blob: ae55167ce0a6f5fa6f9fa0556d77a41a8b114614 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* DSA driver for:
* Vitesse VSC7385 SparX-G5 5+1-port Integrated Gigabit Ethernet Switch
* Vitesse VSC7388 SparX-G8 8-port Integrated Gigabit Ethernet Switch
* Vitesse VSC7395 SparX-G5e 5+1-port Integrated Gigabit Ethernet Switch
* Vitesse VSC7398 SparX-G8e 8-port Integrated Gigabit Ethernet Switch
*
* These switches have a built-in 8051 CPU and can download and execute a
* firmware in this CPU. They can also be configured to use an external CPU
* handling the switch in a memory-mapped manner by connecting to that external
* CPU's memory bus.
*
* Copyright (C) 2018 Linus Wallej <linus.walleij@linaro.org>
* Includes portions of code from the firmware uploader by:
* Copyright (C) 2009 Gabor Juhos <juhosg@openwrt.org>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_mdio.h>
#include <linux/bitops.h>
#include <linux/if_bridge.h>
#include <linux/etherdevice.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <linux/random.h>
#include <net/dsa.h>
#include "vitesse-vsc73xx.h"
#define VSC73XX_BLOCK_MAC 0x1 /* Subblocks 0-4, 6 (CPU port) */
#define VSC73XX_BLOCK_ANALYZER 0x2 /* Only subblock 0 */
#define VSC73XX_BLOCK_MII 0x3 /* Subblocks 0 and 1 */
#define VSC73XX_BLOCK_MEMINIT 0x3 /* Only subblock 2 */
#define VSC73XX_BLOCK_CAPTURE 0x4 /* Only subblock 2 */
#define VSC73XX_BLOCK_ARBITER 0x5 /* Only subblock 0 */
#define VSC73XX_BLOCK_SYSTEM 0x7 /* Only subblock 0 */
#define CPU_PORT 6 /* CPU port */
/* MAC Block registers */
#define VSC73XX_MAC_CFG 0x00
#define VSC73XX_MACHDXGAP 0x02
#define VSC73XX_FCCONF 0x04
#define VSC73XX_FCMACHI 0x08
#define VSC73XX_FCMACLO 0x0c
#define VSC73XX_MAXLEN 0x10
#define VSC73XX_ADVPORTM 0x19
#define VSC73XX_TXUPDCFG 0x24
#define VSC73XX_TXQ_SELECT_CFG 0x28
#define VSC73XX_RXOCT 0x50
#define VSC73XX_TXOCT 0x51
#define VSC73XX_C_RX0 0x52
#define VSC73XX_C_RX1 0x53
#define VSC73XX_C_RX2 0x54
#define VSC73XX_C_TX0 0x55
#define VSC73XX_C_TX1 0x56
#define VSC73XX_C_TX2 0x57
#define VSC73XX_C_CFG 0x58
#define VSC73XX_CAT_DROP 0x6e
#define VSC73XX_CAT_PR_MISC_L2 0x6f
#define VSC73XX_CAT_PR_USR_PRIO 0x75
#define VSC73XX_Q_MISC_CONF 0xdf
/* MAC_CFG register bits */
#define VSC73XX_MAC_CFG_WEXC_DIS BIT(31)
#define VSC73XX_MAC_CFG_PORT_RST BIT(29)
#define VSC73XX_MAC_CFG_TX_EN BIT(28)
#define VSC73XX_MAC_CFG_SEED_LOAD BIT(27)
#define VSC73XX_MAC_CFG_SEED_MASK GENMASK(26, 19)
#define VSC73XX_MAC_CFG_SEED_OFFSET 19
#define VSC73XX_MAC_CFG_FDX BIT(18)
#define VSC73XX_MAC_CFG_GIGA_MODE BIT(17)
#define VSC73XX_MAC_CFG_RX_EN BIT(16)
#define VSC73XX_MAC_CFG_VLAN_DBLAWR BIT(15)
#define VSC73XX_MAC_CFG_VLAN_AWR BIT(14)
#define VSC73XX_MAC_CFG_100_BASE_T BIT(13) /* Not in manual */
#define VSC73XX_MAC_CFG_TX_IPG_MASK GENMASK(10, 6)
#define VSC73XX_MAC_CFG_TX_IPG_OFFSET 6
#define VSC73XX_MAC_CFG_TX_IPG_1000M (6 << VSC73XX_MAC_CFG_TX_IPG_OFFSET)
#define VSC73XX_MAC_CFG_TX_IPG_100_10M (17 << VSC73XX_MAC_CFG_TX_IPG_OFFSET)
#define VSC73XX_MAC_CFG_MAC_RX_RST BIT(5)
#define VSC73XX_MAC_CFG_MAC_TX_RST BIT(4)
#define VSC73XX_MAC_CFG_CLK_SEL_MASK GENMASK(2, 0)
#define VSC73XX_MAC_CFG_CLK_SEL_OFFSET 0
#define VSC73XX_MAC_CFG_CLK_SEL_1000M 1
#define VSC73XX_MAC_CFG_CLK_SEL_100M 2
#define VSC73XX_MAC_CFG_CLK_SEL_10M 3
#define VSC73XX_MAC_CFG_CLK_SEL_EXT 4
#define VSC73XX_MAC_CFG_1000M_F_PHY (VSC73XX_MAC_CFG_FDX | \
VSC73XX_MAC_CFG_GIGA_MODE | \
