blob: 1c5b85a86df120606dd9f1b38bf2bfeb32cb2059 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2024 AIROHA Inc
* Author: Lorenzo Bianconi <lorenzo@kernel.org>
*/
#include <linux/etherdevice.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include <linux/u64_stats_sync.h>
#include <net/dsa.h>
#include <net/page_pool/helpers.h>
#include <uapi/linux/ppp_defs.h>
#define AIROHA_MAX_NUM_GDM_PORTS 1
#define AIROHA_MAX_NUM_RSTS 3
#define AIROHA_MAX_NUM_XSI_RSTS 5
#define AIROHA_MAX_MTU 2000
#define AIROHA_MAX_PACKET_SIZE 2048
#define AIROHA_NUM_TX_RING 32
#define AIROHA_NUM_RX_RING 32
#define AIROHA_FE_MC_MAX_VLAN_TABLE 64
#define AIROHA_FE_MC_MAX_VLAN_PORT 16
#define AIROHA_NUM_TX_IRQ 2
#define HW_DSCP_NUM 2048
#define IRQ_QUEUE_LEN(_n) ((_n) ? 1024 : 2048)
#define TX_DSCP_NUM 1024
#define RX_DSCP_NUM(_n) \
((_n) == 2 ? 128 : \
(_n) == 11 ? 128 : \
(_n) == 15 ? 128 : \
(_n) == 0 ? 1024 : 16)
#define PSE_RSV_PAGES 128
#define PSE_QUEUE_RSV_PAGES 64
/* FE */
#define PSE_BASE 0x0100
#define CSR_IFC_BASE 0x0200
#define CDM1_BASE 0x0400
#define GDM1_BASE 0x0500
#define PPE1_BASE 0x0c00
#define CDM2_BASE 0x1400
#define GDM2_BASE 0x1500
#define GDM3_BASE 0x1100
#define GDM4_BASE 0x2500
#define GDM_BASE(_n) \
((_n) == 4 ? GDM4_BASE : \
(_n) == 3 ? GDM3_BASE : \
(_n) == 2 ? GDM2_BASE : GDM1_BASE)
#define REG_FE_DMA_GLO_CFG 0x0000
#define FE_DMA_GLO_L2_SPACE_MASK GENMASK(7, 4)
#define FE_DMA_GLO_PG_SZ_MASK BIT(3)
#define REG_FE_RST_GLO_CFG 0x0004
#define FE_RST_GDM4_MBI_ARB_MASK BIT(3)
#define FE_RST_GDM3_MBI_ARB_MASK BIT(2)
#define FE_RST_CORE_MASK BIT(0)
#define REG_FE_LAN_MAC_H 0x0040
#define REG_FE_LAN_MAC_LMIN 0x0044
#define REG_FE_LAN_MAC_LMAX 0x0048
#define REG_FE_CDM1_OQ_MAP0 0x0050
#define REG_FE_CDM1_OQ_MAP1 0x0054
#define REG_FE_CDM1_OQ_MAP2 0x0058
#define REG_FE_CDM1_OQ_MAP3 0x005c
#define REG_FE_PCE_CFG 0x0070
#define PCE_DPI_EN_MASK BIT(2)
#define PCE_KA_EN_MASK BIT(1)
#define PCE_MC_EN_MASK BIT(0)
#define REG_FE_PSE_QUEUE_CFG_WR 0x0080
#define PSE_CFG_PORT_ID_MASK GENMASK(27, 24)
#define PSE_CFG_QUEUE_ID_MASK GENMASK(20, 16)
#define PSE_CFG_WR_EN_MASK BIT(8)
#define PSE_CFG_OQRSV_SEL_MASK BIT(0)
#define REG_FE_PSE_QUEUE_CFG_VAL 0x0084
#define PSE_CFG_OQ_RSV_MASK GENMASK(13, 0)
#define PSE_FQ_CFG 0x008c
#define PSE_FQ_LIMIT_MASK GENMASK(14, 0)
#define REG_FE_PSE_BUF_SET 0x0090
#define PSE_SHARE_USED_LTHD_MASK GENMASK(31, 16)
#define PSE_ALLRSV_MASK GENMASK(14, 0)
#define REG_PSE_SHARE_USED_THD 0x0094
#define PSE_SHARE_USED_MTHD_MASK GENMASK(31, 16)
#define PSE_SHARE_USED_HTHD_MASK GENMASK(15, 0)
#define REG_GDM_MISC_CFG 0x0148
#define GDM2_RDM_ACK_WAIT_PREF_MASK BIT(9)
#define GDM2_CHN_VLD_MODE_MASK BIT(5)
#define REG_FE_CSR_IFC_CFG CSR_IFC_BASE
#define FE_IFC_EN_MASK BIT(0)
#define REG_FE_VIP_PORT_EN 0x01f0
#define REG_FE_IFC_PORT_EN 0x01f4
#define REG_PSE_IQ_REV1 (PSE_BASE + 0x08)
#define PSE_IQ_RES1_P2_MASK GENMASK(23, 16)
#define REG_PSE_IQ_REV2 (PSE_BASE + 0x0c)
#define PSE_IQ_RES2_P5_MASK GENMASK(15, 8)
#define PSE_IQ_RES2_P4_MASK GENMASK(7, 0)
#define REG_FE_VIP_EN(_n) (0x0300 + ((_n) << 3))
#define PATN_FCPU_EN_MASK BIT(7)
#define PATN_SWP_EN_MASK BIT(6)
#define PATN_DP_EN_MASK BIT(5)
#define PATN_SP_EN_MASK BIT(4)
#define PATN_TYPE_MASK GENMASK(3, 1)
#define PATN_EN_MASK BIT(0)
#define REG_FE_VIP_PATN(_n) (0x0304 + ((_n) << 3))
#define PATN_DP_MASK GENMASK(31, 16)
#define PATN_SP_MASK GENMASK(15, 0)
#define REG_CDM1_VLAN_CTRL CDM1_BASE
#define CDM1_VLAN_MASK GENMASK(31, 16)
#define REG_CDM1_FWD_CFG (CDM1_BASE + 0x08)
#define CDM1_VIP_QSEL_MASK GENMASK(24, 20)
#define REG_CDM1_CRSN_QSEL(_n) (CDM1_BASE + 0x10 + ((_n) << 2))
#define CDM1_CRSN_QSEL_REASON_MASK(_n) \
GENMASK(4 + (((_n) % 4) << 3), (((_n) % 4) << 3))
#define REG_CDM2_FWD_CFG (CDM2_BASE + 0x08)
#define CDM2_OAM_QSEL_MASK GENMASK(31, 27)
#define CDM2_VIP_QSEL_MASK GENMASK(24, 20)
#define REG_CDM2_CRSN_QSEL(_n) (CDM2_BASE + 0x10 + ((_n) << 2))
#define CDM2_CRSN_QSEL_REASON_MASK(_n) \
GENMASK(4 + (((_n) % 4) << 3), (((_n) % 4) << 3))
#define REG_GDM_FWD_CFG(_n) GDM_BASE(_n)
#define GDM_DROP_CRC_ERR BIT(23)
#define GDM_IP4_CKSUM BIT(22)
#define GDM_TCP_CKSUM BIT(21)
#define GDM_UDP_CKSUM BIT(20)
#define GDM_UCFQ_MASK GENMASK(15, 12)
#define GDM_BCFQ_MASK GENMASK(11, 8)
#define GDM_MCFQ_MASK GENMASK(7, 4)
#define GDM_OCFQ_MASK GENMASK(3, 0)
#define REG_GDM_INGRESS_CFG(_n) (GDM_BASE(_n) + 0x10)
#define GDM_INGRESS_FC_EN_MASK BIT(1)
#define GDM_STAG_EN_MASK BIT(0)
#define REG_GDM_LEN_CFG(_n) (GDM_BASE(_n) + 0x14)
#define GDM_SHORT_LEN_MASK GENMASK(13, 0)
#define GDM_LONG_LEN_MASK GENMASK(29, 16)
#define REG_FE_CPORT_CFG (GDM1_BASE + 0x40)
#define FE_CPORT_PAD BIT(26)
#define FE_CPORT_PORT_XFC_MASK BIT(25)
#define FE_CPORT_QUEUE_XFC_MASK BIT(24)
#define REG_FE_GDM_MIB_CLEAR(_n) (GDM_BASE(_n) + 0xf0)
#define FE_GDM_MIB_RX_CLEAR_MASK BIT(1)
#define FE_GDM_MIB_TX_CLEAR_MASK BIT(0)
#define REG_FE_GDM1_MIB_CFG (GDM1_BASE + 0xf4)
#define FE_STRICT_RFC2819_MODE_MASK BIT(31)
#define FE_GDM1_TX_MIB_SPLIT_EN_MASK BIT(17)
#define FE_GDM1_RX_MIB_SPLIT_EN_MASK BIT(16)
#define FE_TX_MIB_ID_MASK GENMASK(15, 8)
#define FE_RX_MIB_ID_MASK GENMASK(7, 0)
#define REG_FE_GDM_TX_OK_PKT_CNT_L(_n) (GDM_BASE(_n) + 0x104)
#define REG_FE_GDM_TX_OK_BYTE_CNT_L(_n) (GDM_BASE(_n) + 0x10c)
#define REG_FE_GDM_TX_ETH_PKT_CNT_L(_n) (GDM_BASE(_n) + 0x110)
#define REG_FE_GDM_TX_ETH_BYTE_CNT_L(_n) (GDM_BASE(_n) + 0x114)
#define REG_FE_GDM_TX_ETH_DROP_CNT(_n) (GDM_BASE(_n) + 0x118)
#define REG_FE_GDM_TX_ETH_BC_CNT(_n) (GDM_BASE(_n) + 0x11c)
#define REG_FE_GDM_TX_ETH_MC_CNT(_n) (GDM_BASE(_n) + 0x120)
#define REG_FE_GDM_TX_ETH_RUNT_CNT(_n) (GDM_BASE(_n) + 0x124)
#define REG_FE_GDM_TX_ETH_LONG_CNT(_n) (GDM_BASE(_n) + 0x128)
#define REG_FE_GDM_TX_ETH_E64_CNT_L(_n) (GDM_BASE(_n) + 0x12c)
#define REG_FE_GDM_TX_ETH_L64_CNT_L(_n) (GDM_BASE(_n) + 0x130)
#define REG_FE_GDM_TX_ETH_L127_CNT_L(_n) (GDM_BASE(_n) + 0x134)
#define REG_FE_GDM_TX_ETH_L255_CNT_L(_n) (GDM_BASE(_n) + 0x138)
#define REG_FE_GDM_TX_ETH_L511_CNT_L(_n) (GDM_BASE(_n) + 0x13c)
#define REG_FE_GDM_TX_ETH_L1023_CNT_L(_n) (GDM_BASE(_n) + 0x140)
#define REG_FE_GDM_RX_OK_PKT_CNT_L(_n) (GDM_BASE(_n) + 0x148)
#define REG_FE_GDM_RX_FC_DROP_CNT(_n) (GDM_BASE(_n) + 0x14c)
#define REG_FE_GDM_RX_RC_DROP_CNT(_n) (GDM_BASE(_n) + 0x150)
#define REG_FE_GDM_RX_OVERFLOW_DROP_CNT(_n) (GDM_BASE(_n) + 0x154)
#define REG_FE_GDM_RX_ERROR_DROP_CNT(_n) (GDM_BASE(_n) + 0x158)
#define REG_FE_GDM_RX_OK_BYTE_CNT_L(_n) (GDM_BASE(_n) + 0x15c)
#define REG_FE_GDM_RX_ETH_PKT_CNT_L(_n) (GDM_BASE(_n) + 0x160)
#define REG_FE_GDM_RX_ETH_BYTE_CNT_L(_n) (GDM_BASE(_n) + 0x164)
#define REG_FE_GDM_RX_ETH_DROP_CNT(_n) (GDM_BASE(_n) + 0x168)
#define REG_FE_GDM_RX_ETH_BC_CNT(_n) (GDM_BASE(_n) + 0x16c)
#define REG_FE_GDM_RX_ETH_MC_CNT(_n) (GDM_BASE(_n) + 0x170)
#define REG_FE_GDM_RX_ETH_CRC_ERR_CNT(_n) (GDM_BASE(_n) + 0x174)
#define REG_FE_GDM_RX_ETH_FRAG_CNT(_n) (GDM_BASE(_n) + 0x178)
#define REG_FE_GDM_RX_ETH_JABBER_CNT(_n) (GDM_BASE(_n) + 0x17c)
#define REG_FE_GDM_RX_ETH_RUNT_CNT(_n) (GDM_BASE(_n) + 0x180)
#define REG_FE_GDM_RX_ETH_LONG_CNT(_n) (GDM_BASE(_n) + 0x184)
#define REG_FE_GDM_RX_ETH_E64_CNT_L(_n) (GDM_BASE(_n) + 0x188)
#define REG_FE_GDM_RX_ETH_L64_CNT_L(_n) (GDM_BASE(_n) + 0x18c)
#define REG_FE_GDM_RX_ETH_L127_CNT_L(_n) (GDM_BASE(_n) + 0x190)
#define REG_FE_GDM_RX_ETH_L255_CNT_L(_n) (GDM_BASE(_n) + 0x194)
#define REG_FE_GDM_RX_ETH_L511_CNT_L(_n) (GDM_BASE(_n) + 0x198)
#define REG_FE_GDM_RX_ETH_L1023_CNT_L(_n) (GDM_BASE(_n) + 0x19c)
#define REG_PPE1_TB_HASH_CFG (PPE1_BASE + 0x250)
#define PPE1_SRAM_TABLE_EN_MASK BIT(0)
#define PPE1_SRAM_HASH1_EN_MASK BIT(8)
#define PPE1_DRAM_TABLE_EN_MASK BIT(16)
#define PPE1_DRAM_HASH1_EN_MASK BIT(24)
#define REG_FE_GDM_TX_OK_PKT_CNT_H(_n) (GDM_BASE(_n) + 0x280)
#define REG_FE_GDM_TX_OK_BYTE_CNT_H(_n) (GDM_BASE(_n) + 0x284)
#define REG_FE_GDM_TX_ETH_PKT_CNT_H(_n) (GDM_BASE(_n) + 0x288)
#define REG_FE_GDM_TX_ETH_BYTE_CNT_H(_n) (GDM_BASE(_n) + 0x28c)
#define REG_FE_GDM_RX_OK_PKT_CNT_H(_n) (GDM_BASE(_n) + 0x290)
#define REG_FE_GDM_RX_OK_BYTE_CNT_H(_n) (GDM_BASE(_n) + 0x294)
#define REG_FE_GDM_RX_ETH_PKT_CNT_H(_n) (GDM_BASE(_n) + 0x298)
#define REG_FE_GDM_RX_ETH_BYTE_CNT_H(_n) (GDM_BASE(_n) + 0x29c)
#define REG_FE_GDM_TX_ETH_E64_CNT_H(_n) (GDM_BASE(_n) + 0x2b8)
#define REG_FE_GDM_TX_ETH_L64_CNT_H(_n) (GDM_BASE(_n) + 0x2bc)
#define REG_FE_GDM_TX_ETH_L127_CNT_H(_n) (GDM_BASE(_n) + 0x2c0)
#define REG_FE_GDM_TX_ETH_L255_CNT_H(_n) (GDM_BASE(_n) + 0x2c4)
#define REG_FE_GDM_TX_ETH_L511_CNT_H(_n) (GDM_BASE(_n) + 0x2c8)
#define REG_FE_GDM_TX_ETH_L1023_CNT_H(_n) (GDM_BASE(_n) + 0x2cc)
#define REG_FE_GDM_RX_ETH_E64_CNT_H(_n) (GDM_BASE(_n) + 0x2e8)
#define REG_FE_GDM_RX_ETH_L64_CNT_H(_n) (GDM_BASE(_n) + 0x2ec)
#define REG_FE_GDM_RX_ETH_L127_CNT_H(_n) (GDM_BASE(_n) + 0x2f0)
#define REG_FE_GDM_RX_ETH_L255_CNT_H(_n) (GDM_BASE(_n) + 0x2f4)
#define REG_FE_GDM_RX_ETH_L511_CNT_H(_n) (GDM_BASE(_n) + 0x2f8)
#define REG_FE_GDM_RX_ETH_L1023_CNT_H(_n) (GDM_BASE(_n) + 0x2fc)
#define REG_GDM2_CHN_RLS (GDM2_BASE + 0x20)
#define MBI_RX_AGE_SEL_MASK GENMASK(26, 25)
#define MBI_TX_AGE_SEL_MASK GENMASK(18, 17)
