| /* |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/hugetlb.h> |
| #include <linux/module.h> |
| #include <linux/log2.h> |
| |
| #include <asm/tlbflush.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/book3s/64/mmu-hash.h> |
| #include <asm/hvcall.h> |
| #include <asm/synch.h> |
| #include <asm/ppc-opcode.h> |
| |
| /* Translate address of a vmalloc'd thing to a linear map address */ |
| static void *real_vmalloc_addr(void *x) |
| { |
| unsigned long addr = (unsigned long) x; |
| pte_t *p; |
| /* |
| * assume we don't have huge pages in vmalloc space... |
| * So don't worry about THP collapse/split. Called |
| * Only in realmode, hence won't need irq_save/restore. |
| */ |
| p = __find_linux_pte_or_hugepte(swapper_pg_dir, addr, NULL, NULL); |
| if (!p || !pte_present(*p)) |
| return NULL; |
| addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK); |
| return __va(addr); |
| } |
| |
| /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */ |
| static int global_invalidates(struct kvm *kvm, unsigned long flags) |
| { |
| int global; |
| int cpu; |
| |
| /* |
| * If there is only one vcore, and it's currently running, |
| * as indicated by local_paca->kvm_hstate.kvm_vcpu being set, |
| * we can use tlbiel as long as we mark all other physical |
| * cores as potentially having stale TLB entries for this lpid. |
| * Otherwise, don't use tlbiel. |
| */ |
| if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu) |
| global = 0; |
| else |
| global = 1; |
| |
| if (!global) { |
| /* any other core might now have stale TLB entries... */ |
| smp_wmb(); |
| cpumask_setall(&kvm->arch.need_tlb_flush); |
| cpu = local_paca->kvm_hstate.kvm_vcore->pcpu; |
| /* |
| * On POWER9, threads are independent but the TLB is shared, |
| * so use the bit for the first thread to represent the core. |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| cpu = cpu_first_thread_sibling(cpu); |
| cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush); |
| } |
| |
| return global; |
| } |
| |
| /* |
| * Add this HPTE into the chain for the real page. |
| * Must be called with the chain locked; it unlocks the chain. |
| */ |
| void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev, |
| unsigned long *rmap, long pte_index, int realmode) |
| { |
| struct revmap_entry *head, *tail; |
| unsigned long i; |
| |
| if (*rmap & KVMPPC_RMAP_PRESENT) { |
| i = *rmap & KVMPPC_RMAP_INDEX; |
| head = &kvm->arch.hpt.rev[i]; |
| if (realmode) |
| head = real_vmalloc_addr(head); |
| tail = &kvm->arch.hpt.rev[head->back]; |
| if (realmode) |
| tail = real_vmalloc_addr(tail); |
| rev->forw = i; |
| rev->back = head->back; |
| tail->forw = pte_index; |
| head->back = pte_index; |
| } else { |
| rev->forw = rev->back = pte_index; |
| *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | |
| pte_index | KVMPPC_RMAP_PRESENT; |
| } |
| unlock_rmap(rmap); |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain); |
| |
| /* Update the changed page order field of an rmap entry */ |
| void kvmppc_update_rmap_change(unsigned long *rmap, unsigned long psize) |
| { |
| unsigned long order; |
| |
| if (!psize) |
| return; |
| order = ilog2(psize); |
| order <<= KVMPPC_RMAP_CHG_SHIFT; |
| if (order > (*rmap & KVMPPC_RMAP_CHG_ORDER)) |
| *rmap = (*rmap & ~KVMPPC_RMAP_CHG_ORDER) | order; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_update_rmap_change); |
| |
| /* Returns a pointer to the revmap entry for the page mapped by a HPTE */ |
| static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v, |
| unsigned long hpte_gr) |
| { |
| struct kvm_memory_slot *memslot; |
| unsigned long *rmap; |
| unsigned long gfn; |
| |
| gfn = hpte_rpn(hpte_gr, hpte_page_size(hpte_v, hpte_gr)); |
| memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn); |
| if (!memslot) |
| return NULL; |
| |
| rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]); |
| return rmap; |
| } |
| |
| /* Remove this HPTE from the chain for a real page */ |
| static void remove_revmap_chain(struct kvm *kvm, long pte_index, |
| struct revmap_entry *rev, |
| unsigned long hpte_v, unsigned long hpte_r) |
| { |
| struct revmap_entry *next, *prev; |
| unsigned long ptel, head; |
| unsigned long *rmap; |
| unsigned long rcbits; |
| |
| rcbits = hpte_r & (HPTE_R_R | HPTE_R_C); |
| ptel = rev->guest_rpte |= rcbits; |
