|  | /* | 
|  | * Copyright (C) 2005-2006 by Texas Instruments | 
|  | * | 
|  | * This file implements a DMA  interface using TI's CPPI DMA. | 
|  | * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB. | 
|  | * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci. | 
|  | */ | 
|  |  | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/usb.h> | 
|  |  | 
|  | #include "musb_core.h" | 
|  | #include "musb_debug.h" | 
|  | #include "cppi_dma.h" | 
|  |  | 
|  |  | 
|  | /* CPPI DMA status 7-mar-2006: | 
|  | * | 
|  | * - See musb_{host,gadget}.c for more info | 
|  | * | 
|  | * - Correct RX DMA generally forces the engine into irq-per-packet mode, | 
|  | *   which can easily saturate the CPU under non-mass-storage loads. | 
|  | * | 
|  | * NOTES 24-aug-2006 (2.6.18-rc4): | 
|  | * | 
|  | * - peripheral RXDMA wedged in a test with packets of length 512/512/1. | 
|  | *   evidently after the 1 byte packet was received and acked, the queue | 
|  | *   of BDs got garbaged so it wouldn't empty the fifo.  (rxcsr 0x2003, | 
|  | *   and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401 | 
|  | *   004001ff 00000001 .. 8feff860)  Host was just getting NAKed on tx | 
|  | *   of its next (512 byte) packet.  IRQ issues? | 
|  | * | 
|  | * REVISIT:  the "transfer DMA" glue between CPPI and USB fifos will | 
|  | * evidently also directly update the RX and TX CSRs ... so audit all | 
|  | * host and peripheral side DMA code to avoid CSR access after DMA has | 
|  | * been started. | 
|  | */ | 
|  |  | 
|  | /* REVISIT now we can avoid preallocating these descriptors; or | 
|  | * more simply, switch to a global freelist not per-channel ones. | 
|  | * Note: at full speed, 64 descriptors == 4K bulk data. | 
|  | */ | 
|  | #define NUM_TXCHAN_BD       64 | 
|  | #define NUM_RXCHAN_BD       64 | 
|  |  | 
|  | static inline void cpu_drain_writebuffer(void) | 
|  | { | 
|  | wmb(); | 
|  | #ifdef	CONFIG_CPU_ARM926T | 
|  | /* REVISIT this "should not be needed", | 
|  | * but lack of it sure seemed to hurt ... | 
|  | */ | 
|  | asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c) | 
|  | { | 
|  | struct cppi_descriptor	*bd = c->freelist; | 
|  |  | 
|  | if (bd) | 
|  | c->freelist = bd->next; | 
|  | return bd; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd) | 
|  | { | 
|  | if (!bd) | 
|  | return; | 
|  | bd->next = c->freelist; | 
|  | c->freelist = bd; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Start DMA controller | 
|  | * | 
|  | *  Initialize the DMA controller as necessary. | 
|  | */ | 
|  |  | 
|  | /* zero out entire rx state RAM entry for the channel */ | 
|  | static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx) | 
|  | { | 
|  | musb_writel(&rx->rx_skipbytes, 0, 0); | 
|  | musb_writel(&rx->rx_head, 0, 0); | 
|  | musb_writel(&rx->rx_sop, 0, 0); | 
|  | musb_writel(&rx->rx_current, 0, 0); | 
|  | musb_writel(&rx->rx_buf_current, 0, 0); | 
|  | musb_writel(&rx->rx_len_len, 0, 0); | 
|  | musb_writel(&rx->rx_cnt_cnt, 0, 0); | 
|  | } | 
|  |  | 
|  | /* zero out entire tx state RAM entry for the channel */ | 
|  | static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr) | 
|  | { | 
|  | musb_writel(&tx->tx_head, 0, 0); | 
|  | musb_writel(&tx->tx_buf, 0, 0); | 
|  | musb_writel(&tx->tx_current, 0, 0); | 
|  | musb_writel(&tx->tx_buf_current, 0, 0); | 
|  | musb_writel(&tx->tx_info, 0, 0); | 
|  | musb_writel(&tx->tx_rem_len, 0, 0); | 
|  | /* musb_writel(&tx->tx_dummy, 0, 0); */ | 
|  | musb_writel(&tx->tx_complete, 0, ptr); | 
|  | } | 
|  |  | 
|  | static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c) | 
|  | { | 
|  | int	j; | 
|  |  | 
|  | /* initialize channel fields */ | 
|  | c->head = NULL; | 
|  | c->tail = NULL; | 
|  | c->last_processed = NULL; | 
|  | c->channel.status = MUSB_DMA_STATUS_UNKNOWN; | 
|  | c->controller = cppi; | 
|  | c->is_rndis = 0; | 
|  | c->freelist = NULL; | 
|  |  | 
|  | /* build the BD Free list for the channel */ | 
|  | for (j = 0; j < NUM_TXCHAN_BD + 1; j++) { | 
|  | struct cppi_descriptor	*bd; | 
|  | dma_addr_t		dma; | 
|  |  | 
|  | bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma); | 
|  | bd->dma = dma; | 
|  | cppi_bd_free(c, bd); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cppi_channel_abort(struct dma_channel *); | 
|  |  | 
|  | static void cppi_pool_free(struct cppi_channel *c) | 
|  | { | 
|  | struct cppi		*cppi = c->controller; | 
|  | struct cppi_descriptor	*bd; | 
|  |  | 
|  | (void) cppi_channel_abort(&c->channel); | 
|  | c->channel.status = MUSB_DMA_STATUS_UNKNOWN; | 
|  | c->controller = NULL; | 
|  |  | 
|  | /* free all its bds */ | 
|  | bd = c->last_processed; | 
|  | do { | 
|  | if (bd) | 
|  | dma_pool_free(cppi->pool, bd, bd->dma); | 
|  | bd = cppi_bd_alloc(c); | 
|  | } while (bd); | 
|  | c->last_processed = NULL; | 
|  | } | 
|  |  | 
|  | static int __init cppi_controller_start(struct dma_controller *c) | 
|  | { | 
|  | struct cppi	*controller; | 
|  | void __iomem	*tibase; | 
|  | int		i; | 
|  |  | 
|  | controller = container_of(c, struct cppi, controller); | 
|  |  | 
|  | /* do whatever is necessary to start controller */ | 
|  | for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { | 
|  | controller->tx[i].transmit = true; | 
|  | controller->tx[i].index = i; | 
|  | } | 
|  | for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { | 
|  | controller->rx[i].transmit = false; | 
|  | controller->rx[i].index = i; | 
|  | } | 
|  |  | 
|  | /* setup BD list on a per channel basis */ | 
|  | for (i = 0; i < ARRAY_SIZE(controller->tx); i++) | 
|  | cppi_pool_init(controller, controller->tx + i); | 
|  | for (i = 0; i < ARRAY_SIZE(controller->rx); i++) | 
|  | cppi_pool_init(controller, controller->rx + i); | 
|  |  | 
|  | tibase =  controller->tibase; | 
|  | INIT_LIST_HEAD(&controller->tx_complete); | 
|  |  | 
|  | /* initialise tx/rx channel head pointers to zero */ | 
|  | for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { | 
|  | struct cppi_channel	*tx_ch = controller->tx + i; | 
|  | struct cppi_tx_stateram __iomem *tx; | 
|  |  | 
|  | INIT_LIST_HEAD(&tx_ch->tx_complete); | 
|  |  | 
|  | tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i); | 
|  | tx_ch->state_ram = tx; | 
|  | cppi_reset_tx(tx, 0); | 
|  | } | 
|  | for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { | 
|  | struct cppi_channel	*rx_ch = controller->rx + i; | 
|  | struct cppi_rx_stateram __iomem *rx; | 
|  |  | 
|  | INIT_LIST_HEAD(&rx_ch->tx_complete); | 
|  |  | 
|  | rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i); | 
|  | rx_ch->state_ram = rx; | 
|  | cppi_reset_rx(rx); | 
|  | } | 
|  |  | 
|  | /* enable individual cppi channels */ | 
|  | musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG, | 