#define REG_GDM3_FWD_CFG GDM3_BASE
#define GDM3_PAD_EN_MASK BIT(28)
#define REG_GDM4_FWD_CFG (GDM4_BASE + 0x100)
#define GDM4_PAD_EN_MASK BIT(28)
#define GDM4_SPORT_OFFSET0_MASK GENMASK(11, 8)
#define REG_GDM4_SRC_PORT_SET (GDM4_BASE + 0x33c)
#define GDM4_SPORT_OFF2_MASK GENMASK(19, 16)
#define GDM4_SPORT_OFF1_MASK GENMASK(15, 12)
#define GDM4_SPORT_OFF0_MASK GENMASK(11, 8)
#define REG_IP_FRAG_FP 0x2010
#define IP_ASSEMBLE_PORT_MASK GENMASK(24, 21)
#define IP_ASSEMBLE_NBQ_MASK GENMASK(20, 16)
#define IP_FRAGMENT_PORT_MASK GENMASK(8, 5)
#define IP_FRAGMENT_NBQ_MASK GENMASK(4, 0)
#define REG_MC_VLAN_EN 0x2100
#define MC_VLAN_EN_MASK BIT(0)
#define REG_MC_VLAN_CFG 0x2104
#define MC_VLAN_CFG_CMD_DONE_MASK BIT(31)
#define MC_VLAN_CFG_TABLE_ID_MASK GENMASK(21, 16)
#define MC_VLAN_CFG_PORT_ID_MASK GENMASK(11, 8)
#define MC_VLAN_CFG_TABLE_SEL_MASK BIT(4)
#define MC_VLAN_CFG_RW_MASK BIT(0)
#define REG_MC_VLAN_DATA 0x2108
#define REG_CDM5_RX_OQ1_DROP_CNT 0x29d4
/* QDMA */
#define REG_QDMA_GLOBAL_CFG 0x0004
#define GLOBAL_CFG_RX_2B_OFFSET_MASK BIT(31)
#define GLOBAL_CFG_DMA_PREFERENCE_MASK GENMASK(30, 29)
#define GLOBAL_CFG_CPU_TXR_RR_MASK BIT(28)
#define GLOBAL_CFG_DSCP_BYTE_SWAP_MASK BIT(27)
#define GLOBAL_CFG_PAYLOAD_BYTE_SWAP_MASK BIT(26)
#define GLOBAL_CFG_MULTICAST_MODIFY_FP_MASK BIT(25)
#define GLOBAL_CFG_OAM_MODIFY_MASK BIT(24)
#define GLOBAL_CFG_RESET_MASK BIT(23)
#define GLOBAL_CFG_RESET_DONE_MASK BIT(22)
#define GLOBAL_CFG_MULTICAST_EN_MASK BIT(21)
#define GLOBAL_CFG_IRQ1_EN_MASK BIT(20)
#define GLOBAL_CFG_IRQ0_EN_MASK BIT(19)
#define GLOBAL_CFG_LOOPCNT_EN_MASK BIT(18)
#define GLOBAL_CFG_RD_BYPASS_WR_MASK BIT(17)
#define GLOBAL_CFG_QDMA_LOOPBACK_MASK BIT(16)
#define GLOBAL_CFG_LPBK_RXQ_SEL_MASK GENMASK(13, 8)
#define GLOBAL_CFG_CHECK_DONE_MASK BIT(7)
#define GLOBAL_CFG_TX_WB_DONE_MASK BIT(6)
#define GLOBAL_CFG_MAX_ISSUE_NUM_MASK GENMASK(5, 4)
#define GLOBAL_CFG_RX_DMA_BUSY_MASK BIT(3)
#define GLOBAL_CFG_RX_DMA_EN_MASK BIT(2)
#define GLOBAL_CFG_TX_DMA_BUSY_MASK BIT(1)
#define GLOBAL_CFG_TX_DMA_EN_MASK BIT(0)
#define REG_FWD_DSCP_BASE 0x0010
#define REG_FWD_BUF_BASE 0x0014
#define REG_HW_FWD_DSCP_CFG 0x0018
#define HW_FWD_DSCP_PAYLOAD_SIZE_MASK GENMASK(29, 28)
#define HW_FWD_DSCP_SCATTER_LEN_MASK GENMASK(17, 16)
#define HW_FWD_DSCP_MIN_SCATTER_LEN_MASK GENMASK(15, 0)
#define REG_INT_STATUS(_n) \
(((_n) == 4) ? 0x0730 : \
((_n) == 3) ? 0x0724 : \
((_n) == 2) ? 0x0720 : \
((_n) == 1) ? 0x0024 : 0x0020)
#define REG_INT_ENABLE(_n) \
(((_n) == 4) ? 0x0750 : \
((_n) == 3) ? 0x0744 : \
((_n) == 2) ? 0x0740 : \
((_n) == 1) ? 0x002c : 0x0028)
/* QDMA_CSR_INT_ENABLE1 */
#define RX15_COHERENT_INT_MASK BIT(31)
#define RX14_COHERENT_INT_MASK BIT(30)
#define RX13_COHERENT_INT_MASK BIT(29)
#define RX12_COHERENT_INT_MASK BIT(28)
#define RX11_COHERENT_INT_MASK BIT(27)
#define RX10_COHERENT_INT_MASK BIT(26)
#define RX9_COHERENT_INT_MASK BIT(25)
#define RX8_COHERENT_INT_MASK BIT(24)
#define RX7_COHERENT_INT_MASK BIT(23)
#define RX6_COHERENT_INT_MASK BIT(22)
#define RX5_COHERENT_INT_MASK BIT(21)
#define RX4_COHERENT_INT_MASK BIT(20)
#define RX3_COHERENT_INT_MASK BIT(19)
#define RX2_COHERENT_INT_MASK BIT(18)
#define RX1_COHERENT_INT_MASK BIT(17)
#define RX0_COHERENT_INT_MASK BIT(16)
#define TX7_COHERENT_INT_MASK BIT(15)
#define TX6_COHERENT_INT_MASK BIT(14)
#define TX5_COHERENT_INT_MASK BIT(13)
#define TX4_COHERENT_INT_MASK BIT(12)
#define TX3_COHERENT_INT_MASK BIT(11)
#define TX2_COHERENT_INT_MASK BIT(10)
#define TX1_COHERENT_INT_MASK BIT(9)
#define TX0_COHERENT_INT_MASK BIT(8)
#define CNT_OVER_FLOW_INT_MASK BIT(7)
#define IRQ1_FULL_INT_MASK BIT(5)
#define IRQ1_INT_MASK BIT(4)
#define HWFWD_DSCP_LOW_INT_MASK BIT(3)
#define HWFWD_DSCP_EMPTY_INT_MASK BIT(2)
#define IRQ0_FULL_INT_MASK BIT(1)
#define IRQ0_INT_MASK BIT(0)
#define TX_DONE_INT_MASK(_n) \
((_n) ? IRQ1_INT_MASK | IRQ1_FULL_INT_MASK \
: IRQ0_INT_MASK | IRQ0_FULL_INT_MASK)
#define INT_TX_MASK \
(IRQ1_INT_MASK | IRQ1_FULL_INT_MASK | \
IRQ0_INT_MASK | IRQ0_FULL_INT_MASK)
#define INT_IDX0_MASK \
(TX0_COHERENT_INT_MASK | TX1_COHERENT_INT_MASK | \
TX2_COHERENT_INT_MASK | TX3_COHERENT_INT_MASK | \
TX4_COHERENT_INT_MASK | TX5_COHERENT_INT_MASK | \
TX6_COHERENT_INT_MASK | TX7_COHERENT_INT_MASK | \
RX0_COHERENT_INT_MASK | RX1_COHERENT_INT_MASK | \
RX2_COHERENT_INT_MASK | RX3_COHERENT_INT_MASK | \
RX4_COHERENT_INT_MASK | RX7_COHERENT_INT_MASK | \
RX8_COHERENT_INT_MASK | RX9_COHERENT_INT_MASK | \
RX15_COHERENT_INT_MASK | INT_TX_MASK)
/* QDMA_CSR_INT_ENABLE2 */
#define RX15_NO_CPU_DSCP_INT_MASK BIT(31)
#define RX14_NO_CPU_DSCP_INT_MASK BIT(30)
#define RX13_NO_CPU_DSCP_INT_MASK BIT(29)
#define RX12_NO_CPU_DSCP_INT_MASK BIT(28)
#define RX11_NO_CPU_DSCP_INT_MASK BIT(27)
#define RX10_NO_CPU_DSCP_INT_MASK BIT(26)
#define RX9_NO_CPU_DSCP_INT_MASK BIT(25)
#define RX8_NO_CPU_DSCP_INT_MASK BIT(24)
#define RX7_NO_CPU_DSCP_INT_MASK BIT(23)
#define RX6_NO_CPU_DSCP_INT_MASK BIT(22)
#define RX5_NO_CPU_DSCP_INT_MASK BIT(21)
#define RX4_NO_CPU_DSCP_INT_MASK BIT(20)
#define RX3_NO_CPU_DSCP_INT_MASK BIT(19)
#define RX2_NO_CPU_DSCP_INT_MASK BIT(18)
#define RX1_NO_CPU_DSCP_INT_MASK BIT(17)
#define RX0_NO_CPU_DSCP_INT_MASK BIT(16)
#define RX15_DONE_INT_MASK BIT(15)
#define RX14_DONE_INT_MASK BIT(14)
#define RX13_DONE_INT_MASK BIT(13)
#define RX12_DONE_INT_MASK BIT(12)
#define RX11_DONE_INT_MASK BIT(11)
#define RX10_DONE_INT_MASK BIT(10)
#define RX9_DONE_INT_MASK BIT(9)
#define RX8_DONE_INT_MASK BIT(8)
#define RX7_DONE_INT_MASK BIT(7)
#define RX6_DONE_INT_MASK BIT(6)
#define RX5_DONE_INT_MASK BIT(5)
#define RX4_DONE_INT_MASK BIT(4)
#define RX3_DONE_INT_MASK BIT(3)
#define RX2_DONE_INT_MASK BIT(2)
#define RX1_DONE_INT_MASK BIT(1)
#define RX0_DONE_INT_MASK BIT(0)
#define RX_DONE_INT_MASK \
(RX0_DONE_INT_MASK | RX1_DONE_INT_MASK | \
RX2_DONE_INT_MASK | RX3_DONE_INT_MASK | \
RX4_DONE_INT_MASK | RX7_DONE_INT_MASK | \
RX8_DONE_INT_MASK | RX9_DONE_INT_MASK | \
RX15_DONE_INT_MASK)
#define INT_IDX1_MASK \
(RX_DONE_INT_MASK | \
RX0_NO_CPU_DSCP_INT_MASK | RX1_NO_CPU_DSCP_INT_MASK | \
RX2_NO_CPU_DSCP_INT_MASK | RX3_NO_CPU_DSCP_INT_MASK | \
RX4_NO_CPU_DSCP_INT_MASK | RX7_NO_CPU_DSCP_INT_MASK | \
RX8_NO_CPU_DSCP_INT_MASK | RX9_NO_CPU_DSCP_INT_MASK | \
RX15_NO_CPU_DSCP_INT_MASK)
/* QDMA_CSR_INT_ENABLE5 */
#define TX31_COHERENT_INT_MASK BIT(31)
#define TX30_COHERENT_INT_MASK BIT(30)
#define TX29_COHERENT_INT_MASK BIT(29)
#define TX28_COHERENT_INT_MASK BIT(28)
#define TX27_COHERENT_INT_MASK BIT(27)
#define TX26_COHERENT_INT_MASK BIT(26)
#define TX25_COHERENT_INT_MASK BIT(25)
#define TX24_COHERENT_INT_MASK BIT(24)
#define TX23_COHERENT_INT_MASK BIT(23)
#define TX22_COHERENT_INT_MASK BIT(22)
#define TX21_COHERENT_INT_MASK BIT(21)
#define TX20_COHERENT_INT_MASK BIT(20)
#define TX19_COHERENT_INT_MASK BIT(19)
#define TX18_COHERENT_INT_MASK BIT(18)
#define TX17_COHERENT_INT_MASK BIT(17)
#define TX16_COHERENT_INT_MASK BIT(16)
#define TX15_COHERENT_INT_MASK BIT(15)
#define TX14_COHERENT_INT_MASK BIT(14)
#define TX13_COHERENT_INT_MASK BIT(13)
#define TX12_COHERENT_INT_MASK BIT(12)
#define TX11_COHERENT_INT_MASK BIT(11)
#define TX10_COHERENT_INT_MASK BIT(10)
#define TX9_COHERENT_INT_MASK BIT(9)
#define TX8_COHERENT_INT_MASK BIT(8)
#define INT_IDX4_MASK \
(TX8_COHERENT_INT_MASK | TX9_COHERENT_INT_MASK | \
TX10_COHERENT_INT_MASK | TX11_COHERENT_INT_MASK | \
TX12_COHERENT_INT_MASK | TX13_COHERENT_INT_MASK | \
TX14_COHERENT_INT_MASK | TX15_COHERENT_INT_MASK | \
TX16_COHERENT_INT_MASK | TX17_COHERENT_INT_MASK | \
TX18_COHERENT_INT_MASK | TX19_COHERENT_INT_MASK | \
TX20_COHERENT_INT_MASK | TX21_COHERENT_INT_MASK | \
TX22_COHERENT_INT_MASK | TX23_COHERENT_INT_MASK | \
TX24_COHERENT_INT_MASK | TX25_COHERENT_INT_MASK | \
TX26_COHERENT_INT_MASK | TX27_COHERENT_INT_MASK | \
TX28_COHERENT_INT_MASK | TX29_COHERENT_INT_MASK | \
TX30_COHERENT_INT_MASK | TX31_COHERENT_INT_MASK)
#define REG_TX_IRQ_BASE(_n) ((_n) ? 0x0048 : 0x0050)
#define REG_TX_IRQ_CFG(_n) ((_n) ? 0x004c : 0x0054)
#define TX_IRQ_THR_MASK GENMASK(27, 16)
#define TX_IRQ_DEPTH_MASK GENMASK(11, 0)
#define REG_IRQ_CLEAR_LEN(_n) ((_n) ? 0x0064 : 0x0058)
#define IRQ_CLEAR_LEN_MASK GENMASK(7, 0)
#define REG_IRQ_STATUS(_n) ((_n) ? 0x0068 : 0x005c)
#define IRQ_ENTRY_LEN_MASK GENMASK(27, 16)
#define IRQ_HEAD_IDX_MASK GENMASK(11, 0)
#define REG_TX_RING_BASE(_n) \
(((_n) < 8) ? 0x0100 + ((_n) << 5) : 0x0b00 + (((_n) - 8) << 5))
#define REG_TX_RING_BLOCKING(_n) \
(((_n) < 8) ? 0x0104 + ((_n) << 5) : 0x0b04 + (((_n) - 8) << 5))
#define TX_RING_IRQ_BLOCKING_MAP_MASK BIT(6)
#define TX_RING_IRQ_BLOCKING_CFG_MASK BIT(4)
#define TX_RING_IRQ_BLOCKING_TX_DROP_EN_MASK BIT(2)
#define TX_RING_IRQ_BLOCKING_MAX_TH_TXRING_EN_MASK BIT(1)
#define TX_RING_IRQ_BLOCKING_MIN_TH_TXRING_EN_MASK BIT(0)
#define REG_TX_CPU_IDX(_n) \
(((_n) < 8) ? 0x0108 + ((_n) << 5) : 0x0b08 + (((_n) - 8) << 5))
#define TX_RING_CPU_IDX_MASK GENMASK(15, 0)
#define REG_TX_DMA_IDX(_n) \
(((_n) < 8) ? 0x010c + ((_n) << 5) : 0x0b0c + (((_n) - 8) << 5))
#define TX_RING_DMA_IDX_MASK GENMASK(15, 0)
#define IRQ_RING_IDX_MASK GENMASK(20, 16)
#define IRQ_DESC_IDX_MASK GENMASK(15, 0)
