| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright(c) 2016-20 Intel Corporation. */ |
| |
| #include <linux/lockdep.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/suspend.h> |
| #include <linux/sched/mm.h> |
| #include <asm/sgx.h> |
| #include "encl.h" |
| #include "encls.h" |
| #include "sgx.h" |
| |
| static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index, |
| struct sgx_backing *backing); |
| |
| #define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd)) |
| /* |
| * 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to |
| * determine the page index associated with the first PCMD entry |
| * within a PCMD page. |
| */ |
| #define PCMD_FIRST_MASK GENMASK(4, 0) |
| |
| /** |
| * reclaimer_writing_to_pcmd() - Query if any enclave page associated with |
| * a PCMD page is in process of being reclaimed. |
| * @encl: Enclave to which PCMD page belongs |
| * @start_addr: Address of enclave page using first entry within the PCMD page |
| * |
| * When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is |
| * stored. The PCMD data of a reclaimed enclave page contains enough |
| * information for the processor to verify the page at the time |
| * it is loaded back into the Enclave Page Cache (EPC). |
| * |
| * The backing storage to which enclave pages are reclaimed is laid out as |
| * follows: |
| * Encrypted enclave pages:SECS page:PCMD pages |
| * |
| * Each PCMD page contains the PCMD metadata of |
| * PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages. |
| * |
| * A PCMD page can only be truncated if it is (a) empty, and (b) not in the |
| * process of getting data (and thus soon being non-empty). (b) is tested with |
| * a check if an enclave page sharing the PCMD page is in the process of being |
| * reclaimed. |
| * |
| * The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it |
| * intends to reclaim that enclave page - it means that the PCMD page |
| * associated with that enclave page is about to get some data and thus |
| * even if the PCMD page is empty, it should not be truncated. |
| * |
| * Context: Enclave mutex (&sgx_encl->lock) must be held. |
| * Return: 1 if the reclaimer is about to write to the PCMD page |
| * 0 if the reclaimer has no intention to write to the PCMD page |
| */ |
| static int reclaimer_writing_to_pcmd(struct sgx_encl *encl, |
| unsigned long start_addr) |
| { |
| int reclaimed = 0; |
| int i; |
| |
| /* |
| * PCMD_FIRST_MASK is based on number of PCMD entries within |
| * PCMD page being 32. |
| */ |
| BUILD_BUG_ON(PCMDS_PER_PAGE != 32); |
| |
| for (i = 0; i < PCMDS_PER_PAGE; i++) { |
| struct sgx_encl_page *entry; |
| unsigned long addr; |
| |
| addr = start_addr + i * PAGE_SIZE; |
| |
| /* |
| * Stop when reaching the SECS page - it does not |
| * have a page_array entry and its reclaim is |
| * started and completed with enclave mutex held so |
| * it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED |
| * flag. |
| */ |
| if (addr == encl->base + encl->size) |
| break; |
| |
| entry = xa_load(&encl->page_array, PFN_DOWN(addr)); |
| if (!entry) |
| continue; |
| |
| /* |
| * VA page slot ID uses same bit as the flag so it is important |
| * to ensure that the page is not already in backing store. |
| */ |
| if (entry->epc_page && |
| (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) { |
| reclaimed = 1; |
| break; |
| } |
| } |
| |
| return reclaimed; |
| } |
| |
| /* |
| * Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's |
| * follow right after the EPC data in the backing storage. In addition to the |
| * visible enclave pages, there's one extra page slot for SECS, before PCMD |
| * structs. |
| */ |
| static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl, |
| unsigned long page_index) |
| { |
| pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs); |
| |
| return epc_end_off + page_index * sizeof(struct sgx_pcmd); |
| } |
| |
| /* |
| * Free a page from the backing storage in the given page index. |
| */ |
| static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index) |
| { |
| struct inode *inode = file_inode(encl->backing); |
| |
| shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1); |
| } |
| |
| /* |
| * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC |
| * Pages" in the SDM. |
| */ |
| static int __sgx_encl_eldu(struct sgx_encl_page *encl_page, |
| struct sgx_epc_page *epc_page, |
| struct sgx_epc_page *secs_page) |
| { |
| unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK; |
| struct sgx_encl *encl = encl_page->encl; |
| pgoff_t page_index, page_pcmd_off; |
| unsigned long pcmd_first_page; |
| struct sgx_pageinfo pginfo; |
| struct sgx_backing b; |
| bool pcmd_page_empty; |
| u8 *pcmd_page; |
| int ret; |
| |
| if (secs_page) |
| page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base); |
| else |
| page_index = PFN_DOWN(encl->size); |