|  | DAVINCI_DMA_ALL_CHANNELS_ENABLE); | 
|  | musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG, | 
|  | DAVINCI_DMA_ALL_CHANNELS_ENABLE); | 
|  |  | 
|  | /* enable tx/rx CPPI control */ | 
|  | musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); | 
|  | musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); | 
|  |  | 
|  | /* disable RNDIS mode, also host rx RNDIS autorequest */ | 
|  | musb_writel(tibase, DAVINCI_RNDIS_REG, 0); | 
|  | musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Stop DMA controller | 
|  | * | 
|  | *  De-Init the DMA controller as necessary. | 
|  | */ | 
|  |  | 
|  | static int cppi_controller_stop(struct dma_controller *c) | 
|  | { | 
|  | struct cppi		*controller; | 
|  | void __iomem		*tibase; | 
|  | int			i; | 
|  |  | 
|  | controller = container_of(c, struct cppi, controller); | 
|  |  | 
|  | tibase = controller->tibase; | 
|  | /* DISABLE INDIVIDUAL CHANNEL Interrupts */ | 
|  | musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG, | 
|  | DAVINCI_DMA_ALL_CHANNELS_ENABLE); | 
|  | musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG, | 
|  | DAVINCI_DMA_ALL_CHANNELS_ENABLE); | 
|  |  | 
|  | DBG(1, "Tearing down RX and TX Channels\n"); | 
|  | for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { | 
|  | /* FIXME restructure of txdma to use bds like rxdma */ | 
|  | controller->tx[i].last_processed = NULL; | 
|  | cppi_pool_free(controller->tx + i); | 
|  | } | 
|  | for (i = 0; i < ARRAY_SIZE(controller->rx); i++) | 
|  | cppi_pool_free(controller->rx + i); | 
|  |  | 
|  | /* in Tx Case proper teardown is supported. We resort to disabling | 
|  | * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is | 
|  | * complete TX CPPI cannot be disabled. | 
|  | */ | 
|  | /*disable tx/rx cppi */ | 
|  | musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); | 
|  | musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* While dma channel is allocated, we only want the core irqs active | 
|  | * for fault reports, otherwise we'd get irqs that we don't care about. | 
|  | * Except for TX irqs, where dma done != fifo empty and reusable ... | 
|  | * | 
|  | * NOTE: docs don't say either way, but irq masking **enables** irqs. | 
|  | * | 
|  | * REVISIT same issue applies to pure PIO usage too, and non-cppi dma... | 
|  | */ | 
|  | static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum) | 
|  | { | 
|  | musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8)); | 
|  | } | 
|  |  | 
|  | static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum) | 
|  | { | 
|  | musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Allocate a CPPI Channel for DMA.  With CPPI, channels are bound to | 
|  | * each transfer direction of a non-control endpoint, so allocating | 
|  | * (and deallocating) is mostly a way to notice bad housekeeping on | 
|  | * the software side.  We assume the irqs are always active. | 
|  | */ | 
|  | static struct dma_channel * | 
|  | cppi_channel_allocate(struct dma_controller *c, | 
|  | struct musb_hw_ep *ep, u8 transmit) | 
|  | { | 
|  | struct cppi		*controller; | 
|  | u8			index; | 
|  | struct cppi_channel	*cppi_ch; | 
|  | void __iomem		*tibase; | 
|  |  | 
|  | controller = container_of(c, struct cppi, controller); | 
|  | tibase = controller->tibase; | 
|  |  | 
|  | /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */ | 
|  | index = ep->epnum - 1; | 
|  |  | 
|  | /* return the corresponding CPPI Channel Handle, and | 
|  | * probably disable the non-CPPI irq until we need it. | 
|  | */ | 
|  | if (transmit) { | 
|  | if (index >= ARRAY_SIZE(controller->tx)) { | 
|  | DBG(1, "no %cX%d CPPI channel\n", 'T', index); | 
|  | return NULL; | 
|  | } | 
|  | cppi_ch = controller->tx + index; | 
|  | } else { | 
|  | if (index >= ARRAY_SIZE(controller->rx)) { | 
|  | DBG(1, "no %cX%d CPPI channel\n", 'R', index); | 
|  | return NULL; | 
|  | } | 
|  | cppi_ch = controller->rx + index; | 
|  | core_rxirq_disable(tibase, ep->epnum); | 
|  | } | 
|  |  | 
|  | /* REVISIT make this an error later once the same driver code works | 
|  | * with the other DMA engine too | 
|  | */ | 
|  | if (cppi_ch->hw_ep) | 
|  | DBG(1, "re-allocating DMA%d %cX channel %p\n", | 
|  | index, transmit ? 'T' : 'R', cppi_ch); | 
|  | cppi_ch->hw_ep = ep; | 
|  | cppi_ch->channel.status = MUSB_DMA_STATUS_FREE; | 
|  |  | 
|  | DBG(4, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R'); | 
|  | return &cppi_ch->channel; | 
|  | } | 
|  |  | 
|  | /* Release a CPPI Channel.  */ | 
|  | static void cppi_channel_release(struct dma_channel *channel) | 
|  | { | 
|  | struct cppi_channel	*c; | 
|  | void __iomem		*tibase; | 
|  |  | 
|  | /* REVISIT:  for paranoia, check state and abort if needed... */ | 
|  |  | 
|  | c = container_of(channel, struct cppi_channel, channel); | 
|  | tibase = c->controller->tibase; | 
|  | if (!c->hw_ep) | 
|  | DBG(1, "releasing idle DMA channel %p\n", c); | 
|  | else if (!c->transmit) | 
|  | core_rxirq_enable(tibase, c->index + 1); | 
|  |  | 
|  | /* for now, leave its cppi IRQ enabled (we won't trigger it) */ | 
|  | c->hw_ep = NULL; | 
|  | channel->status = MUSB_DMA_STATUS_UNKNOWN; | 
|  | } | 
|  |  | 
|  | /* Context: controller irqlocked */ | 
|  | static void | 
|  | cppi_dump_rx(int level, struct cppi_channel *c, const char *tag) | 
|  | { | 
|  | void __iomem			*base = c->controller->mregs; | 
|  | struct cppi_rx_stateram __iomem	*rx = c->state_ram; | 
|  |  | 
|  | musb_ep_select(base, c->index + 1); | 
|  |  | 
|  | DBG(level, "RX DMA%d%s: %d left, csr %04x, " | 
|  | "%08x H%08x S%08x C%08x, " | 
|  | "B%08x L%08x %08x .. %08x" | 
|  | "\n", | 
|  | c->index, tag, | 
|  | musb_readl(c->controller->tibase, | 
|  | DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index), | 
|  | musb_readw(c->hw_ep->regs, MUSB_RXCSR), | 
|  |  | 
|  | musb_readl(&rx->rx_skipbytes, 0), | 
|  | musb_readl(&rx->rx_head, 0), | 
|  | musb_readl(&rx->rx_sop, 0), | 
|  | musb_readl(&rx->rx_current, 0), | 
|  |  | 
|  | musb_readl(&rx->rx_buf_current, 0), | 
|  | musb_readl(&rx->rx_len_len, 0), | 
|  | musb_readl(&rx->rx_cnt_cnt, 0), | 
|  | musb_readl(&rx->rx_complete, 0) | 
|  | ); | 
|  | } | 
|  |  | 
|  | /* Context: controller irqlocked */ | 
|  | static void | 
|  | cppi_dump_tx(int level, struct cppi_channel *c, const char *tag) | 
|  | { | 
|  | void __iomem			*base = c->controller->mregs; | 
|  | struct cppi_tx_stateram __iomem	*tx = c->state_ram; | 
|  |  | 
|  | musb_ep_select(base, c->index + 1); | 
|  |  | 
|  | DBG(level, "TX DMA%d%s: csr %04x, " | 
|  | "H%08x S%08x C%08x %08x, " | 
|  | "F%08x L%08x .. %08x" | 
|  | "\n", | 
|  | c->index, tag, | 
|  | musb_readw(c->hw_ep->regs, MUSB_TXCSR), | 
|  |  | 
