| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * arch-independent dma-mapping routines |
| * |
| * Copyright (c) 2006 SUSE Linux Products GmbH |
| * Copyright (c) 2006 Tejun Heo <teheo@suse.de> |
| */ |
| #include <linux/memblock.h> /* for max_pfn */ |
| #include <linux/acpi.h> |
| #include <linux/dma-direct.h> |
| #include <linux/dma-noncoherent.h> |
| #include <linux/export.h> |
| #include <linux/gfp.h> |
| #include <linux/of_device.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| |
| /* |
| * Managed DMA API |
| */ |
| struct dma_devres { |
| size_t size; |
| void *vaddr; |
| dma_addr_t dma_handle; |
| unsigned long attrs; |
| }; |
| |
| static void dmam_release(struct device *dev, void *res) |
| { |
| struct dma_devres *this = res; |
| |
| dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, |
| this->attrs); |
| } |
| |
| static int dmam_match(struct device *dev, void *res, void *match_data) |
| { |
| struct dma_devres *this = res, *match = match_data; |
| |
| if (this->vaddr == match->vaddr) { |
| WARN_ON(this->size != match->size || |
| this->dma_handle != match->dma_handle); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * dmam_free_coherent - Managed dma_free_coherent() |
| * @dev: Device to free coherent memory for |
| * @size: Size of allocation |
| * @vaddr: Virtual address of the memory to free |
| * @dma_handle: DMA handle of the memory to free |
| * |
| * Managed dma_free_coherent(). |
| */ |
| void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, |
| dma_addr_t dma_handle) |
| { |
| struct dma_devres match_data = { size, vaddr, dma_handle }; |
| |
| dma_free_coherent(dev, size, vaddr, dma_handle); |
| WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); |
| } |
| EXPORT_SYMBOL(dmam_free_coherent); |
| |
| /** |
| * dmam_alloc_attrs - Managed dma_alloc_attrs() |
| * @dev: Device to allocate non_coherent memory for |
| * @size: Size of allocation |
| * @dma_handle: Out argument for allocated DMA handle |
| * @gfp: Allocation flags |
| * @attrs: Flags in the DMA_ATTR_* namespace. |
| * |
| * Managed dma_alloc_attrs(). Memory allocated using this function will be |
| * automatically released on driver detach. |
| * |
| * RETURNS: |
| * Pointer to allocated memory on success, NULL on failure. |
| */ |
| void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| gfp_t gfp, unsigned long attrs) |
| { |
| struct dma_devres *dr; |
| void *vaddr; |
| |
| dr = devres_alloc(dmam_release, sizeof(*dr), gfp); |
| if (!dr) |
| return NULL; |
| |
| vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); |
| if (!vaddr) { |
| devres_free(dr); |
| return NULL; |
| } |
| |
| dr->vaddr = vaddr; |
| dr->dma_handle = *dma_handle; |
| dr->size = size; |
| dr->attrs = attrs; |
| |
| devres_add(dev, dr); |
| |
| return vaddr; |
| } |
| EXPORT_SYMBOL(dmam_alloc_attrs); |
| |
| static bool dma_go_direct(struct device *dev, dma_addr_t mask, |
| const struct dma_map_ops *ops) |
| { |
| if (likely(!ops)) |
| return true; |
| #ifdef CONFIG_DMA_OPS_BYPASS |
| if (dev->dma_ops_bypass) |
| return min_not_zero(mask, dev->bus_dma_limit) >= |
| dma_direct_get_required_mask(dev); |
| #endif |
| return false; |
| } |
| |
| |
| /* |
| * Check if the devices uses a direct mapping for streaming DMA operations. |
| * This allows IOMMU drivers to set a bypass mode if the DMA mask is large |
| * enough. |
| */ |
| static inline bool dma_alloc_direct(struct device *dev, |
| const struct dma_map_ops *ops) |
| { |
| return dma_go_direct(dev, dev->coherent_dma_mask, ops); |
| } |
| |
| static inline bool dma_map_direct(struct device *dev, |
| const struct dma_map_ops *ops) |
| { |
| return dma_go_direct(dev, *dev->dma_mask, ops); |
| } |
| |
| dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, |
| size_t offset, size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| dma_addr_t addr; |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| if (dma_map_direct(dev, ops)) |
| addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); |
| else |
| addr = ops->map_page(dev, page, offset, size, dir, attrs); |
| debug_dma_map_page(dev, page, offset, size, dir, addr); |
| |
| return addr; |
| } |
| EXPORT_SYMBOL(dma_map_page_attrs); |
| |
| void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| if (dma_map_direct(dev, ops)) |