VSC73XX_MAC_CFG_TX_IPG_1000M | \
VSC73XX_MAC_CFG_CLK_SEL_EXT)
#define VSC73XX_MAC_CFG_100_10M_F_PHY (VSC73XX_MAC_CFG_FDX | \
VSC73XX_MAC_CFG_TX_IPG_100_10M | \
VSC73XX_MAC_CFG_CLK_SEL_EXT)
#define VSC73XX_MAC_CFG_100_10M_H_PHY (VSC73XX_MAC_CFG_TX_IPG_100_10M | \
VSC73XX_MAC_CFG_CLK_SEL_EXT)
#define VSC73XX_MAC_CFG_1000M_F_RGMII (VSC73XX_MAC_CFG_FDX | \
VSC73XX_MAC_CFG_GIGA_MODE | \
VSC73XX_MAC_CFG_TX_IPG_1000M | \
VSC73XX_MAC_CFG_CLK_SEL_1000M)
#define VSC73XX_MAC_CFG_RESET (VSC73XX_MAC_CFG_PORT_RST | \
VSC73XX_MAC_CFG_MAC_RX_RST | \
VSC73XX_MAC_CFG_MAC_TX_RST)
/* Flow control register bits */
#define VSC73XX_FCCONF_ZERO_PAUSE_EN BIT(17)
#define VSC73XX_FCCONF_FLOW_CTRL_OBEY BIT(16)
#define VSC73XX_FCCONF_PAUSE_VAL_MASK GENMASK(15, 0)
/* ADVPORTM advanced port setup register bits */
#define VSC73XX_ADVPORTM_IFG_PPM BIT(7)
#define VSC73XX_ADVPORTM_EXC_COL_CONT BIT(6)
#define VSC73XX_ADVPORTM_EXT_PORT BIT(5)
#define VSC73XX_ADVPORTM_INV_GTX BIT(4)
#define VSC73XX_ADVPORTM_ENA_GTX BIT(3)
#define VSC73XX_ADVPORTM_DDR_MODE BIT(2)
#define VSC73XX_ADVPORTM_IO_LOOPBACK BIT(1)
#define VSC73XX_ADVPORTM_HOST_LOOPBACK BIT(0)
/* CAT_DROP categorizer frame dropping register bits */
#define VSC73XX_CAT_DROP_DROP_MC_SMAC_ENA BIT(6)
#define VSC73XX_CAT_DROP_FWD_CTRL_ENA BIT(4)
#define VSC73XX_CAT_DROP_FWD_PAUSE_ENA BIT(3)
#define VSC73XX_CAT_DROP_UNTAGGED_ENA BIT(2)
#define VSC73XX_CAT_DROP_TAGGED_ENA BIT(1)
#define VSC73XX_CAT_DROP_NULL_MAC_ENA BIT(0)
#define VSC73XX_Q_MISC_CONF_EXTENT_MEM BIT(31)
#define VSC73XX_Q_MISC_CONF_EARLY_TX_MASK GENMASK(4, 1)
#define VSC73XX_Q_MISC_CONF_EARLY_TX_512 (1 << 1)
#define VSC73XX_Q_MISC_CONF_MAC_PAUSE_MODE BIT(0)
/* Frame analyzer block 2 registers */
#define VSC73XX_STORMLIMIT 0x02
#define VSC73XX_ADVLEARN 0x03
#define VSC73XX_IFLODMSK 0x04
#define VSC73XX_VLANMASK 0x05
#define VSC73XX_MACHDATA 0x06
#define VSC73XX_MACLDATA 0x07
#define VSC73XX_ANMOVED 0x08
#define VSC73XX_ANAGEFIL 0x09
#define VSC73XX_ANEVENTS 0x0a
#define VSC73XX_ANCNTMASK 0x0b
#define VSC73XX_ANCNTVAL 0x0c
#define VSC73XX_LEARNMASK 0x0d
#define VSC73XX_UFLODMASK 0x0e
#define VSC73XX_MFLODMASK 0x0f
#define VSC73XX_RECVMASK 0x10
#define VSC73XX_AGGRCTRL 0x20
#define VSC73XX_AGGRMSKS 0x30 /* Until 0x3f */
#define VSC73XX_DSTMASKS 0x40 /* Until 0x7f */
#define VSC73XX_SRCMASKS 0x80 /* Until 0x87 */
#define VSC73XX_CAPENAB 0xa0
#define VSC73XX_MACACCESS 0xb0
#define VSC73XX_IPMCACCESS 0xb1
#define VSC73XX_MACTINDX 0xc0
#define VSC73XX_VLANACCESS 0xd0
#define VSC73XX_VLANTIDX 0xe0
#define VSC73XX_AGENCTRL 0xf0
#define VSC73XX_CAPRST 0xff
#define VSC73XX_MACACCESS_CPU_COPY BIT(14)
#define VSC73XX_MACACCESS_FWD_KILL BIT(13)
#define VSC73XX_MACACCESS_IGNORE_VLAN BIT(12)
#define VSC73XX_MACACCESS_AGED_FLAG BIT(11)
#define VSC73XX_MACACCESS_VALID BIT(10)
#define VSC73XX_MACACCESS_LOCKED BIT(9)
#define VSC73XX_MACACCESS_DEST_IDX_MASK GENMASK(8, 3)
#define VSC73XX_MACACCESS_CMD_MASK GENMASK(2, 0)
#define VSC73XX_MACACCESS_CMD_IDLE 0
#define VSC73XX_MACACCESS_CMD_LEARN 1
#define VSC73XX_MACACCESS_CMD_FORGET 2
#define VSC73XX_MACACCESS_CMD_AGE_TABLE 3
#define VSC73XX_MACACCESS_CMD_FLUSH_TABLE 4
#define VSC73XX_MACACCESS_CMD_CLEAR_TABLE 5
#define VSC73XX_MACACCESS_CMD_READ_ENTRY 6
#define VSC73XX_MACACCESS_CMD_WRITE_ENTRY 7
#define VSC73XX_VLANACCESS_LEARN_DISABLED BIT(30)
#define VSC73XX_VLANACCESS_VLAN_MIRROR BIT(29)
#define VSC73XX_VLANACCESS_VLAN_SRC_CHECK BIT(28)