| rmap = revmap_for_hpte(kvm, hpte_v, ptel); |
| if (!rmap) |
| return; |
| lock_rmap(rmap); |
| |
| head = *rmap & KVMPPC_RMAP_INDEX; |
| next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]); |
| prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]); |
| next->back = rev->back; |
| prev->forw = rev->forw; |
| if (head == pte_index) { |
| head = rev->forw; |
| if (head == pte_index) |
| *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); |
| else |
| *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head; |
| } |
| *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT; |
| if (rcbits & HPTE_R_C) |
| kvmppc_update_rmap_change(rmap, hpte_page_size(hpte_v, hpte_r)); |
| unlock_rmap(rmap); |
| } |
| |
| long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags, |
| long pte_index, unsigned long pteh, unsigned long ptel, |
| pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret) |
| { |
| unsigned long i, pa, gpa, gfn, psize; |
| unsigned long slot_fn, hva; |
| __be64 *hpte; |
| struct revmap_entry *rev; |
| unsigned long g_ptel; |
| struct kvm_memory_slot *memslot; |
| unsigned hpage_shift; |
| bool is_ci; |
| unsigned long *rmap; |
| pte_t *ptep; |
| unsigned int writing; |
| unsigned long mmu_seq; |
| unsigned long rcbits, irq_flags = 0; |
| |
| if (kvm_is_radix(kvm)) |
| return H_FUNCTION; |
| psize = hpte_page_size(pteh, ptel); |
| if (!psize) |
| return H_PARAMETER; |
| writing = hpte_is_writable(ptel); |
| pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID); |
| ptel &= ~HPTE_GR_RESERVED; |
| g_ptel = ptel; |
| |
| /* used later to detect if we might have been invalidated */ |
| mmu_seq = kvm->mmu_notifier_seq; |
| smp_rmb(); |
| |
| /* Find the memslot (if any) for this address */ |
| gpa = (ptel & HPTE_R_RPN) & ~(psize - 1); |
| gfn = gpa >> PAGE_SHIFT; |
| memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn); |
| pa = 0; |
| is_ci = false; |
| rmap = NULL; |
| if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) { |
| /* Emulated MMIO - mark this with key=31 */ |
| pteh |= HPTE_V_ABSENT; |
| ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO; |
| goto do_insert; |
| } |
| |
| /* Check if the requested page fits entirely in the memslot. */ |
| if (!slot_is_aligned(memslot, psize)) |
| return H_PARAMETER; |
| slot_fn = gfn - memslot->base_gfn; |
| rmap = &memslot->arch.rmap[slot_fn]; |
| |
| /* Translate to host virtual address */ |
| hva = __gfn_to_hva_memslot(memslot, gfn); |
| /* |
| * If we had a page table table change after lookup, we would |
| * retry via mmu_notifier_retry. |
| */ |
| if (realmode) |
| ptep = __find_linux_pte_or_hugepte(pgdir, hva, NULL, |
| &hpage_shift); |
| else { |
| local_irq_save(irq_flags); |
| ptep = find_linux_pte_or_hugepte(pgdir, hva, NULL, |
| &hpage_shift); |
| } |
| if (ptep) { |
| pte_t pte; |
| unsigned int host_pte_size; |
| |
| if (hpage_shift) |
| host_pte_size = 1ul << hpage_shift; |
| else |
| host_pte_size = PAGE_SIZE; |
| /* |
| * We should always find the guest page size |
| * to <= host page size, if host is using hugepage |
| */ |
| if (host_pte_size < psize) { |
| if (!realmode) |
| local_irq_restore(flags); |
| return H_PARAMETER; |
| } |
| pte = kvmppc_read_update_linux_pte(ptep, writing); |
| if (pte_present(pte) && !pte_protnone(pte)) { |
| if (writing && !pte_write(pte)) |
| /* make the actual HPTE be read-only */ |
| ptel = hpte_make_readonly(ptel); |
| is_ci = pte_ci(pte); |
| pa = pte_pfn(pte) << PAGE_SHIFT; |
| pa |= hva & (host_pte_size - 1); |
| pa |= gpa & ~PAGE_MASK; |
| } |
| } |
| if (!realmode) |
| local_irq_restore(irq_flags); |
| |
| ptel &= ~(HPTE_R_PP0 - psize); |
| ptel |= pa; |
| |
| if (pa) |
| pteh |= HPTE_V_VALID; |
| else { |
| pteh |= HPTE_V_ABSENT; |
| ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO); |
| } |
| |
| /*If we had host pte mapping then Check WIMG */ |
| if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) { |
| if (is_ci) |
| return H_PARAMETER; |
| /* |
| * Allow guest to map emulated device memory as |
| * uncacheable, but actually make it cacheable. |
| */ |
| ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G); |
| ptel |= HPTE_R_M; |
| } |
| |
| /* Find and lock the HPTEG slot to use */ |
| do_insert: |
| if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) |
| return H_PARAMETER; |
