| /* |
| * Copyright 2013 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Ben Skeggs |
| */ |
| #define nv50_ram(p) container_of((p), struct nv50_ram, base) |
| #include "ram.h" |
| #include "ramseq.h" |
| #include "nv50.h" |
| |
| #include <core/option.h> |
| #include <subdev/bios.h> |
| #include <subdev/bios/perf.h> |
| #include <subdev/bios/pll.h> |
| #include <subdev/bios/rammap.h> |
| #include <subdev/bios/timing.h> |
| #include <subdev/clk/pll.h> |
| #include <subdev/gpio.h> |
| |
| struct nv50_ramseq { |
| struct hwsq base; |
| struct hwsq_reg r_0x002504; |
| struct hwsq_reg r_0x004008; |
| struct hwsq_reg r_0x00400c; |
| struct hwsq_reg r_0x00c040; |
| struct hwsq_reg r_0x100200; |
| struct hwsq_reg r_0x100210; |
| struct hwsq_reg r_0x10021c; |
| struct hwsq_reg r_0x1002d0; |
| struct hwsq_reg r_0x1002d4; |
| struct hwsq_reg r_0x1002dc; |
| struct hwsq_reg r_0x10053c; |
| struct hwsq_reg r_0x1005a0; |
| struct hwsq_reg r_0x1005a4; |
| struct hwsq_reg r_0x100710; |
| struct hwsq_reg r_0x100714; |
| struct hwsq_reg r_0x100718; |
| struct hwsq_reg r_0x10071c; |
| struct hwsq_reg r_0x100da0; |
| struct hwsq_reg r_0x100e20; |
| struct hwsq_reg r_0x100e24; |
| struct hwsq_reg r_0x611200; |
| struct hwsq_reg r_timing[9]; |
| struct hwsq_reg r_mr[4]; |
| struct hwsq_reg r_gpio[4]; |
| }; |
| |
| struct nv50_ram { |
| struct nvkm_ram base; |
| struct nv50_ramseq hwsq; |
| }; |
| |
| #define T(t) cfg->timing_10_##t |
| static int |
| nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing) |
| { |
| struct nvbios_ramcfg *cfg = &ram->base.target.bios; |
| struct nvkm_subdev *subdev = &ram->base.fb->subdev; |
| struct nvkm_device *device = subdev->device; |
| u32 cur2, cur4, cur7, cur8; |
| u8 unkt3b; |
| |
| cur2 = nvkm_rd32(device, 0x100228); |
| cur4 = nvkm_rd32(device, 0x100230); |
| cur7 = nvkm_rd32(device, 0x10023c); |
| cur8 = nvkm_rd32(device, 0x100240); |
| |
| switch ((!T(CWL)) * ram->base.type) { |
| case NVKM_RAM_TYPE_DDR2: |
| T(CWL) = T(CL) - 1; |
| break; |
| case NVKM_RAM_TYPE_GDDR3: |
| T(CWL) = ((cur2 & 0xff000000) >> 24) + 1; |
| break; |
| } |
| |
| /* XXX: N=1 is not proper statistics */ |
| if (device->chipset == 0xa0) { |
| unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40; |
| timing[6] = (0x2d + T(CL) - T(CWL) + |
| ram->base.next->bios.rammap_00_16_40) << 16 | |
| T(CWL) << 8 | |
| (0x2f + T(CL) - T(CWL)); |
| } else { |
| unkt3b = 0x16; |
| timing[6] = (0x2b + T(CL) - T(CWL)) << 16 | |
| max_t(s8, T(CWL) - 2, 1) << 8 | |
| (0x2e + T(CL) - T(CWL)); |
| } |
| |
| timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC)); |
| timing[1] = (T(WR) + 1 + T(CWL)) << 24 | |
| max_t(u8, T(18), 1) << 16 | |
| (T(WTR) + 1 + T(CWL)) << 8 | |
| (3 + T(CL) - T(CWL)); |
| timing[2] = (T(CWL) - 1) << 24 | |
| (T(RRD) << 16) | |
| (T(RCDWR) << 8) | |
| T(RCDRD); |
| timing[3] = (unkt3b - 2 + T(CL)) << 24 | |
| unkt3b << 16 | |
| (T(CL) - 1) << 8 | |
| (T(CL) - 1); |
| timing[4] = (cur4 & 0xffff0000) | |
| T(13) << 8 | |
| T(13); |
| timing[5] = T(RFC) << 24 | |
| max_t(u8, T(RCDRD), T(RCDWR)) << 16 | |
| T(RP); |
| /* Timing 6 is already done above */ |
| timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16; |
| timing[8] = (cur8 & 0xffffff00); |
| |