#define VSC73XX_VLANACCESS_VLAN_PORT_MASK GENMASK(9, 2)
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK GENMASK(2, 0)
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_IDLE 0
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_READ_ENTRY 1
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_WRITE_ENTRY 2
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_CLEAR_TABLE 3
/* MII block 3 registers */
#define VSC73XX_MII_STAT 0x0
#define VSC73XX_MII_CMD 0x1
#define VSC73XX_MII_DATA 0x2
/* Arbiter block 5 registers */
#define VSC73XX_ARBEMPTY 0x0c
#define VSC73XX_ARBDISC 0x0e
#define VSC73XX_SBACKWDROP 0x12
#define VSC73XX_DBACKWDROP 0x13
#define VSC73XX_ARBBURSTPROB 0x15
/* System block 7 registers */
#define VSC73XX_ICPU_SIPAD 0x01
#define VSC73XX_GMIIDELAY 0x05
#define VSC73XX_ICPU_CTRL 0x10
#define VSC73XX_ICPU_ADDR 0x11
#define VSC73XX_ICPU_SRAM 0x12
#define VSC73XX_HWSEM 0x13
#define VSC73XX_GLORESET 0x14
#define VSC73XX_ICPU_MBOX_VAL 0x15
#define VSC73XX_ICPU_MBOX_SET 0x16
#define VSC73XX_ICPU_MBOX_CLR 0x17
#define VSC73XX_CHIPID 0x18
#define VSC73XX_GPIO 0x34
#define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_NONE 0
#define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_4_NS 1
#define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_7_NS 2
#define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_2_0_NS 3
#define VSC73XX_GMIIDELAY_GMII0_RXDELAY_NONE (0 << 4)
#define VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_4_NS (1 << 4)
#define VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_7_NS (2 << 4)
#define VSC73XX_GMIIDELAY_GMII0_RXDELAY_2_0_NS (3 << 4)
#define VSC73XX_ICPU_CTRL_WATCHDOG_RST BIT(31)
#define VSC73XX_ICPU_CTRL_CLK_DIV_MASK GENMASK(12, 8)
#define VSC73XX_ICPU_CTRL_SRST_HOLD BIT(7)
#define VSC73XX_ICPU_CTRL_ICPU_PI_EN BIT(6)
#define VSC73XX_ICPU_CTRL_BOOT_EN BIT(3)
#define VSC73XX_ICPU_CTRL_EXT_ACC_EN BIT(2)
#define VSC73XX_ICPU_CTRL_CLK_EN BIT(1)
#define VSC73XX_ICPU_CTRL_SRST BIT(0)
#define VSC73XX_CHIPID_ID_SHIFT 12
#define VSC73XX_CHIPID_ID_MASK 0xffff
#define VSC73XX_CHIPID_REV_SHIFT 28
#define VSC73XX_CHIPID_REV_MASK 0xf
#define VSC73XX_CHIPID_ID_7385 0x7385
#define VSC73XX_CHIPID_ID_7388 0x7388
#define VSC73XX_CHIPID_ID_7395 0x7395
#define VSC73XX_CHIPID_ID_7398 0x7398
#define VSC73XX_GLORESET_STROBE BIT(4)
#define VSC73XX_GLORESET_ICPU_LOCK BIT(3)
#define VSC73XX_GLORESET_MEM_LOCK BIT(2)
#define VSC73XX_GLORESET_PHY_RESET BIT(1)
#define VSC73XX_GLORESET_MASTER_RESET BIT(0)
#define VSC7385_CLOCK_DELAY ((3 << 4) | 3)
#define VSC7385_CLOCK_DELAY_MASK ((3 << 4) | 3)
#define VSC73XX_ICPU_CTRL_STOP (VSC73XX_ICPU_CTRL_SRST_HOLD | \
VSC73XX_ICPU_CTRL_BOOT_EN | \
VSC73XX_ICPU_CTRL_EXT_ACC_EN)
#define VSC73XX_ICPU_CTRL_START (VSC73XX_ICPU_CTRL_CLK_DIV | \
VSC73XX_ICPU_CTRL_BOOT_EN | \
VSC73XX_ICPU_CTRL_CLK_EN | \
VSC73XX_ICPU_CTRL_SRST)
#define IS_7385(a) ((a)->chipid == VSC73XX_CHIPID_ID_7385)
#define IS_7388(a) ((a)->chipid == VSC73XX_CHIPID_ID_7388)
#define IS_7395(a) ((a)->chipid == VSC73XX_CHIPID_ID_7395)
#define IS_7398(a) ((a)->chipid == VSC73XX_CHIPID_ID_7398)
#define IS_739X(a) (IS_7395(a) || IS_7398(a))
struct vsc73xx_counter {
u8 counter;
const char *name;
};
/* Counters are named according to the MIB standards where applicable.
* Some counters are custom, non-standard. The standard counters are
* named in accordance with RFC2819, RFC2021 and IEEE Std 802.3-2002 Annex
* 30A Counters.