| dma_direct_unmap_page(dev, addr, size, dir, attrs); |
| else if (ops->unmap_page) |
| ops->unmap_page(dev, addr, size, dir, attrs); |
| debug_dma_unmap_page(dev, addr, size, dir); |
| } |
| EXPORT_SYMBOL(dma_unmap_page_attrs); |
| |
| /* |
| * dma_maps_sg_attrs returns 0 on error and > 0 on success. |
| * It should never return a value < 0. |
| */ |
| int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| int ents; |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| if (dma_map_direct(dev, ops)) |
| ents = dma_direct_map_sg(dev, sg, nents, dir, attrs); |
| else |
| ents = ops->map_sg(dev, sg, nents, dir, attrs); |
| BUG_ON(ents < 0); |
| debug_dma_map_sg(dev, sg, nents, ents, dir); |
| |
| return ents; |
| } |
| EXPORT_SYMBOL(dma_map_sg_attrs); |
| |
| void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| debug_dma_unmap_sg(dev, sg, nents, dir); |
| if (dma_map_direct(dev, ops)) |
| dma_direct_unmap_sg(dev, sg, nents, dir, attrs); |
| else if (ops->unmap_sg) |
| ops->unmap_sg(dev, sg, nents, dir, attrs); |
| } |
| EXPORT_SYMBOL(dma_unmap_sg_attrs); |
| |
| dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| dma_addr_t addr = DMA_MAPPING_ERROR; |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| |
| /* Don't allow RAM to be mapped */ |
| if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr)))) |
| return DMA_MAPPING_ERROR; |
| |
| if (dma_map_direct(dev, ops)) |
| addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs); |
| else if (ops->map_resource) |
| addr = ops->map_resource(dev, phys_addr, size, dir, attrs); |
| |
| debug_dma_map_resource(dev, phys_addr, size, dir, addr); |
| return addr; |
| } |
| EXPORT_SYMBOL(dma_map_resource); |
| |
| void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| if (!dma_map_direct(dev, ops) && ops->unmap_resource) |
| ops->unmap_resource(dev, addr, size, dir, attrs); |
| debug_dma_unmap_resource(dev, addr, size, dir); |
| } |
| EXPORT_SYMBOL(dma_unmap_resource); |
| |
| void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, |
| enum dma_data_direction dir) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| if (dma_map_direct(dev, ops)) |
| dma_direct_sync_single_for_cpu(dev, addr, size, dir); |
| else if (ops->sync_single_for_cpu) |
| ops->sync_single_for_cpu(dev, addr, size, dir); |
| debug_dma_sync_single_for_cpu(dev, addr, size, dir); |
| } |
| EXPORT_SYMBOL(dma_sync_single_for_cpu); |
| |
| void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, |
| size_t size, enum dma_data_direction dir) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| if (dma_map_direct(dev, ops)) |
| dma_direct_sync_single_for_device(dev, addr, size, dir); |
| else if (ops->sync_single_for_device) |
| ops->sync_single_for_device(dev, addr, size, dir); |
| debug_dma_sync_single_for_device(dev, addr, size, dir); |
| } |
| EXPORT_SYMBOL(dma_sync_single_for_device); |
| |
| void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, |
| int nelems, enum dma_data_direction dir) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| if (dma_map_direct(dev, ops)) |
| dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir); |
| else if (ops->sync_sg_for_cpu) |
| ops->sync_sg_for_cpu(dev, sg, nelems, dir); |
| debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); |
| } |
| EXPORT_SYMBOL(dma_sync_sg_for_cpu); |
| |
| void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| int nelems, enum dma_data_direction dir) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| if (dma_map_direct(dev, ops)) |
| dma_direct_sync_sg_for_device(dev, sg, nelems, dir); |
| else if (ops->sync_sg_for_device) |
| ops->sync_sg_for_device(dev, sg, nelems, dir); |
| debug_dma_sync_sg_for_device(dev, sg, nelems, dir); |
| } |
| EXPORT_SYMBOL(dma_sync_sg_for_device); |
| |
| /* |
| * Create scatter-list for the already allocated DMA buffer. |
| */ |
| int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| struct page *page = virt_to_page(cpu_addr); |
| int ret; |
| |
| ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
| if (!ret) |
| sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); |
| return ret; |
| } |
| |
| /* |
| * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems |
| * that the intention is to allow exporting memory allocated via the |
| * coherent DMA APIs through the dma_buf API, which only accepts a |
| * scattertable. This presents a couple of problems: |
| * 1. Not all memory allocated via the coherent DMA APIs is backed by |
| * a struct page |
| * 2. Passing coherent DMA memory into the streaming APIs is not allowed |
| * as we will try to flush the memory through a different alias to that |
| * actually being used (and the flushes are redundant.) |
| */ |
| int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| if (dma_alloc_direct(dev, ops)) |
| return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr, |
| size, attrs); |
| if (!ops->get_sgtable) |
| return -ENXIO; |
| return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); |
| } |
| EXPORT_SYMBOL(dma_get_sgtable_attrs); |
| |
| #ifdef CONFIG_MMU |
| /* |
| * Return the page attributes used for mapping dma_alloc_* memory, either in |
| * kernel space if remapping is needed, or to userspace through dma_mmap_*. |
| */ |
| pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) |
| { |
| if (force_dma_unencrypted(dev)) |
| prot = pgprot_decrypted(prot); |
| if (dev_is_dma_coherent(dev) || |
| (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) && |
| (attrs & DMA_ATTR_NON_CONSISTENT))) |
| return prot; |
| #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE |
| if (attrs & DMA_ATTR_WRITE_COMBINE) |
| return pgprot_writecombine(prot); |
| #endif |
| return pgprot_dmacoherent(prot); |
| } |
| #endif /* CONFIG_MMU */ |
| |
| /* |
| * Create userspace mapping for the DMA-coherent memory. |
| */ |
| int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| #ifdef CONFIG_MMU |
| unsigned long user_count = vma_pages(vma); |
| unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| unsigned long off = vma->vm_pgoff; |
| int ret = -ENXIO; |
| |
| vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); |
| |
| if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| return ret; |
| |
| if (off >= count || user_count > count - off) |
| return -ENXIO; |
| |
| return remap_pfn_range(vma, vma->vm_start, |
| page_to_pfn(virt_to_page(cpu_addr)) + vma->vm_pgoff, |
| user_count << PAGE_SHIFT, vma->vm_page_prot); |
| #else |
| return -ENXIO; |
| #endif /* CONFIG_MMU */ |
| } |
| |
| /** |
| * dma_can_mmap - check if a given device supports dma_mmap_* |
| * @dev: device to check |
| * |
| * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to |
| * map DMA allocations to userspace. |
| */ |
| bool dma_can_mmap(struct device *dev) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| if (dma_alloc_direct(dev, ops)) |
| return dma_direct_can_mmap(dev); |
| return ops->mmap != NULL; |
| } |
| EXPORT_SYMBOL_GPL(dma_can_mmap); |
| |
| /** |
| * dma_mmap_attrs - map a coherent DMA allocation into user space |
| * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| * @vma: vm_area_struct describing requested user mapping |
| * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs |
| * @dma_addr: device-view address returned from dma_alloc_attrs |
| * @size: size of memory originally requested in dma_alloc_attrs |
| * @attrs: attributes of mapping properties requested in dma_alloc_attrs |
| * |
| * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user |
| * space. The coherent DMA buffer must not be freed by the driver until the |
| * user space mapping has been released. |
| */ |
| int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| if (dma_alloc_direct(dev, ops)) |
| return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size, |
| attrs); |
| if (!ops->mmap) |
| return -ENXIO; |
| return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); |
| } |
| EXPORT_SYMBOL(dma_mmap_attrs); |
| |
| u64 dma_get_required_mask(struct device *dev) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| if (dma_alloc_direct(dev, ops)) |
| return dma_direct_get_required_mask(dev); |
| if (ops->get_required_mask) |
| return ops->get_required_mask(dev); |
| |
| /* |
| * We require every DMA ops implementation to at least support a 32-bit |
| * DMA mask (and use bounce buffering if that isn't supported in |
| * hardware). As the direct mapping code has its own routine to |
| * actually report an optimal mask we default to 32-bit here as that |
