| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <linux/pagemap.h> |
| #include <linux/spinlock.h> |
| #include <linux/cpumask.h> |
| #include <linux/module.h> |
| #include <linux/io.h> |
| #include <linux/vmalloc.h> |
| #include <linux/smp.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/fixmap.h> |
| #include <asm/tlb.h> |
| #include <asm/tlbflush.h> |
| #include <asm/homecache.h> |
| |
| #define K(x) ((x) << (PAGE_SHIFT-10)) |
| |
| /* |
| * The normal show_free_areas() is too verbose on Tile, with dozens |
| * of processors and often four NUMA zones each with high and lowmem. |
| */ |
| void show_mem(unsigned int filter) |
| { |
| struct zone *zone; |
| |
| pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu" |
| " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu" |
| " pagecache:%lu swap:%lu\n", |
| (global_page_state(NR_ACTIVE_ANON) + |
| global_page_state(NR_ACTIVE_FILE)), |
| (global_page_state(NR_INACTIVE_ANON) + |
| global_page_state(NR_INACTIVE_FILE)), |
| global_page_state(NR_FILE_DIRTY), |
| global_page_state(NR_WRITEBACK), |
| global_page_state(NR_UNSTABLE_NFS), |
| global_page_state(NR_FREE_PAGES), |
| (global_page_state(NR_SLAB_RECLAIMABLE) + |
| global_page_state(NR_SLAB_UNRECLAIMABLE)), |
| global_page_state(NR_FILE_MAPPED), |
| global_page_state(NR_PAGETABLE), |
| global_page_state(NR_BOUNCE), |
| global_page_state(NR_FILE_PAGES), |
| get_nr_swap_pages()); |
| |
| for_each_zone(zone) { |
| unsigned long flags, order, total = 0, largest_order = -1; |
| |
| if (!populated_zone(zone)) |
| continue; |
| |
| spin_lock_irqsave(&zone->lock, flags); |
| for (order = 0; order < MAX_ORDER; order++) { |
| int nr = zone->free_area[order].nr_free; |
| total += nr << order; |
| if (nr) |
| largest_order = order; |
| } |
| spin_unlock_irqrestore(&zone->lock, flags); |
| pr_err("Node %d %7s: %lukB (largest %luKb)\n", |
| zone_to_nid(zone), zone->name, |
| K(total), largest_order ? K(1UL) << largest_order : 0); |
| } |
| } |
| |
| /** |
| * shatter_huge_page() - ensure a given address is mapped by a small page. |
| * |
| * This function converts a huge PTE mapping kernel LOWMEM into a bunch |
| * of small PTEs with the same caching. No cache flush required, but we |
| * must do a global TLB flush. |
| * |
| * Any caller that wishes to modify a kernel mapping that might |
| * have been made with a huge page should call this function, |
| * since doing so properly avoids race conditions with installing the |
| * newly-shattered page and then flushing all the TLB entries. |
| * |
| * @addr: Address at which to shatter any existing huge page. |
| */ |
| void shatter_huge_page(unsigned long addr) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| unsigned long flags = 0; /* happy compiler */ |
| #ifdef __PAGETABLE_PMD_FOLDED |
| struct list_head *pos; |
| #endif |
| |
| /* Get a pointer to the pmd entry that we need to change. */ |
| addr &= HPAGE_MASK; |
| BUG_ON(pgd_addr_invalid(addr)); |
| BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */ |
| pgd = swapper_pg_dir + pgd_index(addr); |
| pud = pud_offset(pgd, addr); |
| BUG_ON(!pud_present(*pud)); |
| pmd = pmd_offset(pud, addr); |
| BUG_ON(!pmd_present(*pmd)); |
| if (!pmd_huge_page(*pmd)) |
| return; |
| |
| spin_lock_irqsave(&init_mm.page_table_lock, flags); |
| if (!pmd_huge_page(*pmd)) { |
| /* Lost the race to convert the huge page. */ |
| spin_unlock_irqrestore(&init_mm.page_table_lock, flags); |
| return; |
| } |
| |
| /* Shatter the huge page into the preallocated L2 page table. */ |
| pmd_populate_kernel(&init_mm, pmd, |
| get_prealloc_pte(pte_pfn(*(pte_t *)pmd))); |
| |
| #ifdef __PAGETABLE_PMD_FOLDED |
| /* Walk every pgd on the system and update the pmd there. */ |
| spin_lock(&pgd_lock); |
| list_for_each(pos, &pgd_list) { |
| pmd_t *copy_pmd; |
| pgd = list_to_pgd(pos) + pgd_index(addr); |
| pud = pud_offset(pgd, addr); |
| copy_pmd = pmd_offset(pud, addr); |
| __set_pmd(copy_pmd, *pmd); |
| } |
| spin_unlock(&pgd_lock); |
| #endif |
| |
| /* Tell every cpu to notice the change. */ |
| flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE, |
