| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/mm_types.h> |
| #include <linux/memblock.h> |
| #include <misc/cxl-base.h> |
| |
| #include <asm/debugfs.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlb.h> |
| #include <asm/trace.h> |
| #include <asm/powernv.h> |
| #include <asm/firmware.h> |
| #include <asm/ultravisor.h> |
| #include <asm/kexec.h> |
| |
| #include <mm/mmu_decl.h> |
| #include <trace/events/thp.h> |
| |
| unsigned long __pmd_frag_nr; |
| EXPORT_SYMBOL(__pmd_frag_nr); |
| unsigned long __pmd_frag_size_shift; |
| EXPORT_SYMBOL(__pmd_frag_size_shift); |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| /* |
| * This is called when relaxing access to a hugepage. It's also called in the page |
| * fault path when we don't hit any of the major fault cases, ie, a minor |
| * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have |
| * handled those two for us, we additionally deal with missing execute |
| * permission here on some processors |
| */ |
| int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, |
| pmd_t *pmdp, pmd_t entry, int dirty) |
| { |
| int changed; |
| #ifdef CONFIG_DEBUG_VM |
| WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); |
| assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); |
| #endif |
| changed = !pmd_same(*(pmdp), entry); |
| if (changed) { |
| /* |
| * We can use MMU_PAGE_2M here, because only radix |
| * path look at the psize. |
| */ |
| __ptep_set_access_flags(vma, pmdp_ptep(pmdp), |
| pmd_pte(entry), address, MMU_PAGE_2M); |
| } |
| return changed; |
| } |
| |
| int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp) |
| { |
| return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); |
| } |
| /* |
| * set a new huge pmd. We should not be called for updating |
| * an existing pmd entry. That should go via pmd_hugepage_update. |
| */ |
| void set_pmd_at(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp, pmd_t pmd) |
| { |
| #ifdef CONFIG_DEBUG_VM |
| /* |
| * Make sure hardware valid bit is not set. We don't do |
| * tlb flush for this update. |
| */ |
| |
| WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); |
| assert_spin_locked(pmd_lockptr(mm, pmdp)); |
| WARN_ON(!(pmd_large(pmd))); |
| #endif |
| trace_hugepage_set_pmd(addr, pmd_val(pmd)); |
| return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); |
| } |
| |
| static void do_nothing(void *unused) |
| { |
| |
| } |
| /* |
| * Serialize against find_current_mm_pte which does lock-less |
| * lookup in page tables with local interrupts disabled. For huge pages |
| * it casts pmd_t to pte_t. Since format of pte_t is different from |
| * pmd_t we want to prevent transit from pmd pointing to page table |
| * to pmd pointing to huge page (and back) while interrupts are disabled. |
| * We clear pmd to possibly replace it with page table pointer in |
| * different code paths. So make sure we wait for the parallel |
| * find_current_mm_pte to finish. |
| */ |
| void serialize_against_pte_lookup(struct mm_struct *mm) |
| { |
| smp_mb(); |
| smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1); |
| } |
| |
| /* |
| * We use this to invalidate a pmdp entry before switching from a |
| * hugepte to regular pmd entry. |
| */ |
| pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, |
| pmd_t *pmdp) |
| { |
| unsigned long old_pmd; |
| |
| old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); |
| flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); |
| return __pmd(old_pmd); |
| } |
| |
| pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, |
| unsigned long addr, pmd_t *pmdp, int full) |
| { |
| pmd_t pmd; |
| VM_BUG_ON(addr & ~HPAGE_PMD_MASK); |
| VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && |
| !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); |
| pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); |
| /* |
| * if it not a fullmm flush, then we can possibly end up converting |
| * this PMD pte entry to a regular level 0 PTE by a parallel page fault. |
| * Make sure we flush the tlb in this case. |
| */ |
| if (!full) |
| flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); |
| return pmd; |
| } |
| |
| static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) |
| { |
| return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); |
| } |
| |
| /* |
| * At some point we should be able to get rid of |
| * pmd_mkhuge() and mk_huge_pmd() when we update all the |
| * other archs to mark the pmd huge in pfn_pmd() |
| */ |
| pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) |
| { |
| unsigned long pmdv; |
| |
| pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; |
| |
| return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); |
| } |
| |
| pmd_t mk_pmd(struct page *page, pgprot_t pgprot) |
| { |
| return pfn_pmd(page_to_pfn(page), pgprot); |
| } |
| |
| pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) |
| { |
| unsigned long pmdv; |
| |
| pmdv = pmd_val(pmd); |
| pmdv &= _HPAGE_CHG_MASK; |
| return pmd_set_protbits(__pmd(pmdv), newprot); |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| /* For use by kexec */ |