|  | musb_readl(&tx->tx_head, 0), | 
|  | musb_readl(&tx->tx_buf, 0), | 
|  | musb_readl(&tx->tx_current, 0), | 
|  | musb_readl(&tx->tx_buf_current, 0), | 
|  |  | 
|  | musb_readl(&tx->tx_info, 0), | 
|  | musb_readl(&tx->tx_rem_len, 0), | 
|  | /* dummy/unused word 6 */ | 
|  | musb_readl(&tx->tx_complete, 0) | 
|  | ); | 
|  | } | 
|  |  | 
|  | /* Context: controller irqlocked */ | 
|  | static inline void | 
|  | cppi_rndis_update(struct cppi_channel *c, int is_rx, | 
|  | void __iomem *tibase, int is_rndis) | 
|  | { | 
|  | /* we may need to change the rndis flag for this cppi channel */ | 
|  | if (c->is_rndis != is_rndis) { | 
|  | u32	value = musb_readl(tibase, DAVINCI_RNDIS_REG); | 
|  | u32	temp = 1 << (c->index); | 
|  |  | 
|  | if (is_rx) | 
|  | temp <<= 16; | 
|  | if (is_rndis) | 
|  | value |= temp; | 
|  | else | 
|  | value &= ~temp; | 
|  | musb_writel(tibase, DAVINCI_RNDIS_REG, value); | 
|  | c->is_rndis = is_rndis; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USB_MUSB_DEBUG | 
|  | static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd) | 
|  | { | 
|  | pr_debug("RXBD/%s %08x: " | 
|  | "nxt %08x buf %08x off.blen %08x opt.plen %08x\n", | 
|  | tag, bd->dma, | 
|  | bd->hw_next, bd->hw_bufp, bd->hw_off_len, | 
|  | bd->hw_options); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx) | 
|  | { | 
|  | #ifdef CONFIG_USB_MUSB_DEBUG | 
|  | struct cppi_descriptor	*bd; | 
|  |  | 
|  | if (!_dbg_level(level)) | 
|  | return; | 
|  | cppi_dump_rx(level, rx, tag); | 
|  | if (rx->last_processed) | 
|  | cppi_dump_rxbd("last", rx->last_processed); | 
|  | for (bd = rx->head; bd; bd = bd->next) | 
|  | cppi_dump_rxbd("active", bd); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | /* NOTE:  DaVinci autoreq is ignored except for host side "RNDIS" mode RX; | 
|  | * so we won't ever use it (see "CPPI RX Woes" below). | 
|  | */ | 
|  | static inline int cppi_autoreq_update(struct cppi_channel *rx, | 
|  | void __iomem *tibase, int onepacket, unsigned n_bds) | 
|  | { | 
|  | u32	val; | 
|  |  | 
|  | #ifdef	RNDIS_RX_IS_USABLE | 
|  | u32	tmp; | 
|  | /* assert(is_host_active(musb)) */ | 
|  |  | 
|  | /* start from "AutoReq never" */ | 
|  | tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); | 
|  | val = tmp & ~((0x3) << (rx->index * 2)); | 
|  |  | 
|  | /* HCD arranged reqpkt for packet #1.  we arrange int | 
|  | * for all but the last one, maybe in two segments. | 
|  | */ | 
|  | if (!onepacket) { | 
|  | #if 0 | 
|  | /* use two segments, autoreq "all" then the last "never" */ | 
|  | val |= ((0x3) << (rx->index * 2)); | 
|  | n_bds--; | 
|  | #else | 
|  | /* one segment, autoreq "all-but-last" */ | 
|  | val |= ((0x1) << (rx->index * 2)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (val != tmp) { | 
|  | int n = 100; | 
|  |  | 
|  | /* make sure that autoreq is updated before continuing */ | 
|  | musb_writel(tibase, DAVINCI_AUTOREQ_REG, val); | 
|  | do { | 
|  | tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); | 
|  | if (tmp == val) | 
|  | break; | 
|  | cpu_relax(); | 
|  | } while (n-- > 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* REQPKT is turned off after each segment */ | 
|  | if (n_bds && rx->channel.actual_len) { | 
|  | void __iomem	*regs = rx->hw_ep->regs; | 
|  |  | 
|  | val = musb_readw(regs, MUSB_RXCSR); | 
|  | if (!(val & MUSB_RXCSR_H_REQPKT)) { | 
|  | val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS; | 
|  | musb_writew(regs, MUSB_RXCSR, val); | 
|  | /* flush writebufer */ | 
|  | val = musb_readw(regs, MUSB_RXCSR); | 
|  | } | 
|  | } | 
|  | return n_bds; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Buffer enqueuing Logic: | 
|  | * | 
|  | *  - RX builds new queues each time, to help handle routine "early | 
|  | *    termination" cases (faults, including errors and short reads) | 
|  | *    more correctly. | 
|  | * | 
|  | *  - for now, TX reuses the same queue of BDs every time | 
|  | * | 
|  | * REVISIT long term, we want a normal dynamic model. | 
|  | * ... the goal will be to append to the | 
|  | * existing queue, processing completed "dma buffers" (segments) on the fly. | 
|  | * | 
|  | * Otherwise we force an IRQ latency between requests, which slows us a lot | 
|  | * (especially in "transparent" dma).  Unfortunately that model seems to be | 
|  | * inherent in the DMA model from the Mentor code, except in the rare case | 
|  | * of transfers big enough (~128+ KB) that we could append "middle" segments | 
|  | * in the TX paths.  (RX can't do this, see below.) | 
|  | * | 
|  | * That's true even in the CPPI- friendly iso case, where most urbs have | 
|  | * several small segments provided in a group and where the "packet at a time" | 
|  | * "transparent" DMA model is always correct, even on the RX side. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * CPPI TX: | 
|  | * ======== | 
|  | * TX is a lot more reasonable than RX; it doesn't need to run in | 
|  | * irq-per-packet mode very often.  RNDIS mode seems to behave too | 
|  | * (except how it handles the exactly-N-packets case).  Building a | 
|  | * txdma queue with multiple requests (urb or usb_request) looks | 
|  | * like it would work ... but fault handling would need much testing. | 
|  | * | 
|  | * The main issue with TX mode RNDIS relates to transfer lengths that | 
|  | * are an exact multiple of the packet length.  It appears that there's | 
|  | * a hiccup in that case (maybe the DMA completes before the ZLP gets | 
|  | * written?) boiling down to not being able to rely on CPPI writing any | 
|  | * terminating zero length packet before the next transfer is written. | 
|  | * So that's punted to PIO; better yet, gadget drivers can avoid it. | 
|  | * | 
|  | * Plus, there's allegedly an undocumented constraint that rndis transfer | 
|  | * length be a multiple of 64 bytes ... but the chip doesn't act that | 
|  | * way, and we really don't _want_ that behavior anyway. | 
|  | * | 
|  | * On TX, "transparent" mode works ... although experiments have shown | 
|  | * problems trying to use the SOP/EOP bits in different USB packets. | 
|  | * | 
|  | * REVISIT try to handle terminating zero length packets using CPPI | 
|  | * instead of doing it by PIO after an IRQ.  (Meanwhile, make Ethernet | 
|  | * links avoid that issue by forcing them to avoid zlps.) | 
|  | */ | 
|  | static void | 
|  | cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx) | 
|  | { | 
|  | unsigned		maxpacket = tx->maxpacket; | 
|  | dma_addr_t		addr = tx->buf_dma + tx->offset; | 
|  | size_t			length = tx->buf_len - tx->offset; | 
|  | struct cppi_descriptor	*bd; | 
|  | unsigned		n_bds; | 
|  | unsigned		i; | 
|  | struct cppi_tx_stateram	__iomem *tx_ram = tx->state_ram; | 
