| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/fs/fat/misc.c |
| * |
| * Written 1992,1993 by Werner Almesberger |
| * 22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980 |
| * and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru) |
| */ |
| |
| #include "fat.h" |
| #include <linux/iversion.h> |
| |
| /* |
| * fat_fs_error reports a file system problem that might indicate fa data |
| * corruption/inconsistency. Depending on 'errors' mount option the |
| * panic() is called, or error message is printed FAT and nothing is done, |
| * or filesystem is remounted read-only (default behavior). |
| * In case the file system is remounted read-only, it can be made writable |
| * again by remounting it. |
| */ |
| void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...) |
| { |
| struct fat_mount_options *opts = &MSDOS_SB(sb)->options; |
| va_list args; |
| struct va_format vaf; |
| |
| if (report) { |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| fat_msg(sb, KERN_ERR, "error, %pV", &vaf); |
| va_end(args); |
| } |
| |
| if (opts->errors == FAT_ERRORS_PANIC) |
| panic("FAT-fs (%s): fs panic from previous error\n", sb->s_id); |
| else if (opts->errors == FAT_ERRORS_RO && !sb_rdonly(sb)) { |
| sb->s_flags |= SB_RDONLY; |
| fat_msg(sb, KERN_ERR, "Filesystem has been set read-only"); |
| } |
| } |
| EXPORT_SYMBOL_GPL(__fat_fs_error); |
| |
| /** |
| * _fat_msg() - Print a preformatted FAT message based on a superblock. |
| * @sb: A pointer to a &struct super_block |
| * @level: A Kernel printk level constant |
| * @fmt: The printf-style format string to print. |
| * |
| * Everything that is not fat_fs_error() should be fat_msg(). |
| * |
| * fat_msg() wraps _fat_msg() for printk indexing. |
| */ |
| void _fat_msg(struct super_block *sb, const char *level, const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| _printk(FAT_PRINTK_PREFIX "%pV\n", level, sb->s_id, &vaf); |
| va_end(args); |
| } |
| |
| /* Flushes the number of free clusters on FAT32 */ |
| /* XXX: Need to write one per FSINFO block. Currently only writes 1 */ |
| int fat_clusters_flush(struct super_block *sb) |
| { |
| struct msdos_sb_info *sbi = MSDOS_SB(sb); |
| struct buffer_head *bh; |
| struct fat_boot_fsinfo *fsinfo; |
| |
| if (!is_fat32(sbi)) |
| return 0; |
| |
| bh = sb_bread(sb, sbi->fsinfo_sector); |
| if (bh == NULL) { |
| fat_msg(sb, KERN_ERR, "bread failed in fat_clusters_flush"); |
| return -EIO; |
| } |
| |
| fsinfo = (struct fat_boot_fsinfo *)bh->b_data; |
| /* Sanity check */ |
| if (!IS_FSINFO(fsinfo)) { |
| fat_msg(sb, KERN_ERR, "Invalid FSINFO signature: " |
| "0x%08x, 0x%08x (sector = %lu)", |
| le32_to_cpu(fsinfo->signature1), |
| le32_to_cpu(fsinfo->signature2), |
| sbi->fsinfo_sector); |
| } else { |
| if (sbi->free_clusters != -1) |
| fsinfo->free_clusters = cpu_to_le32(sbi->free_clusters); |
| if (sbi->prev_free != -1) |
| fsinfo->next_cluster = cpu_to_le32(sbi->prev_free); |
| mark_buffer_dirty(bh); |
| } |
| brelse(bh); |
| |
| return 0; |
| } |
| |
| /* |
| * fat_chain_add() adds a new cluster to the chain of clusters represented |
| * by inode. |
| */ |
| int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster) |
| { |
| struct super_block *sb = inode->i_sb; |
| struct msdos_sb_info *sbi = MSDOS_SB(sb); |
| int ret, new_fclus, last; |
| |
| /* |
| * We must locate the last cluster of the file to add this new |
| * one (new_dclus) to the end of the link list (the FAT). |
| */ |
| last = new_fclus = 0; |
| if (MSDOS_I(inode)->i_start) { |
| int fclus, dclus; |
| |
| ret = fat_get_cluster(inode, FAT_ENT_EOF, &fclus, &dclus); |
| if (ret < 0) |
| return ret; |
| new_fclus = fclus + 1; |