| |
| /* |
| * Address of enclave page using the first entry within the PCMD page. |
| */ |
| pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base; |
| |
| page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index); |
| |
| ret = sgx_encl_lookup_backing(encl, page_index, &b); |
| if (ret) |
| return ret; |
| |
| pginfo.addr = encl_page->desc & PAGE_MASK; |
| pginfo.contents = (unsigned long)kmap_local_page(b.contents); |
| pcmd_page = kmap_local_page(b.pcmd); |
| pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset; |
| |
| if (secs_page) |
| pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page); |
| else |
| pginfo.secs = 0; |
| |
| ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page), |
| sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset); |
| if (ret) { |
| if (encls_failed(ret)) |
| ENCLS_WARN(ret, "ELDU"); |
| |
| ret = -EFAULT; |
| } |
| |
| memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd)); |
| set_page_dirty(b.pcmd); |
| |
| /* |
| * The area for the PCMD in the page was zeroed above. Check if the |
| * whole page is now empty meaning that all PCMD's have been zeroed: |
| */ |
| pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE); |
| |
| kunmap_local(pcmd_page); |
| kunmap_local((void *)(unsigned long)pginfo.contents); |
| |
| get_page(b.pcmd); |
| sgx_encl_put_backing(&b); |
| |
| sgx_encl_truncate_backing_page(encl, page_index); |
| |
| if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) { |
| sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off)); |
| pcmd_page = kmap_local_page(b.pcmd); |
| if (memchr_inv(pcmd_page, 0, PAGE_SIZE)) |
| pr_warn("PCMD page not empty after truncate.\n"); |
| kunmap_local(pcmd_page); |
| } |
| |
| put_page(b.pcmd); |
| |
| return ret; |
| } |
| |
| static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page, |
| struct sgx_epc_page *secs_page) |
| { |
| |
| unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK; |
| struct sgx_encl *encl = encl_page->encl; |
| struct sgx_epc_page *epc_page; |
| int ret; |
| |
| epc_page = sgx_alloc_epc_page(encl_page, false); |
| if (IS_ERR(epc_page)) |
| return epc_page; |
| |
| ret = __sgx_encl_eldu(encl_page, epc_page, secs_page); |
| if (ret) { |
| sgx_encl_free_epc_page(epc_page); |
| return ERR_PTR(ret); |
| } |
| |
| sgx_free_va_slot(encl_page->va_page, va_offset); |
| list_move(&encl_page->va_page->list, &encl->va_pages); |
| encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK; |
| encl_page->epc_page = epc_page; |
| |
| return epc_page; |
| } |
| |
| /* |
| * Ensure the SECS page is not swapped out. Must be called with encl->lock |
| * to protect the enclave states including SECS and ensure the SECS page is |
| * not swapped out again while being used. |
| */ |
| static struct sgx_epc_page *sgx_encl_load_secs(struct sgx_encl *encl) |
| { |
| struct sgx_epc_page *epc_page = encl->secs.epc_page; |
| |
| if (!epc_page) |
| epc_page = sgx_encl_eldu(&encl->secs, NULL); |
| |
| return epc_page; |
| } |
| |
| static struct sgx_encl_page *__sgx_encl_load_page(struct sgx_encl *encl, |
| struct sgx_encl_page *entry) |
| { |
| struct sgx_epc_page *epc_page; |
| |
| /* Entry successfully located. */ |
| if (entry->epc_page) { |
| if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED) |
| return ERR_PTR(-EBUSY); |
| |
| return entry; |
| } |
| |
| epc_page = sgx_encl_load_secs(encl); |
| if (IS_ERR(epc_page)) |
| return ERR_CAST(epc_page); |
| |
| epc_page = sgx_encl_eldu(entry, encl->secs.epc_page); |
| if (IS_ERR(epc_page)) |
| return ERR_CAST(epc_page); |
| |
| encl->secs_child_cnt++; |
| sgx_mark_page_reclaimable(entry->epc_page); |
| |
| return entry; |
| } |
| |
| static struct sgx_encl_page *sgx_encl_load_page_in_vma(struct sgx_encl *encl, |
| unsigned long addr, |
| unsigned long vm_flags) |
| { |
| unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS; |
| struct sgx_encl_page *entry; |
| |
| entry = xa_load(&encl->page_array, PFN_DOWN(addr)); |
| if (!entry) |
| return ERR_PTR(-EFAULT); |
| |
| /* |
| * Verify that the page has equal or higher build time |
| * permissions than the VMA permissions (i.e. the subset of {VM_READ, |
| * VM_WRITE, VM_EXECUTE} in vma->vm_flags). |
| */ |
| if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits) |
| return ERR_PTR(-EFAULT); |
| |
| return __sgx_encl_load_page(encl, entry); |
| } |
| |
| struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl, |
| unsigned long addr) |
| { |
| struct sgx_encl_page *entry; |
| |
| entry = xa_load(&encl->page_array, PFN_DOWN(addr)); |
| if (!entry) |
| return ERR_PTR(-EFAULT); |
| |
| return __sgx_encl_load_page(encl, entry); |
| } |
| |
| /** |
| * sgx_encl_eaug_page() - Dynamically add page to initialized enclave |
| * @vma: VMA obtained from fault info from where page is accessed |
| * @encl: enclave accessing the page |