|  | int			rndis; | 
|  |  | 
|  | /* TX can use the CPPI "rndis" mode, where we can probably fit this | 
|  | * transfer in one BD and one IRQ.  The only time we would NOT want | 
|  | * to use it is when hardware constraints prevent it, or if we'd | 
|  | * trigger the "send a ZLP?" confusion. | 
|  | */ | 
|  | rndis = (maxpacket & 0x3f) == 0 | 
|  | && length > maxpacket | 
|  | && length < 0xffff | 
|  | && (length % maxpacket) != 0; | 
|  |  | 
|  | if (rndis) { | 
|  | maxpacket = length; | 
|  | n_bds = 1; | 
|  | } else { | 
|  | n_bds = length / maxpacket; | 
|  | if (!length || (length % maxpacket)) | 
|  | n_bds++; | 
|  | n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD); | 
|  | length = min(n_bds * maxpacket, length); | 
|  | } | 
|  |  | 
|  | DBG(4, "TX DMA%d, pktSz %d %s bds %d dma 0x%x len %u\n", | 
|  | tx->index, | 
|  | maxpacket, | 
|  | rndis ? "rndis" : "transparent", | 
|  | n_bds, | 
|  | addr, length); | 
|  |  | 
|  | cppi_rndis_update(tx, 0, musb->ctrl_base, rndis); | 
|  |  | 
|  | /* assuming here that channel_program is called during | 
|  | * transfer initiation ... current code maintains state | 
|  | * for one outstanding request only (no queues, not even | 
|  | * the implicit ones of an iso urb). | 
|  | */ | 
|  |  | 
|  | bd = tx->freelist; | 
|  | tx->head = bd; | 
|  | tx->last_processed = NULL; | 
|  |  | 
|  | /* FIXME use BD pool like RX side does, and just queue | 
|  | * the minimum number for this request. | 
|  | */ | 
|  |  | 
|  | /* Prepare queue of BDs first, then hand it to hardware. | 
|  | * All BDs except maybe the last should be of full packet | 
|  | * size; for RNDIS there _is_ only that last packet. | 
|  | */ | 
|  | for (i = 0; i < n_bds; ) { | 
|  | if (++i < n_bds && bd->next) | 
|  | bd->hw_next = bd->next->dma; | 
|  | else | 
|  | bd->hw_next = 0; | 
|  |  | 
|  | bd->hw_bufp = tx->buf_dma + tx->offset; | 
|  |  | 
|  | /* FIXME set EOP only on the last packet, | 
|  | * SOP only on the first ... avoid IRQs | 
|  | */ | 
|  | if ((tx->offset + maxpacket) <= tx->buf_len) { | 
|  | tx->offset += maxpacket; | 
|  | bd->hw_off_len = maxpacket; | 
|  | bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET | 
|  | | CPPI_OWN_SET | maxpacket; | 
|  | } else { | 
|  | /* only this one may be a partial USB Packet */ | 
|  | u32		partial_len; | 
|  |  | 
|  | partial_len = tx->buf_len - tx->offset; | 
|  | tx->offset = tx->buf_len; | 
|  | bd->hw_off_len = partial_len; | 
|  |  | 
|  | bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET | 
|  | | CPPI_OWN_SET | partial_len; | 
|  | if (partial_len == 0) | 
|  | bd->hw_options |= CPPI_ZERO_SET; | 
|  | } | 
|  |  | 
|  | DBG(5, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n", | 
|  | bd, bd->hw_next, bd->hw_bufp, | 
|  | bd->hw_off_len, bd->hw_options); | 
|  |  | 
|  | /* update the last BD enqueued to the list */ | 
|  | tx->tail = bd; | 
|  | bd = bd->next; | 
|  | } | 
|  |  | 
|  | /* BDs live in DMA-coherent memory, but writes might be pending */ | 
|  | cpu_drain_writebuffer(); | 
|  |  | 
|  | /* Write to the HeadPtr in state RAM to trigger */ | 
|  | musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma); | 
|  |  | 
|  | cppi_dump_tx(5, tx, "/S"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CPPI RX Woes: | 
|  | * ============= | 
|  | * Consider a 1KB bulk RX buffer in two scenarios:  (a) it's fed two 300 byte | 
|  | * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back. | 
|  | * (Full speed transfers have similar scenarios.) | 
|  | * | 
|  | * The correct behavior for Linux is that (a) fills the buffer with 300 bytes, | 
|  | * and the next packet goes into a buffer that's queued later; while (b) fills | 
|  | * the buffer with 1024 bytes.  How to do that with CPPI? | 
|  | * | 
|  | * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but | 
|  | *   (b) loses **BADLY** because nothing (!) happens when that second packet | 
|  | *   fills the buffer, much less when a third one arrives.  (Which makes this | 
|  | *   not a "true" RNDIS mode.  In the RNDIS protocol short-packet termination | 
|  | *   is optional, and it's fine if peripherals -- not hosts! -- pad messages | 
|  | *   out to end-of-buffer.  Standard PCI host controller DMA descriptors | 
|  | *   implement that mode by default ... which is no accident.) | 
|  | * | 
|  | * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have | 
|  | *   converse problems:  (b) is handled right, but (a) loses badly.  CPPI RX | 
|  | *   ignores SOP/EOP markings and processes both of those BDs; so both packets | 
|  | *   are loaded into the buffer (with a 212 byte gap between them), and the next | 
|  | *   buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP | 
|  | *   are intended as outputs for RX queues, not inputs...) | 
|  | * | 
|  | * - A variant of "transparent" mode -- one BD at a time -- is the only way to | 
|  | *   reliably make both cases work, with software handling both cases correctly | 
|  | *   and at the significant penalty of needing an IRQ per packet.  (The lack of | 
|  | *   I/O overlap can be slightly ameliorated by enabling double buffering.) | 
|  | * | 
|  | * So how to get rid of IRQ-per-packet?  The transparent multi-BD case could | 
|  | * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK | 
|  | * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors | 
|  | * with guaranteed driver level fault recovery and scrubbing out what's left | 
|  | * of that garbaged datastream. | 
|  | * | 
|  | * But there seems to be no way to identify the cases where CPPI RNDIS mode | 
|  | * is appropriate -- which do NOT include RNDIS host drivers, but do include | 
|  | * the CDC Ethernet driver! -- and the documentation is incomplete/wrong. | 
|  | * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic | 
|  | * that applies best on the peripheral side (and which could fail rudely). | 
|  | * | 
|  | * Leaving only "transparent" mode; we avoid multi-bd modes in almost all | 
|  | * cases other than mass storage class.  Otherwise we're correct but slow, | 
|  | * since CPPI penalizes our need for a "true RNDIS" default mode. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY | 
|  | * | 
|  | * IFF | 
|  | *  (a)	peripheral mode ... since rndis peripherals could pad their | 
|  | *	writes to hosts, causing i/o failure; or we'd have to cope with | 
|  | *	a largely unknowable variety of host side protocol variants | 
|  | *  (b)	and short reads are NOT errors ... since full reads would | 
|  | *	cause those same i/o failures | 
|  | *  (c)	and read length is | 
|  | *	- less than 64KB (max per cppi descriptor) | 
|  | *	- not a multiple of 4096 (g_zero default, full reads typical) | 
|  | *	- N (>1) packets long, ditto (full reads not EXPECTED) | 