| /* XXX: P.version == 1 only has DDR2 and GDDR3? */ |
| if (ram->base.type == NVKM_RAM_TYPE_DDR2) { |
| timing[5] |= (T(CL) + 3) << 8; |
| timing[8] |= (T(CL) - 4); |
| } else |
| if (ram->base.type == NVKM_RAM_TYPE_GDDR3) { |
| timing[5] |= (T(CL) + 2) << 8; |
| timing[8] |= (T(CL) - 2); |
| } |
| |
| nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n", |
| timing[0], timing[1], timing[2], timing[3]); |
| nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n", |
| timing[4], timing[5], timing[6], timing[7]); |
| nvkm_debug(subdev, " 240: %08x\n", timing[8]); |
| return 0; |
| } |
| |
| static int |
| nv50_ram_timing_read(struct nv50_ram *ram, u32 *timing) |
| { |
| unsigned int i; |
| struct nvbios_ramcfg *cfg = &ram->base.target.bios; |
| struct nvkm_subdev *subdev = &ram->base.fb->subdev; |
| struct nvkm_device *device = subdev->device; |
| |
| for (i = 0; i <= 8; i++) |
| timing[i] = nvkm_rd32(device, 0x100220 + (i * 4)); |
| |
| /* Derive the bare minimum for the MR calculation to succeed */ |
| cfg->timing_ver = 0x10; |
| T(CL) = (timing[3] & 0xff) + 1; |
| |
| switch (ram->base.type) { |
| case NVKM_RAM_TYPE_DDR2: |
| T(CWL) = T(CL) - 1; |
| break; |
| case NVKM_RAM_TYPE_GDDR3: |
| T(CWL) = ((timing[2] & 0xff000000) >> 24) + 1; |
| break; |
| default: |
| return -ENOSYS; |
| } |
| |
| T(WR) = ((timing[1] >> 24) & 0xff) - 1 - T(CWL); |
| |
| return 0; |
| } |
| #undef T |
| |
| static void |
| nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq) |
| { |
| ram_mask(hwsq, mr[0], 0x100, 0x100); |
| ram_mask(hwsq, mr[0], 0x100, 0x000); |
| ram_nsec(hwsq, 24000); |
| } |
| |
| static void |
| nv50_ram_gpio(struct nv50_ramseq *hwsq, u8 tag, u32 val) |
| { |
| struct nvkm_gpio *gpio = hwsq->base.subdev->device->gpio; |
| struct dcb_gpio_func func; |
| u32 reg, sh, gpio_val; |
| int ret; |
| |
| if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) { |
| ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func); |
| if (ret) |
| return; |
| |
| reg = func.line >> 3; |
| sh = (func.line & 0x7) << 2; |
| gpio_val = ram_rd32(hwsq, gpio[reg]); |
| |
| if (gpio_val & (8 << sh)) |
| val = !val; |
| if (!(func.log[1] & 1)) |
| val = !val; |
| |
| ram_mask(hwsq, gpio[reg], (0x3 << sh), ((val | 0x2) << sh)); |
| ram_nsec(hwsq, 20000); |
| } |
| } |
| |
| static int |
| nv50_ram_calc(struct nvkm_ram *base, u32 freq) |
| { |
| struct nv50_ram *ram = nv50_ram(base); |
| struct nv50_ramseq *hwsq = &ram->hwsq; |
| struct nvkm_subdev *subdev = &ram->base.fb->subdev; |
| struct nvkm_bios *bios = subdev->device->bios; |
| struct nvbios_perfE perfE; |
| struct nvbios_pll mpll; |
| struct nvkm_ram_data *next; |
| u8 ver, hdr, cnt, len, strap, size; |
| u32 data; |
| u32 r100da0, r004008, unk710, unk714, unk718, unk71c; |
| int N1, M1, N2, M2, P; |
| int ret, i; |
| u32 timing[9]; |
| |
| next = &ram->base.target; |
| next->freq = freq; |
| ram->base.next = next; |
| |
| /* lookup closest matching performance table entry for frequency */ |
| i = 0; |
| do { |
| data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt, |
| &size, &perfE); |
| if (!data || (ver < 0x25 || ver >= 0x40) || |
| (size < 2)) { |
| nvkm_error(subdev, "invalid/missing perftab entry\n"); |
| return -EINVAL; |
| } |