*/
static const struct vsc73xx_counter vsc73xx_rx_counters[] = {
{ 0, "RxEtherStatsPkts" },
{ 1, "RxBroadcast+MulticastPkts" }, /* non-standard counter */
{ 2, "RxTotalErrorPackets" }, /* non-standard counter */
{ 3, "RxEtherStatsBroadcastPkts" },
{ 4, "RxEtherStatsMulticastPkts" },
{ 5, "RxEtherStatsPkts64Octets" },
{ 6, "RxEtherStatsPkts65to127Octets" },
{ 7, "RxEtherStatsPkts128to255Octets" },
{ 8, "RxEtherStatsPkts256to511Octets" },
{ 9, "RxEtherStatsPkts512to1023Octets" },
{ 10, "RxEtherStatsPkts1024to1518Octets" },
{ 11, "RxJumboFrames" }, /* non-standard counter */
{ 12, "RxaPauseMACControlFramesTransmitted" },
{ 13, "RxFIFODrops" }, /* non-standard counter */
{ 14, "RxBackwardDrops" }, /* non-standard counter */
{ 15, "RxClassifierDrops" }, /* non-standard counter */
{ 16, "RxEtherStatsCRCAlignErrors" },
{ 17, "RxEtherStatsUndersizePkts" },
{ 18, "RxEtherStatsOversizePkts" },
{ 19, "RxEtherStatsFragments" },
{ 20, "RxEtherStatsJabbers" },
{ 21, "RxaMACControlFramesReceived" },
/* 22-24 are undefined */
{ 25, "RxaFramesReceivedOK" },
{ 26, "RxQoSClass0" }, /* non-standard counter */
{ 27, "RxQoSClass1" }, /* non-standard counter */
{ 28, "RxQoSClass2" }, /* non-standard counter */
{ 29, "RxQoSClass3" }, /* non-standard counter */
};
static const struct vsc73xx_counter vsc73xx_tx_counters[] = {
{ 0, "TxEtherStatsPkts" },
{ 1, "TxBroadcast+MulticastPkts" }, /* non-standard counter */
{ 2, "TxTotalErrorPackets" }, /* non-standard counter */
{ 3, "TxEtherStatsBroadcastPkts" },
{ 4, "TxEtherStatsMulticastPkts" },
{ 5, "TxEtherStatsPkts64Octets" },
{ 6, "TxEtherStatsPkts65to127Octets" },
{ 7, "TxEtherStatsPkts128to255Octets" },
{ 8, "TxEtherStatsPkts256to511Octets" },
{ 9, "TxEtherStatsPkts512to1023Octets" },
{ 10, "TxEtherStatsPkts1024to1518Octets" },
{ 11, "TxJumboFrames" }, /* non-standard counter */
{ 12, "TxaPauseMACControlFramesTransmitted" },
{ 13, "TxFIFODrops" }, /* non-standard counter */
{ 14, "TxDrops" }, /* non-standard counter */
{ 15, "TxEtherStatsCollisions" },
{ 16, "TxEtherStatsCRCAlignErrors" },
{ 17, "TxEtherStatsUndersizePkts" },
{ 18, "TxEtherStatsOversizePkts" },
{ 19, "TxEtherStatsFragments" },
{ 20, "TxEtherStatsJabbers" },
/* 21-24 are undefined */
{ 25, "TxaFramesReceivedOK" },
{ 26, "TxQoSClass0" }, /* non-standard counter */
{ 27, "TxQoSClass1" }, /* non-standard counter */
{ 28, "TxQoSClass2" }, /* non-standard counter */
{ 29, "TxQoSClass3" }, /* non-standard counter */
};
int vsc73xx_is_addr_valid(u8 block, u8 subblock)
{
switch (block) {
case VSC73XX_BLOCK_MAC:
switch (subblock) {
case 0 ... 4:
case 6:
return 1;
}
break;
case VSC73XX_BLOCK_ANALYZER:
case VSC73XX_BLOCK_SYSTEM:
switch (subblock) {
case 0:
return 1;
}
break;
case VSC73XX_BLOCK_MII:
case VSC73XX_BLOCK_CAPTURE:
case VSC73XX_BLOCK_ARBITER:
switch (subblock) {
case 0 ... 1:
return 1;
}
break;
}
return 0;
}
EXPORT_SYMBOL(vsc73xx_is_addr_valid);
static int vsc73xx_read(struct vsc73xx *vsc, u8 block, u8 subblock, u8 reg,
u32 *val)
{
return vsc->ops->read(vsc, block, subblock, reg, val);
}
static int vsc73xx_write(struct vsc73xx *vsc, u8 block, u8 subblock, u8 reg,
u32 val)
{
return vsc->ops->write(vsc, block, subblock, reg, val);
}
static int vsc73xx_update_bits(struct vsc73xx *vsc, u8 block, u8 subblock,
u8 reg, u32 mask, u32 val)
{
u32 tmp, orig;
int ret;
/* Same read-modify-write algorithm as e.g. regmap */
ret = vsc73xx_read(vsc, block, subblock, reg, &orig);
if (ret)
return ret;
tmp = orig & ~mask;
tmp |= val & mask;
return vsc73xx_write(vsc, block, subblock, reg, tmp);
}
static int vsc73xx_detect(struct vsc73xx *vsc)
{
bool icpu_si_boot_en;
bool icpu_pi_en;
u32 val;
u32 rev;
int ret;
u32 id;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_ICPU_MBOX_VAL, &val);
if (ret) {
dev_err(vsc->dev, "unable to read mailbox (%d)\n", ret);
return ret;
}
if (val == 0xffffffff) {
dev_info(vsc->dev, "chip seems dead.\n");
return -EAGAIN;
}
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_CHIPID, &val);
if (ret) {
dev_err(vsc->dev, "unable to read chip id (%d)\n", ret);
return ret;
}
id = (val >> VSC73XX_CHIPID_ID_SHIFT) &
VSC73XX_CHIPID_ID_MASK;
switch (id) {
case VSC73XX_CHIPID_ID_7385:
case VSC73XX_CHIPID_ID_7388:
case VSC73XX_CHIPID_ID_7395:
case VSC73XX_CHIPID_ID_7398:
break;
default:
dev_err(vsc->dev, "unsupported chip, id=%04x\n", id);
return -ENODEV;
}
vsc->chipid = id;
rev = (val >> VSC73XX_CHIPID_REV_SHIFT) &
VSC73XX_CHIPID_REV_MASK;
dev_info(vsc->dev, "VSC%04X (rev: %d) switch found\n", id, rev);
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_ICPU_CTRL, &val);
if (ret) {
dev_err(vsc->dev, "unable to read iCPU control\n");
return ret;
}
/* The iCPU can always be used but can boot in different ways.