| * @addr: address that triggered the page fault |
| * |
| * When an initialized enclave accesses a page with no backing EPC page |
| * on a SGX2 system then the EPC can be added dynamically via the SGX2 |
| * ENCLS[EAUG] instruction. |
| * |
| * Returns: Appropriate vm_fault_t: VM_FAULT_NOPAGE when PTE was installed |
| * successfully, VM_FAULT_SIGBUS or VM_FAULT_OOM as error otherwise. |
| */ |
| static vm_fault_t sgx_encl_eaug_page(struct vm_area_struct *vma, |
| struct sgx_encl *encl, unsigned long addr) |
| { |
| vm_fault_t vmret = VM_FAULT_SIGBUS; |
| struct sgx_pageinfo pginfo = {0}; |
| struct sgx_encl_page *encl_page; |
| struct sgx_epc_page *epc_page; |
| struct sgx_va_page *va_page; |
| unsigned long phys_addr; |
| u64 secinfo_flags; |
| int ret; |
| |
| if (!test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) |
| return VM_FAULT_SIGBUS; |
| |
| /* |
| * Ignore internal permission checking for dynamically added pages. |
| * They matter only for data added during the pre-initialization |
| * phase. The enclave decides the permissions by the means of |
| * EACCEPT, EACCEPTCOPY and EMODPE. |
| */ |
| secinfo_flags = SGX_SECINFO_R | SGX_SECINFO_W | SGX_SECINFO_X; |
| encl_page = sgx_encl_page_alloc(encl, addr - encl->base, secinfo_flags); |
| if (IS_ERR(encl_page)) |
| return VM_FAULT_OOM; |
| |
| mutex_lock(&encl->lock); |
| |
| epc_page = sgx_encl_load_secs(encl); |
| if (IS_ERR(epc_page)) { |
| if (PTR_ERR(epc_page) == -EBUSY) |
| vmret = VM_FAULT_NOPAGE; |
| goto err_out_unlock; |
| } |
| |
| epc_page = sgx_alloc_epc_page(encl_page, false); |
| if (IS_ERR(epc_page)) { |
| if (PTR_ERR(epc_page) == -EBUSY) |
| vmret = VM_FAULT_NOPAGE; |
| goto err_out_unlock; |
| } |
| |
| va_page = sgx_encl_grow(encl, false); |
| if (IS_ERR(va_page)) { |
| if (PTR_ERR(va_page) == -EBUSY) |
| vmret = VM_FAULT_NOPAGE; |
| goto err_out_epc; |
| } |
| |
| if (va_page) |
| list_add(&va_page->list, &encl->va_pages); |
| |
| ret = xa_insert(&encl->page_array, PFN_DOWN(encl_page->desc), |
| encl_page, GFP_KERNEL); |
| /* |
| * If ret == -EBUSY then page was created in another flow while |
| * running without encl->lock |
| */ |
| if (ret) |
| goto err_out_shrink; |
| |
| pginfo.secs = (unsigned long)sgx_get_epc_virt_addr(encl->secs.epc_page); |
| pginfo.addr = encl_page->desc & PAGE_MASK; |
| pginfo.metadata = 0; |
| |
| ret = __eaug(&pginfo, sgx_get_epc_virt_addr(epc_page)); |
| if (ret) |
| goto err_out; |
| |
| encl_page->encl = encl; |
| encl_page->epc_page = epc_page; |
| encl_page->type = SGX_PAGE_TYPE_REG; |
| encl->secs_child_cnt++; |
| |
| sgx_mark_page_reclaimable(encl_page->epc_page); |
| |
| phys_addr = sgx_get_epc_phys_addr(epc_page); |
| /* |
| * Do not undo everything when creating PTE entry fails - next #PF |
| * would find page ready for a PTE. |
| */ |
| vmret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr)); |
| if (vmret != VM_FAULT_NOPAGE) { |
| mutex_unlock(&encl->lock); |
| return VM_FAULT_SIGBUS; |
| } |
| mutex_unlock(&encl->lock); |
| return VM_FAULT_NOPAGE; |
| |
| err_out: |
| xa_erase(&encl->page_array, PFN_DOWN(encl_page->desc)); |
| |
| err_out_shrink: |
| sgx_encl_shrink(encl, va_page); |
| err_out_epc: |
| sgx_encl_free_epc_page(epc_page); |
| err_out_unlock: |
| mutex_unlock(&encl->lock); |
| kfree(encl_page); |
| |
| return vmret; |
| } |
| |
| static vm_fault_t sgx_vma_fault(struct vm_fault *vmf) |
| { |
| unsigned long addr = (unsigned long)vmf->address; |
| struct vm_area_struct *vma = vmf->vma; |
| struct sgx_encl_page *entry; |
| unsigned long phys_addr; |
| struct sgx_encl *encl; |
| vm_fault_t ret; |
| |
| encl = vma->vm_private_data; |
| |
| /* |
| * It's very unlikely but possible that allocating memory for the |
| * mm_list entry of a forked process failed in sgx_vma_open(). When |
| * this happens, vm_private_data is set to NULL. |
| */ |
| if (unlikely(!encl)) |
| return VM_FAULT_SIGBUS; |
| |
| /* |
| * The page_array keeps track of all enclave pages, whether they |
| * are swapped out or not. If there is no entry for this page and |
| * the system supports SGX2 then it is possible to dynamically add |
| * a new enclave page. This is only possible for an initialized |
| * enclave that will be checked for right away. |
| */ |
| if (cpu_feature_enabled(X86_FEATURE_SGX2) && |
| (!xa_load(&encl->page_array, PFN_DOWN(addr)))) |
| return sgx_encl_eaug_page(vma, encl, addr); |
| |
| mutex_lock(&encl->lock); |
| |
| entry = sgx_encl_load_page_in_vma(encl, addr, vma->vm_flags); |
| if (IS_ERR(entry)) { |
| mutex_unlock(&encl->lock); |
| |
| if (PTR_ERR(entry) == -EBUSY) |
| return VM_FAULT_NOPAGE; |
| |
| return VM_FAULT_SIGBUS; |
| } |
| |
| phys_addr = sgx_get_epc_phys_addr(entry->epc_page); |
| |
| ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr)); |
| if (ret != VM_FAULT_NOPAGE) { |
| mutex_unlock(&encl->lock); |
| |
| return VM_FAULT_SIGBUS; |
| } |
| |