| cpu_possible_mask, NULL, 0); |
| |
| /* Hold the lock until the TLB flush is finished to avoid races. */ |
| spin_unlock_irqrestore(&init_mm.page_table_lock, flags); |
| } |
| |
| /* |
| * List of all pgd's needed so it can invalidate entries in both cached |
| * and uncached pgd's. This is essentially codepath-based locking |
| * against pageattr.c; it is the unique case in which a valid change |
| * of kernel pagetables can't be lazily synchronized by vmalloc faults. |
| * vmalloc faults work because attached pagetables are never freed. |
| * |
| * The lock is always taken with interrupts disabled, unlike on x86 |
| * and other platforms, because we need to take the lock in |
| * shatter_huge_page(), which may be called from an interrupt context. |
| * We are not at risk from the tlbflush IPI deadlock that was seen on |
| * x86, since we use the flush_remote() API to have the hypervisor do |
| * the TLB flushes regardless of irq disabling. |
| */ |
| DEFINE_SPINLOCK(pgd_lock); |
| LIST_HEAD(pgd_list); |
| |
| static inline void pgd_list_add(pgd_t *pgd) |
| { |
| list_add(pgd_to_list(pgd), &pgd_list); |
| } |
| |
| static inline void pgd_list_del(pgd_t *pgd) |
| { |
| list_del(pgd_to_list(pgd)); |
| } |
| |
| #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET) |
| #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START) |
| |
| static void pgd_ctor(pgd_t *pgd) |
| { |
| unsigned long flags; |
| |
| memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t)); |
| spin_lock_irqsave(&pgd_lock, flags); |
| |
| #ifndef __tilegx__ |
| /* |
| * Check that the user interrupt vector has no L2. |
| * It never should for the swapper, and new page tables |
| * should always start with an empty user interrupt vector. |
| */ |
| BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0); |
| #endif |
| |
| memcpy(pgd + KERNEL_PGD_INDEX_START, |
| swapper_pg_dir + KERNEL_PGD_INDEX_START, |
| KERNEL_PGD_PTRS * sizeof(pgd_t)); |
| |
| pgd_list_add(pgd); |
| spin_unlock_irqrestore(&pgd_lock, flags); |
| } |
| |
| static void pgd_dtor(pgd_t *pgd) |
| { |
| unsigned long flags; /* can be called from interrupt context */ |
| |
| spin_lock_irqsave(&pgd_lock, flags); |
| pgd_list_del(pgd); |
| spin_unlock_irqrestore(&pgd_lock, flags); |
| } |
| |
| pgd_t *pgd_alloc(struct mm_struct *mm) |
| { |
| pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL); |
| if (pgd) |
| pgd_ctor(pgd); |
| return pgd; |
| } |
| |
| void pgd_free(struct mm_struct *mm, pgd_t *pgd) |
| { |
| pgd_dtor(pgd); |
| kmem_cache_free(pgd_cache, pgd); |
| } |
| |
| |
| #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER) |
| |
| struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address, |
| int order) |
| { |
| gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO; |
| struct page *p; |
| int i; |
| |
| p = alloc_pages(flags, L2_USER_PGTABLE_ORDER); |
| if (p == NULL) |
| return NULL; |
| |
| /* |
| * Make every page have a page_count() of one, not just the first. |
| * We don't use __GFP_COMP since it doesn't look like it works |
| * correctly with tlb_remove_page(). |
| */ |
| for (i = 1; i < order; ++i) { |
| init_page_count(p+i); |
| inc_zone_page_state(p+i, NR_PAGETABLE); |
| } |
| |
| pgtable_page_ctor(p); |
| return p; |
| } |
| |
| /* |
| * Free page immediately (used in __pte_alloc if we raced with another |
| * process). We have to correct whatever pte_alloc_one() did before |
| * returning the pages to the allocator. |
| */ |
| void pgtable_free(struct mm_struct *mm, struct page *p, int order) |
| { |
| int i; |
| |
| pgtable_page_dtor(p); |
| __free_page(p); |
| |
| for (i = 1; i < order; ++i) { |
| __free_page(p+i); |
| dec_zone_page_state(p+i, NR_PAGETABLE); |
| } |
| } |
| |
| void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte, |
| unsigned long address, int order) |
| { |
| int i; |
| |
| pgtable_page_dtor(pte); |
| tlb_remove_page(tlb, pte); |
| |
| for (i = 1; i < order; ++i) { |
| tlb_remove_page(tlb, pte + i); |
| dec_zone_page_state(pte + i, NR_PAGETABLE); |
| } |
| } |
| |