* If it is initially disabled and has no external memory,
* we are in control and can do whatever we like, else we
* are probably in trouble (we need some way to communicate
* with the running firmware) so we bail out for now.
*/
icpu_pi_en = !!(val & VSC73XX_ICPU_CTRL_ICPU_PI_EN);
icpu_si_boot_en = !!(val & VSC73XX_ICPU_CTRL_BOOT_EN);
if (icpu_si_boot_en && icpu_pi_en) {
dev_err(vsc->dev,
"iCPU enabled boots from SI, has external memory\n");
dev_err(vsc->dev, "no idea how to deal with this\n");
return -ENODEV;
}
if (icpu_si_boot_en && !icpu_pi_en) {
dev_err(vsc->dev,
"iCPU enabled boots from PI/SI, no external memory\n");
return -EAGAIN;
}
if (!icpu_si_boot_en && icpu_pi_en) {
dev_err(vsc->dev,
"iCPU enabled, boots from PI external memory\n");
dev_err(vsc->dev, "no idea how to deal with this\n");
return -ENODEV;
}
/* !icpu_si_boot_en && !cpu_pi_en */
dev_info(vsc->dev, "iCPU disabled, no external memory\n");
return 0;
}
static int vsc73xx_phy_read(struct dsa_switch *ds, int phy, int regnum)
{
struct vsc73xx *vsc = ds->priv;
u32 cmd;
u32 val;
int ret;
/* Setting bit 26 means "read" */
cmd = BIT(26) | (phy << 21) | (regnum << 16);
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_MII, 0, 1, cmd);
if (ret)
return ret;
msleep(2);
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MII, 0, 2, &val);
if (ret)
return ret;
if (val & BIT(16)) {
dev_err(vsc->dev, "reading reg %02x from phy%d failed\n",
regnum, phy);
return -EIO;
}
val &= 0xFFFFU;
dev_dbg(vsc->dev, "read reg %02x from phy%d = %04x\n",
regnum, phy, val);
return val;
}
static int vsc73xx_phy_write(struct dsa_switch *ds, int phy, int regnum,
u16 val)
{
struct vsc73xx *vsc = ds->priv;
u32 cmd;
int ret;
/* It was found through tedious experiments that this router
* chip really hates to have it's PHYs reset. They
* never recover if that happens: autonegotiation stops
* working after a reset. Just filter out this command.
* (Resetting the whole chip is OK.)
*/
if (regnum == 0 && (val & BIT(15))) {
dev_info(vsc->dev, "reset PHY - disallowed\n");
return 0;
}
cmd = (phy << 21) | (regnum << 16);
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_MII, 0, 1, cmd);
if (ret)
return ret;
dev_dbg(vsc->dev, "write %04x to reg %02x in phy%d\n",
val, regnum, phy);
return 0;
}
static enum dsa_tag_protocol vsc73xx_get_tag_protocol(struct dsa_switch *ds,
int port,
enum dsa_tag_protocol mp)
{
/* The switch internally uses a 8 byte header with length,
* source port, tag, LPA and priority. This is supposedly
* only accessible when operating the switch using the internal
* CPU or with an external CPU mapping the device in, but not
* when operating the switch over SPI and putting frames in/out
* on port 6 (the CPU port). So far we must assume that we
* cannot access the tag. (See "Internal frame header" section
* 3.9.1 in the manual.)
*/
return DSA_TAG_PROTO_NONE;
}
static int vsc73xx_setup(struct dsa_switch *ds)
{
struct vsc73xx *vsc = ds->priv;
int i;
dev_info(vsc->dev, "set up the switch\n");
/* Issue RESET */
vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GLORESET,
VSC73XX_GLORESET_MASTER_RESET);
usleep_range(125, 200);
/* Initialize memory, initialize RAM bank 0..15 except 6 and 7
* This sequence appears in the
* VSC7385 SparX-G5 datasheet section 6.6.1
* VSC7395 SparX-G5e datasheet section 6.6.1
* "initialization sequence".
* No explanation is given to the 0x1010400 magic number.
*/
for (i = 0; i <= 15; i++) {
if (i != 6 && i != 7) {
vsc73xx_write(vsc, VSC73XX_BLOCK_MEMINIT,
2,
0, 0x1010400 + i);
mdelay(1);
}
}
mdelay(30);
/* Clear MAC table */
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACACCESS,
VSC73XX_MACACCESS_CMD_CLEAR_TABLE);
/* Clear VLAN table */
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_VLANACCESS,
VSC73XX_VLANACCESS_VLAN_TBL_CMD_CLEAR_TABLE);
msleep(40);
/* Use 20KiB buffers on all ports on VSC7395
* The VSC7385 has 16KiB buffers and that is the
* default if we don't set this up explicitly.
* Port "31" is "all ports".
*/
if (IS_739X(vsc))
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 0x1f,
VSC73XX_Q_MISC_CONF,
VSC73XX_Q_MISC_CONF_EXTENT_MEM);
/* Put all ports into reset until enabled */
for (i = 0; i < 7; i++) {
if (i == 5)
continue;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 4,
VSC73XX_MAC_CFG, VSC73XX_MAC_CFG_RESET);
}
/* MII delay, set both GTX and RX delay to 2 ns */
vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GMIIDELAY,
VSC73XX_GMIIDELAY_GMII0_GTXDELAY_2_0_NS |
VSC73XX_GMIIDELAY_GMII0_RXDELAY_2_0_NS);
/* Enable reception of frames on all ports */
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_RECVMASK,
0x5f);
/* IP multicast flood mask (table 144) */
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_IFLODMSK,
0xff);
mdelay(50);
/* Release reset from the internal PHYs */
vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GLORESET,
VSC73XX_GLORESET_PHY_RESET);
udelay(4);
return 0;
}
static void vsc73xx_init_port(struct vsc73xx *vsc, int port)
{
u32 val;
/* MAC configure, first reset the port and then write defaults */
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_MAC_CFG,
VSC73XX_MAC_CFG_RESET);
/* Take up the port in 1Gbit mode by default, this will be
* augmented after auto-negotiation on the PHY-facing
* ports.