| sgx_encl_test_and_clear_young(vma->vm_mm, entry); |
| mutex_unlock(&encl->lock); |
| |
| return VM_FAULT_NOPAGE; |
| } |
| |
| static void sgx_vma_open(struct vm_area_struct *vma) |
| { |
| struct sgx_encl *encl = vma->vm_private_data; |
| |
| /* |
| * It's possible but unlikely that vm_private_data is NULL. This can |
| * happen in a grandchild of a process, when sgx_encl_mm_add() had |
| * failed to allocate memory in this callback. |
| */ |
| if (unlikely(!encl)) |
| return; |
| |
| if (sgx_encl_mm_add(encl, vma->vm_mm)) |
| vma->vm_private_data = NULL; |
| } |
| |
| |
| /** |
| * sgx_encl_may_map() - Check if a requested VMA mapping is allowed |
| * @encl: an enclave pointer |
| * @start: lower bound of the address range, inclusive |
| * @end: upper bound of the address range, exclusive |
| * @vm_flags: VMA flags |
| * |
| * Iterate through the enclave pages contained within [@start, @end) to verify |
| * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC} |
| * do not contain any permissions that are not contained in the build time |
| * permissions of any of the enclave pages within the given address range. |
| * |
| * An enclave creator must declare the strongest permissions that will be |
| * needed for each enclave page. This ensures that mappings have the identical |
| * or weaker permissions than the earlier declared permissions. |
| * |
| * Return: 0 on success, -EACCES otherwise |
| */ |
| int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start, |
| unsigned long end, unsigned long vm_flags) |
| { |
| unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS; |
| struct sgx_encl_page *page; |
| unsigned long count = 0; |
| int ret = 0; |
| |
| XA_STATE(xas, &encl->page_array, PFN_DOWN(start)); |
| |
| /* Disallow mapping outside enclave's address range. */ |
| if (test_bit(SGX_ENCL_INITIALIZED, &encl->flags) && |
| (start < encl->base || end > encl->base + encl->size)) |
| return -EACCES; |
| |
| /* |
| * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might |
| * conflict with the enclave page permissions. |
| */ |
| if (current->personality & READ_IMPLIES_EXEC) |
| return -EACCES; |
| |
| mutex_lock(&encl->lock); |
| xas_lock(&xas); |
| xas_for_each(&xas, page, PFN_DOWN(end - 1)) { |
| if (~page->vm_max_prot_bits & vm_prot_bits) { |
| ret = -EACCES; |
| break; |
| } |
| |
| /* Reschedule on every XA_CHECK_SCHED iteration. */ |
| if (!(++count % XA_CHECK_SCHED)) { |
| xas_pause(&xas); |
| xas_unlock(&xas); |
| mutex_unlock(&encl->lock); |
| |
| cond_resched(); |
| |
| mutex_lock(&encl->lock); |
| xas_lock(&xas); |
| } |
| } |
| xas_unlock(&xas); |
| mutex_unlock(&encl->lock); |
| |
| return ret; |
| } |
| |
| static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end, unsigned long newflags) |
| { |
| return sgx_encl_may_map(vma->vm_private_data, start, end, newflags); |
| } |
| |
| static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page, |
| unsigned long addr, void *data) |
| { |
| unsigned long offset = addr & ~PAGE_MASK; |
| int ret; |
| |
| |
| ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data); |
| if (ret) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page, |
| unsigned long addr, void *data) |
| { |
| unsigned long offset = addr & ~PAGE_MASK; |
| int ret; |
| |
| ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data); |
| if (ret) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /* |
| * Load an enclave page to EPC if required, and take encl->lock. |
| */ |
| static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl, |
| unsigned long addr, |
| unsigned long vm_flags) |
| { |
| struct sgx_encl_page *entry; |
| |
| for ( ; ; ) { |
| mutex_lock(&encl->lock); |
| |
| entry = sgx_encl_load_page_in_vma(encl, addr, vm_flags); |
| if (PTR_ERR(entry) != -EBUSY) |
| break; |
| |
| mutex_unlock(&encl->lock); |
| } |
| |
| if (IS_ERR(entry)) |
| mutex_unlock(&encl->lock); |
| |
| return entry; |
| } |
| |
| static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr, |
| void *buf, int len, int write) |
| { |
| struct sgx_encl *encl = vma->vm_private_data; |
| struct sgx_encl_page *entry = NULL; |
| char data[sizeof(unsigned long)]; |
| unsigned long align; |
| int offset; |
| int cnt; |
| int ret = 0; |
| int i; |
| |
| /* |
| * If process was forked, VMA is still there but vm_private_data is set |
| * to NULL. |
| */ |
| if (!encl) |
| return -EFAULT; |
| |
| if (!test_bit(SGX_ENCL_DEBUG, &encl->flags)) |
| return -EFAULT; |
| |
| for (i = 0; i < len; i += cnt) { |
| entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK, |
| vma->vm_flags); |
| if (IS_ERR(entry)) { |
| ret = PTR_ERR(entry); |
| break; |
| } |
| |
| align = ALIGN_DOWN(addr + i, sizeof(unsigned long)); |
| offset = (addr + i) & (sizeof(unsigned long) - 1); |
| cnt = sizeof(unsigned long) - offset; |
| cnt = min(cnt, len - i); |
| |