| void mmu_cleanup_all(void) |
| { |
| if (radix_enabled()) |
| radix__mmu_cleanup_all(); |
| else if (mmu_hash_ops.hpte_clear_all) |
| mmu_hash_ops.hpte_clear_all(); |
| |
| reset_sprs(); |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| int __meminit create_section_mapping(unsigned long start, unsigned long end, |
| int nid, pgprot_t prot) |
| { |
| if (radix_enabled()) |
| return radix__create_section_mapping(start, end, nid, prot); |
| |
| return hash__create_section_mapping(start, end, nid, prot); |
| } |
| |
| int __meminit remove_section_mapping(unsigned long start, unsigned long end) |
| { |
| if (radix_enabled()) |
| return radix__remove_section_mapping(start, end); |
| |
| return hash__remove_section_mapping(start, end); |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| void __init mmu_partition_table_init(void) |
| { |
| unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; |
| unsigned long ptcr; |
| |
| BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large."); |
| /* Initialize the Partition Table with no entries */ |
| partition_tb = memblock_alloc(patb_size, patb_size); |
| if (!partition_tb) |
| panic("%s: Failed to allocate %lu bytes align=0x%lx\n", |
| __func__, patb_size, patb_size); |
| |
| /* |
| * update partition table control register, |
| * 64 K size. |
| */ |
| ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); |
| set_ptcr_when_no_uv(ptcr); |
| powernv_set_nmmu_ptcr(ptcr); |
| } |
| |
| static void flush_partition(unsigned int lpid, bool radix) |
| { |
| if (radix) { |
| radix__flush_all_lpid(lpid); |
| radix__flush_all_lpid_guest(lpid); |
| } else { |
| asm volatile("ptesync" : : : "memory"); |
| asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : |
| "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); |
| /* do we need fixup here ?*/ |
| asm volatile("eieio; tlbsync; ptesync" : : : "memory"); |
| trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); |
| } |
| } |
| |
| void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, |
| unsigned long dw1, bool flush) |
| { |
| unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); |
| |
| /* |
| * When ultravisor is enabled, the partition table is stored in secure |
| * memory and can only be accessed doing an ultravisor call. However, we |
| * maintain a copy of the partition table in normal memory to allow Nest |
| * MMU translations to occur (for normal VMs). |
| * |
| * Therefore, here we always update partition_tb, regardless of whether |
| * we are running under an ultravisor or not. |
| */ |
| partition_tb[lpid].patb0 = cpu_to_be64(dw0); |
| partition_tb[lpid].patb1 = cpu_to_be64(dw1); |
| |
| /* |
| * If ultravisor is enabled, we do an ultravisor call to register the |
| * partition table entry (PATE), which also do a global flush of TLBs |
| * and partition table caches for the lpid. Otherwise, just do the |
| * flush. The type of flush (hash or radix) depends on what the previous |
| * use of the partition ID was, not the new use. |
| */ |
| if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { |
| uv_register_pate(lpid, dw0, dw1); |
| pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", |
| dw0, dw1); |
| } else if (flush) { |
| /* |
| * Boot does not need to flush, because MMU is off and each |
| * CPU does a tlbiel_all() before switching them on, which |
| * flushes everything. |
| */ |
| flush_partition(lpid, (old & PATB_HR)); |
| } |
| } |
| EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); |
| |
| static pmd_t *get_pmd_from_cache(struct mm_struct *mm) |
| { |
| void *pmd_frag, *ret; |
| |
| if (PMD_FRAG_NR == 1) |
| return NULL; |
| |
| spin_lock(&mm->page_table_lock); |
| ret = mm->context.pmd_frag; |
| if (ret) { |
| pmd_frag = ret + PMD_FRAG_SIZE; |
| /* |
| * If we have taken up all the fragments mark PTE page NULL |
| */ |
| if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) |
| pmd_frag = NULL; |
| mm->context.pmd_frag = pmd_frag; |
| } |
| spin_unlock(&mm->page_table_lock); |
| return (pmd_t *)ret; |
| } |
| |
| static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) |
| { |
| void *ret = NULL; |
| struct page *page; |
| gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; |
| |
| if (mm == &init_mm) |
| gfp &= ~__GFP_ACCOUNT; |
| page = alloc_page(gfp); |
| if (!page) |
| return NULL; |
| if (!pgtable_pmd_page_ctor(page)) { |
| __free_pages(page, 0); |
| return NULL; |
| } |
| |
| atomic_set(&page->pt_frag_refcount, 1); |
| |
| ret = page_address(page); |
| /* |
| * if we support only one fragment just return the |
| * allocated page. |
| */ |
| if (PMD_FRAG_NR == 1) |
| return ret; |
| |
| spin_lock(&mm->page_table_lock); |
| /* |
| * If we find pgtable_page set, we return |
| * the allocated page with single fragement |
| * count. |
| */ |
| if (likely(!mm->context.pmd_frag)) { |
| atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR); |
| mm->context.pmd_frag = ret + PMD_FRAG_SIZE; |
| } |
| spin_unlock(&mm->page_table_lock); |
| |
| return (pmd_t *)ret; |
| } |
| |
| pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) |