*/
if (port == CPU_PORT)
val = VSC73XX_MAC_CFG_1000M_F_RGMII;
else
val = VSC73XX_MAC_CFG_1000M_F_PHY;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_MAC_CFG,
val |
VSC73XX_MAC_CFG_TX_EN |
VSC73XX_MAC_CFG_RX_EN);
/* Flow control for the CPU port:
* Use a zero delay pause frame when pause condition is left
* Obey pause control frames
*/
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_FCCONF,
VSC73XX_FCCONF_ZERO_PAUSE_EN |
VSC73XX_FCCONF_FLOW_CTRL_OBEY);
/* Issue pause control frames on PHY facing ports.
* Allow early initiation of MAC transmission if the amount
* of egress data is below 512 bytes on CPU port.
* FIXME: enable 20KiB buffers?
*/
if (port == CPU_PORT)
val = VSC73XX_Q_MISC_CONF_EARLY_TX_512;
else
val = VSC73XX_Q_MISC_CONF_MAC_PAUSE_MODE;
val |= VSC73XX_Q_MISC_CONF_EXTENT_MEM;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_Q_MISC_CONF,
val);
/* Flow control MAC: a MAC address used in flow control frames */
val = (vsc->addr[5] << 16) | (vsc->addr[4] << 8) | (vsc->addr[3]);
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_FCMACHI,
val);
val = (vsc->addr[2] << 16) | (vsc->addr[1] << 8) | (vsc->addr[0]);
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_FCMACLO,
val);
/* Tell the categorizer to forward pause frames, not control
* frame. Do not drop anything.
*/
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_CAT_DROP,
VSC73XX_CAT_DROP_FWD_PAUSE_ENA);
/* Clear all counters */
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port, VSC73XX_C_RX0, 0);
}
static void vsc73xx_adjust_enable_port(struct vsc73xx *vsc,
int port, struct phy_device *phydev,
u32 initval)
{
u32 val = initval;
u8 seed;
/* Reset this port FIXME: break out subroutine */
val |= VSC73XX_MAC_CFG_RESET;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_MAC_CFG, val);
/* Seed the port randomness with randomness */
get_random_bytes(&seed, 1);
val |= seed << VSC73XX_MAC_CFG_SEED_OFFSET;
val |= VSC73XX_MAC_CFG_SEED_LOAD;
val |= VSC73XX_MAC_CFG_WEXC_DIS;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_MAC_CFG, val);
/* Flow control for the PHY facing ports:
* Use a zero delay pause frame when pause condition is left
* Obey pause control frames
* When generating pause frames, use 0xff as pause value
*/
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_FCCONF,
VSC73XX_FCCONF_ZERO_PAUSE_EN |
VSC73XX_FCCONF_FLOW_CTRL_OBEY |
0xff);
/* Disallow backward dropping of frames from this port */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_SBACKWDROP, BIT(port), 0);
/* Enable TX, RX, deassert reset, stop loading seed */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_MAC_CFG,
VSC73XX_MAC_CFG_RESET | VSC73XX_MAC_CFG_SEED_LOAD |
VSC73XX_MAC_CFG_TX_EN | VSC73XX_MAC_CFG_RX_EN,
VSC73XX_MAC_CFG_TX_EN | VSC73XX_MAC_CFG_RX_EN);
}
static void vsc73xx_adjust_link(struct dsa_switch *ds, int port,
struct phy_device *phydev)
{
struct vsc73xx *vsc = ds->priv;
u32 val;
/* Special handling of the CPU-facing port */
if (port == CPU_PORT) {
/* Other ports are already initialized but not this one */
vsc73xx_init_port(vsc, CPU_PORT);
/* Select the external port for this interface (EXT_PORT)
* Enable the GMII GTX external clock
* Use double data rate (DDR mode)
*/
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
CPU_PORT,
VSC73XX_ADVPORTM,
VSC73XX_ADVPORTM_EXT_PORT |
VSC73XX_ADVPORTM_ENA_GTX |
VSC73XX_ADVPORTM_DDR_MODE);
}
/* This is the MAC confiuration that always need to happen
* after a PHY or the CPU port comes up or down.