|  | * THEN | 
|  | *   try rx rndis mode | 
|  | * | 
|  | * Cost of heuristic failing:  RXDMA wedges at the end of transfers that | 
|  | * fill out the whole buffer.  Buggy host side usb network drivers could | 
|  | * trigger that, but "in the field" such bugs seem to be all but unknown. | 
|  | * | 
|  | * So this module parameter lets the heuristic be disabled.  When using | 
|  | * gadgetfs, the heuristic will probably need to be disabled. | 
|  | */ | 
|  | static int cppi_rx_rndis = 1; | 
|  |  | 
|  | module_param(cppi_rx_rndis, bool, 0); | 
|  | MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic"); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * cppi_next_rx_segment - dma read for the next chunk of a buffer | 
|  | * @musb: the controller | 
|  | * @rx: dma channel | 
|  | * @onepacket: true unless caller treats short reads as errors, and | 
|  | *	performs fault recovery above usbcore. | 
|  | * Context: controller irqlocked | 
|  | * | 
|  | * See above notes about why we can't use multi-BD RX queues except in | 
|  | * rare cases (mass storage class), and can never use the hardware "rndis" | 
|  | * mode (since it's not a "true" RNDIS mode) with complete safety.. | 
|  | * | 
|  | * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in | 
|  | * code to recover from corrupted datastreams after each short transfer. | 
|  | */ | 
|  | static void | 
|  | cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket) | 
|  | { | 
|  | unsigned		maxpacket = rx->maxpacket; | 
|  | dma_addr_t		addr = rx->buf_dma + rx->offset; | 
|  | size_t			length = rx->buf_len - rx->offset; | 
|  | struct cppi_descriptor	*bd, *tail; | 
|  | unsigned		n_bds; | 
|  | unsigned		i; | 
|  | void __iomem		*tibase = musb->ctrl_base; | 
|  | int			is_rndis = 0; | 
|  | struct cppi_rx_stateram	__iomem *rx_ram = rx->state_ram; | 
|  |  | 
|  | if (onepacket) { | 
|  | /* almost every USB driver, host or peripheral side */ | 
|  | n_bds = 1; | 
|  |  | 
|  | /* maybe apply the heuristic above */ | 
|  | if (cppi_rx_rndis | 
|  | && is_peripheral_active(musb) | 
|  | && length > maxpacket | 
|  | && (length & ~0xffff) == 0 | 
|  | && (length & 0x0fff) != 0 | 
|  | && (length & (maxpacket - 1)) == 0) { | 
|  | maxpacket = length; | 
|  | is_rndis = 1; | 
|  | } | 
|  | } else { | 
|  | /* virtually nothing except mass storage class */ | 
|  | if (length > 0xffff) { | 
|  | n_bds = 0xffff / maxpacket; | 
|  | length = n_bds * maxpacket; | 
|  | } else { | 
|  | n_bds = length / maxpacket; | 
|  | if (length % maxpacket) | 
|  | n_bds++; | 
|  | } | 
|  | if (n_bds == 1) | 
|  | onepacket = 1; | 
|  | else | 
|  | n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD); | 
|  | } | 
|  |  | 
|  | /* In host mode, autorequest logic can generate some IN tokens; it's | 
|  | * tricky since we can't leave REQPKT set in RXCSR after the transfer | 
|  | * finishes. So:  multipacket transfers involve two or more segments. | 
|  | * And always at least two IRQs ... RNDIS mode is not an option. | 
|  | */ | 
|  | if (is_host_active(musb)) | 
|  | n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds); | 
|  |  | 
|  | cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis); | 
|  |  | 
|  | length = min(n_bds * maxpacket, length); | 
|  |  | 
|  | DBG(4, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) " | 
|  | "dma 0x%x len %u %u/%u\n", | 
|  | rx->index, maxpacket, | 
|  | onepacket | 
|  | ? (is_rndis ? "rndis" : "onepacket") | 
|  | : "multipacket", | 
|  | n_bds, | 
|  | musb_readl(tibase, | 
|  | DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) | 
|  | & 0xffff, | 
|  | addr, length, rx->channel.actual_len, rx->buf_len); | 
|  |  | 
|  | /* only queue one segment at a time, since the hardware prevents | 
|  | * correct queue shutdown after unexpected short packets | 
|  | */ | 
|  | bd = cppi_bd_alloc(rx); | 
|  | rx->head = bd; | 
|  |  | 
|  | /* Build BDs for all packets in this segment */ | 
|  | for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) { | 
|  | u32	bd_len; | 
|  |  | 
|  | if (i) { | 
|  | bd = cppi_bd_alloc(rx); | 
|  | if (!bd) | 
|  | break; | 
|  | tail->next = bd; | 
|  | tail->hw_next = bd->dma; | 
|  | } | 
|  | bd->hw_next = 0; | 
|  |  | 
|  | /* all but the last packet will be maxpacket size */ | 
|  | if (maxpacket < length) | 
|  | bd_len = maxpacket; | 
|  | else | 
|  | bd_len = length; | 
|  |  | 
|  | bd->hw_bufp = addr; | 
|  | addr += bd_len; | 
|  | rx->offset += bd_len; | 
|  |  | 
|  | bd->hw_off_len = (0 /*offset*/ << 16) + bd_len; | 
|  | bd->buflen = bd_len; | 
|  |  | 
|  | bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0); | 
|  | length -= bd_len; | 
|  | } | 
|  |  | 
|  | /* we always expect at least one reusable BD! */ | 
|  | if (!tail) { | 
|  | WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds); | 
|  | return; | 
|  | } else if (i < n_bds) | 
|  | WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds); | 
|  |  | 
|  | tail->next = NULL; | 
|  | tail->hw_next = 0; | 
|  |  | 
|  | bd = rx->head; | 
|  | rx->tail = tail; | 
|  |  | 
|  | /* short reads and other faults should terminate this entire | 
|  | * dma segment.  we want one "dma packet" per dma segment, not | 
|  | * one per USB packet, terminating the whole queue at once... | 
|  | * NOTE that current hardware seems to ignore SOP and EOP. | 
|  | */ | 
|  | bd->hw_options |= CPPI_SOP_SET; | 
|  | tail->hw_options |= CPPI_EOP_SET; | 
|  |  | 
|  | #ifdef CONFIG_USB_MUSB_DEBUG | 
|  | if (_dbg_level(5)) { | 
|  | struct cppi_descriptor	*d; | 
|  |  | 
|  | for (d = rx->head; d; d = d->next) | 
|  | cppi_dump_rxbd("S", d); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* in case the preceding transfer left some state... */ | 
|  | tail = rx->last_processed; | 
|  | if (tail) { | 
|  | tail->next = bd; | 
|  | tail->hw_next = bd->dma; | 
|  | } | 
|  |  | 
|  | core_rxirq_enable(tibase, rx->index + 1); | 
|  |  | 
|  | /* BDs live in DMA-coherent memory, but writes might be pending */ | 
|  | cpu_drain_writebuffer(); | 
|  |  | 
|  | /* REVISIT specs say to write this AFTER the BUFCNT register | 
|  | * below ... but that loses badly. | 
|  | */ | 
|  | musb_writel(&rx_ram->rx_head, 0, bd->dma); | 
|  |  | 
|  | /* bufferCount must be at least 3, and zeroes on completion | 
|  | * unless it underflows below zero, or stops at two, or keeps | 
|  | * growing ... grr. | 
|  | */ | 
|  | i = musb_readl(tibase, | 
|  | DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) | 
|  | & 0xffff; | 
|  |  | 
|  | if (!i) | 
|  | musb_writel(tibase, | 
|  | DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), | 
|  | n_bds + 2); | 
|  | else if (n_bds > (i - 3)) | 
|  | musb_writel(tibase, | 