#define REG_RX_RING_BASE(_n) \
(((_n) < 16) ? 0x0200 + ((_n) << 5) : 0x0e00 + (((_n) - 16) << 5))
#define REG_RX_RING_SIZE(_n) \
(((_n) < 16) ? 0x0204 + ((_n) << 5) : 0x0e04 + (((_n) - 16) << 5))
#define RX_RING_THR_MASK GENMASK(31, 16)
#define RX_RING_SIZE_MASK GENMASK(15, 0)
#define REG_RX_CPU_IDX(_n) \
(((_n) < 16) ? 0x0208 + ((_n) << 5) : 0x0e08 + (((_n) - 16) << 5))
#define RX_RING_CPU_IDX_MASK GENMASK(15, 0)
#define REG_RX_DMA_IDX(_n) \
(((_n) < 16) ? 0x020c + ((_n) << 5) : 0x0e0c + (((_n) - 16) << 5))
#define REG_RX_DELAY_INT_IDX(_n) \
(((_n) < 16) ? 0x0210 + ((_n) << 5) : 0x0e10 + (((_n) - 16) << 5))
#define RX_DELAY_INT_MASK GENMASK(15, 0)
#define RX_RING_DMA_IDX_MASK GENMASK(15, 0)
#define REG_INGRESS_TRTCM_CFG 0x0070
#define INGRESS_TRTCM_EN_MASK BIT(31)
#define INGRESS_TRTCM_MODE_MASK BIT(30)
#define INGRESS_SLOW_TICK_RATIO_MASK GENMASK(29, 16)
#define INGRESS_FAST_TICK_MASK GENMASK(15, 0)
#define REG_TXQ_DIS_CFG_BASE(_n) ((_n) ? 0x20a0 : 0x00a0)
#define REG_TXQ_DIS_CFG(_n, _m) (REG_TXQ_DIS_CFG_BASE((_n)) + (_m) << 2)
#define REG_LMGR_INIT_CFG 0x1000
#define LMGR_INIT_START BIT(31)
#define LMGR_SRAM_MODE_MASK BIT(30)
#define HW_FWD_PKTSIZE_OVERHEAD_MASK GENMASK(27, 20)
#define HW_FWD_DESC_NUM_MASK GENMASK(16, 0)
#define REG_FWD_DSCP_LOW_THR 0x1004
#define FWD_DSCP_LOW_THR_MASK GENMASK(17, 0)
#define REG_EGRESS_RATE_METER_CFG 0x100c
#define EGRESS_RATE_METER_EN_MASK BIT(29)
#define EGRESS_RATE_METER_EQ_RATE_EN_MASK BIT(17)
#define EGRESS_RATE_METER_WINDOW_SZ_MASK GENMASK(16, 12)
#define EGRESS_RATE_METER_TIMESLICE_MASK GENMASK(10, 0)
#define REG_EGRESS_TRTCM_CFG 0x1010
#define EGRESS_TRTCM_EN_MASK BIT(31)
#define EGRESS_TRTCM_MODE_MASK BIT(30)
#define EGRESS_SLOW_TICK_RATIO_MASK GENMASK(29, 16)
#define EGRESS_FAST_TICK_MASK GENMASK(15, 0)
#define REG_TXWRR_MODE_CFG 0x1020
#define TWRR_WEIGHT_SCALE_MASK BIT(31)
#define TWRR_WEIGHT_BASE_MASK BIT(3)
#define REG_PSE_BUF_USAGE_CFG 0x1028
#define PSE_BUF_ESTIMATE_EN_MASK BIT(29)
#define REG_GLB_TRTCM_CFG 0x1080
#define GLB_TRTCM_EN_MASK BIT(31)
#define GLB_TRTCM_MODE_MASK BIT(30)
#define GLB_SLOW_TICK_RATIO_MASK GENMASK(29, 16)
#define GLB_FAST_TICK_MASK GENMASK(15, 0)
#define REG_TXQ_CNGST_CFG 0x10a0
#define TXQ_CNGST_DROP_EN BIT(31)
#define TXQ_CNGST_DEI_DROP_EN BIT(30)
#define REG_SLA_TRTCM_CFG 0x1150
#define SLA_TRTCM_EN_MASK BIT(31)
#define SLA_TRTCM_MODE_MASK BIT(30)
#define SLA_SLOW_TICK_RATIO_MASK GENMASK(29, 16)
#define SLA_FAST_TICK_MASK GENMASK(15, 0)
/* CTRL */
#define QDMA_DESC_DONE_MASK BIT(31)
#define QDMA_DESC_DROP_MASK BIT(30) /* tx: drop - rx: overflow */
#define QDMA_DESC_MORE_MASK BIT(29) /* more SG elements */
#define QDMA_DESC_DEI_MASK BIT(25)
#define QDMA_DESC_NO_DROP_MASK BIT(24)
#define QDMA_DESC_LEN_MASK GENMASK(15, 0)
/* DATA */
#define QDMA_DESC_NEXT_ID_MASK GENMASK(15, 0)
/* TX MSG0 */
#define QDMA_ETH_TXMSG_MIC_IDX_MASK BIT(30)
#define QDMA_ETH_TXMSG_SP_TAG_MASK GENMASK(29, 14)
#define QDMA_ETH_TXMSG_ICO_MASK BIT(13)
#define QDMA_ETH_TXMSG_UCO_MASK BIT(12)
#define QDMA_ETH_TXMSG_TCO_MASK BIT(11)
#define QDMA_ETH_TXMSG_TSO_MASK BIT(10)
#define QDMA_ETH_TXMSG_FAST_MASK BIT(9)
#define QDMA_ETH_TXMSG_OAM_MASK BIT(8)
#define QDMA_ETH_TXMSG_CHAN_MASK GENMASK(7, 3)
#define QDMA_ETH_TXMSG_QUEUE_MASK GENMASK(2, 0)
/* TX MSG1 */
#define QDMA_ETH_TXMSG_NO_DROP BIT(31)
#define QDMA_ETH_TXMSG_METER_MASK GENMASK(30, 24) /* 0x7f no meters */
#define QDMA_ETH_TXMSG_FPORT_MASK GENMASK(23, 20)
#define QDMA_ETH_TXMSG_NBOQ_MASK GENMASK(19, 15)
#define QDMA_ETH_TXMSG_HWF_MASK BIT(14)
#define QDMA_ETH_TXMSG_HOP_MASK BIT(13)
#define QDMA_ETH_TXMSG_PTP_MASK BIT(12)
#define QDMA_ETH_TXMSG_ACNT_G1_MASK GENMASK(10, 6) /* 0x1f do not count */
#define QDMA_ETH_TXMSG_ACNT_G0_MASK GENMASK(5, 0) /* 0x3f do not count */
/* RX MSG1 */
#define QDMA_ETH_RXMSG_DEI_MASK BIT(31)
#define QDMA_ETH_RXMSG_IP6_MASK BIT(30)
#define QDMA_ETH_RXMSG_IP4_MASK BIT(29)
#define QDMA_ETH_RXMSG_IP4F_MASK BIT(28)
#define QDMA_ETH_RXMSG_L4_VALID_MASK BIT(27)
#define QDMA_ETH_RXMSG_L4F_MASK BIT(26)
#define QDMA_ETH_RXMSG_SPORT_MASK GENMASK(25, 21)
#define QDMA_ETH_RXMSG_CRSN_MASK GENMASK(20, 16)
#define QDMA_ETH_RXMSG_PPE_ENTRY_MASK GENMASK(15, 0)
struct airoha_qdma_desc {
__le32 rsv;
__le32 ctrl;
__le32 addr;
__le32 data;
__le32 msg0;
__le32 msg1;
__le32 msg2;
__le32 msg3;
};
/* CTRL0 */
#define QDMA_FWD_DESC_CTX_MASK BIT(31)
#define QDMA_FWD_DESC_RING_MASK GENMASK(30, 28)
#define QDMA_FWD_DESC_IDX_MASK GENMASK(27, 16)
#define QDMA_FWD_DESC_LEN_MASK GENMASK(15, 0)
/* CTRL1 */
#define QDMA_FWD_DESC_FIRST_IDX_MASK GENMASK(15, 0)
/* CTRL2 */
#define QDMA_FWD_DESC_MORE_PKT_NUM_MASK GENMASK(2, 0)
struct airoha_qdma_fwd_desc {
__le32 addr;
__le32 ctrl0;
__le32 ctrl1;
__le32 ctrl2;
__le32 msg0;
__le32 msg1;
__le32 rsv0;
__le32 rsv1;
};
enum {
QDMA_INT_REG_IDX0,
QDMA_INT_REG_IDX1,
QDMA_INT_REG_IDX2,
QDMA_INT_REG_IDX3,
QDMA_INT_REG_IDX4,
QDMA_INT_REG_MAX
};
enum {
XSI_PCIE0_PORT,
XSI_PCIE1_PORT,
XSI_USB_PORT,
XSI_AE_PORT,
XSI_ETH_PORT,
};
enum {
XSI_PCIE0_VIP_PORT_MASK = BIT(22),
XSI_PCIE1_VIP_PORT_MASK = BIT(23),
XSI_USB_VIP_PORT_MASK = BIT(25),
XSI_ETH_VIP_PORT_MASK = BIT(24),
};
enum {
DEV_STATE_INITIALIZED,
};
enum {
CDM_CRSN_QSEL_Q1 = 1,
CDM_CRSN_QSEL_Q5 = 5,
CDM_CRSN_QSEL_Q6 = 6,
CDM_CRSN_QSEL_Q15 = 15,
};
enum {
CRSN_08 = 0x8,
CRSN_21 = 0x15, /* KA */
CRSN_22 = 0x16, /* hit bind and force route to CPU */
CRSN_24 = 0x18,
CRSN_25 = 0x19,
};
enum {
FE_PSE_PORT_CDM1,
FE_PSE_PORT_GDM1,
FE_PSE_PORT_GDM2,
FE_PSE_PORT_GDM3,
FE_PSE_PORT_PPE1,
FE_PSE_PORT_CDM2,
FE_PSE_PORT_CDM3,
FE_PSE_PORT_CDM4,
FE_PSE_PORT_PPE2,
FE_PSE_PORT_GDM4,
FE_PSE_PORT_CDM5,
FE_PSE_PORT_DROP = 0xf,
};
struct airoha_queue_entry {
union {
void *buf;
struct sk_buff *skb;
};
dma_addr_t dma_addr;
u16 dma_len;
};
struct airoha_queue {
struct airoha_eth *eth;
/* protect concurrent queue accesses */
spinlock_t lock;
struct airoha_queue_entry *entry;
struct airoha_qdma_desc *desc;
u16 head;
u16 tail;
int queued;
int ndesc;
int free_thr;
int buf_size;
struct napi_struct napi;
struct page_pool *page_pool;
};
struct airoha_tx_irq_queue {
struct airoha_eth *eth;
struct napi_struct napi;
u32 *q;
int size;
int queued;
u16 head;
};
struct airoha_hw_stats {
/* protect concurrent hw_stats accesses */
spinlock_t lock;
struct u64_stats_sync syncp;
/* get_stats64 */
u64 rx_ok_pkts;
u64 tx_ok_pkts;
u64 rx_ok_bytes;
u64 tx_ok_bytes;
u64 rx_multicast;
u64 rx_errors;
u64 rx_drops;
u64 tx_drops;
u64 rx_crc_error;
u64 rx_over_errors;
/* ethtool stats */
u64 tx_broadcast;
u64 tx_multicast;
u64 tx_len[7];
u64 rx_broadcast;
u64 rx_fragment;
u64 rx_jabber;
u64 rx_len[7];
};
struct airoha_gdm_port {
struct net_device *dev;
struct airoha_eth *eth;
int id;
struct airoha_hw_stats stats;
};
struct airoha_eth {
struct device *dev;
unsigned long state;
void __iomem *qdma_regs;
void __iomem *fe_regs;
/* protect concurrent irqmask accesses */
spinlock_t irq_lock;
u32 irqmask[QDMA_INT_REG_MAX];
int irq;
struct reset_control_bulk_data rsts[AIROHA_MAX_NUM_RSTS];
struct reset_control_bulk_data xsi_rsts[AIROHA_MAX_NUM_XSI_RSTS];
struct airoha_gdm_port *ports[AIROHA_MAX_NUM_GDM_PORTS];
struct net_device *napi_dev;
struct airoha_queue q_tx[AIROHA_NUM_TX_RING];
struct airoha_queue q_rx[AIROHA_NUM_RX_RING];
struct airoha_tx_irq_queue q_tx_irq[AIROHA_NUM_TX_IRQ];
/* descriptor and packet buffers for qdma hw forward */
struct {
void *desc;
void *q;
} hfwd;
};
static u32 airoha_rr(void __iomem *base, u32 offset)
{
return readl(base + offset);
}
static void airoha_wr(void __iomem *base, u32 offset, u32 val)
{
writel(val, base + offset);
}
static u32 airoha_rmw(void __iomem *base, u32 offset, u32 mask, u32 val)
{
val |= (airoha_rr(base, offset) & ~mask);
airoha_wr(base, offset, val);
return val;
}
#define airoha_fe_rr(eth, offset) \
airoha_rr((eth)->fe_regs, (offset))
#define airoha_fe_wr(eth, offset, val) \
airoha_wr((eth)->fe_regs, (offset), (val))
#define airoha_fe_rmw(eth, offset, mask, val) \
airoha_rmw((eth)->fe_regs, (offset), (mask), (val))
#define airoha_fe_set(eth, offset, val) \
airoha_rmw((eth)->fe_regs, (offset), 0, (val))
#define airoha_fe_clear(eth, offset, val) \
airoha_rmw((eth)->fe_regs, (offset), (val), 0)
#define airoha_qdma_rr(eth, offset) \
airoha_rr((eth)->qdma_regs, (offset))
#define airoha_qdma_wr(eth, offset, val) \
airoha_wr((eth)->qdma_regs, (offset), (val))
#define airoha_qdma_rmw(eth, offset, mask, val) \
airoha_rmw((eth)->qdma_regs, (offset), (mask), (val))
#define airoha_qdma_set(eth, offset, val) \
airoha_rmw((eth)->qdma_regs, (offset), 0, (val))
#define airoha_qdma_clear(eth, offset, val) \
airoha_rmw((eth)->qdma_regs, (offset), (val), 0)
static void airoha_qdma_set_irqmask(struct airoha_eth *eth, int index,
u32 clear, u32 set)
{
unsigned long flags;
if (WARN_ON_ONCE(index >= ARRAY_SIZE(eth->irqmask)))
return;
spin_lock_irqsave(&eth->irq_lock, flags);
eth->irqmask[index] &= ~clear;
eth->irqmask[index] |= set;
airoha_qdma_wr(eth, REG_INT_ENABLE(index), eth->irqmask[index]);
/* Read irq_enable register in order to guarantee the update above
* completes in the spinlock critical section.