| #ifndef __tilegx__ |
| |
| /* |
| * FIXME: needs to be atomic vs hypervisor writes. For now we make the |
| * window of vulnerability a bit smaller by doing an unlocked 8-bit update. |
| */ |
| int ptep_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long addr, pte_t *ptep) |
| { |
| #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16 |
| # error Code assumes HV_PTE "accessed" bit in second byte |
| #endif |
| u8 *tmp = (u8 *)ptep; |
| u8 second_byte = tmp[1]; |
| if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8)))) |
| return 0; |
| tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8)); |
| return 1; |
| } |
| |
| /* |
| * This implementation is atomic vs hypervisor writes, since the hypervisor |
| * always writes the low word (where "accessed" and "dirty" are) and this |
| * routine only writes the high word. |
| */ |
| void ptep_set_wrprotect(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| #if HV_PTE_INDEX_WRITABLE < 32 |
| # error Code assumes HV_PTE "writable" bit in high word |
| #endif |
| u32 *tmp = (u32 *)ptep; |
| tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32)); |
| } |
| |
| #endif |
| |
| pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| if (pgd_addr_invalid(addr)) |
| return NULL; |
| |
| pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr); |
| pud = pud_offset(pgd, addr); |
| if (!pud_present(*pud)) |
| return NULL; |
| if (pud_huge_page(*pud)) |
| return (pte_t *)pud; |
| pmd = pmd_offset(pud, addr); |
| if (pmd_huge_page(*pmd)) |
| return (pte_t *)pmd; |
| if (!pmd_present(*pmd)) |
| return NULL; |
| return pte_offset_kernel(pmd, addr); |
| } |
| EXPORT_SYMBOL(virt_to_pte); |
| |
| pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu) |
| { |
| unsigned int width = smp_width; |
| int x = cpu % width; |
| int y = cpu / width; |
| BUG_ON(y >= smp_height); |
| BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); |
| BUG_ON(cpu < 0 || cpu >= NR_CPUS); |
| BUG_ON(!cpu_is_valid_lotar(cpu)); |
| return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y)); |
| } |
| |
| int get_remote_cache_cpu(pgprot_t prot) |
| { |
| HV_LOTAR lotar = hv_pte_get_lotar(prot); |
| int x = HV_LOTAR_X(lotar); |
| int y = HV_LOTAR_Y(lotar); |
| BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); |
| return x + y * smp_width; |
| } |
| |
| /* |
| * Convert a kernel VA to a PA and homing information. |
| */ |
| int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte) |
| { |
| struct page *page = virt_to_page(va); |
| pte_t null_pte = { 0 }; |
| |
| *cpa = __pa(va); |
| |
| /* Note that this is not writing a page table, just returning a pte. */ |
| *pte = pte_set_home(null_pte, page_home(page)); |
| |
| return 0; /* return non-zero if not hfh? */ |
| } |
| EXPORT_SYMBOL(va_to_cpa_and_pte); |
| |
| void __set_pte(pte_t *ptep, pte_t pte) |
| { |
| #ifdef __tilegx__ |
| *ptep = pte; |
| #else |
| # if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32 |
| # error Must write the present and migrating bits last |
| # endif |
| if (pte_present(pte)) { |
| ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); |
| barrier(); |
| ((u32 *)ptep)[0] = (u32)(pte_val(pte)); |
| } else { |
| ((u32 *)ptep)[0] = (u32)(pte_val(pte)); |
| barrier(); |
| ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); |
| } |
| #endif /* __tilegx__ */ |
| } |
| |
| void set_pte(pte_t *ptep, pte_t pte) |
| { |
| if (pte_present(pte) && |
| (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) { |
| /* The PTE actually references physical memory. */ |
| unsigned long pfn = pte_pfn(pte); |
| if (pfn_valid(pfn)) { |
| /* Update the home of the PTE from the struct page. */ |
| pte = pte_set_home(pte, page_home(pfn_to_page(pfn))); |
| } else if (hv_pte_get_mode(pte) == 0) { |
| /* remap_pfn_range(), etc, must supply PTE mode. */ |
| panic("set_pte(): out-of-range PFN and mode 0\n"); |
| } |
| } |
| |
| __set_pte(ptep, pte); |
| } |
| |
| /* Can this mm load a PTE with cached_priority set? */ |
| static inline int mm_is_priority_cached(struct mm_struct *mm) |
| { |
| return mm->context.priority_cached != 0; |