|  | DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), | 
|  | n_bds - (i - 3)); | 
|  |  | 
|  | i = musb_readl(tibase, | 
|  | DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) | 
|  | & 0xffff; | 
|  | if (i < (2 + n_bds)) { | 
|  | DBG(2, "bufcnt%d underrun - %d (for %d)\n", | 
|  | rx->index, i, n_bds); | 
|  | musb_writel(tibase, | 
|  | DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), | 
|  | n_bds + 2); | 
|  | } | 
|  |  | 
|  | cppi_dump_rx(4, rx, "/S"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cppi_channel_program - program channel for data transfer | 
|  | * @ch: the channel | 
|  | * @maxpacket: max packet size | 
|  | * @mode: For RX, 1 unless the usb protocol driver promised to treat | 
|  | *	all short reads as errors and kick in high level fault recovery. | 
|  | *	For TX, ignored because of RNDIS mode races/glitches. | 
|  | * @dma_addr: dma address of buffer | 
|  | * @len: length of buffer | 
|  | * Context: controller irqlocked | 
|  | */ | 
|  | static int cppi_channel_program(struct dma_channel *ch, | 
|  | u16 maxpacket, u8 mode, | 
|  | dma_addr_t dma_addr, u32 len) | 
|  | { | 
|  | struct cppi_channel	*cppi_ch; | 
|  | struct cppi		*controller; | 
|  | struct musb		*musb; | 
|  |  | 
|  | cppi_ch = container_of(ch, struct cppi_channel, channel); | 
|  | controller = cppi_ch->controller; | 
|  | musb = controller->musb; | 
|  |  | 
|  | switch (ch->status) { | 
|  | case MUSB_DMA_STATUS_BUS_ABORT: | 
|  | case MUSB_DMA_STATUS_CORE_ABORT: | 
|  | /* fault irq handler should have handled cleanup */ | 
|  | WARNING("%cX DMA%d not cleaned up after abort!\n", | 
|  | cppi_ch->transmit ? 'T' : 'R', | 
|  | cppi_ch->index); | 
|  | /* WARN_ON(1); */ | 
|  | break; | 
|  | case MUSB_DMA_STATUS_BUSY: | 
|  | WARNING("program active channel?  %cX DMA%d\n", | 
|  | cppi_ch->transmit ? 'T' : 'R', | 
|  | cppi_ch->index); | 
|  | /* WARN_ON(1); */ | 
|  | break; | 
|  | case MUSB_DMA_STATUS_UNKNOWN: | 
|  | DBG(1, "%cX DMA%d not allocated!\n", | 
|  | cppi_ch->transmit ? 'T' : 'R', | 
|  | cppi_ch->index); | 
|  | /* FALLTHROUGH */ | 
|  | case MUSB_DMA_STATUS_FREE: | 
|  | break; | 
|  | } | 
|  |  | 
|  | ch->status = MUSB_DMA_STATUS_BUSY; | 
|  |  | 
|  | /* set transfer parameters, then queue up its first segment */ | 
|  | cppi_ch->buf_dma = dma_addr; | 
|  | cppi_ch->offset = 0; | 
|  | cppi_ch->maxpacket = maxpacket; | 
|  | cppi_ch->buf_len = len; | 
|  | cppi_ch->channel.actual_len = 0; | 
|  |  | 
|  | /* TX channel? or RX? */ | 
|  | if (cppi_ch->transmit) | 
|  | cppi_next_tx_segment(musb, cppi_ch); | 
|  | else | 
|  | cppi_next_rx_segment(musb, cppi_ch, mode); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool cppi_rx_scan(struct cppi *cppi, unsigned ch) | 
|  | { | 
|  | struct cppi_channel		*rx = &cppi->rx[ch]; | 
|  | struct cppi_rx_stateram __iomem	*state = rx->state_ram; | 
|  | struct cppi_descriptor		*bd; | 
|  | struct cppi_descriptor		*last = rx->last_processed; | 
|  | bool				completed = false; | 
|  | bool				acked = false; | 
|  | int				i; | 
|  | dma_addr_t			safe2ack; | 
|  | void __iomem			*regs = rx->hw_ep->regs; | 
|  |  | 
|  | cppi_dump_rx(6, rx, "/K"); | 
|  |  | 
|  | bd = last ? last->next : rx->head; | 
|  | if (!bd) | 
|  | return false; | 
|  |  | 
|  | /* run through all completed BDs */ | 
|  | for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0); | 
|  | (safe2ack || completed) && bd && i < NUM_RXCHAN_BD; | 
|  | i++, bd = bd->next) { | 
|  | u16	len; | 
|  |  | 
|  | /* catch latest BD writes from CPPI */ | 
|  | rmb(); | 
|  | if (!completed && (bd->hw_options & CPPI_OWN_SET)) | 
|  | break; | 
|  |  | 
|  | DBG(5, "C/RXBD %08x: nxt %08x buf %08x " | 
|  | "off.len %08x opt.len %08x (%d)\n", | 
|  | bd->dma, bd->hw_next, bd->hw_bufp, | 
|  | bd->hw_off_len, bd->hw_options, | 
|  | rx->channel.actual_len); | 
|  |  | 
|  | /* actual packet received length */ | 
|  | if ((bd->hw_options & CPPI_SOP_SET) && !completed) | 
|  | len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK; | 
|  | else | 
|  | len = 0; | 
|  |  | 
|  | if (bd->hw_options & CPPI_EOQ_MASK) | 
|  | completed = true; | 
|  |  | 
|  | if (!completed && len < bd->buflen) { | 
|  | /* NOTE:  when we get a short packet, RXCSR_H_REQPKT | 
|  | * must have been cleared, and no more DMA packets may | 
|  | * active be in the queue... TI docs didn't say, but | 
|  | * CPPI ignores those BDs even though OWN is still set. | 
|  | */ | 
|  | completed = true; | 
|  | DBG(3, "rx short %d/%d (%d)\n", | 
|  | len, bd->buflen, | 
|  | rx->channel.actual_len); | 
|  | } | 
|  |  | 
|  | /* If we got here, we expect to ack at least one BD; meanwhile | 
|  | * CPPI may completing other BDs while we scan this list... | 
|  | * | 
|  | * RACE: we can notice OWN cleared before CPPI raises the | 
|  | * matching irq by writing that BD as the completion pointer. | 
|  | * In such cases, stop scanning and wait for the irq, avoiding | 
|  | * lost acks and states where BD ownership is unclear. | 
|  | */ | 
|  | if (bd->dma == safe2ack) { | 
|  | musb_writel(&state->rx_complete, 0, safe2ack); | 
|  | safe2ack = musb_readl(&state->rx_complete, 0); | 
|  | acked = true; | 
|  | if (bd->dma == safe2ack) | 
|  | safe2ack = 0; | 
|  | } | 
|  |  | 
|  | rx->channel.actual_len += len; | 
|  |  | 
|  | cppi_bd_free(rx, last); | 
|  | last = bd; | 
|  |  | 
|  | /* stop scanning on end-of-segment */ | 
|  | if (bd->hw_next == 0) | 
|  | completed = true; | 
|  | } | 
|  | rx->last_processed = last; | 
|  |  | 
|  | /* dma abort, lost ack, or ... */ | 
|  | if (!acked && last) { | 
|  | int	csr; | 
|  |  | 
|  | if (safe2ack == 0 || safe2ack == rx->last_processed->dma) | 
|  | musb_writel(&state->rx_complete, 0, safe2ack); | 
|  | if (safe2ack == 0) { | 
|  | cppi_bd_free(rx, last); | 
|  | rx->last_processed = NULL; | 
|  |  | 
|  | /* if we land here on the host side, H_REQPKT will | 
|  | * be clear and we need to restart the queue... | 
|  | */ | 
|  | WARN_ON(rx->head); | 
|  | } | 
|  | musb_ep_select(cppi->mregs, rx->index + 1); | 
|  | csr = musb_readw(regs, MUSB_RXCSR); | 
|  | if (csr & MUSB_RXCSR_DMAENAB) { | 
|  | DBG(4, "list%d %p/%p, last %08x%s, csr %04x\n", | 
|  | rx->index, | 
|  | rx->head, rx->tail, | 
|  | rx->last_processed | 
|  | ? rx->last_processed->dma | 
|  | : 0, | 
|  | completed ? ", completed" : "", | 
|  | csr); | 
|  | cppi_dump_rxq(4, "/what?", rx); | 
|  | } | 
|  | } | 
|  | if (!completed) { | 
|  | int	csr; | 
|  |  | 
|  | rx->head = bd; | 
|  |  | 
|  | /* REVISIT seems like "autoreq all but EOP" doesn't... | 
|  | * setting it here "should" be racey, but seems to work | 
|  | */ | 
|  | csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); | 
|  | if (is_host_active(cppi->musb) | 
|  | && bd | 