| { |
| pmd_t *pmd; |
| |
| pmd = get_pmd_from_cache(mm); |
| if (pmd) |
| return pmd; |
| |
| return __alloc_for_pmdcache(mm); |
| } |
| |
| void pmd_fragment_free(unsigned long *pmd) |
| { |
| struct page *page = virt_to_page(pmd); |
| |
| if (PageReserved(page)) |
| return free_reserved_page(page); |
| |
| BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); |
| if (atomic_dec_and_test(&page->pt_frag_refcount)) { |
| pgtable_pmd_page_dtor(page); |
| __free_page(page); |
| } |
| } |
| |
| static inline void pgtable_free(void *table, int index) |
| { |
| switch (index) { |
| case PTE_INDEX: |
| pte_fragment_free(table, 0); |
| break; |
| case PMD_INDEX: |
| pmd_fragment_free(table); |
| break; |
| case PUD_INDEX: |
| __pud_free(table); |
| break; |
| #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) |
| /* 16M hugepd directory at pud level */ |
| case HTLB_16M_INDEX: |
| BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); |
| kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); |
| break; |
| /* 16G hugepd directory at the pgd level */ |
| case HTLB_16G_INDEX: |
| BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); |
| kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); |
| break; |
| #endif |
| /* We don't free pgd table via RCU callback */ |
| default: |
| BUG(); |
| } |
| } |
| |
| void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) |
| { |
| unsigned long pgf = (unsigned long)table; |
| |
| BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); |
| pgf |= index; |
| tlb_remove_table(tlb, (void *)pgf); |
| } |
| |
| void __tlb_remove_table(void *_table) |
| { |
| void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); |
| unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; |
| |
| return pgtable_free(table, index); |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; |
| |
| void arch_report_meminfo(struct seq_file *m) |
| { |
| /* |
| * Hash maps the memory with one size mmu_linear_psize. |
| * So don't bother to print these on hash |
| */ |
| if (!radix_enabled()) |
| return; |
| seq_printf(m, "DirectMap4k: %8lu kB\n", |
| atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); |
| seq_printf(m, "DirectMap64k: %8lu kB\n", |
| atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); |
| seq_printf(m, "DirectMap2M: %8lu kB\n", |
| atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); |
| seq_printf(m, "DirectMap1G: %8lu kB\n", |
| atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, |
| pte_t *ptep) |
| { |
| unsigned long pte_val; |
| |
| /* |
| * Clear the _PAGE_PRESENT so that no hardware parallel update is |
| * possible. Also keep the pte_present true so that we don't take |
| * wrong fault. |
| */ |
| pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); |
| |
| return __pte(pte_val); |
| |
| } |
| |
| void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, |
| pte_t *ptep, pte_t old_pte, pte_t pte) |
| { |
| if (radix_enabled()) |
| return radix__ptep_modify_prot_commit(vma, addr, |
| ptep, old_pte, pte); |
| set_pte_at(vma->vm_mm, addr, ptep, pte); |
| } |
| |
| /* |
| * For hash translation mode, we use the deposited table to store hash slot |
| * information and they are stored at PTRS_PER_PMD offset from related pmd |
| * location. Hence a pmd move requires deposit and withdraw. |
| * |
| * For radix translation with split pmd ptl, we store the deposited table in the |
| * pmd page. Hence if we have different pmd page we need to withdraw during pmd |
| * move. |
| * |
| * With hash we use deposited table always irrespective of anon or not. |
| * With radix we use deposited table only for anonymous mapping. |
| */ |
| int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, |
| struct spinlock *old_pmd_ptl, |
| struct vm_area_struct *vma) |
| { |
| if (radix_enabled()) |
| return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); |
| |
| return true; |
| } |
| |
| /* |
| * Does the CPU support tlbie? |
| */ |
| bool tlbie_capable __read_mostly = true; |
| EXPORT_SYMBOL(tlbie_capable); |
| |
| /* |
| * Should tlbie be used for management of CPU TLBs, for kernel and process |
| * address spaces? tlbie may still be used for nMMU accelerators, and for KVM |
| * guest address spaces. |
| */ |
| bool tlbie_enabled __read_mostly = true; |
| |
| static int __init setup_disable_tlbie(char *str) |
| { |
| if (!radix_enabled()) { |
| pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); |
| return 1; |
| } |
| |
| tlbie_capable = false; |
| tlbie_enabled = false; |
| |
| return 1; |
| } |
| __setup("disable_tlbie", setup_disable_tlbie); |
| |
| static int __init pgtable_debugfs_setup(void) |
| { |
| if (!tlbie_capable) |
| return 0; |
| |
| /* |
| * There is no locking vs tlb flushing when changing this value. |
| * The tlb flushers will see one value or another, and use either |
| * tlbie or tlbiel with IPIs. In both cases the TLBs will be |
| * invalidated as expected. |
| */ |
| debugfs_create_bool("tlbie_enabled", 0600, |
| powerpc_debugfs_root, |
| &tlbie_enabled); |
| |
| return 0; |
| } |
| arch_initcall(pgtable_debugfs_setup); |