| } while (perfE.memory < freq); |
| |
| nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios); |
| |
| /* locate specific data set for the attached memory */ |
| strap = nvbios_ramcfg_index(subdev); |
| if (strap >= cnt) { |
| nvkm_error(subdev, "invalid ramcfg strap\n"); |
| return -EINVAL; |
| } |
| |
| data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap, |
| &next->bios); |
| if (!data) { |
| nvkm_error(subdev, "invalid/missing rammap entry "); |
| return -EINVAL; |
| } |
| |
| /* lookup memory timings, if bios says they're present */ |
| if (next->bios.ramcfg_timing != 0xff) { |
| data = nvbios_timingEp(bios, next->bios.ramcfg_timing, |
| &ver, &hdr, &cnt, &len, &next->bios); |
| if (!data || ver != 0x10 || hdr < 0x12) { |
| nvkm_error(subdev, "invalid/missing timing entry " |
| "%02x %04x %02x %02x\n", |
| strap, data, ver, hdr); |
| return -EINVAL; |
| } |
| nv50_ram_timing_calc(ram, timing); |
| } else { |
| nv50_ram_timing_read(ram, timing); |
| } |
| |
| ret = ram_init(hwsq, subdev); |
| if (ret) |
| return ret; |
| |
| /* Determine ram-specific MR values */ |
| ram->base.mr[0] = ram_rd32(hwsq, mr[0]); |
| ram->base.mr[1] = ram_rd32(hwsq, mr[1]); |
| ram->base.mr[2] = ram_rd32(hwsq, mr[2]); |
| |
| switch (ram->base.type) { |
| case NVKM_RAM_TYPE_GDDR3: |
| ret = nvkm_gddr3_calc(&ram->base); |
| break; |
| default: |
| ret = -ENOSYS; |
| break; |
| } |
| |
| if (ret) { |
| nvkm_error(subdev, "Could not calculate MR\n"); |
| return ret; |
| } |
| |
| if (subdev->device->chipset <= 0x96 && !next->bios.ramcfg_00_03_02) |
| ram_mask(hwsq, 0x100710, 0x00000200, 0x00000000); |
| |
| /* Always disable this bit during reclock */ |
| ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000); |
| |
| ram_wait_vblank(hwsq); |
| ram_wr32(hwsq, 0x611200, 0x00003300); |
| ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */ |
| ram_nsec(hwsq, 8000); |
| ram_setf(hwsq, 0x10, 0x00); /* disable fb */ |
| ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */ |
| ram_nsec(hwsq, 2000); |
| |
| if (next->bios.timing_10_ODT) |
| nv50_ram_gpio(hwsq, 0x2e, 1); |
| |
| ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */ |
| ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */ |
| ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */ |
| ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */ |
| ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */ |
| |
| ret = nvbios_pll_parse(bios, 0x004008, &mpll); |
| mpll.vco2.max_freq = 0; |
| if (ret >= 0) { |
| ret = nv04_pll_calc(subdev, &mpll, freq, |
| &N1, &M1, &N2, &M2, &P); |
| if (ret <= 0) |
| ret = -EINVAL; |
| } |
| |
| if (ret < 0) |
| return ret; |
| |
| /* XXX: 750MHz seems rather arbitrary */ |
| if (freq <= 750000) { |
| r100da0 = 0x00000010; |
| r004008 = 0x90000000; |
| } else { |
| r100da0 = 0x00000000; |
| r004008 = 0x80000000; |
| } |
| |
| r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16); |
| |
| ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000); |
| /* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does |
| * it have a different rammap bit from DLLoff? */ |
| ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 | |
| next->bios.rammap_00_16_40 << 14); |
| ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1); |