| if (likely((flags & H_EXACT) == 0)) { |
| pte_index &= ~7UL; |
| hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); |
| for (i = 0; i < 8; ++i) { |
| if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 && |
| try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID | |
| HPTE_V_ABSENT)) |
| break; |
| hpte += 2; |
| } |
| if (i == 8) { |
| /* |
| * Since try_lock_hpte doesn't retry (not even stdcx. |
| * failures), it could be that there is a free slot |
| * but we transiently failed to lock it. Try again, |
| * actually locking each slot and checking it. |
| */ |
| hpte -= 16; |
| for (i = 0; i < 8; ++i) { |
| u64 pte; |
| while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| pte = be64_to_cpu(hpte[0]); |
| if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT))) |
| break; |
| __unlock_hpte(hpte, pte); |
| hpte += 2; |
| } |
| if (i == 8) |
| return H_PTEG_FULL; |
| } |
| pte_index += i; |
| } else { |
| hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); |
| if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID | |
| HPTE_V_ABSENT)) { |
| /* Lock the slot and check again */ |
| u64 pte; |
| |
| while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| pte = be64_to_cpu(hpte[0]); |
| if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) { |
| __unlock_hpte(hpte, pte); |
| return H_PTEG_FULL; |
| } |
| } |
| } |
| |
| /* Save away the guest's idea of the second HPTE dword */ |
| rev = &kvm->arch.hpt.rev[pte_index]; |
| if (realmode) |
| rev = real_vmalloc_addr(rev); |
| if (rev) { |
| rev->guest_rpte = g_ptel; |
| note_hpte_modification(kvm, rev); |
| } |
| |
| /* Link HPTE into reverse-map chain */ |
| if (pteh & HPTE_V_VALID) { |
| if (realmode) |
| rmap = real_vmalloc_addr(rmap); |
| lock_rmap(rmap); |
| /* Check for pending invalidations under the rmap chain lock */ |
| if (mmu_notifier_retry(kvm, mmu_seq)) { |
| /* inval in progress, write a non-present HPTE */ |
| pteh |= HPTE_V_ABSENT; |
| pteh &= ~HPTE_V_VALID; |
| ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO); |
| unlock_rmap(rmap); |
| } else { |
| kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index, |
| realmode); |
| /* Only set R/C in real HPTE if already set in *rmap */ |
| rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; |
| ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C); |
| } |
| } |
| |
| /* Convert to new format on P9 */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| ptel = hpte_old_to_new_r(pteh, ptel); |
| pteh = hpte_old_to_new_v(pteh); |
| } |
| hpte[1] = cpu_to_be64(ptel); |
| |
| /* Write the first HPTE dword, unlocking the HPTE and making it valid */ |
| eieio(); |
| __unlock_hpte(hpte, pteh); |
| asm volatile("ptesync" : : : "memory"); |
| |
| *pte_idx_ret = pte_index; |
| return H_SUCCESS; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_do_h_enter); |
| |
| long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags, |
| long pte_index, unsigned long pteh, unsigned long ptel) |
| { |
| return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel, |
| vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]); |
| } |
| |
| #ifdef __BIG_ENDIAN__ |
| #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token)) |
| #else |
| #define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index)) |
| #endif |
| |
| static inline int is_mmio_hpte(unsigned long v, unsigned long r) |
| { |
| return ((v & HPTE_V_ABSENT) && |
| (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) == |
| (HPTE_R_KEY_HI | HPTE_R_KEY_LO)); |
| } |
| |
| static inline int try_lock_tlbie(unsigned int *lock) |
| { |
| unsigned int tmp, old; |
| unsigned int token = LOCK_TOKEN; |
| |
| asm volatile("1:lwarx %1,0,%2\n" |
| " cmpwi cr0,%1,0\n" |
| " bne 2f\n" |
| " stwcx. %3,0,%2\n" |
| " bne- 1b\n" |
| " isync\n" |
| "2:" |
| : "=&r" (tmp), "=&r" (old) |
| : "r" (lock), "r" (token) |
| : "cc", "memory"); |
| return old == 0; |
| } |
| |
| static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues, |
| long npages, int global, bool need_sync) |
| { |
| long i; |
| |
| /* |
| * We use the POWER9 5-operand versions of tlbie and tlbiel here. |
| * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores |
| * the RS field, this is backwards-compatible with P7 and P8. |
| */ |
| if (global) { |