| } |
| |
| /* |
| * Add a priority mapping to an mm_context and |
| * notify the hypervisor if this is the first one. |
| */ |
| void start_mm_caching(struct mm_struct *mm) |
| { |
| if (!mm_is_priority_cached(mm)) { |
| mm->context.priority_cached = -1UL; |
| hv_set_caching(-1UL); |
| } |
| } |
| |
| /* |
| * Validate and return the priority_cached flag. We know if it's zero |
| * that we don't need to scan, since we immediately set it non-zero |
| * when we first consider a MAP_CACHE_PRIORITY mapping. |
| * |
| * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it, |
| * since we're in an interrupt context (servicing switch_mm) we don't |
| * worry about it and don't unset the "priority_cached" field. |
| * Presumably we'll come back later and have more luck and clear |
| * the value then; for now we'll just keep the cache marked for priority. |
| */ |
| static unsigned long update_priority_cached(struct mm_struct *mm) |
| { |
| if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) { |
| struct vm_area_struct *vm; |
| for (vm = mm->mmap; vm; vm = vm->vm_next) { |
| if (hv_pte_get_cached_priority(vm->vm_page_prot)) |
| break; |
| } |
| if (vm == NULL) |
| mm->context.priority_cached = 0; |
| up_write(&mm->mmap_sem); |
| } |
| return mm->context.priority_cached; |
| } |
| |
| /* Set caching correctly for an mm that we are switching to. */ |
| void check_mm_caching(struct mm_struct *prev, struct mm_struct *next) |
| { |
| if (!mm_is_priority_cached(next)) { |
| /* |
| * If the new mm doesn't use priority caching, just see if we |
| * need the hv_set_caching(), or can assume it's already zero. |
| */ |
| if (mm_is_priority_cached(prev)) |
| hv_set_caching(0); |
| } else { |
| hv_set_caching(update_priority_cached(next)); |
| } |
| } |
| |
| #if CHIP_HAS_MMIO() |
| |
| /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */ |
| void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, |
| pgprot_t home) |
| { |
| void *addr; |
| struct vm_struct *area; |
| unsigned long offset, last_addr; |
| pgprot_t pgprot; |
| |
| /* Don't allow wraparound or zero size */ |
| last_addr = phys_addr + size - 1; |
| if (!size || last_addr < phys_addr) |
| return NULL; |
| |
| /* Create a read/write, MMIO VA mapping homed at the requested shim. */ |
| pgprot = PAGE_KERNEL; |
| pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO); |
| pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home)); |
| |
| /* |
| * Mappings have to be page-aligned |
| */ |
| offset = phys_addr & ~PAGE_MASK; |
| phys_addr &= PAGE_MASK; |
| size = PAGE_ALIGN(last_addr+1) - phys_addr; |
| |
| /* |
| * Ok, go for it.. |
| */ |
| area = get_vm_area(size, VM_IOREMAP /* | other flags? */); |
| if (!area) |
| return NULL; |
| area->phys_addr = phys_addr; |
| addr = area->addr; |
| if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size, |
| phys_addr, pgprot)) { |
| free_vm_area(area); |
| return NULL; |
| } |
| return (__force void __iomem *) (offset + (char *)addr); |
| } |
| EXPORT_SYMBOL(ioremap_prot); |
| |
| /* Unmap an MMIO VA mapping. */ |
| void iounmap(volatile void __iomem *addr_in) |
| { |
| volatile void __iomem *addr = (volatile void __iomem *) |
| (PAGE_MASK & (unsigned long __force)addr_in); |
| #if 1 |
| vunmap((void * __force)addr); |
| #else |
| /* x86 uses this complicated flow instead of vunmap(). Is |
| * there any particular reason we should do the same? */ |
| struct vm_struct *p, *o; |
| |
| /* Use the vm area unlocked, assuming the caller |
| ensures there isn't another iounmap for the same address |
| in parallel. Reuse of the virtual address is prevented by |
| leaving it in the global lists until we're done with it. |
| cpa takes care of the direct mappings. */ |
| p = find_vm_area((void *)addr); |
| |
| if (!p) { |
| pr_err("iounmap: bad address %p\n", addr); |
| dump_stack(); |
| return; |
| } |
| |
| /* Finally remove it */ |
| o = remove_vm_area((void *)addr); |
| BUG_ON(p != o || o == NULL); |
| kfree(p); |
| #endif |
| } |
| EXPORT_SYMBOL(iounmap); |
| |
| #endif /* CHIP_HAS_MMIO() */ |