| ret = sgx_encl_debug_read(encl, entry, align, data); |
| if (ret) |
| goto out; |
| |
| if (write) { |
| memcpy(data + offset, buf + i, cnt); |
| ret = sgx_encl_debug_write(encl, entry, align, data); |
| if (ret) |
| goto out; |
| } else { |
| memcpy(buf + i, data + offset, cnt); |
| } |
| |
| out: |
| mutex_unlock(&encl->lock); |
| |
| if (ret) |
| break; |
| } |
| |
| return ret < 0 ? ret : i; |
| } |
| |
| const struct vm_operations_struct sgx_vm_ops = { |
| .fault = sgx_vma_fault, |
| .mprotect = sgx_vma_mprotect, |
| .open = sgx_vma_open, |
| .access = sgx_vma_access, |
| }; |
| |
| /** |
| * sgx_encl_release - Destroy an enclave instance |
| * @ref: address of a kref inside &sgx_encl |
| * |
| * Used together with kref_put(). Frees all the resources associated with the |
| * enclave and the instance itself. |
| */ |
| void sgx_encl_release(struct kref *ref) |
| { |
| struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount); |
| unsigned long max_page_index = PFN_DOWN(encl->base + encl->size - 1); |
| struct sgx_va_page *va_page; |
| struct sgx_encl_page *entry; |
| unsigned long count = 0; |
| |
| XA_STATE(xas, &encl->page_array, PFN_DOWN(encl->base)); |
| |
| xas_lock(&xas); |
| xas_for_each(&xas, entry, max_page_index) { |
| if (entry->epc_page) { |
| /* |
| * The page and its radix tree entry cannot be freed |
| * if the page is being held by the reclaimer. |
| */ |
| if (sgx_unmark_page_reclaimable(entry->epc_page)) |
| continue; |
| |
| sgx_encl_free_epc_page(entry->epc_page); |
| encl->secs_child_cnt--; |
| entry->epc_page = NULL; |
| } |
| |
| kfree(entry); |
| /* |
| * Invoke scheduler on every XA_CHECK_SCHED iteration |
| * to prevent soft lockups. |
| */ |
| if (!(++count % XA_CHECK_SCHED)) { |
| xas_pause(&xas); |
| xas_unlock(&xas); |
| |
| cond_resched(); |
| |
| xas_lock(&xas); |
| } |
| } |
| xas_unlock(&xas); |
| |
| xa_destroy(&encl->page_array); |
| |
| if (!encl->secs_child_cnt && encl->secs.epc_page) { |
| sgx_encl_free_epc_page(encl->secs.epc_page); |
| encl->secs.epc_page = NULL; |
| } |
| |
| while (!list_empty(&encl->va_pages)) { |
| va_page = list_first_entry(&encl->va_pages, struct sgx_va_page, |
| list); |
| list_del(&va_page->list); |
| sgx_encl_free_epc_page(va_page->epc_page); |
| kfree(va_page); |
| } |
| |
| if (encl->backing) |
| fput(encl->backing); |
| |
| cleanup_srcu_struct(&encl->srcu); |
| |
| WARN_ON_ONCE(!list_empty(&encl->mm_list)); |
| |
| /* Detect EPC page leak's. */ |
| WARN_ON_ONCE(encl->secs_child_cnt); |
| WARN_ON_ONCE(encl->secs.epc_page); |
| |
| kfree(encl); |
| } |
| |
| /* |
| * 'mm' is exiting and no longer needs mmu notifications. |
| */ |
| static void sgx_mmu_notifier_release(struct mmu_notifier *mn, |
| struct mm_struct *mm) |
| { |
| struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier); |
| struct sgx_encl_mm *tmp = NULL; |
| bool found = false; |
| |
| /* |
| * The enclave itself can remove encl_mm. Note, objects can't be moved |
| * off an RCU protected list, but deletion is ok. |
| */ |
| spin_lock(&encl_mm->encl->mm_lock); |
| list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) { |
| if (tmp == encl_mm) { |
| list_del_rcu(&encl_mm->list); |
| found = true; |
| break; |
| } |
| } |
| spin_unlock(&encl_mm->encl->mm_lock); |
| |
| if (found) { |
| synchronize_srcu(&encl_mm->encl->srcu); |
| mmu_notifier_put(mn); |
| } |
| } |
| |
| static void sgx_mmu_notifier_free(struct mmu_notifier *mn) |
| { |
| struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier); |
| |
| /* 'encl_mm' is going away, put encl_mm->encl reference: */ |
| kref_put(&encl_mm->encl->refcount, sgx_encl_release); |
| |
| kfree(encl_mm); |
| } |
| |
| static const struct mmu_notifier_ops sgx_mmu_notifier_ops = { |
| .release = sgx_mmu_notifier_release, |
| .free_notifier = sgx_mmu_notifier_free, |
| }; |
| |
| static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl, |
| struct mm_struct *mm) |
| { |
| struct sgx_encl_mm *encl_mm = NULL; |
| struct sgx_encl_mm *tmp; |
| int idx; |
| |
| idx = srcu_read_lock(&encl->srcu); |
| |
| list_for_each_entry_rcu(tmp, &encl->mm_list, list) { |
| if (tmp->mm == mm) { |
| encl_mm = tmp; |
| break; |
| } |
| } |
| |
| srcu_read_unlock(&encl->srcu, idx); |
| |
| return encl_mm; |
| } |
| |
| int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm) |
| { |
| struct sgx_encl_mm *encl_mm; |
| int ret; |
| |
| /* |
| * Even though a single enclave may be mapped into an mm more than once, |
| * each 'mm' only appears once on encl->mm_list. This is guaranteed by |
| * holding the mm's mmap lock for write before an mm can be added or |
| * remove to an encl->mm_list. |
| */ |
| mmap_assert_write_locked(mm); |
| |
| /* |
| * It's possible that an entry already exists in the mm_list, because it |
| * is removed only on VFS release or process exit. |
| */ |
| if (sgx_encl_find_mm(encl, mm)) |
| return 0; |
| |
| encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL); |
| if (!encl_mm) |
| return -ENOMEM; |
| |
| /* Grab a refcount for the encl_mm->encl reference: */ |
| kref_get(&encl->refcount); |
| encl_mm->encl = encl; |
| encl_mm->mm = mm; |
| encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops; |
| |
| ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm); |
| if (ret) { |
| kfree(encl_mm); |
| return ret; |
| } |
| |
| spin_lock(&encl->mm_lock); |
| list_add_rcu(&encl_mm->list, &encl->mm_list); |
| /* Pairs with smp_rmb() in sgx_zap_enclave_ptes(). */ |
| smp_wmb(); |
| encl->mm_list_version++; |
| spin_unlock(&encl->mm_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * sgx_encl_cpumask() - Query which CPUs might be accessing the enclave |
| * @encl: the enclave |
| * |
| * Some SGX functions require that no cached linear-to-physical address |
| * mappings are present before they can succeed. For example, ENCLS[EWB] |
| * copies a page from the enclave page cache to regular main memory but |
| * it fails if it cannot ensure that there are no cached |
| * linear-to-physical address mappings referring to the page. |
| * |
| * SGX hardware flushes all cached linear-to-physical mappings on a CPU |
| * when an enclave is exited via ENCLU[EEXIT] or an Asynchronous Enclave |
| * Exit (AEX). Exiting an enclave will thus ensure cached linear-to-physical |
| * address mappings are cleared but coordination with the tracking done within |
| * the SGX hardware is needed to support the SGX functions that depend on this |
| * cache clearing. |
| * |
| * When the ENCLS[ETRACK] function is issued on an enclave the hardware |
| * tracks threads operating inside the enclave at that time. The SGX |
| * hardware tracking require that all the identified threads must have |
| * exited the enclave in order to flush the mappings before a function such |
| * as ENCLS[EWB] will be permitted |
| * |
| * The following flow is used to support SGX functions that require that |
| * no cached linear-to-physical address mappings are present: |
| * 1) Execute ENCLS[ETRACK] to initiate hardware tracking. |
| * 2) Use this function (sgx_encl_cpumask()) to query which CPUs might be |
| * accessing the enclave. |
| * 3) Send IPI to identified CPUs, kicking them out of the enclave and |
| * thus flushing all locally cached linear-to-physical address mappings. |
| * 4) Execute SGX function. |
| * |
| * Context: It is required to call this function after ENCLS[ETRACK]. |
| * This will ensure that if any new mm appears (racing with |
| * sgx_encl_mm_add()) then the new mm will enter into the |
| * enclave with fresh linear-to-physical address mappings. |
| * |
| * It is required that all IPIs are completed before a new |
| * ENCLS[ETRACK] is issued so be sure to protect steps 1 to 3 |
| * of the above flow with the enclave's mutex. |
| * |
| * Return: cpumask of CPUs that might be accessing @encl |
| */ |
| const cpumask_t *sgx_encl_cpumask(struct sgx_encl *encl) |
| { |
| cpumask_t *cpumask = &encl->cpumask; |
| struct sgx_encl_mm *encl_mm; |
| int idx; |
| |
| cpumask_clear(cpumask); |
| |
| idx = srcu_read_lock(&encl->srcu); |
| |
| list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { |
| if (!mmget_not_zero(encl_mm->mm)) |
| continue; |
| |
| cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm)); |
| |
| mmput_async(encl_mm->mm); |
| } |
| |
| srcu_read_unlock(&encl->srcu, idx); |
| |
| return cpumask; |
| } |
| |
| static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl, |
| pgoff_t index) |
| { |
| struct address_space *mapping = encl->backing->f_mapping; |
| gfp_t gfpmask = mapping_gfp_mask(mapping); |
| |
| return shmem_read_mapping_page_gfp(mapping, index, gfpmask); |
| } |
| |
| /** |
| * __sgx_encl_get_backing() - Pin the backing storage |
| * @encl: an enclave pointer |
| * @page_index: enclave page index |
| * @backing: data for accessing backing storage for the page |
| * |
| * Pin the backing storage pages for storing the encrypted contents and Paging |
| * Crypto MetaData (PCMD) of an enclave page. |
| * |
| * Return: |
| * 0 on success, |
| * -errno otherwise. |
| */ |
| static int __sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index, |
| struct sgx_backing *backing) |
| { |
| pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index); |
| struct page *contents; |
| struct page *pcmd; |
| |
| contents = sgx_encl_get_backing_page(encl, page_index); |
| if (IS_ERR(contents)) |
| return PTR_ERR(contents); |
| |
| pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off)); |
| if (IS_ERR(pcmd)) { |
| put_page(contents); |
| return PTR_ERR(pcmd); |
| } |
| |
| backing->contents = contents; |
| backing->pcmd = pcmd; |
| backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1); |
| |
| return 0; |
| } |
| |
| /* |
| * When called from ksgxd, returns the mem_cgroup of a struct mm stored |