| while (!try_lock_tlbie(&kvm->arch.tlbie_lock)) |
| cpu_relax(); |
| if (need_sync) |
| asm volatile("ptesync" : : : "memory"); |
| for (i = 0; i < npages; ++i) |
| asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : : |
| "r" (rbvalues[i]), "r" (kvm->arch.lpid)); |
| asm volatile("eieio; tlbsync; ptesync" : : : "memory"); |
| kvm->arch.tlbie_lock = 0; |
| } else { |
| if (need_sync) |
| asm volatile("ptesync" : : : "memory"); |
| for (i = 0; i < npages; ++i) |
| asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : : |
| "r" (rbvalues[i]), "r" (0)); |
| asm volatile("ptesync" : : : "memory"); |
| } |
| } |
| |
| long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags, |
| unsigned long pte_index, unsigned long avpn, |
| unsigned long *hpret) |
| { |
| __be64 *hpte; |
| unsigned long v, r, rb; |
| struct revmap_entry *rev; |
| u64 pte, orig_pte, pte_r; |
| |
| if (kvm_is_radix(kvm)) |
| return H_FUNCTION; |
| if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) |
| return H_PARAMETER; |
| hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); |
| while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| pte = orig_pte = be64_to_cpu(hpte[0]); |
| pte_r = be64_to_cpu(hpte[1]); |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| pte = hpte_new_to_old_v(pte, pte_r); |
| pte_r = hpte_new_to_old_r(pte_r); |
| } |
| if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 || |
| ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) || |
| ((flags & H_ANDCOND) && (pte & avpn) != 0)) { |
| __unlock_hpte(hpte, orig_pte); |
| return H_NOT_FOUND; |
| } |
| |
| rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); |
| v = pte & ~HPTE_V_HVLOCK; |
| if (v & HPTE_V_VALID) { |
| hpte[0] &= ~cpu_to_be64(HPTE_V_VALID); |
| rb = compute_tlbie_rb(v, pte_r, pte_index); |
| do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true); |
| /* |
| * The reference (R) and change (C) bits in a HPT |
| * entry can be set by hardware at any time up until |
| * the HPTE is invalidated and the TLB invalidation |
| * sequence has completed. This means that when |
| * removing a HPTE, we need to re-read the HPTE after |
| * the invalidation sequence has completed in order to |
| * obtain reliable values of R and C. |
| */ |
| remove_revmap_chain(kvm, pte_index, rev, v, |
| be64_to_cpu(hpte[1])); |
| } |
| r = rev->guest_rpte & ~HPTE_GR_RESERVED; |
| note_hpte_modification(kvm, rev); |
| unlock_hpte(hpte, 0); |
| |
| if (is_mmio_hpte(v, pte_r)) |
| atomic64_inc(&kvm->arch.mmio_update); |
| |
| if (v & HPTE_V_ABSENT) |
| v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID; |
| hpret[0] = v; |
| hpret[1] = r; |
| return H_SUCCESS; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_do_h_remove); |
| |
| long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags, |
| unsigned long pte_index, unsigned long avpn) |
| { |
| return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn, |
| &vcpu->arch.gpr[4]); |
| } |
| |
| long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long *args = &vcpu->arch.gpr[4]; |
| __be64 *hp, *hptes[4]; |
| unsigned long tlbrb[4]; |
| long int i, j, k, n, found, indexes[4]; |
| unsigned long flags, req, pte_index, rcbits; |
| int global; |
| long int ret = H_SUCCESS; |
| struct revmap_entry *rev, *revs[4]; |
| u64 hp0, hp1; |
| |
| if (kvm_is_radix(kvm)) |
| return H_FUNCTION; |
| global = global_invalidates(kvm, 0); |
| for (i = 0; i < 4 && ret == H_SUCCESS; ) { |
| n = 0; |
| for (; i < 4; ++i) { |
| j = i * 2; |
| pte_index = args[j]; |
| flags = pte_index >> 56; |
| pte_index &= ((1ul << 56) - 1); |
| req = flags >> 6; |
| flags &= 3; |
| if (req == 3) { /* no more requests */ |
| i = 4; |
| break; |
| } |
| if (req != 1 || flags == 3 || |
| pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) { |
| /* parameter error */ |
| args[j] = ((0xa0 | flags) << 56) + pte_index; |
| ret = H_PARAMETER; |
| break; |
| } |
| hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4)); |
| /* to avoid deadlock, don't spin except for first */ |
| if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) { |
| if (n) |
| break; |
| while (!try_lock_hpte(hp, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| } |
| found = 0; |
| hp0 = be64_to_cpu(hp[0]); |
| hp1 = be64_to_cpu(hp[1]); |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| hp0 = hpte_new_to_old_v(hp0, hp1); |