*/
airoha_qdma_rr(eth, REG_INT_ENABLE(index));
spin_unlock_irqrestore(&eth->irq_lock, flags);
}
static void airoha_qdma_irq_enable(struct airoha_eth *eth, int index,
u32 mask)
{
airoha_qdma_set_irqmask(eth, index, 0, mask);
}
static void airoha_qdma_irq_disable(struct airoha_eth *eth, int index,
u32 mask)
{
airoha_qdma_set_irqmask(eth, index, mask, 0);
}
static void airoha_set_macaddr(struct airoha_eth *eth, const u8 *addr)
{
u32 val;
val = (addr[0] << 16) | (addr[1] << 8) | addr[2];
airoha_fe_wr(eth, REG_FE_LAN_MAC_H, val);
val = (addr[3] << 16) | (addr[4] << 8) | addr[5];
airoha_fe_wr(eth, REG_FE_LAN_MAC_LMIN, val);
airoha_fe_wr(eth, REG_FE_LAN_MAC_LMAX, val);
}
static void airoha_set_gdm_port_fwd_cfg(struct airoha_eth *eth, u32 addr,
u32 val)
{
airoha_fe_rmw(eth, addr, GDM_OCFQ_MASK,
FIELD_PREP(GDM_OCFQ_MASK, val));
airoha_fe_rmw(eth, addr, GDM_MCFQ_MASK,
FIELD_PREP(GDM_MCFQ_MASK, val));
airoha_fe_rmw(eth, addr, GDM_BCFQ_MASK,
FIELD_PREP(GDM_BCFQ_MASK, val));
airoha_fe_rmw(eth, addr, GDM_UCFQ_MASK,
FIELD_PREP(GDM_UCFQ_MASK, val));
}
static int airoha_set_gdm_port(struct airoha_eth *eth, int port, bool enable)
{
u32 val = enable ? FE_PSE_PORT_PPE1 : FE_PSE_PORT_DROP;
u32 vip_port, cfg_addr;
switch (port) {
case XSI_PCIE0_PORT:
vip_port = XSI_PCIE0_VIP_PORT_MASK;
cfg_addr = REG_GDM_FWD_CFG(3);
break;
case XSI_PCIE1_PORT:
vip_port = XSI_PCIE1_VIP_PORT_MASK;
cfg_addr = REG_GDM_FWD_CFG(3);
break;
case XSI_USB_PORT:
vip_port = XSI_USB_VIP_PORT_MASK;
cfg_addr = REG_GDM_FWD_CFG(4);
break;
case XSI_ETH_PORT:
vip_port = XSI_ETH_VIP_PORT_MASK;
cfg_addr = REG_GDM_FWD_CFG(4);
break;
default:
return -EINVAL;
}
if (enable) {
airoha_fe_set(eth, REG_FE_VIP_PORT_EN, vip_port);
airoha_fe_set(eth, REG_FE_IFC_PORT_EN, vip_port);
} else {
airoha_fe_clear(eth, REG_FE_VIP_PORT_EN, vip_port);
airoha_fe_clear(eth, REG_FE_IFC_PORT_EN, vip_port);
}
airoha_set_gdm_port_fwd_cfg(eth, cfg_addr, val);
return 0;
}
static int airoha_set_gdm_ports(struct airoha_eth *eth, bool enable)
{
const int port_list[] = {
XSI_PCIE0_PORT,
XSI_PCIE1_PORT,
XSI_USB_PORT,
XSI_ETH_PORT
};
int i, err;
for (i = 0; i < ARRAY_SIZE(port_list); i++) {
err = airoha_set_gdm_port(eth, port_list[i], enable);
if (err)
goto error;
}
return 0;
error:
for (i--; i >= 0; i--)
airoha_set_gdm_port(eth, port_list[i], false);
return err;
}
static void airoha_fe_maccr_init(struct airoha_eth *eth)
{
int p;
for (p = 1; p <= ARRAY_SIZE(eth->ports); p++) {
airoha_fe_set(eth, REG_GDM_FWD_CFG(p),
GDM_TCP_CKSUM | GDM_UDP_CKSUM | GDM_IP4_CKSUM |
GDM_DROP_CRC_ERR);
airoha_set_gdm_port_fwd_cfg(eth, REG_GDM_FWD_CFG(p),
FE_PSE_PORT_CDM1);
airoha_fe_rmw(eth, REG_GDM_LEN_CFG(p),
GDM_SHORT_LEN_MASK | GDM_LONG_LEN_MASK,
FIELD_PREP(GDM_SHORT_LEN_MASK, 60) |
FIELD_PREP(GDM_LONG_LEN_MASK, 4004));
}
airoha_fe_rmw(eth, REG_CDM1_VLAN_CTRL, CDM1_VLAN_MASK,
FIELD_PREP(CDM1_VLAN_MASK, 0x8100));
airoha_fe_set(eth, REG_FE_CPORT_CFG, FE_CPORT_PAD);
}
static void airoha_fe_vip_setup(struct airoha_eth *eth)
{
airoha_fe_wr(eth, REG_FE_VIP_PATN(3), ETH_P_PPP_DISC);
airoha_fe_wr(eth, REG_FE_VIP_EN(3), PATN_FCPU_EN_MASK | PATN_EN_MASK);
airoha_fe_wr(eth, REG_FE_VIP_PATN(4), PPP_LCP);
airoha_fe_wr(eth, REG_FE_VIP_EN(4),
PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) |
PATN_EN_MASK);
airoha_fe_wr(eth, REG_FE_VIP_PATN(6), PPP_IPCP);
airoha_fe_wr(eth, REG_FE_VIP_EN(6),
PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) |
PATN_EN_MASK);
airoha_fe_wr(eth, REG_FE_VIP_PATN(7), PPP_CHAP);
airoha_fe_wr(eth, REG_FE_VIP_EN(7),
PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) |
PATN_EN_MASK);
/* BOOTP (0x43) */
airoha_fe_wr(eth, REG_FE_VIP_PATN(8), 0x43);
airoha_fe_wr(eth, REG_FE_VIP_EN(8),
PATN_FCPU_EN_MASK | PATN_SP_EN_MASK |
FIELD_PREP(PATN_TYPE_MASK, 4) | PATN_EN_MASK);
/* BOOTP (0x44) */
airoha_fe_wr(eth, REG_FE_VIP_PATN(9), 0x44);
airoha_fe_wr(eth, REG_FE_VIP_EN(9),
PATN_FCPU_EN_MASK | PATN_SP_EN_MASK |
FIELD_PREP(PATN_TYPE_MASK, 4) | PATN_EN_MASK);
/* ISAKMP */
airoha_fe_wr(eth, REG_FE_VIP_PATN(10), 0x1f401f4);
airoha_fe_wr(eth, REG_FE_VIP_EN(10),
PATN_FCPU_EN_MASK | PATN_DP_EN_MASK | PATN_SP_EN_MASK |
FIELD_PREP(PATN_TYPE_MASK, 4) | PATN_EN_MASK);
airoha_fe_wr(eth, REG_FE_VIP_PATN(11), PPP_IPV6CP);
airoha_fe_wr(eth, REG_FE_VIP_EN(11),
PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) |
PATN_EN_MASK);
/* DHCPv6 */
airoha_fe_wr(eth, REG_FE_VIP_PATN(12), 0x2220223);
airoha_fe_wr(eth, REG_FE_VIP_EN(12),
PATN_FCPU_EN_MASK | PATN_DP_EN_MASK | PATN_SP_EN_MASK |
FIELD_PREP(PATN_TYPE_MASK, 4) | PATN_EN_MASK);
airoha_fe_wr(eth, REG_FE_VIP_PATN(19), PPP_PAP);
airoha_fe_wr(eth, REG_FE_VIP_EN(19),
PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) |
PATN_EN_MASK);
/* ETH->ETH_P_1905 (0x893a) */
airoha_fe_wr(eth, REG_FE_VIP_PATN(20), 0x893a);
airoha_fe_wr(eth, REG_FE_VIP_EN(20),
PATN_FCPU_EN_MASK | PATN_EN_MASK);
airoha_fe_wr(eth, REG_FE_VIP_PATN(21), ETH_P_LLDP);
airoha_fe_wr(eth, REG_FE_VIP_EN(21),
PATN_FCPU_EN_MASK | PATN_EN_MASK);
}
static u32 airoha_fe_get_pse_queue_rsv_pages(struct airoha_eth *eth,
u32 port, u32 queue)
{
u32 val;
airoha_fe_rmw(eth, REG_FE_PSE_QUEUE_CFG_WR,
PSE_CFG_PORT_ID_MASK | PSE_CFG_QUEUE_ID_MASK,
FIELD_PREP(PSE_CFG_PORT_ID_MASK, port) |
FIELD_PREP(PSE_CFG_QUEUE_ID_MASK, queue));
val = airoha_fe_rr(eth, REG_FE_PSE_QUEUE_CFG_VAL);
return FIELD_GET(PSE_CFG_OQ_RSV_MASK, val);
}
static void airoha_fe_set_pse_queue_rsv_pages(struct airoha_eth *eth,
u32 port, u32 queue, u32 val)
{
airoha_fe_rmw(eth, REG_FE_PSE_QUEUE_CFG_VAL, PSE_CFG_OQ_RSV_MASK,
FIELD_PREP(PSE_CFG_OQ_RSV_MASK, val));
airoha_fe_rmw(eth, REG_FE_PSE_QUEUE_CFG_WR,
PSE_CFG_PORT_ID_MASK | PSE_CFG_QUEUE_ID_MASK |
PSE_CFG_WR_EN_MASK | PSE_CFG_OQRSV_SEL_MASK,
FIELD_PREP(PSE_CFG_PORT_ID_MASK, port) |
FIELD_PREP(PSE_CFG_QUEUE_ID_MASK, queue) |
PSE_CFG_WR_EN_MASK | PSE_CFG_OQRSV_SEL_MASK);
}
static int airoha_fe_set_pse_oq_rsv(struct airoha_eth *eth,
u32 port, u32 queue, u32 val)
{
u32 orig_val, tmp, all_rsv, fq_limit;
airoha_fe_set_pse_queue_rsv_pages(eth, port, queue, val);
/* modify all rsv */
orig_val = airoha_fe_get_pse_queue_rsv_pages(eth, port, queue);
tmp = airoha_fe_rr(eth, REG_FE_PSE_BUF_SET);
all_rsv = FIELD_GET(PSE_ALLRSV_MASK, tmp);
all_rsv += (val - orig_val);
airoha_fe_rmw(eth, REG_FE_PSE_BUF_SET, PSE_ALLRSV_MASK,
FIELD_PREP(PSE_ALLRSV_MASK, all_rsv));
/* modify hthd */
tmp = airoha_fe_rr(eth, PSE_FQ_CFG);
fq_limit = FIELD_GET(PSE_FQ_LIMIT_MASK, tmp);
tmp = fq_limit - all_rsv - 0x20;
airoha_fe_rmw(eth, REG_PSE_SHARE_USED_THD,
PSE_SHARE_USED_HTHD_MASK,
FIELD_PREP(PSE_SHARE_USED_HTHD_MASK, tmp));
tmp = fq_limit - all_rsv - 0x100;
airoha_fe_rmw(eth, REG_PSE_SHARE_USED_THD,
PSE_SHARE_USED_MTHD_MASK,
FIELD_PREP(PSE_SHARE_USED_MTHD_MASK, tmp));
tmp = (3 * tmp) >> 2;
airoha_fe_rmw(eth, REG_FE_PSE_BUF_SET,
PSE_SHARE_USED_LTHD_MASK,
FIELD_PREP(PSE_SHARE_USED_LTHD_MASK, tmp));
return 0;
}
static void airoha_fe_pse_ports_init(struct airoha_eth *eth)
{
const u32 pse_port_num_queues[] = {
[FE_PSE_PORT_CDM1] = 6,
[FE_PSE_PORT_GDM1] = 6,
[FE_PSE_PORT_GDM2] = 32,
[FE_PSE_PORT_GDM3] = 6,
[FE_PSE_PORT_PPE1] = 4,
[FE_PSE_PORT_CDM2] = 6,
[FE_PSE_PORT_CDM3] = 8,
[FE_PSE_PORT_CDM4] = 10,
[FE_PSE_PORT_PPE2] = 4,
[FE_PSE_PORT_GDM4] = 2,
[FE_PSE_PORT_CDM5] = 2,
};
int q;
/* hw misses PPE2 oq rsv */
airoha_fe_set(eth, REG_FE_PSE_BUF_SET,
PSE_RSV_PAGES * pse_port_num_queues[FE_PSE_PORT_PPE2]);
/* CMD1 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_CDM1]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM1, q,
PSE_QUEUE_RSV_PAGES);
/* GMD1 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_GDM1]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_GDM1, q,
PSE_QUEUE_RSV_PAGES);
/* GMD2 */
for (q = 6; q < pse_port_num_queues[FE_PSE_PORT_GDM2]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_GDM2, q, 0);
/* GMD3 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_GDM3]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_GDM3, q,
PSE_QUEUE_RSV_PAGES);
/* PPE1 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_PPE1]; q++) {
if (q < pse_port_num_queues[FE_PSE_PORT_PPE1])
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_PPE1, q,
PSE_QUEUE_RSV_PAGES);
else
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_PPE1, q, 0);
}
/* CDM2 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_CDM2]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM2, q,
PSE_QUEUE_RSV_PAGES);
/* CDM3 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_CDM3] - 1; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM3, q, 0);
/* CDM4 */
for (q = 4; q < pse_port_num_queues[FE_PSE_PORT_CDM4]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM4, q,
PSE_QUEUE_RSV_PAGES);
/* PPE2 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_PPE2]; q++) {
if (q < pse_port_num_queues[FE_PSE_PORT_PPE2] / 2)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_PPE2, q,
PSE_QUEUE_RSV_PAGES);
else
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_PPE2, q, 0);
}
/* GMD4 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_GDM4]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_GDM4, q,
PSE_QUEUE_RSV_PAGES);
/* CDM5 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_CDM5]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM5, q,
PSE_QUEUE_RSV_PAGES);
}
static int airoha_fe_mc_vlan_clear(struct airoha_eth *eth)
{
int i;
for (i = 0; i < AIROHA_FE_MC_MAX_VLAN_TABLE; i++) {
int err, j;
u32 val;
airoha_fe_wr(eth, REG_MC_VLAN_DATA, 0x0);
val = FIELD_PREP(MC_VLAN_CFG_TABLE_ID_MASK, i) |
MC_VLAN_CFG_TABLE_SEL_MASK | MC_VLAN_CFG_RW_MASK;
airoha_fe_wr(eth, REG_MC_VLAN_CFG, val);
err = read_poll_timeout(airoha_fe_rr, val,
val & MC_VLAN_CFG_CMD_DONE_MASK,
USEC_PER_MSEC, 5 * USEC_PER_MSEC,
false, eth, REG_MC_VLAN_CFG);
if (err)
return err;