|  | && !(csr & MUSB_RXCSR_H_REQPKT)) { | 
|  | csr |= MUSB_RXCSR_H_REQPKT; | 
|  | musb_writew(regs, MUSB_RXCSR, | 
|  | MUSB_RXCSR_H_WZC_BITS | csr); | 
|  | csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); | 
|  | } | 
|  | } else { | 
|  | rx->head = NULL; | 
|  | rx->tail = NULL; | 
|  | } | 
|  |  | 
|  | cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned"); | 
|  | return completed; | 
|  | } | 
|  |  | 
|  | irqreturn_t cppi_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct musb		*musb = dev_id; | 
|  | struct cppi		*cppi; | 
|  | void __iomem		*tibase; | 
|  | struct musb_hw_ep	*hw_ep = NULL; | 
|  | u32			rx, tx; | 
|  | int			i, index; | 
|  | unsigned long		flags; | 
|  |  | 
|  | cppi = container_of(musb->dma_controller, struct cppi, controller); | 
|  | if (cppi->irq) | 
|  | spin_lock_irqsave(&musb->lock, flags); | 
|  |  | 
|  | tibase = musb->ctrl_base; | 
|  |  | 
|  | tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG); | 
|  | rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG); | 
|  |  | 
|  | if (!tx && !rx) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | DBG(4, "CPPI IRQ Tx%x Rx%x\n", tx, rx); | 
|  |  | 
|  | /* process TX channels */ | 
|  | for (index = 0; tx; tx = tx >> 1, index++) { | 
|  | struct cppi_channel		*tx_ch; | 
|  | struct cppi_tx_stateram __iomem	*tx_ram; | 
|  | bool				completed = false; | 
|  | struct cppi_descriptor		*bd; | 
|  |  | 
|  | if (!(tx & 1)) | 
|  | continue; | 
|  |  | 
|  | tx_ch = cppi->tx + index; | 
|  | tx_ram = tx_ch->state_ram; | 
|  |  | 
|  | /* FIXME  need a cppi_tx_scan() routine, which | 
|  | * can also be called from abort code | 
|  | */ | 
|  |  | 
|  | cppi_dump_tx(5, tx_ch, "/E"); | 
|  |  | 
|  | bd = tx_ch->head; | 
|  |  | 
|  | /* | 
|  | * If Head is null then this could mean that a abort interrupt | 
|  | * that needs to be acknowledged. | 
|  | */ | 
|  | if (NULL == bd) { | 
|  | DBG(1, "null BD\n"); | 
|  | tx_ram->tx_complete = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* run through all completed BDs */ | 
|  | for (i = 0; !completed && bd && i < NUM_TXCHAN_BD; | 
|  | i++, bd = bd->next) { | 
|  | u16	len; | 
|  |  | 
|  | /* catch latest BD writes from CPPI */ | 
|  | rmb(); | 
|  | if (bd->hw_options & CPPI_OWN_SET) | 
|  | break; | 
|  |  | 
|  | DBG(5, "C/TXBD %p n %x b %x off %x opt %x\n", | 
|  | bd, bd->hw_next, bd->hw_bufp, | 
|  | bd->hw_off_len, bd->hw_options); | 
|  |  | 
|  | len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK; | 
|  | tx_ch->channel.actual_len += len; | 
|  |  | 
|  | tx_ch->last_processed = bd; | 
|  |  | 
|  | /* write completion register to acknowledge | 
|  | * processing of completed BDs, and possibly | 
|  | * release the IRQ; EOQ might not be set ... | 
|  | * | 
|  | * REVISIT use the same ack strategy as rx | 
|  | * | 
|  | * REVISIT have observed bit 18 set; huh?? | 
|  | */ | 
|  | /* if ((bd->hw_options & CPPI_EOQ_MASK)) */ | 
|  | musb_writel(&tx_ram->tx_complete, 0, bd->dma); | 
|  |  | 
|  | /* stop scanning on end-of-segment */ | 
|  | if (bd->hw_next == 0) | 
|  | completed = true; | 
|  | } | 
|  |  | 
|  | /* on end of segment, maybe go to next one */ | 
|  | if (completed) { | 
|  | /* cppi_dump_tx(4, tx_ch, "/complete"); */ | 
|  |  | 
|  | /* transfer more, or report completion */ | 
|  | if (tx_ch->offset >= tx_ch->buf_len) { | 
|  | tx_ch->head = NULL; | 
|  | tx_ch->tail = NULL; | 
|  | tx_ch->channel.status = MUSB_DMA_STATUS_FREE; | 
|  |  | 
|  | hw_ep = tx_ch->hw_ep; | 
|  |  | 
|  | musb_dma_completion(musb, index + 1, 1); | 
|  |  | 
|  | } else { | 
|  | /* Bigger transfer than we could fit in | 
|  | * that first batch of descriptors... | 
|  | */ | 
|  | cppi_next_tx_segment(musb, tx_ch); | 
|  | } | 
|  | } else | 
|  | tx_ch->head = bd; | 
|  | } | 
|  |  | 
|  | /* Start processing the RX block */ | 
|  | for (index = 0; rx; rx = rx >> 1, index++) { | 
|  |  | 
|  | if (rx & 1) { | 
|  | struct cppi_channel		*rx_ch; | 
|  |  | 
|  | rx_ch = cppi->rx + index; | 
|  |  | 
|  | /* let incomplete dma segments finish */ | 
|  | if (!cppi_rx_scan(cppi, index)) | 
|  | continue; | 
|  |  | 
|  | /* start another dma segment if needed */ | 
|  | if (rx_ch->channel.actual_len != rx_ch->buf_len | 
|  | && rx_ch->channel.actual_len | 
|  | == rx_ch->offset) { | 
|  | cppi_next_rx_segment(musb, rx_ch, 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* all segments completed! */ | 
|  | rx_ch->channel.status = MUSB_DMA_STATUS_FREE; | 
|  |  | 
|  | hw_ep = rx_ch->hw_ep; | 
|  |  | 
|  | core_rxirq_disable(tibase, index + 1); | 
|  | musb_dma_completion(musb, index + 1, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* write to CPPI EOI register to re-enable interrupts */ | 
|  | musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0); | 
|  |  | 
|  | if (cppi->irq) | 
|  | spin_unlock_irqrestore(&musb->lock, flags); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Instantiate a software object representing a DMA controller. */ | 
|  | struct dma_controller *__init | 
|  | dma_controller_create(struct musb *musb, void __iomem *mregs) | 
|  | { | 
|  | struct cppi		*controller; | 
|  | struct device		*dev = musb->controller; | 
|  | struct platform_device	*pdev = to_platform_device(dev); | 
|  | int			irq = platform_get_irq(pdev, 1); | 
|  |  | 
|  | controller = kzalloc(sizeof *controller, GFP_KERNEL); | 
|  | if (!controller) | 
|  | return NULL; | 
|  |  | 
|  | controller->mregs = mregs; | 
|  | controller->tibase = mregs - DAVINCI_BASE_OFFSET; | 
|  |  | 
|  | controller->musb = musb; | 
|  | controller->controller.start = cppi_controller_start; | 
|  | controller->controller.stop = cppi_controller_stop; | 
|  | controller->controller.channel_alloc = cppi_channel_allocate; | 
|  | controller->controller.channel_release = cppi_channel_release; | 
|  | controller->controller.channel_program = cppi_channel_program; | 
|  | controller->controller.channel_abort = cppi_channel_abort; | 
|  |  | 
|  | /* NOTE: allocating from on-chip SRAM would give the least | 
|  | * contention for memory access, if that ever matters here. | 
|  | */ | 
|  |  | 
|  | /* setup BufferPool */ | 
|  | controller->pool = dma_pool_create("cppi", | 
|  | controller->musb->controller, | 
|  | sizeof(struct cppi_descriptor), | 
|  | CPPI_DESCRIPTOR_ALIGN, 0); | 
|  | if (!controller->pool) { | 
|  | kfree(controller); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (irq > 0) { | 
|  | if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) { | 
|  | dev_err(dev, "request_irq %d failed!\n", irq); | 
|  | dma_controller_destroy(&controller->controller); | 
|  | return NULL; | 
|  | } | 
|  | controller->irq = irq; | 
|  | } | 
|  |  | 