| hp1 = hpte_new_to_old_r(hp1); |
| } |
| if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) { |
| switch (flags & 3) { |
| case 0: /* absolute */ |
| found = 1; |
| break; |
| case 1: /* andcond */ |
| if (!(hp0 & args[j + 1])) |
| found = 1; |
| break; |
| case 2: /* AVPN */ |
| if ((hp0 & ~0x7fUL) == args[j + 1]) |
| found = 1; |
| break; |
| } |
| } |
| if (!found) { |
| hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK); |
| args[j] = ((0x90 | flags) << 56) + pte_index; |
| continue; |
| } |
| |
| args[j] = ((0x80 | flags) << 56) + pte_index; |
| rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); |
| note_hpte_modification(kvm, rev); |
| |
| if (!(hp0 & HPTE_V_VALID)) { |
| /* insert R and C bits from PTE */ |
| rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C); |
| args[j] |= rcbits << (56 - 5); |
| hp[0] = 0; |
| if (is_mmio_hpte(hp0, hp1)) |
| atomic64_inc(&kvm->arch.mmio_update); |
| continue; |
| } |
| |
| /* leave it locked */ |
| hp[0] &= ~cpu_to_be64(HPTE_V_VALID); |
| tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index); |
| indexes[n] = j; |
| hptes[n] = hp; |
| revs[n] = rev; |
| ++n; |
| } |
| |
| if (!n) |
| break; |
| |
| /* Now that we've collected a batch, do the tlbies */ |
| do_tlbies(kvm, tlbrb, n, global, true); |
| |
| /* Read PTE low words after tlbie to get final R/C values */ |
| for (k = 0; k < n; ++k) { |
| j = indexes[k]; |
| pte_index = args[j] & ((1ul << 56) - 1); |
| hp = hptes[k]; |
| rev = revs[k]; |
| remove_revmap_chain(kvm, pte_index, rev, |
| be64_to_cpu(hp[0]), be64_to_cpu(hp[1])); |
| rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C); |
| args[j] |= rcbits << (56 - 5); |
| __unlock_hpte(hp, 0); |
| } |
| } |
| |
| return ret; |
| } |
| |
| long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags, |
| unsigned long pte_index, unsigned long avpn, |
| unsigned long va) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| __be64 *hpte; |
| struct revmap_entry *rev; |
| unsigned long v, r, rb, mask, bits; |
| u64 pte_v, pte_r; |
| |
| if (kvm_is_radix(kvm)) |
| return H_FUNCTION; |
| if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) |
| return H_PARAMETER; |
| |
| hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); |
| while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| v = pte_v = be64_to_cpu(hpte[0]); |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1])); |
| if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 || |
| ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) { |
| __unlock_hpte(hpte, pte_v); |
| return H_NOT_FOUND; |
| } |
| |
| pte_r = be64_to_cpu(hpte[1]); |
| bits = (flags << 55) & HPTE_R_PP0; |
| bits |= (flags << 48) & HPTE_R_KEY_HI; |
| bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO); |
| |
| /* Update guest view of 2nd HPTE dword */ |
| mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N | |
| HPTE_R_KEY_HI | HPTE_R_KEY_LO; |
| rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); |
| if (rev) { |
| r = (rev->guest_rpte & ~mask) | bits; |
| rev->guest_rpte = r; |
| note_hpte_modification(kvm, rev); |
| } |
| |
| /* Update HPTE */ |
| if (v & HPTE_V_VALID) { |
| /* |
| * If the page is valid, don't let it transition from |
| * readonly to writable. If it should be writable, we'll |
| * take a trap and let the page fault code sort it out. |
| */ |
| r = (pte_r & ~mask) | bits; |
| if (hpte_is_writable(r) && !hpte_is_writable(pte_r)) |
| r = hpte_make_readonly(r); |
| /* If the PTE is changing, invalidate it first */ |
| if (r != pte_r) { |
| rb = compute_tlbie_rb(v, r, pte_index); |
| hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) | |
| HPTE_V_ABSENT); |
| do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), |
| true); |
| /* Don't lose R/C bit updates done by hardware */ |
| r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C); |
| hpte[1] = cpu_to_be64(r); |
| } |
| } |
| unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK); |
| asm volatile("ptesync" : : : "memory"); |
| if (is_mmio_hpte(v, pte_r)) |
| atomic64_inc(&kvm->arch.mmio_update); |
| |
| return H_SUCCESS; |
| } |
| |
| long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags, |
| unsigned long pte_index) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| __be64 *hpte; |
| unsigned long v, r; |
