_left && i2c->msg_num) {
i2c_pxa_scream_blue_murder(i2c, "timeout with active message");
i2c_recover_bus(&i2c->adap);
ret = I2C_RETRY;
}
out:
return ret;
}
static int i2c_pxa_internal_xfer(struct pxa_i2c *i2c,
struct i2c_msg *msgs, int num,
int (*xfer)(struct pxa_i2c *,
struct i2c_msg *, int num))
{
int ret, i;
for (i = 0; ; ) {
ret = xfer(i2c, msgs, num);
if (ret != I2C_RETRY && ret != NO_SLAVE)
goto out;
if (++i >= i2c->adap.retries)
break;
if (i2c_debug)
dev_dbg(&i2c->adap.dev, "Retrying transmission\n");
udelay(100);
}
if (ret != NO_SLAVE)
i2c_pxa_scream_blue_murder(i2c, "exhausted retries");
ret = -EREMOTEIO;
out:
i2c_pxa_set_slave(i2c, ret);
return ret;
}
static int i2c_pxa_xfer(struct i2c_adapter *adap,
struct i2c_msg msgs[], int num)
{
struct pxa_i2c *i2c = adap->algo_data;
return i2c_pxa_internal_xfer(i2c, msgs, num, i2c_pxa_do_xfer);
}
static u32 i2c_pxa_functionality(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
I2C_FUNC_PROTOCOL_MANGLING | I2C_FUNC_NOSTART;
}
static const struct i2c_algorithm i2c_pxa_algorithm = {
.master_xfer = i2c_pxa_xfer,
.functionality = i2c_pxa_functionality,
#ifdef CONFIG_I2C_PXA_SLAVE
.reg_slave = i2c_pxa_slave_reg,
.unreg_slave = i2c_pxa_slave_unreg,
#endif
};
/* Non-interrupt mode support */
static int i2c_pxa_pio_set_master(struct pxa_i2c *i2c)
{
/* make timeout the same as for interrupt based functions */
long timeout = 2 * DEF_TIMEOUT;
/*
* Wait for the bus to become free.
*/
while (timeout-- && readl(_ISR(i2c)) & (ISR_IBB | ISR_UB))
udelay(1000);
if (timeout < 0) {
show_state(i2c);
dev_err(&i2c->adap.dev,
"i2c_pxa: timeout waiting for bus free (set_master)\n");
return I2C_RETRY;
}
/*
* Set master mode.
*/
writel(readl(_ICR(i2c)) | ICR_SCLE, _ICR(i2c));
return 0;
}
static int i2c_pxa_do_pio_xfer(struct pxa_i2c *i2c,
struct i2c_msg *msg, int num)
{
unsigned long timeout = 500000; /* 5 seconds */
int ret = 0;
ret = i2c_pxa_pio_set_master(i2c);
if (ret)
goto out;
i2c->msg = msg;
i2c->msg_num = num;
i2c->msg_idx = 0;
i2c->msg_ptr = 0;
i2c->irqlogidx = 0;
i2c_pxa_start_message(i2c);
while (i2c->msg_num > 0 && --timeout) {
i2c_pxa_handler(0, i2c);
udelay(10);
}
i2c_pxa_stop_message(i2c);
/*
* We place the return code in i2c->msg_idx.