|  | return &controller->controller; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Destroy a previously-instantiated DMA controller. | 
|  | */ | 
|  | void dma_controller_destroy(struct dma_controller *c) | 
|  | { | 
|  | struct cppi	*cppi; | 
|  |  | 
|  | cppi = container_of(c, struct cppi, controller); | 
|  |  | 
|  | if (cppi->irq) | 
|  | free_irq(cppi->irq, cppi->musb); | 
|  |  | 
|  | /* assert:  caller stopped the controller first */ | 
|  | dma_pool_destroy(cppi->pool); | 
|  |  | 
|  | kfree(cppi); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Context: controller irqlocked, endpoint selected | 
|  | */ | 
|  | static int cppi_channel_abort(struct dma_channel *channel) | 
|  | { | 
|  | struct cppi_channel	*cppi_ch; | 
|  | struct cppi		*controller; | 
|  | void __iomem		*mbase; | 
|  | void __iomem		*tibase; | 
|  | void __iomem		*regs; | 
|  | u32			value; | 
|  | struct cppi_descriptor	*queue; | 
|  |  | 
|  | cppi_ch = container_of(channel, struct cppi_channel, channel); | 
|  |  | 
|  | controller = cppi_ch->controller; | 
|  |  | 
|  | switch (channel->status) { | 
|  | case MUSB_DMA_STATUS_BUS_ABORT: | 
|  | case MUSB_DMA_STATUS_CORE_ABORT: | 
|  | /* from RX or TX fault irq handler */ | 
|  | case MUSB_DMA_STATUS_BUSY: | 
|  | /* the hardware needs shutting down */ | 
|  | regs = cppi_ch->hw_ep->regs; | 
|  | break; | 
|  | case MUSB_DMA_STATUS_UNKNOWN: | 
|  | case MUSB_DMA_STATUS_FREE: | 
|  | return 0; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!cppi_ch->transmit && cppi_ch->head) | 
|  | cppi_dump_rxq(3, "/abort", cppi_ch); | 
|  |  | 
|  | mbase = controller->mregs; | 
|  | tibase = controller->tibase; | 
|  |  | 
|  | queue = cppi_ch->head; | 
|  | cppi_ch->head = NULL; | 
|  | cppi_ch->tail = NULL; | 
|  |  | 
|  | /* REVISIT should rely on caller having done this, | 
|  | * and caller should rely on us not changing it. | 
|  | * peripheral code is safe ... check host too. | 
|  | */ | 
|  | musb_ep_select(mbase, cppi_ch->index + 1); | 
|  |  | 
|  | if (cppi_ch->transmit) { | 
|  | struct cppi_tx_stateram __iomem *tx_ram; | 
|  | /* REVISIT put timeouts on these controller handshakes */ | 
|  |  | 
|  | cppi_dump_tx(6, cppi_ch, " (teardown)"); | 
|  |  | 
|  | /* teardown DMA engine then usb core */ | 
|  | do { | 
|  | value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG); | 
|  | } while (!(value & CPPI_TEAR_READY)); | 
|  | musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index); | 
|  |  | 
|  | tx_ram = cppi_ch->state_ram; | 
|  | do { | 
|  | value = musb_readl(&tx_ram->tx_complete, 0); | 
|  | } while (0xFFFFFFFC != value); | 
|  |  | 
|  | /* FIXME clean up the transfer state ... here? | 
|  | * the completion routine should get called with | 
|  | * an appropriate status code. | 
|  | */ | 
|  |  | 
|  | value = musb_readw(regs, MUSB_TXCSR); | 
|  | value &= ~MUSB_TXCSR_DMAENAB; | 
|  | value |= MUSB_TXCSR_FLUSHFIFO; | 
|  | musb_writew(regs, MUSB_TXCSR, value); | 
|  | musb_writew(regs, MUSB_TXCSR, value); | 
|  |  | 
|  | /* | 
|  | * 1. Write to completion Ptr value 0x1(bit 0 set) | 
|  | *    (write back mode) | 
|  | * 2. Wait for abort interrupt and then put the channel in | 
|  | *    compare mode by writing 1 to the tx_complete register. | 
|  | */ | 
|  | cppi_reset_tx(tx_ram, 1); | 
|  | cppi_ch->head = 0; | 
|  | musb_writel(&tx_ram->tx_complete, 0, 1); | 
|  | cppi_dump_tx(5, cppi_ch, " (done teardown)"); | 
|  |  | 
|  | /* REVISIT tx side _should_ clean up the same way | 
|  | * as the RX side ... this does no cleanup at all! | 
|  | */ | 
|  |  | 
|  | } else /* RX */ { | 
|  | u16			csr; | 
|  |  | 
|  | /* NOTE: docs don't guarantee any of this works ...  we | 
|  | * expect that if the usb core stops telling the cppi core | 
|  | * to pull more data from it, then it'll be safe to flush | 
|  | * current RX DMA state iff any pending fifo transfer is done. | 
|  | */ | 
|  |  | 
|  | core_rxirq_disable(tibase, cppi_ch->index + 1); | 
|  |  | 
|  | /* for host, ensure ReqPkt is never set again */ | 
|  | if (is_host_active(cppi_ch->controller->musb)) { | 
|  | value = musb_readl(tibase, DAVINCI_AUTOREQ_REG); | 
|  | value &= ~((0x3) << (cppi_ch->index * 2)); | 
|  | musb_writel(tibase, DAVINCI_AUTOREQ_REG, value); | 
|  | } | 
|  |  | 
|  | csr = musb_readw(regs, MUSB_RXCSR); | 
|  |  | 
|  | /* for host, clear (just) ReqPkt at end of current packet(s) */ | 
|  | if (is_host_active(cppi_ch->controller->musb)) { | 
|  | csr |= MUSB_RXCSR_H_WZC_BITS; | 
|  | csr &= ~MUSB_RXCSR_H_REQPKT; | 
|  | } else | 
|  | csr |= MUSB_RXCSR_P_WZC_BITS; | 
|  |  | 
|  | /* clear dma enable */ | 
|  | csr &= ~(MUSB_RXCSR_DMAENAB); | 
|  | musb_writew(regs, MUSB_RXCSR, csr); | 
|  | csr = musb_readw(regs, MUSB_RXCSR); | 
|  |  | 
|  | /* Quiesce: wait for current dma to finish (if not cleanup). | 
|  | * We can't use bit zero of stateram->rx_sop, since that | 
|  | * refers to an entire "DMA packet" not just emptying the | 
|  | * current fifo.  Most segments need multiple usb packets. | 
|  | */ | 
|  | if (channel->status == MUSB_DMA_STATUS_BUSY) | 
|  | udelay(50); | 
|  |  | 
|  | /* scan the current list, reporting any data that was | 
|  | * transferred and acking any IRQ | 
|  | */ | 
|  | cppi_rx_scan(controller, cppi_ch->index); | 
|  |  | 
|  | /* clobber the existing state once it's idle | 
|  | * | 
|  | * NOTE:  arguably, we should also wait for all the other | 
|  | * RX channels to quiesce (how??) and then temporarily | 
|  | * disable RXCPPI_CTRL_REG ... but it seems that we can | 
|  | * rely on the controller restarting from state ram, with | 
|  | * only RXCPPI_BUFCNT state being bogus.  BUFCNT will | 
|  | * correct itself after the next DMA transfer though. | 
|  | * | 
|  | * REVISIT does using rndis mode change that? | 
|  | */ | 
|  | cppi_reset_rx(cppi_ch->state_ram); | 
|  |  | 
|  | /* next DMA request _should_ load cppi head ptr */ | 
|  |  | 
|  | /* ... we don't "free" that list, only mutate it in place.  */ | 
|  | cppi_dump_rx(5, cppi_ch, " (done abort)"); | 
|  |  | 
|  | /* clean up previously pending bds */ | 
|  | cppi_bd_free(cppi_ch, cppi_ch->last_processed); | 
|  | cppi_ch->last_processed = NULL; | 
|  |  | 
|  | while (queue) { | 
|  | struct cppi_descriptor	*tmp = queue->next; | 
|  |  | 
|  | cppi_bd_free(cppi_ch, queue); | 
|  | queue = tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | channel->status = MUSB_DMA_STATUS_FREE; | 
|  | cppi_ch->buf_dma = 0; | 
|  | cppi_ch->offset = 0; | 
|  | cppi_ch->buf_len = 0; | 
|  | cppi_ch->maxpacket = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* TBD Queries: | 
|  | * | 
|  | * Power Management ... probably turn off cppi during suspend, restart; | 
|  | * check state ram?  Clocking is presumably shared with usb core. | 
|  | */ |