| int i, n = 1; |
| struct revmap_entry *rev = NULL; |
| |
| if (kvm_is_radix(kvm)) |
| return H_FUNCTION; |
| if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) |
| return H_PARAMETER; |
| if (flags & H_READ_4) { |
| pte_index &= ~3; |
| n = 4; |
| } |
| rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); |
| for (i = 0; i < n; ++i, ++pte_index) { |
| hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); |
| v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK; |
| r = be64_to_cpu(hpte[1]); |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| v = hpte_new_to_old_v(v, r); |
| r = hpte_new_to_old_r(r); |
| } |
| if (v & HPTE_V_ABSENT) { |
| v &= ~HPTE_V_ABSENT; |
| v |= HPTE_V_VALID; |
| } |
| if (v & HPTE_V_VALID) { |
| r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C)); |
| r &= ~HPTE_GR_RESERVED; |
| } |
| vcpu->arch.gpr[4 + i * 2] = v; |
| vcpu->arch.gpr[5 + i * 2] = r; |
| } |
| return H_SUCCESS; |
| } |
| |
| long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags, |
| unsigned long pte_index) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| __be64 *hpte; |
| unsigned long v, r, gr; |
| struct revmap_entry *rev; |
| unsigned long *rmap; |
| long ret = H_NOT_FOUND; |
| |
| if (kvm_is_radix(kvm)) |
| return H_FUNCTION; |
| if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) |
| return H_PARAMETER; |
| |
| rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); |
| hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); |
| while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| v = be64_to_cpu(hpte[0]); |
| r = be64_to_cpu(hpte[1]); |
| if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) |
| goto out; |
| |
| gr = rev->guest_rpte; |
| if (rev->guest_rpte & HPTE_R_R) { |
| rev->guest_rpte &= ~HPTE_R_R; |
| note_hpte_modification(kvm, rev); |
| } |
| if (v & HPTE_V_VALID) { |
| gr |= r & (HPTE_R_R | HPTE_R_C); |
| if (r & HPTE_R_R) { |
| kvmppc_clear_ref_hpte(kvm, hpte, pte_index); |
| rmap = revmap_for_hpte(kvm, v, gr); |
| if (rmap) { |
| lock_rmap(rmap); |
| *rmap |= KVMPPC_RMAP_REFERENCED; |
| unlock_rmap(rmap); |
| } |
| } |
| } |
| vcpu->arch.gpr[4] = gr; |
| ret = H_SUCCESS; |
| out: |
| unlock_hpte(hpte, v & ~HPTE_V_HVLOCK); |
| return ret; |
| } |
| |
| long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags, |
| unsigned long pte_index) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| __be64 *hpte; |
| unsigned long v, r, gr; |
| struct revmap_entry *rev; |
| unsigned long *rmap; |
| long ret = H_NOT_FOUND; |
| |
| if (kvm_is_radix(kvm)) |
| return H_FUNCTION; |
| if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) |
| return H_PARAMETER; |
| |
| rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); |
| hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); |
| while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) |
| cpu_relax(); |
| v = be64_to_cpu(hpte[0]); |
| r = be64_to_cpu(hpte[1]); |
| if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) |
| goto out; |
| |
| gr = rev->guest_rpte; |
| if (gr & HPTE_R_C) { |
| rev->guest_rpte &= ~HPTE_R_C; |
| note_hpte_modification(kvm, rev); |
| } |
| if (v & HPTE_V_VALID) { |
| /* need to make it temporarily absent so C is stable */ |
| hpte[0] |= cpu_to_be64(HPTE_V_ABSENT); |
| kvmppc_invalidate_hpte(kvm, hpte, pte_index); |
| r = be64_to_cpu(hpte[1]); |
| gr |= r & (HPTE_R_R | HPTE_R_C); |
| if (r & HPTE_R_C) { |
| unsigned long psize = hpte_page_size(v, r); |
| hpte[1] = cpu_to_be64(r & ~HPTE_R_C); |
| eieio(); |
| rmap = revmap_for_hpte(kvm, v, gr); |
| if (rmap) { |
| lock_rmap(rmap); |
| *rmap |= KVMPPC_RMAP_CHANGED; |
| kvmppc_update_rmap_change(rmap, psize); |
| unlock_rmap(rmap); |
| } |
| } |
| } |
| vcpu->arch.gpr[4] = gr; |
| ret = H_SUCCESS; |
| out: |
| unlock_hpte(hpte, v & ~HPTE_V_HVLOCK); |
| return ret; |
| } |
| |
| void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep, |
| unsigned long pte_index) |
| { |
| unsigned long rb; |
| u64 hp0, hp1; |
| |
| hptep[0] &= ~cpu_to_be64(HPTE_V_VALID); |
| hp0 = be64_to_cpu(hptep[0]); |
| hp1 = be64_to_cpu(hptep[1]); |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| hp0 = hpte_new_to_old_v(hp0, hp1); |
| hp1 = hpte_new_to_old_r(hp1); |
| } |
| rb = compute_tlbie_rb(hp0, hp1, pte_index); |