| ram_mask(hwsq, 0x004008, 0x91ff0000, r004008); |
| |
| /* XXX: GDDR3 only? */ |
| if (subdev->device->chipset >= 0x92) |
| ram_wr32(hwsq, 0x100da0, r100da0); |
| |
| nv50_ram_gpio(hwsq, 0x18, !next->bios.ramcfg_FBVDDQ); |
| ram_nsec(hwsq, 64000); /*XXX*/ |
| ram_nsec(hwsq, 32000); /*XXX*/ |
| |
| ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000); |
| |
| ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */ |
| ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */ |
| ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */ |
| |
| ram_nsec(hwsq, 12000); |
| |
| switch (ram->base.type) { |
| case NVKM_RAM_TYPE_DDR2: |
| ram_nuke(hwsq, mr[0]); /* force update */ |
| ram_mask(hwsq, mr[0], 0x000, 0x000); |
| break; |
| case NVKM_RAM_TYPE_GDDR3: |
| ram_nuke(hwsq, mr[1]); /* force update */ |
| ram_wr32(hwsq, mr[1], ram->base.mr[1]); |
| ram_nuke(hwsq, mr[0]); /* force update */ |
| ram_wr32(hwsq, mr[0], ram->base.mr[0]); |
| break; |
| default: |
| break; |
| } |
| |
| ram_mask(hwsq, timing[3], 0xffffffff, timing[3]); |
| ram_mask(hwsq, timing[1], 0xffffffff, timing[1]); |
| ram_mask(hwsq, timing[6], 0xffffffff, timing[6]); |
| ram_mask(hwsq, timing[7], 0xffffffff, timing[7]); |
| ram_mask(hwsq, timing[8], 0xffffffff, timing[8]); |
| ram_mask(hwsq, timing[0], 0xffffffff, timing[0]); |
| ram_mask(hwsq, timing[2], 0xffffffff, timing[2]); |
| ram_mask(hwsq, timing[4], 0xffffffff, timing[4]); |
| ram_mask(hwsq, timing[5], 0xffffffff, timing[5]); |
| |
| if (!next->bios.ramcfg_00_03_02) |
| ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000); |
| ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12); |
| |
| /* XXX: A lot of this could be "chipset"/"ram type" specific stuff */ |
| unk710 = ram_rd32(hwsq, 0x100710) & ~0x00000100; |
| unk714 = ram_rd32(hwsq, 0x100714) & ~0xf0000020; |
| unk718 = ram_rd32(hwsq, 0x100718) & ~0x00000100; |
| unk71c = ram_rd32(hwsq, 0x10071c) & ~0x00000100; |
| if (subdev->device->chipset <= 0x96) { |
| unk710 &= ~0x0000006e; |
| unk714 &= ~0x00000100; |
| |
| if (!next->bios.ramcfg_00_03_08) |
| unk710 |= 0x00000060; |
| if (!next->bios.ramcfg_FBVDDQ) |
| unk714 |= 0x00000100; |
| if ( next->bios.ramcfg_00_04_04) |
| unk710 |= 0x0000000e; |
| } else { |
| unk710 &= ~0x00000001; |
| |
| if (!next->bios.ramcfg_00_03_08) |
| unk710 |= 0x00000001; |
| } |
| |
| if ( next->bios.ramcfg_00_03_01) |
| unk71c |= 0x00000100; |
| if ( next->bios.ramcfg_00_03_02) |
| unk710 |= 0x00000100; |
| if (!next->bios.ramcfg_00_03_08) |
| unk714 |= 0x00000020; |
| if ( next->bios.ramcfg_00_04_04) |
| unk714 |= 0x70000000; |
| if ( next->bios.ramcfg_00_04_20) |
| unk718 |= 0x00000100; |
| |
| ram_mask(hwsq, 0x100714, 0xffffffff, unk714); |
| ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c); |
| ram_mask(hwsq, 0x100718, 0xffffffff, unk718); |
| ram_mask(hwsq, 0x100710, 0xffffffff, unk710); |
| |
| /* XXX: G94 does not even test these regs in trace. Harmless we do it, |
| * but why is it omitted? */ |
| if (next->bios.rammap_00_16_20) { |
| ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 | |
| next->bios.ramcfg_00_06 << 8 | |
| next->bios.ramcfg_00_05); |
| ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 | |
| next->bios.ramcfg_00_08); |
| ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000); |
| } else { |
| ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000); |
| } |
| ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]); |
| |
| if (!next->bios.timing_10_ODT) |
| nv50_ram_gpio(hwsq, 0x2e, 0); |
| |
| /* Reset DLL */ |
| if (!next->bios.ramcfg_DLLoff) |
| nvkm_sddr2_dll_reset(hwsq); |
| |
| ram_setf(hwsq, 0x10, 0x01); /* enable fb */ |
| ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */ |
| ram_wr32(hwsq, 0x611200, 0x00003330); |
| ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */ |
| |
| if (next->bios.rammap_00_17_02) |
| ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800); |
| if (!next->bios.rammap_00_16_40) |
| ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000); |
| if (next->bios.ramcfg_00_03_02) |
| ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000); |
| if (subdev->device->chipset <= 0x96 && next->bios.ramcfg_00_03_02) |
| ram_mask(hwsq, 0x100710, 0x00000200, 0x00000200); |
| |
| return 0; |
| } |
| |
| static int |
| nv50_ram_prog(struct nvkm_ram *base) |
| { |
| struct nv50_ram *ram = nv50_ram(base); |
| struct nvkm_device *device = ram->base.fb->subdev.device; |
| ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true)); |
| return 0; |
| } |
| |
| static void |
| nv50_ram_tidy(struct nvkm_ram *base) |
| { |
| struct nv50_ram *ram = nv50_ram(base); |
| ram_exec(&ram->hwsq, false); |
| } |
| |
| static const struct nvkm_ram_func |
| nv50_ram_func = { |
| .calc = nv50_ram_calc, |
| .prog = nv50_ram_prog, |
| .tidy = nv50_ram_tidy, |
| }; |
| |
| static u32 |
| nv50_fb_vram_rblock(struct nvkm_ram *ram) |
| { |
| struct nvkm_subdev *subdev = &ram->fb->subdev; |
| struct nvkm_device *device = subdev->device; |
| int colbits, rowbitsa, rowbitsb, banks; |
| u64 rowsize, predicted; |
| u32 r0, r4, rt, rblock_size; |
| |
| r0 = nvkm_rd32(device, 0x100200); |
| r4 = nvkm_rd32(device, 0x100204); |
| rt = nvkm_rd32(device, 0x100250); |
| nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n", |
| r0, r4, rt, nvkm_rd32(device, 0x001540)); |
| |
| colbits = (r4 & 0x0000f000) >> 12; |
| rowbitsa = ((r4 & 0x000f0000) >> 16) + 8; |
| rowbitsb = ((r4 & 0x00f00000) >> 20) + 8; |
| banks = 1 << (((r4 & 0x03000000) >> 24) + 2); |
| |
| rowsize = ram->parts * banks * (1 << colbits) * 8; |
| predicted = rowsize << rowbitsa; |
| if (r0 & 0x00000004) |
| predicted += rowsize << rowbitsb; |
| |
| if (predicted != ram->size) { |
| nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n", |
| (u32)(ram->size >> 20)); |
| } |
| |
| rblock_size = rowsize; |
| if (rt & 1) |
| rblock_size *= 3; |
| |
| nvkm_debug(subdev, "rblock %d bytes\n", rblock_size); |
| return rblock_size; |
| } |
| |
| int |
| nv50_ram_ctor(const struct nvkm_ram_func *func, |
| struct nvkm_fb *fb, struct nvkm_ram *ram) |
| { |
| struct nvkm_device *device = fb->subdev.device; |
| struct nvkm_bios *bios = device->bios; |
| const u32 rsvd_head = ( 256 * 1024); /* vga memory */ |
| const u32 rsvd_tail = (1024 * 1024); /* vbios etc */ |
| u64 size = nvkm_rd32(device, 0x10020c); |
| enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN; |
| int ret; |
| |
| switch (nvkm_rd32(device, 0x100714) & 0x00000007) { |