for (j = 0; j < AIROHA_FE_MC_MAX_VLAN_PORT; j++) {
airoha_fe_wr(eth, REG_MC_VLAN_DATA, 0x0);
val = FIELD_PREP(MC_VLAN_CFG_TABLE_ID_MASK, i) |
FIELD_PREP(MC_VLAN_CFG_PORT_ID_MASK, j) |
MC_VLAN_CFG_RW_MASK;
airoha_fe_wr(eth, REG_MC_VLAN_CFG, val);
err = read_poll_timeout(airoha_fe_rr, val,
val & MC_VLAN_CFG_CMD_DONE_MASK,
USEC_PER_MSEC,
5 * USEC_PER_MSEC, false, eth,
REG_MC_VLAN_CFG);
if (err)
return err;
}
}
return 0;
}
static void airoha_fe_crsn_qsel_init(struct airoha_eth *eth)
{
/* CDM1_CRSN_QSEL */
airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_22 >> 2),
CDM1_CRSN_QSEL_REASON_MASK(CRSN_22),
FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_22),
CDM_CRSN_QSEL_Q1));
airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_08 >> 2),
CDM1_CRSN_QSEL_REASON_MASK(CRSN_08),
FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_08),
CDM_CRSN_QSEL_Q1));
airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_21 >> 2),
CDM1_CRSN_QSEL_REASON_MASK(CRSN_21),
FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_21),
CDM_CRSN_QSEL_Q1));
airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_24 >> 2),
CDM1_CRSN_QSEL_REASON_MASK(CRSN_24),
FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_24),
CDM_CRSN_QSEL_Q6));
airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_25 >> 2),
CDM1_CRSN_QSEL_REASON_MASK(CRSN_25),
FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_25),
CDM_CRSN_QSEL_Q1));
/* CDM2_CRSN_QSEL */
airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_08 >> 2),
CDM2_CRSN_QSEL_REASON_MASK(CRSN_08),
FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_08),
CDM_CRSN_QSEL_Q1));
airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_21 >> 2),
CDM2_CRSN_QSEL_REASON_MASK(CRSN_21),
FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_21),
CDM_CRSN_QSEL_Q1));
airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_22 >> 2),
CDM2_CRSN_QSEL_REASON_MASK(CRSN_22),
FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_22),
CDM_CRSN_QSEL_Q1));
airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_24 >> 2),
CDM2_CRSN_QSEL_REASON_MASK(CRSN_24),
FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_24),
CDM_CRSN_QSEL_Q6));
airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_25 >> 2),
CDM2_CRSN_QSEL_REASON_MASK(CRSN_25),
FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_25),
CDM_CRSN_QSEL_Q1));
}
static int airoha_fe_init(struct airoha_eth *eth)
{
airoha_fe_maccr_init(eth);
/* PSE IQ reserve */
airoha_fe_rmw(eth, REG_PSE_IQ_REV1, PSE_IQ_RES1_P2_MASK,
FIELD_PREP(PSE_IQ_RES1_P2_MASK, 0x10));
airoha_fe_rmw(eth, REG_PSE_IQ_REV2,
PSE_IQ_RES2_P5_MASK | PSE_IQ_RES2_P4_MASK,
FIELD_PREP(PSE_IQ_RES2_P5_MASK, 0x40) |
FIELD_PREP(PSE_IQ_RES2_P4_MASK, 0x34));
/* enable FE copy engine for MC/KA/DPI */
airoha_fe_wr(eth, REG_FE_PCE_CFG,
PCE_DPI_EN_MASK | PCE_KA_EN_MASK | PCE_MC_EN_MASK);
/* set vip queue selection to ring 1 */
airoha_fe_rmw(eth, REG_CDM1_FWD_CFG, CDM1_VIP_QSEL_MASK,
FIELD_PREP(CDM1_VIP_QSEL_MASK, 0x4));
airoha_fe_rmw(eth, REG_CDM2_FWD_CFG, CDM2_VIP_QSEL_MASK,
FIELD_PREP(CDM2_VIP_QSEL_MASK, 0x4));
/* set GDM4 source interface offset to 8 */
airoha_fe_rmw(eth, REG_GDM4_SRC_PORT_SET,
GDM4_SPORT_OFF2_MASK |
GDM4_SPORT_OFF1_MASK |
GDM4_SPORT_OFF0_MASK,
FIELD_PREP(GDM4_SPORT_OFF2_MASK, 8) |
FIELD_PREP(GDM4_SPORT_OFF1_MASK, 8) |
FIELD_PREP(GDM4_SPORT_OFF0_MASK, 8));
/* set PSE Page as 128B */
airoha_fe_rmw(eth, REG_FE_DMA_GLO_CFG,
FE_DMA_GLO_L2_SPACE_MASK | FE_DMA_GLO_PG_SZ_MASK,
FIELD_PREP(FE_DMA_GLO_L2_SPACE_MASK, 2) |
FE_DMA_GLO_PG_SZ_MASK);
airoha_fe_wr(eth, REG_FE_RST_GLO_CFG,
FE_RST_CORE_MASK | FE_RST_GDM3_MBI_ARB_MASK |
FE_RST_GDM4_MBI_ARB_MASK);
usleep_range(1000, 2000);
/* connect RxRing1 and RxRing15 to PSE Port0 OQ-1
* connect other rings to PSE Port0 OQ-0
*/
airoha_fe_wr(eth, REG_FE_CDM1_OQ_MAP0, BIT(4));
airoha_fe_wr(eth, REG_FE_CDM1_OQ_MAP1, BIT(28));
airoha_fe_wr(eth, REG_FE_CDM1_OQ_MAP2, BIT(4));
airoha_fe_wr(eth, REG_FE_CDM1_OQ_MAP3, BIT(28));
airoha_fe_vip_setup(eth);
airoha_fe_pse_ports_init(eth);
airoha_fe_set(eth, REG_GDM_MISC_CFG,
GDM2_RDM_ACK_WAIT_PREF_MASK |
GDM2_CHN_VLD_MODE_MASK);
airoha_fe_rmw(eth, REG_CDM2_FWD_CFG, CDM2_OAM_QSEL_MASK, 15);
/* init fragment and assemble Force Port */
/* NPU Core-3, NPU Bridge Channel-3 */
airoha_fe_rmw(eth, REG_IP_FRAG_FP,
IP_FRAGMENT_PORT_MASK | IP_FRAGMENT_NBQ_MASK,
FIELD_PREP(IP_FRAGMENT_PORT_MASK, 6) |
FIELD_PREP(IP_FRAGMENT_NBQ_MASK, 3));
/* QDMA LAN, RX Ring-22 */
airoha_fe_rmw(eth, REG_IP_FRAG_FP,
IP_ASSEMBLE_PORT_MASK | IP_ASSEMBLE_NBQ_MASK,
FIELD_PREP(IP_ASSEMBLE_PORT_MASK, 0) |
FIELD_PREP(IP_ASSEMBLE_NBQ_MASK, 22));
airoha_fe_set(eth, REG_GDM3_FWD_CFG, GDM3_PAD_EN_MASK);
airoha_fe_set(eth, REG_GDM4_FWD_CFG, GDM4_PAD_EN_MASK);
airoha_fe_crsn_qsel_init(eth);
airoha_fe_clear(eth, REG_FE_CPORT_CFG, FE_CPORT_QUEUE_XFC_MASK);
airoha_fe_set(eth, REG_FE_CPORT_CFG, FE_CPORT_PORT_XFC_MASK);
/* default aging mode for mbi unlock issue */
airoha_fe_rmw(eth, REG_GDM2_CHN_RLS,
MBI_RX_AGE_SEL_MASK | MBI_TX_AGE_SEL_MASK,
FIELD_PREP(MBI_RX_AGE_SEL_MASK, 3) |
FIELD_PREP(MBI_TX_AGE_SEL_MASK, 3));
/* disable IFC by default */
airoha_fe_clear(eth, REG_FE_CSR_IFC_CFG, FE_IFC_EN_MASK);
/* enable 1:N vlan action, init vlan table */
airoha_fe_set(eth, REG_MC_VLAN_EN, MC_VLAN_EN_MASK);
return airoha_fe_mc_vlan_clear(eth);
}
static int airoha_qdma_fill_rx_queue(struct airoha_queue *q)
{
enum dma_data_direction dir = page_pool_get_dma_dir(q->page_pool);
struct airoha_eth *eth = q->eth;
int qid = q - &eth->q_rx[0];
int nframes = 0;
while (q->queued < q->ndesc - 1) {
struct airoha_queue_entry *e = &q->entry[q->head];
struct airoha_qdma_desc *desc = &q->desc[q->head];
struct page *page;
int offset;
u32 val;
page = page_pool_dev_alloc_frag(q->page_pool, &offset,
q->buf_size);
if (!page)
break;
q->head = (q->head + 1) % q->ndesc;
q->queued++;
nframes++;
e->buf = page_address(page) + offset;
e->dma_addr = page_pool_get_dma_addr(page) + offset;
e->dma_len = SKB_WITH_OVERHEAD(q->buf_size);
dma_sync_single_for_device(eth->dev, e->dma_addr, e->dma_len,
dir);
val = FIELD_PREP(QDMA_DESC_LEN_MASK, e->dma_len);
WRITE_ONCE(desc->ctrl, cpu_to_le32(val));
WRITE_ONCE(desc->addr, cpu_to_le32(e->dma_addr));
val = FIELD_PREP(QDMA_DESC_NEXT_ID_MASK, q->head);
WRITE_ONCE(desc->data, cpu_to_le32(val));
WRITE_ONCE(desc->msg0, 0);
WRITE_ONCE(desc->msg1, 0);
WRITE_ONCE(desc->msg2, 0);
WRITE_ONCE(desc->msg3, 0);
airoha_qdma_rmw(eth, REG_RX_CPU_IDX(qid), RX_RING_CPU_IDX_MASK,
FIELD_PREP(RX_RING_CPU_IDX_MASK, q->head));
}
return nframes;
}
static int airoha_qdma_get_gdm_port(struct airoha_eth *eth,
struct airoha_qdma_desc *desc)
{
u32 port, sport, msg1 = le32_to_cpu(desc->msg1);
sport = FIELD_GET(QDMA_ETH_RXMSG_SPORT_MASK, msg1);
switch (sport) {
case 0x10 ... 0x13:
port = 0;
break;
case 0x2 ... 0x4:
port = sport - 1;
break;
default:
return -EINVAL;
}
return port >= ARRAY_SIZE(eth->ports) ? -EINVAL : port;
}
static int airoha_qdma_rx_process(struct airoha_queue *q, int budget)
{
enum dma_data_direction dir = page_pool_get_dma_dir(q->page_pool);
struct airoha_eth *eth = q->eth;
int qid = q - &eth->q_rx[0];
int done = 0;
while (done < budget) {
struct airoha_queue_entry *e = &q->entry[q->tail];
struct airoha_qdma_desc *desc = &q->desc[q->tail];
dma_addr_t dma_addr = le32_to_cpu(desc->addr);
u32 desc_ctrl = le32_to_cpu(desc->ctrl);
struct sk_buff *skb;
int len, p;
if (!(desc_ctrl & QDMA_DESC_DONE_MASK))
break;
if (!dma_addr)
break;
len = FIELD_GET(QDMA_DESC_LEN_MASK, desc_ctrl);
if (!len)
break;
q->tail = (q->tail + 1) % q->ndesc;
q->queued--;
dma_sync_single_for_cpu(eth->dev, dma_addr,
SKB_WITH_OVERHEAD(q->buf_size), dir);
p = airoha_qdma_get_gdm_port(eth, desc);
if (p < 0 || !eth->ports[p]) {
page_pool_put_full_page(q->page_pool,
virt_to_head_page(e->buf),
true);
continue;
}
skb = napi_build_skb(e->buf, q->buf_size);
if (!skb) {
page_pool_put_full_page(q->page_pool,
virt_to_head_page(e->buf),
true);
break;
}
skb_reserve(skb, 2);
__skb_put(skb, len);
skb_mark_for_recycle(skb);
skb->dev = eth->ports[p]->dev;
skb->protocol = eth_type_trans(skb, skb->dev);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb_record_rx_queue(skb, qid);
napi_gro_receive(&q->napi, skb);
done++;
}
airoha_qdma_fill_rx_queue(q);
return done;
}
static int airoha_qdma_rx_napi_poll(struct napi_struct *napi, int budget)
{
struct airoha_queue *q = container_of(napi, struct airoha_queue, napi);
struct airoha_eth *eth = q->eth;
int cur, done = 0;
do {
cur = airoha_qdma_rx_process(q, budget - done);
done += cur;
} while (cur && done < budget);
if (done < budget && napi_complete(napi))
airoha_qdma_irq_enable(eth, QDMA_INT_REG_IDX1,
RX_DONE_INT_MASK);
return done;
}
static int airoha_qdma_init_rx_queue(struct airoha_eth *eth,
struct airoha_queue *q, int ndesc)
{
const struct page_pool_params pp_params = {
.order = 0,
.pool_size = 256,
.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
.dma_dir = DMA_FROM_DEVICE,
.max_len = PAGE_SIZE,
.nid = NUMA_NO_NODE,
.dev = eth->dev,
.napi = &q->napi,
};
int qid = q - &eth->q_rx[0], thr;
dma_addr_t dma_addr;
q->buf_size = PAGE_SIZE / 2;
q->ndesc = ndesc;
q->eth = eth;
q->entry = devm_kzalloc(eth->dev, q->ndesc * sizeof(*q->entry),
GFP_KERNEL);
if (!q->entry)
return -ENOMEM;
q->page_pool = page_pool_create(&pp_params);
if (IS_ERR(q->page_pool)) {
int err = PTR_ERR(q->page_pool);
q->page_pool = NULL;
return err;
}
q->desc = dmam_alloc_coherent(eth->dev, q->ndesc * sizeof(*q->desc),
&dma_addr, GFP_KERNEL);
if (!q->desc)
return -ENOMEM;
netif_napi_add(eth->napi_dev, &q->napi, airoha_qdma_rx_napi_poll);
airoha_qdma_wr(eth, REG_RX_RING_BASE(qid), dma_addr);
airoha_qdma_rmw(eth, REG_RX_RING_SIZE(qid), RX_RING_SIZE_MASK,
FIELD_PREP(RX_RING_SIZE_MASK, ndesc));
thr = clamp(ndesc >> 3, 1, 32);