*/
ret = i2c->msg_idx;
out:
if (timeout == 0) {
i2c_pxa_scream_blue_murder(i2c, "timeout (do_pio_xfer)");
ret = I2C_RETRY;
}
return ret;
}
static int i2c_pxa_pio_xfer(struct i2c_adapter *adap,
struct i2c_msg msgs[], int num)
{
struct pxa_i2c *i2c = adap->algo_data;
/* If the I2C controller is disabled we need to reset it
(probably due to a suspend/resume destroying state). We do
this here as we can then avoid worrying about resuming the
controller before its users. */
if (!(readl(_ICR(i2c)) & ICR_IUE))
i2c_pxa_reset(i2c);
return i2c_pxa_internal_xfer(i2c, msgs, num, i2c_pxa_do_pio_xfer);
}
static const struct i2c_algorithm i2c_pxa_pio_algorithm = {
.master_xfer = i2c_pxa_pio_xfer,
.functionality = i2c_pxa_functionality,
#ifdef CONFIG_I2C_PXA_SLAVE
.reg_slave = i2c_pxa_slave_reg,
.unreg_slave = i2c_pxa_slave_unreg,
#endif
};
static int i2c_pxa_probe_dt(struct platform_device *pdev, struct pxa_i2c *i2c,
enum pxa_i2c_types *i2c_types)
{
struct device_node *np = pdev->dev.of_node;
if (!pdev->dev.of_node)
return 1;
/* For device tree we always use the dynamic or alias-assigned ID */
i2c->adap.nr = -1;
i2c->use_pio = of_property_read_bool(np, "mrvl,i2c-polling");
i2c->fast_mode = of_property_read_bool(np, "mrvl,i2c-fast-mode");
*i2c_types = (enum pxa_i2c_types)device_get_match_data(&pdev->dev);
return 0;
}
static int i2c_pxa_probe_pdata(struct platform_device *pdev,
struct pxa_i2c *i2c,
enum pxa_i2c_types *i2c_types)
{
struct i2c_pxa_platform_data *plat = dev_get_platdata(&pdev->dev);
const struct platform_device_id *id = platform_get_device_id(pdev);
*i2c_types = id->driver_data;
if (plat) {
i2c->use_pio = plat->use_pio;
i2c->fast_mode = plat->fast_mode;
i2c->high_mode = plat->high_mode;
i2c->master_code = plat->master_code;
if (!i2c->master_code)
i2c->master_code = 0xe;
i2c->rate = plat->rate;
}
return 0;
}
static void i2c_pxa_prepare_recovery(struct i2c_adapter *adap)
{
struct pxa_i2c *i2c = adap->algo_data;
u32 ibmr = readl(_IBMR(i2c));
/*
* Program the GPIOs to reflect the current I2C bus state while
* we transition to recovery; this avoids glitching the bus.
*/
gpiod_set_value(i2c->recovery.scl_gpiod, ibmr & IBMR_SCLS);
gpiod_set_value(i2c->recovery.sda_gpiod, ibmr & IBMR_SDAS);
WARN_ON(pinctrl_select_state(i2c->pinctrl, i2c->pinctrl_recovery));
}
static void i2c_pxa_unprepare_recovery(struct i2c_adapter *adap)
{
struct pxa_i2c *i2c = adap->algo_data;
u32 isr;
/*
* The bus should now be free. Clear up the I2C controller before
* handing control of the bus back to avoid the bus changing state.
*/
isr = readl(_ISR(i2c));
if (isr & (ISR_UB | ISR_IBB)) {
dev_dbg(&i2c->adap.dev,
"recovery: resetting controller, ISR=0x%08x\n", isr);
i2c_pxa_do_reset(i2c);
}
WARN_ON(pinctrl_select_state(i2c->pinctrl, i2c->pinctrl_default));
dev_dbg(&i2c->adap.dev, "recovery: IBMR 0x%08x ISR 0x%08x\n",
readl(_IBMR(i2c)), readl(_ISR(i2c)));
i2c_pxa_enable(i2c);
}
static int i2c_pxa_init_recovery(struct pxa_i2c *i2c)
{
struct i2c_bus_recovery_info *bri = &i2c->recovery;
struct device *dev = i2c->adap.dev.parent;
/*
* When slave mode is enabled, we are not the only master on the bus.
* Bus recovery can only be performed when we are the master, which
* we can't be certain of. Therefore, when slave mode is enabled, do
* not configure bus recovery.
*/
if (IS_ENABLED(CONFIG_I2C_PXA_SLAVE))
return 0;
i2c->pinctrl = devm_pinctrl_get(dev);
if (PTR_ERR(i2c->pinctrl) == -ENODEV)
i2c->pinctrl = NULL;
if (IS_ERR(i2c->pinctrl))
return PTR_ERR(i2c->pinctrl);
if (!i2c->pinctrl)
return 0;
i2c->pinctrl_default = pinctrl_lookup_state(i2c->pinctrl,
PINCTRL_STATE_DEFAULT);
i2c->pinctrl_recovery = pinctrl_lookup_state(i2c->pinctrl, "recovery");
if (IS_ERR(i2c->pinctrl_default) || IS_ERR(i2c->pinctrl_recovery)) {
dev_info(dev, "missing pinmux recovery information: %ld %ld\n",
PTR_ERR(i2c->pinctrl_default),
PTR_ERR(i2c->pinctrl_recovery));
return 0;
}
/*
* Claiming GPIOs can influence the pinmux state, and may glitch the
* I2C bus. Do this carefully.