*/
if (!phydev->link) {
int maxloop = 10;
dev_dbg(vsc->dev, "port %d: went down\n",
port);
/* Disable RX on this port */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_MAC_CFG,
VSC73XX_MAC_CFG_RX_EN, 0);
/* Discard packets */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_ARBDISC, BIT(port), BIT(port));
/* Wait until queue is empty */
vsc73xx_read(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_ARBEMPTY, &val);
while (!(val & BIT(port))) {
msleep(1);
vsc73xx_read(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_ARBEMPTY, &val);
if (--maxloop == 0) {
dev_err(vsc->dev,
"timeout waiting for block arbiter\n");
/* Continue anyway */
break;
}
}
/* Put this port into reset */
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_MAC_CFG,
VSC73XX_MAC_CFG_RESET);
/* Accept packets again */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_ARBDISC, BIT(port), 0);
/* Allow backward dropping of frames from this port */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_SBACKWDROP, BIT(port), BIT(port));
/* Receive mask (disable forwarding) */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_RECVMASK, BIT(port), 0);
return;
}
/* Figure out what speed was negotiated */
if (phydev->speed == SPEED_1000) {
dev_dbg(vsc->dev, "port %d: 1000 Mbit mode full duplex\n",
port);
/* Set up default for internal port or external RGMII */
if (phydev->interface == PHY_INTERFACE_MODE_RGMII)
val = VSC73XX_MAC_CFG_1000M_F_RGMII;
else
val = VSC73XX_MAC_CFG_1000M_F_PHY;
vsc73xx_adjust_enable_port(vsc, port, phydev, val);
} else if (phydev->speed == SPEED_100) {
if (phydev->duplex == DUPLEX_FULL) {
val = VSC73XX_MAC_CFG_100_10M_F_PHY;
dev_dbg(vsc->dev,
"port %d: 100 Mbit full duplex mode\n",
port);
} else {
val = VSC73XX_MAC_CFG_100_10M_H_PHY;
dev_dbg(vsc->dev,
"port %d: 100 Mbit half duplex mode\n",
port);
}
vsc73xx_adjust_enable_port(vsc, port, phydev, val);
} else if (phydev->speed == SPEED_10) {
if (phydev->duplex == DUPLEX_FULL) {
val = VSC73XX_MAC_CFG_100_10M_F_PHY;
dev_dbg(vsc->dev,
"port %d: 10 Mbit full duplex mode\n",
port);
} else {
val = VSC73XX_MAC_CFG_100_10M_H_PHY;
dev_dbg(vsc->dev,
"port %d: 10 Mbit half duplex mode\n",
port);
}
vsc73xx_adjust_enable_port(vsc, port, phydev, val);
} else {
dev_err(vsc->dev,
"could not adjust link: unknown speed\n");
}
/* Enable port (forwarding) in the receieve mask */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_RECVMASK, BIT(port), BIT(port));
}
static int vsc73xx_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct vsc73xx *vsc = ds->priv;
dev_info(vsc->dev, "enable port %d\n", port);
vsc73xx_init_port(vsc, port);
return 0;
}
static void vsc73xx_port_disable(struct dsa_switch *ds, int port)
{
struct vsc73xx *vsc = ds->priv;
/* Just put the port into reset */
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_MAC_CFG, VSC73XX_MAC_CFG_RESET);
}
static const struct vsc73xx_counter *
vsc73xx_find_counter(struct vsc73xx *vsc,
u8 counter,
bool tx)
{
const struct vsc73xx_counter *cnts;
int num_cnts;
int i;
if (tx) {
cnts = vsc73xx_tx_counters;
num_cnts = ARRAY_SIZE(vsc73xx_tx_counters);
} else {
cnts = vsc73xx_rx_counters;
num_cnts = ARRAY_SIZE(vsc73xx_rx_counters);
}
for (i = 0; i < num_cnts; i++) {
const struct vsc73xx_counter *cnt;
cnt = &cnts[i];
if (cnt->counter == counter)
return cnt;
}
return NULL;
}
static void vsc73xx_get_strings(struct dsa_switch *ds, int port, u32 stringset,
uint8_t *data)
{
const struct vsc73xx_counter *cnt;
struct vsc73xx *vsc = ds->priv;
u8 indices[6];
int i, j;
u32 val;
int ret;
if (stringset != ETH_SS_STATS)
return;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_C_CFG, &val);
if (ret)
return;
indices[0] = (val & 0x1f); /* RX counter 0 */
indices[1] = ((val >> 5) & 0x1f); /* RX counter 1 */
indices[2] = ((val >> 10) & 0x1f); /* RX counter 2 */
indices[3] = ((val >> 16) & 0x1f); /* TX counter 0 */
indices[4] = ((val >> 21) & 0x1f); /* TX counter 1 */
indices[5] = ((val >> 26) & 0x1f); /* TX counter 2 */
/* The first counters is the RX octets */
j = 0;
strncpy(data + j * ETH_GSTRING_LEN,
"RxEtherStatsOctets", ETH_GSTRING_LEN);
j++;
/* Each port supports recording 3 RX counters and 3 TX counters,
* figure out what counters we use in this set-up and return the
* names of them. The hardware default counters will be number of
* packets on RX/TX, combined broadcast+multicast packets RX/TX and
* total error packets RX/TX.
*/
for (i = 0; i < 3; i++) {
cnt = vsc73xx_find_counter(vsc, indices[i], false);
if (cnt)
strncpy(data + j * ETH_GSTRING_LEN,
cnt->name, ETH_GSTRING_LEN);
j++;
}
/* TX stats begins with the number of TX octets */
strncpy(data + j * ETH_GSTRING_LEN,
"TxEtherStatsOctets", ETH_GSTRING_LEN);
j++;
for (i = 3; i < 6; i++) {
cnt = vsc73xx_find_counter(vsc, indices[i], true);
if (cnt)
strncpy(data + j * ETH_GSTRING_LEN,
cnt->name, ETH_GSTRING_LEN);
j++;
}
}
static int vsc73xx_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
/* We only support SS_STATS */
if (sset != ETH_SS_STATS)
return 0;
/* RX and TX packets, then 3 RX counters, 3 TX counters */
return 8;
}
static void vsc73xx_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct vsc73xx *vsc = ds->priv;
u8 regs[] = {
VSC73XX_RXOCT,
VSC73XX_C_RX0,
VSC73XX_C_RX1,
VSC73XX_C_RX2,
VSC73XX_TXOCT,
VSC73XX_C_TX0,
VSC73XX_C_TX1,
VSC73XX_C_TX2,
};
u32 val;
int ret;
int i;
for (i = 0; i < ARRAY_SIZE(regs); i++) {
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MAC, port,
regs[i], &val);
if (ret) {
dev_err(vsc->dev, "error reading counter %d\n", i);
return;
}
data[i] = val;
}
}
static int vsc73xx_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
struct vsc73xx *vsc = ds->priv;
return vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_MAXLEN, new_mtu);
}
/* According to application not "VSC7398 Jumbo Frames" setting
* up the MTU to 9.6 KB does not affect the performance on standard
* frames. It is clear from the application note that
* "9.6 kilobytes" == 9600 bytes.