| do_tlbies(kvm, &rb, 1, 1, true); |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte); |
| |
| void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep, |
| unsigned long pte_index) |
| { |
| unsigned long rb; |
| unsigned char rbyte; |
| u64 hp0, hp1; |
| |
| hp0 = be64_to_cpu(hptep[0]); |
| hp1 = be64_to_cpu(hptep[1]); |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| hp0 = hpte_new_to_old_v(hp0, hp1); |
| hp1 = hpte_new_to_old_r(hp1); |
| } |
| rb = compute_tlbie_rb(hp0, hp1, pte_index); |
| rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8; |
| /* modify only the second-last byte, which contains the ref bit */ |
| *((char *)hptep + 14) = rbyte; |
| do_tlbies(kvm, &rb, 1, 1, false); |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte); |
| |
| static int slb_base_page_shift[4] = { |
| 24, /* 16M */ |
| 16, /* 64k */ |
| 34, /* 16G */ |
| 20, /* 1M, unsupported */ |
| }; |
| |
| static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu, |
| unsigned long eaddr, unsigned long slb_v, long mmio_update) |
| { |
| struct mmio_hpte_cache_entry *entry = NULL; |
| unsigned int pshift; |
| unsigned int i; |
| |
| for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) { |
| entry = &vcpu->arch.mmio_cache.entry[i]; |
| if (entry->mmio_update == mmio_update) { |
| pshift = entry->slb_base_pshift; |
| if ((entry->eaddr >> pshift) == (eaddr >> pshift) && |
| entry->slb_v == slb_v) |
| return entry; |
| } |
| } |
| return NULL; |
| } |
| |
| static struct mmio_hpte_cache_entry * |
| next_mmio_cache_entry(struct kvm_vcpu *vcpu) |
| { |
| unsigned int index = vcpu->arch.mmio_cache.index; |
| |
| vcpu->arch.mmio_cache.index++; |
| if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE) |
| vcpu->arch.mmio_cache.index = 0; |
| |
| return &vcpu->arch.mmio_cache.entry[index]; |
| } |
| |
| /* When called from virtmode, this func should be protected by |
| * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK |
| * can trigger deadlock issue. |
| */ |
| long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v, |
| unsigned long valid) |
| { |
| unsigned int i; |
| unsigned int pshift; |
| unsigned long somask; |
| unsigned long vsid, hash; |
| unsigned long avpn; |
| __be64 *hpte; |
| unsigned long mask, val; |
| unsigned long v, r, orig_v; |
| |
| /* Get page shift, work out hash and AVPN etc. */ |
| mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY; |
| val = 0; |
| pshift = 12; |
| if (slb_v & SLB_VSID_L) { |
| mask |= HPTE_V_LARGE; |
| val |= HPTE_V_LARGE; |
| pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4]; |
| } |
| if (slb_v & SLB_VSID_B_1T) { |
| somask = (1UL << 40) - 1; |
| vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T; |
| vsid ^= vsid << 25; |
| } else { |
| somask = (1UL << 28) - 1; |
| vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT; |
| } |
| hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt); |
| avpn = slb_v & ~(somask >> 16); /* also includes B */ |
| avpn |= (eaddr & somask) >> 16; |
| |
| if (pshift >= 24) |
| avpn &= ~((1UL << (pshift - 16)) - 1); |
| else |
| avpn &= ~0x7fUL; |
| val |= avpn; |
| |
| for (;;) { |
| hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7)); |
| |
| for (i = 0; i < 16; i += 2) { |
| /* Read the PTE racily */ |
| v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK; |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1])); |
| |
| /* Check valid/absent, hash, segment size and AVPN */ |
| if (!(v & valid) || (v & mask) != val) |
| continue; |
| |
| /* Lock the PTE and read it under the lock */ |
| while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK)) |
| cpu_relax(); |
| v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK; |
| r = be64_to_cpu(hpte[i+1]); |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| v = hpte_new_to_old_v(v, r); |
| r = hpte_new_to_old_r(r); |
| } |
| |
| /* |
| * Check the HPTE again, including base page size |
| */ |
| if ((v & valid) && (v & mask) == val && |
| hpte_base_page_size(v, r) == (1ul << pshift)) |
| /* Return with the HPTE still locked */ |
| return (hash << 3) + (i >> 1); |
| |
| __unlock_hpte(&hpte[i], orig_v); |
| } |
| |
| if (val & HPTE_V_SECONDARY) |
| break; |
| val |= HPTE_V_SECONDARY; |
| hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt); |
| } |
| return -1; |
| } |
| EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte); |