*/
bri->scl_gpiod = devm_gpiod_get(dev, "scl", GPIOD_OUT_HIGH_OPEN_DRAIN);
if (bri->scl_gpiod == ERR_PTR(-EPROBE_DEFER))
return -EPROBE_DEFER;
if (IS_ERR(bri->scl_gpiod)) {
dev_info(dev, "missing scl gpio recovery information: %pe\n",
bri->scl_gpiod);
return 0;
}
/*
* We have SCL. Pull SCL low and wait a bit so that SDA glitches
* have no effect.
*/
gpiod_direction_output(bri->scl_gpiod, 0);
udelay(10);
bri->sda_gpiod = devm_gpiod_get(dev, "sda", GPIOD_OUT_HIGH_OPEN_DRAIN);
/* Wait a bit in case of a SDA glitch, and then release SCL. */
udelay(10);
gpiod_direction_output(bri->scl_gpiod, 1);
if (bri->sda_gpiod == ERR_PTR(-EPROBE_DEFER))
return -EPROBE_DEFER;
if (IS_ERR(bri->sda_gpiod)) {
dev_info(dev, "missing sda gpio recovery information: %pe\n",
bri->sda_gpiod);
return 0;
}
bri->prepare_recovery = i2c_pxa_prepare_recovery;
bri->unprepare_recovery = i2c_pxa_unprepare_recovery;
bri->recover_bus = i2c_generic_scl_recovery;
i2c->adap.bus_recovery_info = bri;
/*
* Claiming GPIOs can change the pinmux state, which confuses the
* pinctrl since pinctrl's idea of the current setting is unaffected
* by the pinmux change caused by claiming the GPIO. Work around that
* by switching pinctrl to the GPIO state here. We do it this way to
* avoid glitching the I2C bus.
*/
pinctrl_select_state(i2c->pinctrl, i2c->pinctrl_recovery);
return pinctrl_select_state(i2c->pinctrl, i2c->pinctrl_default);
}
static int i2c_pxa_probe(struct platform_device *dev)
{
struct i2c_pxa_platform_data *plat = dev_get_platdata(&dev->dev);
enum pxa_i2c_types i2c_type;
struct pxa_i2c *i2c;
struct resource *res;
int ret, irq;
i2c = devm_kzalloc(&dev->dev, sizeof(struct pxa_i2c), GFP_KERNEL);
if (!i2c)
return -ENOMEM;
/* Default adapter num to device id; i2c_pxa_probe_dt can override. */
i2c->adap.nr = dev->id;
i2c->adap.owner = THIS_MODULE;
i2c->adap.retries = 5;
i2c->adap.algo_data = i2c;
i2c->adap.dev.parent = &dev->dev;
#ifdef CONFIG_OF
i2c->adap.dev.of_node = dev->dev.of_node;
#endif
i2c->reg_base = devm_platform_get_and_ioremap_resource(dev, 0, &res);
if (IS_ERR(i2c->reg_base))
return PTR_ERR(i2c->reg_base);
irq = platform_get_irq(dev, 0);
if (irq < 0)
return irq;
ret = i2c_pxa_init_recovery(i2c);
if (ret)
return ret;
ret = i2c_pxa_probe_dt(dev, i2c, &i2c_type);
if (ret > 0)
ret = i2c_pxa_probe_pdata(dev, i2c, &i2c_type);
if (ret < 0)
return ret;
spin_lock_init(&i2c->lock);
init_waitqueue_head(&i2c->wait);
strscpy(i2c->adap.name, "pxa_i2c-i2c", sizeof(i2c->adap.name));
i2c->clk = devm_clk_get(&dev->dev, NULL);
if (IS_ERR(i2c->clk))
return dev_err_probe(&dev->dev, PTR_ERR(i2c->clk),
"failed to get the clk\n");
i2c->reg_ibmr = i2c->reg_base + pxa_reg_layout[i2c_type].ibmr;
i2c->reg_idbr = i2c->reg_base + pxa_reg_layout[i2c_type].idbr;