| case 0: type = NVKM_RAM_TYPE_DDR1; break; |
| case 1: |
| if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3) |
| type = NVKM_RAM_TYPE_DDR3; |
| else |
| type = NVKM_RAM_TYPE_DDR2; |
| break; |
| case 2: type = NVKM_RAM_TYPE_GDDR3; break; |
| case 3: type = NVKM_RAM_TYPE_GDDR4; break; |
| case 4: type = NVKM_RAM_TYPE_GDDR5; break; |
| default: |
| break; |
| } |
| |
| size = (size & 0x000000ff) << 32 | (size & 0xffffff00); |
| |
| ret = nvkm_ram_ctor(func, fb, type, size, ram); |
| if (ret) |
| return ret; |
| |
| ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16; |
| ram->parts = hweight8(ram->part_mask); |
| ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1; |
| nvkm_mm_fini(&ram->vram); |
| |
| return nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL, |
| rsvd_head >> NVKM_RAM_MM_SHIFT, |
| (size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT, |
| nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT); |
| } |
| |
| int |
| nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram) |
| { |
| struct nv50_ram *ram; |
| int ret, i; |
| |
| if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL))) |
| return -ENOMEM; |
| *pram = &ram->base; |
| |
| ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base); |
| if (ret) |
| return ret; |
| |
| ram->hwsq.r_0x002504 = hwsq_reg(0x002504); |
| ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040); |
| ram->hwsq.r_0x004008 = hwsq_reg(0x004008); |
| ram->hwsq.r_0x00400c = hwsq_reg(0x00400c); |
| ram->hwsq.r_0x100200 = hwsq_reg(0x100200); |
| ram->hwsq.r_0x100210 = hwsq_reg(0x100210); |
| ram->hwsq.r_0x10021c = hwsq_reg(0x10021c); |
| ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0); |
| ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4); |
| ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc); |
| ram->hwsq.r_0x10053c = hwsq_reg(0x10053c); |
| ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0); |
| ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4); |
| ram->hwsq.r_0x100710 = hwsq_reg(0x100710); |
| ram->hwsq.r_0x100714 = hwsq_reg(0x100714); |
| ram->hwsq.r_0x100718 = hwsq_reg(0x100718); |
| ram->hwsq.r_0x10071c = hwsq_reg(0x10071c); |
| ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask); |
| ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20); |
| ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24); |
| ram->hwsq.r_0x611200 = hwsq_reg(0x611200); |
| |
| for (i = 0; i < 9; i++) |
| ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04)); |
| |
| if (ram->base.ranks > 1) { |
| ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8); |
| ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc); |
| ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8); |
| ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec); |
| } else { |
| ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0); |
| ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4); |
| ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0); |
| ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4); |
| } |
| |
| ram->hwsq.r_gpio[0] = hwsq_reg(0x00e104); |
| ram->hwsq.r_gpio[1] = hwsq_reg(0x00e108); |
| ram->hwsq.r_gpio[2] = hwsq_reg(0x00e120); |
| ram->hwsq.r_gpio[3] = hwsq_reg(0x00e124); |
| |
| return 0; |
| } |