airoha_qdma_rmw(eth, REG_RX_RING_SIZE(qid), RX_RING_THR_MASK,
FIELD_PREP(RX_RING_THR_MASK, thr));
airoha_qdma_rmw(eth, REG_RX_DMA_IDX(qid), RX_RING_DMA_IDX_MASK,
FIELD_PREP(RX_RING_DMA_IDX_MASK, q->head));
airoha_qdma_fill_rx_queue(q);
return 0;
}
static void airoha_qdma_cleanup_rx_queue(struct airoha_queue *q)
{
struct airoha_eth *eth = q->eth;
while (q->queued) {
struct airoha_queue_entry *e = &q->entry[q->tail];
struct page *page = virt_to_head_page(e->buf);
dma_sync_single_for_cpu(eth->dev, e->dma_addr, e->dma_len,
page_pool_get_dma_dir(q->page_pool));
page_pool_put_full_page(q->page_pool, page, false);
q->tail = (q->tail + 1) % q->ndesc;
q->queued--;
}
}
static int airoha_qdma_init_rx(struct airoha_eth *eth)
{
int i;
for (i = 0; i < ARRAY_SIZE(eth->q_rx); i++) {
int err;
if (!(RX_DONE_INT_MASK & BIT(i))) {
/* rx-queue not binded to irq */
continue;
}
err = airoha_qdma_init_rx_queue(eth, &eth->q_rx[i],
RX_DSCP_NUM(i));
if (err)
return err;
}
return 0;
}
static int airoha_qdma_tx_napi_poll(struct napi_struct *napi, int budget)
{
struct airoha_tx_irq_queue *irq_q;
struct airoha_eth *eth;
int id, done = 0;
irq_q = container_of(napi, struct airoha_tx_irq_queue, napi);
eth = irq_q->eth;
id = irq_q - &eth->q_tx_irq[0];
while (irq_q->queued > 0 && done < budget) {
u32 qid, last, val = irq_q->q[irq_q->head];
struct airoha_queue *q;
if (val == 0xff)
break;
irq_q->q[irq_q->head] = 0xff; /* mark as done */
irq_q->head = (irq_q->head + 1) % irq_q->size;
irq_q->queued--;
done++;
last = FIELD_GET(IRQ_DESC_IDX_MASK, val);
qid = FIELD_GET(IRQ_RING_IDX_MASK, val);
if (qid >= ARRAY_SIZE(eth->q_tx))
continue;
q = &eth->q_tx[qid];
if (!q->ndesc)
continue;
spin_lock_bh(&q->lock);
while (q->queued > 0) {
struct airoha_qdma_desc *desc = &q->desc[q->tail];
struct airoha_queue_entry *e = &q->entry[q->tail];
u32 desc_ctrl = le32_to_cpu(desc->ctrl);
struct sk_buff *skb = e->skb;
u16 index = q->tail;
if (!(desc_ctrl & QDMA_DESC_DONE_MASK) &&
!(desc_ctrl & QDMA_DESC_DROP_MASK))
break;
q->tail = (q->tail + 1) % q->ndesc;
q->queued--;
dma_unmap_single(eth->dev, e->dma_addr, e->dma_len,
DMA_TO_DEVICE);
WRITE_ONCE(desc->msg0, 0);
WRITE_ONCE(desc->msg1, 0);
if (skb) {
struct netdev_queue *txq;
txq = netdev_get_tx_queue(skb->dev, qid);
if (netif_tx_queue_stopped(txq) &&
q->ndesc - q->queued >= q->free_thr)
netif_tx_wake_queue(txq);
dev_kfree_skb_any(skb);
e->skb = NULL;
}
if (index == last)
break;
}
spin_unlock_bh(&q->lock);
}
if (done) {
int i, len = done >> 7;
for (i = 0; i < len; i++)
airoha_qdma_rmw(eth, REG_IRQ_CLEAR_LEN(id),
IRQ_CLEAR_LEN_MASK, 0x80);
airoha_qdma_rmw(eth, REG_IRQ_CLEAR_LEN(id),
IRQ_CLEAR_LEN_MASK, (done & 0x7f));
}
if (done < budget && napi_complete(napi))
airoha_qdma_irq_enable(eth, QDMA_INT_REG_IDX0,
TX_DONE_INT_MASK(id));
return done;
}
static int airoha_qdma_init_tx_queue(struct airoha_eth *eth,
struct airoha_queue *q, int size)
{
int i, qid = q - &eth->q_tx[0];
dma_addr_t dma_addr;
spin_lock_init(&q->lock);
q->ndesc = size;
q->eth = eth;
q->free_thr = 1 + MAX_SKB_FRAGS;
q->entry = devm_kzalloc(eth->dev, q->ndesc * sizeof(*q->entry),
GFP_KERNEL);
if (!q->entry)
return -ENOMEM;
q->desc = dmam_alloc_coherent(eth->dev, q->ndesc * sizeof(*q->desc),
&dma_addr, GFP_KERNEL);
if (!q->desc)
return -ENOMEM;
for (i = 0; i < q->ndesc; i++) {
u32 val;
val = FIELD_PREP(QDMA_DESC_DONE_MASK, 1);
WRITE_ONCE(q->desc[i].ctrl, cpu_to_le32(val));
}
airoha_qdma_wr(eth, REG_TX_RING_BASE(qid), dma_addr);
airoha_qdma_rmw(eth, REG_TX_CPU_IDX(qid), TX_RING_CPU_IDX_MASK,
FIELD_PREP(TX_RING_CPU_IDX_MASK, q->head));
airoha_qdma_rmw(eth, REG_TX_DMA_IDX(qid), TX_RING_DMA_IDX_MASK,
FIELD_PREP(TX_RING_DMA_IDX_MASK, q->head));
return 0;
}
static int airoha_qdma_tx_irq_init(struct airoha_eth *eth,
struct airoha_tx_irq_queue *irq_q,
int size)
{
int id = irq_q - &eth->q_tx_irq[0];
dma_addr_t dma_addr;
netif_napi_add_tx(eth->napi_dev, &irq_q->napi,
airoha_qdma_tx_napi_poll);
irq_q->q = dmam_alloc_coherent(eth->dev, size * sizeof(u32),
&dma_addr, GFP_KERNEL);
if (!irq_q->q)
return -ENOMEM;
memset(irq_q->q, 0xff, size * sizeof(u32));
irq_q->size = size;
irq_q->eth = eth;
airoha_qdma_wr(eth, REG_TX_IRQ_BASE(id), dma_addr);
airoha_qdma_rmw(eth, REG_TX_IRQ_CFG(id), TX_IRQ_DEPTH_MASK,
FIELD_PREP(TX_IRQ_DEPTH_MASK, size));
airoha_qdma_rmw(eth, REG_TX_IRQ_CFG(id), TX_IRQ_THR_MASK,
FIELD_PREP(TX_IRQ_THR_MASK, 1));
return 0;
}
static int airoha_qdma_init_tx(struct airoha_eth *eth)
{
int i, err;
for (i = 0; i < ARRAY_SIZE(eth->q_tx_irq); i++) {
err = airoha_qdma_tx_irq_init(eth, &eth->q_tx_irq[i],
IRQ_QUEUE_LEN(i));
if (err)
return err;
}
for (i = 0; i < ARRAY_SIZE(eth->q_tx); i++) {
err = airoha_qdma_init_tx_queue(eth, &eth->q_tx[i],
TX_DSCP_NUM);
if (err)
return err;
}
return 0;
}
static void airoha_qdma_cleanup_tx_queue(struct airoha_queue *q)
{
struct airoha_eth *eth = q->eth;
spin_lock_bh(&q->lock);
while (q->queued) {
struct airoha_queue_entry *e = &q->entry[q->tail];
dma_unmap_single(eth->dev, e->dma_addr, e->dma_len,
DMA_TO_DEVICE);
dev_kfree_skb_any(e->skb);
e->skb = NULL;
q->tail = (q->tail + 1) % q->ndesc;
q->queued--;
}
spin_unlock_bh(&q->lock);
}
static int airoha_qdma_init_hfwd_queues(struct airoha_eth *eth)
{
dma_addr_t dma_addr;
u32 status;
int size;
size = HW_DSCP_NUM * sizeof(struct airoha_qdma_fwd_desc);
eth->hfwd.desc = dmam_alloc_coherent(eth->dev, size, &dma_addr,
GFP_KERNEL);
if (!eth->hfwd.desc)
return -ENOMEM;
airoha_qdma_wr(eth, REG_FWD_DSCP_BASE, dma_addr);
size = AIROHA_MAX_PACKET_SIZE * HW_DSCP_NUM;
eth->hfwd.q = dmam_alloc_coherent(eth->dev, size, &dma_addr,
GFP_KERNEL);
if (!eth->hfwd.q)
return -ENOMEM;
airoha_qdma_wr(eth, REG_FWD_BUF_BASE, dma_addr);
airoha_qdma_rmw(eth, REG_HW_FWD_DSCP_CFG,
HW_FWD_DSCP_PAYLOAD_SIZE_MASK,
FIELD_PREP(HW_FWD_DSCP_PAYLOAD_SIZE_MASK, 0));
airoha_qdma_rmw(eth, REG_FWD_DSCP_LOW_THR, FWD_DSCP_LOW_THR_MASK,
FIELD_PREP(FWD_DSCP_LOW_THR_MASK, 128));
airoha_qdma_rmw(eth, REG_LMGR_INIT_CFG,
LMGR_INIT_START | LMGR_SRAM_MODE_MASK |
HW_FWD_DESC_NUM_MASK,
FIELD_PREP(HW_FWD_DESC_NUM_MASK, HW_DSCP_NUM) |
LMGR_INIT_START);
return read_poll_timeout(airoha_qdma_rr, status,
!(status & LMGR_INIT_START), USEC_PER_MSEC,
30 * USEC_PER_MSEC, true, eth,
REG_LMGR_INIT_CFG);
}
static void airoha_qdma_init_qos(struct airoha_eth *eth)
{
airoha_qdma_clear(eth, REG_TXWRR_MODE_CFG, TWRR_WEIGHT_SCALE_MASK);
airoha_qdma_set(eth, REG_TXWRR_MODE_CFG, TWRR_WEIGHT_BASE_MASK);
airoha_qdma_clear(eth, REG_PSE_BUF_USAGE_CFG,
PSE_BUF_ESTIMATE_EN_MASK);
airoha_qdma_set(eth, REG_EGRESS_RATE_METER_CFG,
EGRESS_RATE_METER_EN_MASK |
EGRESS_RATE_METER_EQ_RATE_EN_MASK);
/* 2047us x 31 = 63.457ms */
airoha_qdma_rmw(eth, REG_EGRESS_RATE_METER_CFG,
EGRESS_RATE_METER_WINDOW_SZ_MASK,
FIELD_PREP(EGRESS_RATE_METER_WINDOW_SZ_MASK, 0x1f));
airoha_qdma_rmw(eth, REG_EGRESS_RATE_METER_CFG,
EGRESS_RATE_METER_TIMESLICE_MASK,
FIELD_PREP(EGRESS_RATE_METER_TIMESLICE_MASK, 0x7ff));
/* ratelimit init */
airoha_qdma_set(eth, REG_GLB_TRTCM_CFG, GLB_TRTCM_EN_MASK);
/* fast-tick 25us */
airoha_qdma_rmw(eth, REG_GLB_TRTCM_CFG, GLB_FAST_TICK_MASK,
FIELD_PREP(GLB_FAST_TICK_MASK, 25));
airoha_qdma_rmw(eth, REG_GLB_TRTCM_CFG, GLB_SLOW_TICK_RATIO_MASK,
FIELD_PREP(GLB_SLOW_TICK_RATIO_MASK, 40));
airoha_qdma_set(eth, REG_EGRESS_TRTCM_CFG, EGRESS_TRTCM_EN_MASK);
airoha_qdma_rmw(eth, REG_EGRESS_TRTCM_CFG, EGRESS_FAST_TICK_MASK,
FIELD_PREP(EGRESS_FAST_TICK_MASK, 25));
airoha_qdma_rmw(eth, REG_EGRESS_TRTCM_CFG,
EGRESS_SLOW_TICK_RATIO_MASK,
FIELD_PREP(EGRESS_SLOW_TICK_RATIO_MASK, 40));
airoha_qdma_set(eth, REG_INGRESS_TRTCM_CFG, INGRESS_TRTCM_EN_MASK);
airoha_qdma_clear(eth, REG_INGRESS_TRTCM_CFG,
INGRESS_TRTCM_MODE_MASK);
airoha_qdma_rmw(eth, REG_INGRESS_TRTCM_CFG, INGRESS_FAST_TICK_MASK,
FIELD_PREP(INGRESS_FAST_TICK_MASK, 125));
airoha_qdma_rmw(eth, REG_INGRESS_TRTCM_CFG,
INGRESS_SLOW_TICK_RATIO_MASK,
FIELD_PREP(INGRESS_SLOW_TICK_RATIO_MASK, 8));
airoha_qdma_set(eth, REG_SLA_TRTCM_CFG, SLA_TRTCM_EN_MASK);
airoha_qdma_rmw(eth, REG_SLA_TRTCM_CFG, SLA_FAST_TICK_MASK,
FIELD_PREP(SLA_FAST_TICK_MASK, 25));
airoha_qdma_rmw(eth, REG_SLA_TRTCM_CFG, SLA_SLOW_TICK_RATIO_MASK,
FIELD_PREP(SLA_SLOW_TICK_RATIO_MASK, 40));
}
static int airoha_qdma_hw_init(struct airoha_eth *eth)
{
int i;
/* clear pending irqs */
for (i = 0; i < ARRAY_SIZE(eth->irqmask); i++)
airoha_qdma_wr(eth, REG_INT_STATUS(i), 0xffffffff);
/* setup irqs */
airoha_qdma_irq_enable(eth, QDMA_INT_REG_IDX0, INT_IDX0_MASK);
airoha_qdma_irq_enable(eth, QDMA_INT_REG_IDX1, INT_IDX1_MASK);
airoha_qdma_irq_enable(eth, QDMA_INT_REG_IDX4, INT_IDX4_MASK);
/* setup irq binding */
for (i = 0; i < ARRAY_SIZE(eth->q_tx); i++) {
if (!eth->q_tx[i].ndesc)
continue;
if (TX_RING_IRQ_BLOCKING_MAP_MASK & BIT(i))
airoha_qdma_set(eth, REG_TX_RING_BLOCKING(i),
TX_RING_IRQ_BLOCKING_CFG_MASK);
else
airoha_qdma_clear(eth, REG_TX_RING_BLOCKING(i),
TX_RING_IRQ_BLOCKING_CFG_MASK);
}
airoha_qdma_wr(eth, REG_QDMA_GLOBAL_CFG,
GLOBAL_CFG_RX_2B_OFFSET_MASK |
FIELD_PREP(GLOBAL_CFG_DMA_PREFERENCE_MASK, 3) |
GLOBAL_CFG_CPU_TXR_RR_MASK |
GLOBAL_CFG_PAYLOAD_BYTE_SWAP_MASK |
GLOBAL_CFG_MULTICAST_MODIFY_FP_MASK |
GLOBAL_CFG_MULTICAST_EN_MASK |
GLOBAL_CFG_IRQ0_EN_MASK | GLOBAL_CFG_IRQ1_EN_MASK |
GLOBAL_CFG_TX_WB_DONE_MASK |
FIELD_PREP(GLOBAL_CFG_MAX_ISSUE_NUM_MASK, 2));
airoha_qdma_init_qos(eth);
/* disable qdma rx delay interrupt */
for (i = 0; i < ARRAY_SIZE(eth->q_rx); i++) {
if (!eth->q_rx[i].ndesc)
continue;
airoha_qdma_clear(eth, REG_RX_DELAY_INT_IDX(i),
RX_DELAY_INT_MASK);
}
airoha_qdma_set(eth, REG_TXQ_CNGST_CFG,
TXQ_CNGST_DROP_EN | TXQ_CNGST_DEI_DROP_EN);
return 0;
}
static irqreturn_t airoha_irq_handler(int irq, void *dev_instance)
{
struct airoha_eth *eth = dev_instance;
u32 intr[ARRAY_SIZE(eth->irqmask)];
int i;
for (i = 0; i < ARRAY_SIZE(eth->irqmask); i++) {
