blob: 2d6b94031f1b7653ace6d2f9f0107986b164d585 [file] [log] [blame]
.. SPDX-License-Identifier: GPL-2.0
===================================
The LoongArch paravirtual interface
===================================
KVM hypercalls use the HVCL instruction with code 0x100 and the hypercall
number is put in a0. Up to five arguments may be placed in registers a1 - a5.
The return value is placed in v0 (an alias of a0).
Source code for this interface can be found in arch/loongarch/kvm*.
Querying for existence
======================
To determine if the host is running on KVM, we can utilize the cpucfg()
function at index CPUCFG_KVM_BASE (0x40000000).
The CPUCFG_KVM_BASE range, spanning from 0x40000000 to 0x400000FF, The
CPUCFG_KVM_BASE range between 0x40000000 - 0x400000FF is marked as reserved.
Consequently, all current and future processors will not implement any
feature within this range.
On a KVM-virtualized Linux system, a read operation on cpucfg() at index
CPUCFG_KVM_BASE (0x40000000) returns the magic string 'KVM\0'.
Once you have determined that your host is running on a paravirtualization-
capable KVM, you may now use hypercalls as described below.
KVM hypercall ABI
=================
The KVM hypercall ABI is simple, with one scratch register a0 (v0) and at most
five generic registers (a1 - a5) used as input parameters. The FP (Floating-
point) and vector registers are not utilized as input registers and must
remain unmodified during a hypercall.
Hypercall functions can be inlined as it only uses one scratch register.
The parameters are as follows:
======== ================= ================
Register IN OUT
======== ================= ================
a0 function number Return code
a1 1st parameter -
a2 2nd parameter -
a3 3rd parameter -
a4 4th parameter -
a5 5th parameter -
======== ================= ================
The return codes may be one of the following:
==== =========================
Code Meaning
==== =========================
0 Success
-1 Hypercall not implemented
-2 Bad Hypercall parameter
==== =========================
KVM Hypercalls Documentation
============================
The template for each hypercall is as follows:
1. Hypercall name
2. Purpose
1. KVM_HCALL_FUNC_IPI
------------------------
:Purpose: Send IPIs to multiple vCPUs.
- a0: KVM_HCALL_FUNC_IPI
- a1: Lower part of the bitmap for destination physical CPUIDs
- a2: Higher part of the bitmap for destination physical CPUIDs
- a3: The lowest physical CPUID in the bitmap
The hypercall lets a guest send multiple IPIs (Inter-Process Interrupts) with
at most 128 destinations per hypercall. The destinations are represented in a
bitmap contained in the first two input registers (a1 and a2).
Bit 0 of a1 corresponds to the physical CPUID in the third input register (a3)
and bit 1 corresponds to the physical CPUID in a3+1, and so on.
PV IPI on LoongArch includes both PV IPI multicast sending and PV IPI receiving,
and SWI is used for PV IPI inject since there is no VM-exits accessing SWI registers.