*/
static int vsc73xx_get_max_mtu(struct dsa_switch *ds, int port)
{
return 9600;
}
static const struct dsa_switch_ops vsc73xx_ds_ops = {
.get_tag_protocol = vsc73xx_get_tag_protocol,
.setup = vsc73xx_setup,
.phy_read = vsc73xx_phy_read,
.phy_write = vsc73xx_phy_write,
.adjust_link = vsc73xx_adjust_link,
.get_strings = vsc73xx_get_strings,
.get_ethtool_stats = vsc73xx_get_ethtool_stats,
.get_sset_count = vsc73xx_get_sset_count,
.port_enable = vsc73xx_port_enable,
.port_disable = vsc73xx_port_disable,
.port_change_mtu = vsc73xx_change_mtu,
.port_max_mtu = vsc73xx_get_max_mtu,
};
static int vsc73xx_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
u32 val;
int ret;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, &val);
if (ret)
return ret;
return !!(val & BIT(offset));
}
static void vsc73xx_gpio_set(struct gpio_chip *chip, unsigned int offset,
int val)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
u32 tmp = val ? BIT(offset) : 0;
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, BIT(offset), tmp);
}
static int vsc73xx_gpio_direction_output(struct gpio_chip *chip,
unsigned int offset, int val)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
u32 tmp = val ? BIT(offset) : 0;
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, BIT(offset + 4) | BIT(offset),
BIT(offset + 4) | tmp);
}
static int vsc73xx_gpio_direction_input(struct gpio_chip *chip,
unsigned int offset)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, BIT(offset + 4),
0);
}
static int vsc73xx_gpio_get_direction(struct gpio_chip *chip,
unsigned int offset)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
u32 val;
int ret;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, &val);
if (ret)
return ret;
return !(val & BIT(offset + 4));
}
static int vsc73xx_gpio_probe(struct vsc73xx *vsc)
{
int ret;
vsc->gc.label = devm_kasprintf(vsc->dev, GFP_KERNEL, "VSC%04x",
vsc->chipid);
vsc->gc.ngpio = 4;
vsc->gc.owner = THIS_MODULE;
vsc->gc.parent = vsc->dev;
vsc->gc.base = -1;
vsc->gc.get = vsc73xx_gpio_get;
vsc->gc.set = vsc73xx_gpio_set;
vsc->gc.direction_input = vsc73xx_gpio_direction_input;
vsc->gc.direction_output = vsc73xx_gpio_direction_output;
vsc->gc.get_direction = vsc73xx_gpio_get_direction;
vsc->gc.can_sleep = true;
ret = devm_gpiochip_add_data(vsc->dev, &vsc->gc, vsc);
if (ret) {
dev_err(vsc->dev, "unable to register GPIO chip\n");
return ret;
}
return 0;
}
int vsc73xx_probe(struct vsc73xx *vsc)
{
struct device *dev = vsc->dev;
int ret;
/* Release reset, if any */
vsc->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(vsc->reset)) {
dev_err(dev, "failed to get RESET GPIO\n");
return PTR_ERR(vsc->reset);
}
if (vsc->reset)
/* Wait 20ms according to datasheet table 245 */
msleep(20);
ret = vsc73xx_detect(vsc);
if (ret == -EAGAIN) {
dev_err(vsc->dev,
"Chip seems to be out of control. Assert reset and try again.\n");
gpiod_set_value_cansleep(vsc->reset, 1);
/* Reset pulse should be 20ns minimum, according to datasheet
* table 245, so 10us should be fine
*/
usleep_range(10, 100);
gpiod_set_value_cansleep(vsc->reset, 0);
/* Wait 20ms according to datasheet table 245 */
msleep(20);
ret = vsc73xx_detect(vsc);
}
if (ret) {
dev_err(dev, "no chip found (%d)\n", ret);
return -ENODEV;
}
eth_random_addr(vsc->addr);
dev_info(vsc->dev,
"MAC for control frames: %02X:%02X:%02X:%02X:%02X:%02X\n",
vsc->addr[0], vsc->addr[1], vsc->addr[2],
vsc->addr[3], vsc->addr[4], vsc->addr[5]);
/* The VSC7395 switch chips have 5+1 ports which means 5
* ordinary ports and a sixth CPU port facing the processor
* with an RGMII interface. These ports are numbered 0..4
* and 6, so they leave a "hole" in the port map for port 5,
* which is invalid.
*
* The VSC7398 has 8 ports, port 7 is again the CPU port.
*
* We allocate 8 ports and avoid access to the nonexistant
* ports.
*/
vsc->ds = devm_kzalloc(dev, sizeof(*vsc->ds), GFP_KERNEL);
if (!vsc->ds)
return -ENOMEM;
vsc->ds->dev = dev;
vsc->ds->num_ports = 8;
vsc->ds->priv = vsc;
vsc->ds->ops = &vsc73xx_ds_ops;
ret = dsa_register_switch(vsc->ds);
if (ret) {
dev_err(dev, "unable to register switch (%d)\n", ret);
return ret;
}
ret = vsc73xx_gpio_probe(vsc);
if (ret) {
dsa_unregister_switch(vsc->ds);
return ret;
}
return 0;
}
EXPORT_SYMBOL(vsc73xx_probe);
void vsc73xx_remove(struct vsc73xx *vsc)
{
dsa_unregister_switch(vsc->ds);
gpiod_set_value(vsc->reset, 1);
}
EXPORT_SYMBOL(vsc73xx_remove);
void vsc73xx_shutdown(struct vsc73xx *vsc)
{
dsa_switch_shutdown(vsc->ds);
}
EXPORT_SYMBOL(vsc73xx_shutdown);
MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>");
MODULE_DESCRIPTION("Vitesse VSC7385/7388/7395/7398 driver");
MODULE_LICENSE("GPL v2");