| * in the enclave's mm_list. When not called from ksgxd, just returns |
| * the mem_cgroup of the current task. |
| */ |
| static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl) |
| { |
| struct mem_cgroup *memcg = NULL; |
| struct sgx_encl_mm *encl_mm; |
| int idx; |
| |
| /* |
| * If called from normal task context, return the mem_cgroup |
| * of the current task's mm. The remainder of the handling is for |
| * ksgxd. |
| */ |
| if (!current_is_ksgxd()) |
| return get_mem_cgroup_from_mm(current->mm); |
| |
| /* |
| * Search the enclave's mm_list to find an mm associated with |
| * this enclave to charge the allocation to. |
| */ |
| idx = srcu_read_lock(&encl->srcu); |
| |
| list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { |
| if (!mmget_not_zero(encl_mm->mm)) |
| continue; |
| |
| memcg = get_mem_cgroup_from_mm(encl_mm->mm); |
| |
| mmput_async(encl_mm->mm); |
| |
| break; |
| } |
| |
| srcu_read_unlock(&encl->srcu, idx); |
| |
| /* |
| * In the rare case that there isn't an mm associated with |
| * the enclave, set memcg to the current active mem_cgroup. |
| * This will be the root mem_cgroup if there is no active |
| * mem_cgroup. |
| */ |
| if (!memcg) |
| return get_mem_cgroup_from_mm(NULL); |
| |
| return memcg; |
| } |
| |
| /** |
| * sgx_encl_alloc_backing() - create a new backing storage page |
| * @encl: an enclave pointer |
| * @page_index: enclave page index |
| * @backing: data for accessing backing storage for the page |
| * |
| * When called from ksgxd, sets the active memcg from one of the |
| * mms in the enclave's mm_list prior to any backing page allocation, |
| * in order to ensure that shmem page allocations are charged to the |
| * enclave. Create a backing page for loading data back into an EPC page with |
| * ELDU. This function takes a reference on a new backing page which |
| * must be dropped with a corresponding call to sgx_encl_put_backing(). |
| * |
| * Return: |
| * 0 on success, |
| * -errno otherwise. |
| */ |
| int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index, |
| struct sgx_backing *backing) |
| { |
| struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl); |
| struct mem_cgroup *memcg = set_active_memcg(encl_memcg); |
| int ret; |
| |
| ret = __sgx_encl_get_backing(encl, page_index, backing); |
| |
| set_active_memcg(memcg); |
| mem_cgroup_put(encl_memcg); |
| |
| return ret; |
| } |
| |
| /** |
| * sgx_encl_lookup_backing() - retrieve an existing backing storage page |
| * @encl: an enclave pointer |
| * @page_index: enclave page index |
| * @backing: data for accessing backing storage for the page |
| * |
| * Retrieve a backing page for loading data back into an EPC page with ELDU. |
| * It is the caller's responsibility to ensure that it is appropriate to use |
| * sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is |
| * not used correctly, this will cause an allocation which is not accounted for. |
| * This function takes a reference on an existing backing page which must be |
| * dropped with a corresponding call to sgx_encl_put_backing(). |
| * |
| * Return: |
| * 0 on success, |
| * -errno otherwise. |
| */ |
| static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index, |
| struct sgx_backing *backing) |
| { |
| return __sgx_encl_get_backing(encl, page_index, backing); |
| } |
| |
| /** |
| * sgx_encl_put_backing() - Unpin the backing storage |
| * @backing: data for accessing backing storage for the page |
| */ |
| void sgx_encl_put_backing(struct sgx_backing *backing) |
| { |
| put_page(backing->pcmd); |
| put_page(backing->contents); |
| } |
| |
| static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr, |
| void *data) |
| { |
| pte_t pte; |
| int ret; |
| |
| ret = pte_young(*ptep); |
| if (ret) { |
| pte = pte_mkold(*ptep); |
| set_pte_at((struct mm_struct *)data, addr, ptep, pte); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * sgx_encl_test_and_clear_young() - Test and reset the accessed bit |
| * @mm: mm_struct that is checked |
| * @page: enclave page to be tested for recent access |
| * |
| * Checks the Access (A) bit from the PTE corresponding to the enclave page and |
| * clears it. |
| * |
| * Return: 1 if the page has been recently accessed and 0 if not. |
| */ |
| int sgx_encl_test_and_clear_young(struct mm_struct *mm, |
| struct sgx_encl_page *page) |
| { |
| unsigned long addr = page->desc & PAGE_MASK; |
| struct sgx_encl *encl = page->encl; |
| struct vm_area_struct *vma; |
| int ret; |
| |
| ret = sgx_encl_find(mm, addr, &vma); |
| if (ret) |
| return 0; |
| |
| if (encl != vma->vm_private_data) |
| return 0; |
| |
| ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE, |
| sgx_encl_test_and_clear_young_cb, vma->vm_mm); |
| if (ret < 0) |
| return 0; |
| |
| return ret; |
| } |
| |
| struct sgx_encl_page *sgx_encl_page_alloc(struct sgx_encl *encl, |