| last = dclus; |
| } |
| |
| /* add new one to the last of the cluster chain */ |
| if (last) { |
| struct fat_entry fatent; |
| |
| fatent_init(&fatent); |
| ret = fat_ent_read(inode, &fatent, last); |
| if (ret >= 0) { |
| int wait = inode_needs_sync(inode); |
| ret = fat_ent_write(inode, &fatent, new_dclus, wait); |
| fatent_brelse(&fatent); |
| } |
| if (ret < 0) |
| return ret; |
| /* |
| * FIXME:Although we can add this cache, fat_cache_add() is |
| * assuming to be called after linear search with fat_cache_id. |
| */ |
| // fat_cache_add(inode, new_fclus, new_dclus); |
| } else { |
| MSDOS_I(inode)->i_start = new_dclus; |
| MSDOS_I(inode)->i_logstart = new_dclus; |
| /* |
| * Since generic_write_sync() synchronizes regular files later, |
| * we sync here only directories. |
| */ |
| if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) { |
| ret = fat_sync_inode(inode); |
| if (ret) |
| return ret; |
| } else |
| mark_inode_dirty(inode); |
| } |
| if (new_fclus != (inode->i_blocks >> (sbi->cluster_bits - 9))) { |
| fat_fs_error(sb, "clusters badly computed (%d != %llu)", |
| new_fclus, |
| (llu)(inode->i_blocks >> (sbi->cluster_bits - 9))); |
| fat_cache_inval_inode(inode); |
| } |
| inode->i_blocks += nr_cluster << (sbi->cluster_bits - 9); |
| |
| return 0; |
| } |
| |
| /* |
| * The epoch of FAT timestamp is 1980. |
| * : bits : value |
| * date: 0 - 4: day (1 - 31) |
| * date: 5 - 8: month (1 - 12) |
| * date: 9 - 15: year (0 - 127) from 1980 |
| * time: 0 - 4: sec (0 - 29) 2sec counts |
| * time: 5 - 10: min (0 - 59) |
| * time: 11 - 15: hour (0 - 23) |
| */ |
| #define SECS_PER_MIN 60 |
| #define SECS_PER_HOUR (60 * 60) |
| #define SECS_PER_DAY (SECS_PER_HOUR * 24) |
| /* days between 1.1.70 and 1.1.80 (2 leap days) */ |
| #define DAYS_DELTA (365 * 10 + 2) |
| /* 120 (2100 - 1980) isn't leap year */ |
| #define YEAR_2100 120 |
| #define IS_LEAP_YEAR(y) (!((y) & 3) && (y) != YEAR_2100) |
| |
| /* Linear day numbers of the respective 1sts in non-leap years. */ |
| static long days_in_year[] = { |
| /* Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec */ |
| 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0, |
| }; |
| |
| static inline int fat_tz_offset(const struct msdos_sb_info *sbi) |
| { |
| return (sbi->options.tz_set ? |
| -sbi->options.time_offset : |
| sys_tz.tz_minuteswest) * SECS_PER_MIN; |
| } |
| |
| /* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */ |
| void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts, |
| __le16 __time, __le16 __date, u8 time_cs) |
| { |
| u16 time = le16_to_cpu(__time), date = le16_to_cpu(__date); |
| time64_t second; |
| long day, leap_day, month, year; |
| |
| year = date >> 9; |
| month = max(1, (date >> 5) & 0xf); |
| day = max(1, date & 0x1f) - 1; |
| |
| leap_day = (year + 3) / 4; |
| if (year > YEAR_2100) /* 2100 isn't leap year */ |
| leap_day--; |
| if (IS_LEAP_YEAR(year) && month > 2) |
| leap_day++; |
| |
| second = (time & 0x1f) << 1; |
| second += ((time >> 5) & 0x3f) * SECS_PER_MIN; |
| second += (time >> 11) * SECS_PER_HOUR; |
| second += (time64_t)(year * 365 + leap_day |
| + days_in_year[month] + day |
| + DAYS_DELTA) * SECS_PER_DAY; |
| |
| second += fat_tz_offset(sbi); |
| |
| if (time_cs) { |
| ts->tv_sec = second + (time_cs / 100); |
| ts->tv_nsec = (time_cs % 100) * 10000000; |
| } else { |
| ts->tv_sec = second; |
| ts->tv_nsec = 0; |
| } |
| } |
| |
| /* Export fat_time_fat2unix() for the fat_test KUnit tests. */ |
| EXPORT_SYMBOL_GPL(fat_time_fat2unix); |
| |
| /* Convert linear UNIX date to a FAT time/date pair. */ |
| void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts, |