intr[i] = airoha_qdma_rr(eth, REG_INT_STATUS(i));
intr[i] &= eth->irqmask[i];
airoha_qdma_wr(eth, REG_INT_STATUS(i), intr[i]);
}
if (!test_bit(DEV_STATE_INITIALIZED, &eth->state))
return IRQ_NONE;
if (intr[1] & RX_DONE_INT_MASK) {
airoha_qdma_irq_disable(eth, QDMA_INT_REG_IDX1,
RX_DONE_INT_MASK);
for (i = 0; i < ARRAY_SIZE(eth->q_rx); i++) {
if (!eth->q_rx[i].ndesc)
continue;
if (intr[1] & BIT(i))
napi_schedule(&eth->q_rx[i].napi);
}
}
if (intr[0] & INT_TX_MASK) {
for (i = 0; i < ARRAY_SIZE(eth->q_tx_irq); i++) {
struct airoha_tx_irq_queue *irq_q = &eth->q_tx_irq[i];
u32 status, head;
if (!(intr[0] & TX_DONE_INT_MASK(i)))
continue;
airoha_qdma_irq_disable(eth, QDMA_INT_REG_IDX0,
TX_DONE_INT_MASK(i));
status = airoha_qdma_rr(eth, REG_IRQ_STATUS(i));
head = FIELD_GET(IRQ_HEAD_IDX_MASK, status);
irq_q->head = head % irq_q->size;
irq_q->queued = FIELD_GET(IRQ_ENTRY_LEN_MASK, status);
napi_schedule(&eth->q_tx_irq[i].napi);
}
}
return IRQ_HANDLED;
}
static int airoha_qdma_init(struct airoha_eth *eth)
{
int err;
err = devm_request_irq(eth->dev, eth->irq, airoha_irq_handler,
IRQF_SHARED, KBUILD_MODNAME, eth);
if (err)
return err;
err = airoha_qdma_init_rx(eth);
if (err)
return err;
err = airoha_qdma_init_tx(eth);
if (err)
return err;
err = airoha_qdma_init_hfwd_queues(eth);
if (err)
return err;
err = airoha_qdma_hw_init(eth);
if (err)
return err;
set_bit(DEV_STATE_INITIALIZED, &eth->state);
return 0;
}
static int airoha_hw_init(struct airoha_eth *eth)
{
int err;
/* disable xsi */
reset_control_bulk_assert(ARRAY_SIZE(eth->xsi_rsts), eth->xsi_rsts);
reset_control_bulk_assert(ARRAY_SIZE(eth->rsts), eth->rsts);
msleep(20);
reset_control_bulk_deassert(ARRAY_SIZE(eth->rsts), eth->rsts);
msleep(20);
err = airoha_fe_init(eth);
if (err)
return err;
return airoha_qdma_init(eth);
}
static void airoha_hw_cleanup(struct airoha_eth *eth)
{
int i;
for (i = 0; i < ARRAY_SIZE(eth->q_rx); i++) {
if (!eth->q_rx[i].ndesc)
continue;
napi_disable(&eth->q_rx[i].napi);
netif_napi_del(&eth->q_rx[i].napi);
airoha_qdma_cleanup_rx_queue(&eth->q_rx[i]);
if (eth->q_rx[i].page_pool)
page_pool_destroy(eth->q_rx[i].page_pool);
}
for (i = 0; i < ARRAY_SIZE(eth->q_tx_irq); i++) {
napi_disable(&eth->q_tx_irq[i].napi);
netif_napi_del(&eth->q_tx_irq[i].napi);
}
for (i = 0; i < ARRAY_SIZE(eth->q_tx); i++) {
if (!eth->q_tx[i].ndesc)
continue;
airoha_qdma_cleanup_tx_queue(&eth->q_tx[i]);
}
}
static void airoha_qdma_start_napi(struct airoha_eth *eth)
{
int i;
for (i = 0; i < ARRAY_SIZE(eth->q_tx_irq); i++)
napi_enable(&eth->q_tx_irq[i].napi);
for (i = 0; i < ARRAY_SIZE(eth->q_rx); i++) {
if (!eth->q_rx[i].ndesc)
continue;
napi_enable(&eth->q_rx[i].napi);
}
}
static void airoha_update_hw_stats(struct airoha_gdm_port *port)
{
struct airoha_eth *eth = port->eth;
u32 val, i = 0;
spin_lock(&port->stats.lock);
u64_stats_update_begin(&port->stats.syncp);
/* TX */
val = airoha_fe_rr(eth, REG_FE_GDM_TX_OK_PKT_CNT_H(port->id));
port->stats.tx_ok_pkts += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_OK_PKT_CNT_L(port->id));
port->stats.tx_ok_pkts += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_OK_BYTE_CNT_H(port->id));
port->stats.tx_ok_bytes += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_OK_BYTE_CNT_L(port->id));
port->stats.tx_ok_bytes += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_DROP_CNT(port->id));
port->stats.tx_drops += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_BC_CNT(port->id));
port->stats.tx_broadcast += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_MC_CNT(port->id));
port->stats.tx_multicast += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_RUNT_CNT(port->id));
port->stats.tx_len[i] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_E64_CNT_H(port->id));
port->stats.tx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_E64_CNT_L(port->id));
port->stats.tx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L64_CNT_H(port->id));
port->stats.tx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L64_CNT_L(port->id));
port->stats.tx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L127_CNT_H(port->id));
port->stats.tx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L127_CNT_L(port->id));
port->stats.tx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L255_CNT_H(port->id));
port->stats.tx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L255_CNT_L(port->id));
port->stats.tx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L511_CNT_H(port->id));
port->stats.tx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L511_CNT_L(port->id));
port->stats.tx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L1023_CNT_H(port->id));
port->stats.tx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L1023_CNT_L(port->id));
port->stats.tx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_LONG_CNT(port->id));
port->stats.tx_len[i++] += val;
/* RX */
val = airoha_fe_rr(eth, REG_FE_GDM_RX_OK_PKT_CNT_H(port->id));
port->stats.rx_ok_pkts += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_OK_PKT_CNT_L(port->id));
port->stats.rx_ok_pkts += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_OK_BYTE_CNT_H(port->id));
port->stats.rx_ok_bytes += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_OK_BYTE_CNT_L(port->id));
port->stats.rx_ok_bytes += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_DROP_CNT(port->id));
port->stats.rx_drops += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_BC_CNT(port->id));
port->stats.rx_broadcast += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_MC_CNT(port->id));
port->stats.rx_multicast += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ERROR_DROP_CNT(port->id));
port->stats.rx_errors += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_CRC_ERR_CNT(port->id));
port->stats.rx_crc_error += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_OVERFLOW_DROP_CNT(port->id));
port->stats.rx_over_errors += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_FRAG_CNT(port->id));
port->stats.rx_fragment += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_JABBER_CNT(port->id));
port->stats.rx_jabber += val;
i = 0;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_RUNT_CNT(port->id));
port->stats.rx_len[i] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_E64_CNT_H(port->id));
port->stats.rx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_E64_CNT_L(port->id));
port->stats.rx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L64_CNT_H(port->id));
port->stats.rx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L64_CNT_L(port->id));
port->stats.rx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L127_CNT_H(port->id));
port->stats.rx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L127_CNT_L(port->id));
port->stats.rx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L255_CNT_H(port->id));
port->stats.rx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L255_CNT_L(port->id));
port->stats.rx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L511_CNT_H(port->id));
port->stats.rx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L511_CNT_L(port->id));
port->stats.rx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L1023_CNT_H(port->id));
port->stats.rx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L1023_CNT_L(port->id));
port->stats.rx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_LONG_CNT(port->id));
port->stats.rx_len[i++] += val;
/* reset mib counters */
airoha_fe_set(eth, REG_FE_GDM_MIB_CLEAR(port->id),
FE_GDM_MIB_RX_CLEAR_MASK | FE_GDM_MIB_TX_CLEAR_MASK);
u64_stats_update_end(&port->stats.syncp);
spin_unlock(&port->stats.lock);
}
static int airoha_dev_open(struct net_device *dev)
{
struct airoha_gdm_port *port = netdev_priv(dev);
struct airoha_eth *eth = port->eth;
int err;
netif_tx_start_all_queues(dev);
err = airoha_set_gdm_ports(eth, true);
if (err)
return err;
if (netdev_uses_dsa(dev))
airoha_fe_set(eth, REG_GDM_INGRESS_CFG(port->id),
GDM_STAG_EN_MASK);
else
airoha_fe_clear(eth, REG_GDM_INGRESS_CFG(port->id),
GDM_STAG_EN_MASK);
airoha_qdma_set(eth, REG_QDMA_GLOBAL_CFG, GLOBAL_CFG_TX_DMA_EN_MASK);
airoha_qdma_set(eth, REG_QDMA_GLOBAL_CFG, GLOBAL_CFG_RX_DMA_EN_MASK);
return 0;
}
static int airoha_dev_stop(struct net_device *dev)
{
struct airoha_gdm_port *port = netdev_priv(dev);
struct airoha_eth *eth = port->eth;
int err;
netif_tx_disable(dev);
err = airoha_set_gdm_ports(eth, false);
if (err)
return err;
airoha_qdma_clear(eth, REG_QDMA_GLOBAL_CFG, GLOBAL_CFG_TX_DMA_EN_MASK);
airoha_qdma_clear(eth, REG_QDMA_GLOBAL_CFG, GLOBAL_CFG_RX_DMA_EN_MASK);
return 0;
}
static int airoha_dev_set_macaddr(struct net_device *dev, void *p)
{
struct airoha_gdm_port *port = netdev_priv(dev);
int err;
err = eth_mac_addr(dev, p);
if (err)
return err;
airoha_set_macaddr(port->eth, dev->dev_addr);
return 0;
}
static int airoha_dev_init(struct net_device *dev)
{
struct airoha_gdm_port *port = netdev_priv(dev);
airoha_set_macaddr(port->eth, dev->dev_addr);
return 0;
}
static void airoha_dev_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct airoha_gdm_port *port = netdev_priv(dev);
unsigned int start;
airoha_update_hw_stats(port);
do {
start = u64_stats_fetch_begin(&port->stats.syncp);
storage->rx_packets = port->stats.rx_ok_pkts;
storage->tx_packets = port->stats.tx_ok_pkts;
storage->rx_bytes = port->stats.rx_ok_bytes;
storage->tx_bytes = port->stats.tx_ok_bytes;
storage->multicast = port->stats.rx_multicast;
storage->rx_errors = port->stats.rx_errors;
storage->rx_dropped = port->stats.rx_drops;
storage->tx_dropped = port->stats.tx_drops;
storage->rx_crc_errors = port->stats.rx_crc_error;
storage->rx_over_errors = port->stats.rx_over_errors;
} while (u64_stats_fetch_retry(&port->stats.syncp, start));
}