| unsigned long offset, |
| u64 secinfo_flags) |
| { |
| struct sgx_encl_page *encl_page; |
| unsigned long prot; |
| |
| encl_page = kzalloc(sizeof(*encl_page), GFP_KERNEL); |
| if (!encl_page) |
| return ERR_PTR(-ENOMEM); |
| |
| encl_page->desc = encl->base + offset; |
| encl_page->encl = encl; |
| |
| prot = _calc_vm_trans(secinfo_flags, SGX_SECINFO_R, PROT_READ) | |
| _calc_vm_trans(secinfo_flags, SGX_SECINFO_W, PROT_WRITE) | |
| _calc_vm_trans(secinfo_flags, SGX_SECINFO_X, PROT_EXEC); |
| |
| /* |
| * TCS pages must always RW set for CPU access while the SECINFO |
| * permissions are *always* zero - the CPU ignores the user provided |
| * values and silently overwrites them with zero permissions. |
| */ |
| if ((secinfo_flags & SGX_SECINFO_PAGE_TYPE_MASK) == SGX_SECINFO_TCS) |
| prot |= PROT_READ | PROT_WRITE; |
| |
| /* Calculate maximum of the VM flags for the page. */ |
| encl_page->vm_max_prot_bits = calc_vm_prot_bits(prot, 0); |
| |
| return encl_page; |
| } |
| |
| /** |
| * sgx_zap_enclave_ptes() - remove PTEs mapping the address from enclave |
| * @encl: the enclave |
| * @addr: page aligned pointer to single page for which PTEs will be removed |
| * |
| * Multiple VMAs may have an enclave page mapped. Remove the PTE mapping |
| * @addr from each VMA. Ensure that page fault handler is ready to handle |
| * new mappings of @addr before calling this function. |
| */ |
| void sgx_zap_enclave_ptes(struct sgx_encl *encl, unsigned long addr) |
| { |
| unsigned long mm_list_version; |
| struct sgx_encl_mm *encl_mm; |
| struct vm_area_struct *vma; |
| int idx, ret; |
| |
| do { |
| mm_list_version = encl->mm_list_version; |
| |
| /* Pairs with smp_wmb() in sgx_encl_mm_add(). */ |
| smp_rmb(); |
| |
| idx = srcu_read_lock(&encl->srcu); |
| |
| list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { |
| if (!mmget_not_zero(encl_mm->mm)) |
| continue; |
| |
| mmap_read_lock(encl_mm->mm); |
| |
| ret = sgx_encl_find(encl_mm->mm, addr, &vma); |
| if (!ret && encl == vma->vm_private_data) |
| zap_vma_ptes(vma, addr, PAGE_SIZE); |
| |
| mmap_read_unlock(encl_mm->mm); |
| |
| mmput_async(encl_mm->mm); |
| } |
| |
| srcu_read_unlock(&encl->srcu, idx); |
| } while (unlikely(encl->mm_list_version != mm_list_version)); |
| } |
| |
| /** |
| * sgx_alloc_va_page() - Allocate a Version Array (VA) page |
| * @reclaim: Reclaim EPC pages directly if none available. Enclave |
| * mutex should not be held if this is set. |
| * |
| * Allocate a free EPC page and convert it to a Version Array (VA) page. |
| * |
| * Return: |
| * a VA page, |
| * -errno otherwise |
| */ |
| struct sgx_epc_page *sgx_alloc_va_page(bool reclaim) |
| { |
| struct sgx_epc_page *epc_page; |
| int ret; |
| |
| epc_page = sgx_alloc_epc_page(NULL, reclaim); |
| if (IS_ERR(epc_page)) |
| return ERR_CAST(epc_page); |
| |
| ret = __epa(sgx_get_epc_virt_addr(epc_page)); |
| if (ret) { |
| WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret); |
| sgx_encl_free_epc_page(epc_page); |
| return ERR_PTR(-EFAULT); |
| } |
| |
| return epc_page; |
| } |
| |
| /** |
| * sgx_alloc_va_slot - allocate a VA slot |
| * @va_page: a &struct sgx_va_page instance |
| * |
| * Allocates a slot from a &struct sgx_va_page instance. |
| * |
| * Return: offset of the slot inside the VA page |
| */ |
| unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page) |
| { |
| int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT); |
| |
| if (slot < SGX_VA_SLOT_COUNT) |
| set_bit(slot, va_page->slots); |
| |
| return slot << 3; |
| } |
| |
| /** |
| * sgx_free_va_slot - free a VA slot |
| * @va_page: a &struct sgx_va_page instance |
| * @offset: offset of the slot inside the VA page |
| * |
| * Frees a slot from a &struct sgx_va_page instance. |
| */ |
| void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset) |
| { |
| clear_bit(offset >> 3, va_page->slots); |
| } |
| |
| /** |
| * sgx_va_page_full - is the VA page full? |
| * @va_page: a &struct sgx_va_page instance |
| * |
| * Return: true if all slots have been taken |
| */ |
| bool sgx_va_page_full(struct sgx_va_page *va_page) |
| { |
| int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT); |
| |
| return slot == SGX_VA_SLOT_COUNT; |
| } |
| |
| /** |
| * sgx_encl_free_epc_page - free an EPC page assigned to an enclave |
| * @page: EPC page to be freed |
| * |
| * Free an EPC page assigned to an enclave. It does EREMOVE for the page, and |
| * only upon success, it puts the page back to free page list. Otherwise, it |
| * gives a WARNING to indicate page is leaked. |
| */ |
| void sgx_encl_free_epc_page(struct sgx_epc_page *page) |
| { |
| int ret; |
| |
| WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED); |
| |
| ret = __eremove(sgx_get_epc_virt_addr(page)); |
| if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret)) |
| return; |
| |
| sgx_free_epc_page(page); |
| } |