| __le16 *time, __le16 *date, u8 *time_cs) |
| { |
| struct tm tm; |
| time64_to_tm(ts->tv_sec, -fat_tz_offset(sbi), &tm); |
| |
| /* FAT can only support year between 1980 to 2107 */ |
| if (tm.tm_year < 1980 - 1900) { |
| *time = 0; |
| *date = cpu_to_le16((0 << 9) | (1 << 5) | 1); |
| if (time_cs) |
| *time_cs = 0; |
| return; |
| } |
| if (tm.tm_year > 2107 - 1900) { |
| *time = cpu_to_le16((23 << 11) | (59 << 5) | 29); |
| *date = cpu_to_le16((127 << 9) | (12 << 5) | 31); |
| if (time_cs) |
| *time_cs = 199; |
| return; |
| } |
| |
| /* from 1900 -> from 1980 */ |
| tm.tm_year -= 80; |
| /* 0~11 -> 1~12 */ |
| tm.tm_mon++; |
| /* 0~59 -> 0~29(2sec counts) */ |
| tm.tm_sec >>= 1; |
| |
| *time = cpu_to_le16(tm.tm_hour << 11 | tm.tm_min << 5 | tm.tm_sec); |
| *date = cpu_to_le16(tm.tm_year << 9 | tm.tm_mon << 5 | tm.tm_mday); |
| if (time_cs) |
| *time_cs = (ts->tv_sec & 1) * 100 + ts->tv_nsec / 10000000; |
| } |
| EXPORT_SYMBOL_GPL(fat_time_unix2fat); |
| |
| static inline struct timespec64 fat_timespec64_trunc_2secs(struct timespec64 ts) |
| { |
| return (struct timespec64){ ts.tv_sec & ~1ULL, 0 }; |
| } |
| |
| /* |
| * truncate atime to 24 hour granularity (00:00:00 in local timezone) |
| */ |
| struct timespec64 fat_truncate_atime(const struct msdos_sb_info *sbi, |
| const struct timespec64 *ts) |
| { |
| /* to localtime */ |
| time64_t seconds = ts->tv_sec - fat_tz_offset(sbi); |
| s32 remainder; |
| |
| div_s64_rem(seconds, SECS_PER_DAY, &remainder); |
| /* to day boundary, and back to unix time */ |
| seconds = seconds + fat_tz_offset(sbi) - remainder; |
| |
| return (struct timespec64){ seconds, 0 }; |
| } |
| |
| /* |
| * truncate mtime to 2 second granularity |
| */ |
| struct timespec64 fat_truncate_mtime(const struct msdos_sb_info *sbi, |
| const struct timespec64 *ts) |
| { |
| return fat_timespec64_trunc_2secs(*ts); |
| } |
| |
| /* |
| * truncate the various times with appropriate granularity: |
| * all times in root node are always 0 |
| */ |
| int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags) |
| { |
| struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb); |
| struct timespec64 ts; |
| |
| if (inode->i_ino == MSDOS_ROOT_INO) |
| return 0; |
| |
| if (now == NULL) { |
| now = &ts; |
| ts = current_time(inode); |
| } |
| |
| if (flags & S_ATIME) |
| inode->i_atime = fat_truncate_atime(sbi, now); |
| /* |
| * ctime and mtime share the same on-disk field, and should be |
| * identical in memory. all mtime updates will be applied to ctime, |
| * but ctime updates are ignored. |
| */ |
| if (flags & S_MTIME) |
| inode->i_mtime = inode->i_ctime = fat_truncate_mtime(sbi, now); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(fat_truncate_time); |
| |
| int fat_update_time(struct inode *inode, struct timespec64 *now, int flags) |
| { |
| int dirty_flags = 0; |
| |
| if (inode->i_ino == MSDOS_ROOT_INO) |
| return 0; |
| |
| if (flags & (S_ATIME | S_CTIME | S_MTIME)) { |
| fat_truncate_time(inode, now, flags); |
| if (inode->i_sb->s_flags & SB_LAZYTIME) |
| dirty_flags |= I_DIRTY_TIME; |
| else |
| dirty_flags |= I_DIRTY_SYNC; |
| } |
| |
| if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false)) |
| dirty_flags |= I_DIRTY_SYNC; |
| |
| __mark_inode_dirty(inode, dirty_flags); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(fat_update_time); |
| |
| int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs) |
| { |
| int i, err = 0; |
| |
| for (i = 0; i < nr_bhs; i++) |
| write_dirty_buffer(bhs[i], 0); |
| |
| for (i = 0; i < nr_bhs; i++) { |
| wait_on_buffer(bhs[i]); |
| if (!err && !buffer_uptodate(bhs[i])) |
| err = -EIO; |
| } |
| return err; |
| } |