i2c->reg_icr = i2c->reg_base + pxa_reg_layout[i2c_type].icr;
i2c->reg_isr = i2c->reg_base + pxa_reg_layout[i2c_type].isr;
i2c->fm_mask = pxa_reg_layout[i2c_type].fm;
i2c->hs_mask = pxa_reg_layout[i2c_type].hs;
if (i2c_type != REGS_CE4100)
i2c->reg_isar = i2c->reg_base + pxa_reg_layout[i2c_type].isar;
if (i2c_type == REGS_PXA910) {
i2c->reg_ilcr = i2c->reg_base + pxa_reg_layout[i2c_type].ilcr;
i2c->reg_iwcr = i2c->reg_base + pxa_reg_layout[i2c_type].iwcr;
}
i2c->iobase = res->start;
i2c->iosize = resource_size(res);
i2c->irq = irq;
i2c->slave_addr = I2C_PXA_SLAVE_ADDR;
i2c->highmode_enter = false;
if (plat) {
i2c->adap.class = plat->class;
}
if (i2c->high_mode) {
if (i2c->rate) {
clk_set_rate(i2c->clk, i2c->rate);
pr_info("i2c: <%s> set rate to %ld\n",
i2c->adap.name, clk_get_rate(i2c->clk));
} else
pr_warn("i2c: <%s> clock rate not set\n",
i2c->adap.name);
}
clk_prepare_enable(i2c->clk);
if (i2c->use_pio) {
i2c->adap.algo = &i2c_pxa_pio_algorithm;
} else {
i2c->adap.algo = &i2c_pxa_algorithm;
ret = devm_request_irq(&dev->dev, irq, i2c_pxa_handler,
IRQF_SHARED | IRQF_NO_SUSPEND,
dev_name(&dev->dev), i2c);
if (ret) {
dev_err(&dev->dev, "failed to request irq: %d\n", ret);
goto ereqirq;
}
}
i2c_pxa_reset(i2c);
ret = i2c_add_numbered_adapter(&i2c->adap);
if (ret < 0)
goto ereqirq;
platform_set_drvdata(dev, i2c);
#ifdef CONFIG_I2C_PXA_SLAVE
dev_info(&i2c->adap.dev, " PXA I2C adapter, slave address %d\n",
i2c->slave_addr);
#else
dev_info(&i2c->adap.dev, " PXA I2C adapter\n");
#endif
return 0;
ereqirq:
clk_disable_unprepare(i2c->clk);
return ret;
}
static void i2c_pxa_remove(struct platform_device *dev)
{
struct pxa_i2c *i2c = platform_get_drvdata(dev);
i2c_del_adapter(&i2c->adap);
clk_disable_unprepare(i2c->clk);
}
static int i2c_pxa_suspend_noirq(struct device *dev)
{
struct pxa_i2c *i2c = dev_get_drvdata(dev);
clk_disable(i2c->clk);
return 0;
}
static int i2c_pxa_resume_noirq(struct device *dev)
{
struct pxa_i2c *i2c = dev_get_drvdata(dev);
clk_enable(i2c->clk);
i2c_pxa_reset(i2c);
return 0;
}
static const struct dev_pm_ops i2c_pxa_dev_pm_ops = {
.suspend_noirq = i2c_pxa_suspend_noirq,
.resume_noirq = i2c_pxa_resume_noirq,
};
static struct platform_driver i2c_pxa_driver = {
.probe = i2c_pxa_probe,
.remove_new = i2c_pxa_remove,
.driver = {
.name = "pxa2xx-i2c",
.pm = pm_sleep_ptr(&i2c_pxa_dev_pm_ops),
.of_match_table = i2c_pxa_dt_ids,
},
.id_table = i2c_pxa_id_table,
};
static int __init i2c_adap_pxa_init(void)
{
return platform_driver_register(&i2c_pxa_driver);
}
static void __exit i2c_adap_pxa_exit(void)
{
platform_driver_unregister(&i2c_pxa_driver);
}
MODULE_DESCRIPTION("Intel PXA2XX I2C adapter");
MODULE_LICENSE("GPL");
subsys_initcall(i2c_adap_pxa_init);
module_exit(i2c_adap_pxa_exit);