| |
| /* |
| * Called in real mode to check whether an HPTE not found fault |
| * is due to accessing a paged-out page or an emulated MMIO page, |
| * or if a protection fault is due to accessing a page that the |
| * guest wanted read/write access to but which we made read-only. |
| * Returns a possibly modified status (DSISR) value if not |
| * (i.e. pass the interrupt to the guest), |
| * -1 to pass the fault up to host kernel mode code, -2 to do that |
| * and also load the instruction word (for MMIO emulation), |
| * or 0 if we should make the guest retry the access. |
| */ |
| long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr, |
| unsigned long slb_v, unsigned int status, bool data) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| long int index; |
| unsigned long v, r, gr, orig_v; |
| __be64 *hpte; |
| unsigned long valid; |
| struct revmap_entry *rev; |
| unsigned long pp, key; |
| struct mmio_hpte_cache_entry *cache_entry = NULL; |
| long mmio_update = 0; |
| |
| /* For protection fault, expect to find a valid HPTE */ |
| valid = HPTE_V_VALID; |
| if (status & DSISR_NOHPTE) { |
| valid |= HPTE_V_ABSENT; |
| mmio_update = atomic64_read(&kvm->arch.mmio_update); |
| cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update); |
| } |
| if (cache_entry) { |
| index = cache_entry->pte_index; |
| v = cache_entry->hpte_v; |
| r = cache_entry->hpte_r; |
| gr = cache_entry->rpte; |
| } else { |
| index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid); |
| if (index < 0) { |
| if (status & DSISR_NOHPTE) |
| return status; /* there really was no HPTE */ |
| return 0; /* for prot fault, HPTE disappeared */ |
| } |
| hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); |
| v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK; |
| r = be64_to_cpu(hpte[1]); |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| v = hpte_new_to_old_v(v, r); |
| r = hpte_new_to_old_r(r); |
| } |
| rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]); |
| gr = rev->guest_rpte; |
| |
| unlock_hpte(hpte, orig_v); |
| } |
| |
| /* For not found, if the HPTE is valid by now, retry the instruction */ |
| if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID)) |
| return 0; |
| |
| /* Check access permissions to the page */ |
| pp = gr & (HPTE_R_PP0 | HPTE_R_PP); |
| key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; |
| status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */ |
| if (!data) { |
| if (gr & (HPTE_R_N | HPTE_R_G)) |
| return status | SRR1_ISI_N_OR_G; |
| if (!hpte_read_permission(pp, slb_v & key)) |
| return status | SRR1_ISI_PROT; |
| } else if (status & DSISR_ISSTORE) { |
| /* check write permission */ |
| if (!hpte_write_permission(pp, slb_v & key)) |
| return status | DSISR_PROTFAULT; |
| } else { |
| if (!hpte_read_permission(pp, slb_v & key)) |
| return status | DSISR_PROTFAULT; |
| } |
| |
| /* Check storage key, if applicable */ |
| if (data && (vcpu->arch.shregs.msr & MSR_DR)) { |
| unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr); |
| if (status & DSISR_ISSTORE) |
| perm >>= 1; |
| if (perm & 1) |
| return status | DSISR_KEYFAULT; |
| } |
| |
| /* Save HPTE info for virtual-mode handler */ |
| vcpu->arch.pgfault_addr = addr; |
| vcpu->arch.pgfault_index = index; |
| vcpu->arch.pgfault_hpte[0] = v; |
| vcpu->arch.pgfault_hpte[1] = r; |
| vcpu->arch.pgfault_cache = cache_entry; |
| |
| /* Check the storage key to see if it is possibly emulated MMIO */ |
| if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) == |
| (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) { |
| if (!cache_entry) { |
| unsigned int pshift = 12; |
| unsigned int pshift_index; |
| |
| if (slb_v & SLB_VSID_L) { |
| pshift_index = ((slb_v & SLB_VSID_LP) >> 4); |
| pshift = slb_base_page_shift[pshift_index]; |
| } |
| cache_entry = next_mmio_cache_entry(vcpu); |
| cache_entry->eaddr = addr; |
| cache_entry->slb_base_pshift = pshift; |
| cache_entry->pte_index = index; |
| cache_entry->hpte_v = v; |
| cache_entry->hpte_r = r; |
| cache_entry->rpte = gr; |
| cache_entry->slb_v = slb_v; |
| cache_entry->mmio_update = mmio_update; |
| } |
| if (data && (vcpu->arch.shregs.msr & MSR_IR)) |
| return -2; /* MMIO emulation - load instr word */ |
| } |
| |
| return -1; /* send fault up to host kernel mode */ |
| } |