static netdev_tx_t airoha_dev_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct skb_shared_info *sinfo = skb_shinfo(skb);
struct airoha_gdm_port *port = netdev_priv(dev);
u32 msg0 = 0, msg1, len = skb_headlen(skb);
int i, qid = skb_get_queue_mapping(skb);
struct airoha_eth *eth = port->eth;
u32 nr_frags = 1 + sinfo->nr_frags;
struct netdev_queue *txq;
struct airoha_queue *q;
void *data = skb->data;
u16 index;
u8 fport;
if (skb->ip_summed == CHECKSUM_PARTIAL)
msg0 |= FIELD_PREP(QDMA_ETH_TXMSG_TCO_MASK, 1) |
FIELD_PREP(QDMA_ETH_TXMSG_UCO_MASK, 1) |
FIELD_PREP(QDMA_ETH_TXMSG_ICO_MASK, 1);
/* TSO: fill MSS info in tcp checksum field */
if (skb_is_gso(skb)) {
if (skb_cow_head(skb, 0))
goto error;
if (sinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
__be16 csum = cpu_to_be16(sinfo->gso_size);
tcp_hdr(skb)->check = (__force __sum16)csum;
msg0 |= FIELD_PREP(QDMA_ETH_TXMSG_TSO_MASK, 1);
}
}
fport = port->id == 4 ? FE_PSE_PORT_GDM4 : port->id;
msg1 = FIELD_PREP(QDMA_ETH_TXMSG_FPORT_MASK, fport) |
FIELD_PREP(QDMA_ETH_TXMSG_METER_MASK, 0x7f);
q = &eth->q_tx[qid];
if (WARN_ON_ONCE(!q->ndesc))
goto error;
spin_lock_bh(&q->lock);
txq = netdev_get_tx_queue(dev, qid);
if (q->queued + nr_frags > q->ndesc) {
/* not enough space in the queue */
netif_tx_stop_queue(txq);
spin_unlock_bh(&q->lock);
return NETDEV_TX_BUSY;
}
index = q->head;
for (i = 0; i < nr_frags; i++) {
struct airoha_qdma_desc *desc = &q->desc[index];
struct airoha_queue_entry *e = &q->entry[index];
skb_frag_t *frag = &sinfo->frags[i];
dma_addr_t addr;
u32 val;
addr = dma_map_single(dev->dev.parent, data, len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dev.parent, addr)))
goto error_unmap;
index = (index + 1) % q->ndesc;
val = FIELD_PREP(QDMA_DESC_LEN_MASK, len);
if (i < nr_frags - 1)
val |= FIELD_PREP(QDMA_DESC_MORE_MASK, 1);
WRITE_ONCE(desc->ctrl, cpu_to_le32(val));
WRITE_ONCE(desc->addr, cpu_to_le32(addr));
val = FIELD_PREP(QDMA_DESC_NEXT_ID_MASK, index);
WRITE_ONCE(desc->data, cpu_to_le32(val));
WRITE_ONCE(desc->msg0, cpu_to_le32(msg0));
WRITE_ONCE(desc->msg1, cpu_to_le32(msg1));
WRITE_ONCE(desc->msg2, cpu_to_le32(0xffff));
e->skb = i ? NULL : skb;
e->dma_addr = addr;
e->dma_len = len;
airoha_qdma_rmw(eth, REG_TX_CPU_IDX(qid), TX_RING_CPU_IDX_MASK,
FIELD_PREP(TX_RING_CPU_IDX_MASK, index));
data = skb_frag_address(frag);
len = skb_frag_size(frag);
}
q->head = index;
q->queued += i;
skb_tx_timestamp(skb);
if (q->ndesc - q->queued < q->free_thr)
netif_tx_stop_queue(txq);
spin_unlock_bh(&q->lock);
return NETDEV_TX_OK;
error_unmap:
for (i--; i >= 0; i--) {
index = (q->head + i) % q->ndesc;
dma_unmap_single(dev->dev.parent, q->entry[index].dma_addr,
q->entry[index].dma_len, DMA_TO_DEVICE);
}
spin_unlock_bh(&q->lock);
error:
dev_kfree_skb_any(skb);
dev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
static void airoha_ethtool_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct airoha_gdm_port *port = netdev_priv(dev);
struct airoha_eth *eth = port->eth;
strscpy(info->driver, eth->dev->driver->name, sizeof(info->driver));
strscpy(info->bus_info, dev_name(eth->dev), sizeof(info->bus_info));
}
static void airoha_ethtool_get_mac_stats(struct net_device *dev,
struct ethtool_eth_mac_stats *stats)
{
struct airoha_gdm_port *port = netdev_priv(dev);
unsigned int start;
airoha_update_hw_stats(port);
do {
start = u64_stats_fetch_begin(&port->stats.syncp);
stats->MulticastFramesXmittedOK = port->stats.tx_multicast;
stats->BroadcastFramesXmittedOK = port->stats.tx_broadcast;
stats->BroadcastFramesReceivedOK = port->stats.rx_broadcast;
} while (u64_stats_fetch_retry(&port->stats.syncp, start));
}
static const struct ethtool_rmon_hist_range airoha_ethtool_rmon_ranges[] = {
{ 0, 64 },
{ 65, 127 },
{ 128, 255 },
{ 256, 511 },
{ 512, 1023 },
{ 1024, 1518 },
{ 1519, 10239 },
{},
};
static void
airoha_ethtool_get_rmon_stats(struct net_device *dev,
struct ethtool_rmon_stats *stats,
const struct ethtool_rmon_hist_range **ranges)
{
struct airoha_gdm_port *port = netdev_priv(dev);
struct airoha_hw_stats *hw_stats = &port->stats;
unsigned int start;
BUILD_BUG_ON(ARRAY_SIZE(airoha_ethtool_rmon_ranges) !=
ARRAY_SIZE(hw_stats->tx_len) + 1);
BUILD_BUG_ON(ARRAY_SIZE(airoha_ethtool_rmon_ranges) !=
ARRAY_SIZE(hw_stats->rx_len) + 1);
*ranges = airoha_ethtool_rmon_ranges;
airoha_update_hw_stats(port);
do {
int i;
start = u64_stats_fetch_begin(&port->stats.syncp);
stats->fragments = hw_stats->rx_fragment;
stats->jabbers = hw_stats->rx_jabber;
for (i = 0; i < ARRAY_SIZE(airoha_ethtool_rmon_ranges) - 1;
i++) {
stats->hist[i] = hw_stats->rx_len[i];
stats->hist_tx[i] = hw_stats->tx_len[i];
}
} while (u64_stats_fetch_retry(&port->stats.syncp, start));
}
static const struct net_device_ops airoha_netdev_ops = {
.ndo_init = airoha_dev_init,
.ndo_open = airoha_dev_open,
.ndo_stop = airoha_dev_stop,
.ndo_start_xmit = airoha_dev_xmit,
.ndo_get_stats64 = airoha_dev_get_stats64,
.ndo_set_mac_address = airoha_dev_set_macaddr,
};
static const struct ethtool_ops airoha_ethtool_ops = {
.get_drvinfo = airoha_ethtool_get_drvinfo,
.get_eth_mac_stats = airoha_ethtool_get_mac_stats,
.get_rmon_stats = airoha_ethtool_get_rmon_stats,
};
static int airoha_alloc_gdm_port(struct airoha_eth *eth, struct device_node *np)
{
const __be32 *id_ptr = of_get_property(np, "reg", NULL);
struct airoha_gdm_port *port;
struct net_device *dev;
int err, index;
u32 id;
if (!id_ptr) {
dev_err(eth->dev, "missing gdm port id\n");
return -EINVAL;
}
id = be32_to_cpup(id_ptr);
index = id - 1;
if (!id || id > ARRAY_SIZE(eth->ports)) {
dev_err(eth->dev, "invalid gdm port id: %d\n", id);
return -EINVAL;
}
if (eth->ports[index]) {
dev_err(eth->dev, "duplicate gdm port id: %d\n", id);
return -EINVAL;
}
dev = devm_alloc_etherdev_mqs(eth->dev, sizeof(*port),
AIROHA_NUM_TX_RING, AIROHA_NUM_RX_RING);
if (!dev) {
dev_err(eth->dev, "alloc_etherdev failed\n");
return -ENOMEM;
}
dev->netdev_ops = &airoha_netdev_ops;
dev->ethtool_ops = &airoha_ethtool_ops;
dev->max_mtu = AIROHA_MAX_MTU;
dev->watchdog_timeo = 5 * HZ;
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM |
NETIF_F_TSO6 | NETIF_F_IPV6_CSUM |
NETIF_F_SG | NETIF_F_TSO;
dev->features |= dev->hw_features;
dev->dev.of_node = np;
SET_NETDEV_DEV(dev, eth->dev);
err = of_get_ethdev_address(np, dev);
if (err) {
if (err == -EPROBE_DEFER)
return err;
eth_hw_addr_random(dev);
dev_info(eth->dev, "generated random MAC address %pM\n",
dev->dev_addr);
}
port = netdev_priv(dev);
u64_stats_init(&port->stats.syncp);
spin_lock_init(&port->stats.lock);
port->dev = dev;
port->eth = eth;
port->id = id;
eth->ports[index] = port;
return register_netdev(dev);
}
static int airoha_probe(struct platform_device *pdev)
{
struct device_node *np;
struct airoha_eth *eth;
int i, err;
eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL);
if (!eth)
return -ENOMEM;
eth->dev = &pdev->dev;
err = dma_set_mask_and_coherent(eth->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(eth->dev, "failed configuring DMA mask\n");
return err;
}
eth->fe_regs = devm_platform_ioremap_resource_byname(pdev, "fe");
if (IS_ERR(eth->fe_regs))
return dev_err_probe(eth->dev, PTR_ERR(eth->fe_regs),
"failed to iomap fe regs\n");
eth->qdma_regs = devm_platform_ioremap_resource_byname(pdev, "qdma0");
if (IS_ERR(eth->qdma_regs))
return dev_err_probe(eth->dev, PTR_ERR(eth->qdma_regs),
"failed to iomap qdma regs\n");
eth->rsts[0].id = "fe";
eth->rsts[1].id = "pdma";
eth->rsts[2].id = "qdma";
err = devm_reset_control_bulk_get_exclusive(eth->dev,
ARRAY_SIZE(eth->rsts),
eth->rsts);
if (err) {
dev_err(eth->dev, "failed to get bulk reset lines\n");
return err;
}
eth->xsi_rsts[0].id = "xsi-mac";
eth->xsi_rsts[1].id = "hsi0-mac";
eth->xsi_rsts[2].id = "hsi1-mac";
eth->xsi_rsts[3].id = "hsi-mac";
eth->xsi_rsts[4].id = "xfp-mac";
err = devm_reset_control_bulk_get_exclusive(eth->dev,
ARRAY_SIZE(eth->xsi_rsts),
eth->xsi_rsts);
if (err) {
dev_err(eth->dev, "failed to get bulk xsi reset lines\n");
return err;
}
spin_lock_init(&eth->irq_lock);
eth->irq = platform_get_irq(pdev, 0);
if (eth->irq < 0)
return eth->irq;
eth->napi_dev = alloc_netdev_dummy(0);
if (!eth->napi_dev)
return -ENOMEM;
/* Enable threaded NAPI by default */
eth->napi_dev->threaded = true;
strscpy(eth->napi_dev->name, "qdma_eth", sizeof(eth->napi_dev->name));
platform_set_drvdata(pdev, eth);
err = airoha_hw_init(eth);
if (err)
goto error;
airoha_qdma_start_napi(eth);
for_each_child_of_node(pdev->dev.of_node, np) {
if (!of_device_is_compatible(np, "airoha,eth-mac"))
continue;
if (!of_device_is_available(np))
continue;
err = airoha_alloc_gdm_port(eth, np);
if (err) {
of_node_put(np);
goto error;
}
}
return 0;
error:
airoha_hw_cleanup(eth);
for (i = 0; i < ARRAY_SIZE(eth->ports); i++) {
struct airoha_gdm_port *port = eth->ports[i];
if (port && port->dev->reg_state == NETREG_REGISTERED)
unregister_netdev(port->dev);
}
free_netdev(eth->napi_dev);
platform_set_drvdata(pdev, NULL);
return err;
}
static void airoha_remove(struct platform_device *pdev)
{
struct airoha_eth *eth = platform_get_drvdata(pdev);
int i;
airoha_hw_cleanup(eth);
for (i = 0; i < ARRAY_SIZE(eth->ports); i++) {
struct airoha_gdm_port *port = eth->ports[i];
if (!port)
continue;
airoha_dev_stop(port->dev);
unregister_netdev(port->dev);
}
free_netdev(eth->napi_dev);
platform_set_drvdata(pdev, NULL);
}
static const struct of_device_id of_airoha_match[] = {
{ .compatible = "airoha,en7581-eth" },
{ /* sentinel */ }
};
static struct platform_driver airoha_driver = {
.probe = airoha_probe,
.remove_new = airoha_remove,
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = of_airoha_match,
},
};
module_platform_driver(airoha_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Lorenzo Bianconi <lorenzo@kernel.org>");
MODULE_DESCRIPTION("Ethernet driver for Airoha SoC");