| * is the right thing for most IOMMUs, and at least not actively |
| * harmful in general. |
| */ |
| return DMA_BIT_MASK(32); |
| } |
| EXPORT_SYMBOL_GPL(dma_get_required_mask); |
| |
| void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| gfp_t flag, unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| void *cpu_addr; |
| |
| WARN_ON_ONCE(!dev->coherent_dma_mask); |
| |
| if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) |
| return cpu_addr; |
| |
| /* let the implementation decide on the zone to allocate from: */ |
| flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); |
| |
| if (dma_alloc_direct(dev, ops)) |
| cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); |
| else if (ops->alloc) |
| cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); |
| else |
| return NULL; |
| |
| debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); |
| return cpu_addr; |
| } |
| EXPORT_SYMBOL(dma_alloc_attrs); |
| |
| void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t dma_handle, unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) |
| return; |
| /* |
| * On non-coherent platforms which implement DMA-coherent buffers via |
| * non-cacheable remaps, ops->free() may call vunmap(). Thus getting |
| * this far in IRQ context is a) at risk of a BUG_ON() or trying to |
| * sleep on some machines, and b) an indication that the driver is |
| * probably misusing the coherent API anyway. |
| */ |
| WARN_ON(irqs_disabled()); |
| |
| if (!cpu_addr) |
| return; |
| |
| debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); |
| if (dma_alloc_direct(dev, ops)) |
| dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); |
| else if (ops->free) |
| ops->free(dev, size, cpu_addr, dma_handle, attrs); |
| } |
| EXPORT_SYMBOL(dma_free_attrs); |
| |
| int dma_supported(struct device *dev, u64 mask) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| /* |
| * ->dma_supported sets the bypass flag, so we must always call |
| * into the method here unless the device is truly direct mapped. |
| */ |
| if (!ops) |
| return dma_direct_supported(dev, mask); |
| if (!ops->dma_supported) |
| return 1; |
| return ops->dma_supported(dev, mask); |
| } |
| EXPORT_SYMBOL(dma_supported); |
| |
| #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK |
| void arch_dma_set_mask(struct device *dev, u64 mask); |
| #else |
| #define arch_dma_set_mask(dev, mask) do { } while (0) |
| #endif |
| |
| int dma_set_mask(struct device *dev, u64 mask) |
| { |
| /* |
| * Truncate the mask to the actually supported dma_addr_t width to |
| * avoid generating unsupportable addresses. |
| */ |
| mask = (dma_addr_t)mask; |
| |
| if (!dev->dma_mask || !dma_supported(dev, mask)) |
| return -EIO; |
| |
| arch_dma_set_mask(dev, mask); |
| *dev->dma_mask = mask; |
| return 0; |
| } |
| EXPORT_SYMBOL(dma_set_mask); |
| |
| #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK |
| int dma_set_coherent_mask(struct device *dev, u64 mask) |
| { |
| /* |
| * Truncate the mask to the actually supported dma_addr_t width to |
| * avoid generating unsupportable addresses. |
| */ |
| mask = (dma_addr_t)mask; |
| |
| if (!dma_supported(dev, mask)) |
| return -EIO; |
| |
| dev->coherent_dma_mask = mask; |
| return 0; |
| } |
| EXPORT_SYMBOL(dma_set_coherent_mask); |
| #endif |
| |
| void dma_cache_sync(struct device *dev, void *vaddr, size_t size, |
| enum dma_data_direction dir) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| |
| if (dma_alloc_direct(dev, ops)) |
| arch_dma_cache_sync(dev, vaddr, size, dir); |
| else if (ops->cache_sync) |
| ops->cache_sync(dev, vaddr, size, dir); |
| } |
| EXPORT_SYMBOL(dma_cache_sync); |
| |
| size_t dma_max_mapping_size(struct device *dev) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| size_t size = SIZE_MAX; |
| |
| if (dma_map_direct(dev, ops)) |
| size = dma_direct_max_mapping_size(dev); |
| else if (ops && ops->max_mapping_size) |
| size = ops->max_mapping_size(dev); |
| |
| return size; |
| } |
| EXPORT_SYMBOL_GPL(dma_max_mapping_size); |
| |
| bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| if (dma_map_direct(dev, ops)) |
| return dma_direct_need_sync(dev, dma_addr); |
| return ops->sync_single_for_cpu || ops->sync_single_for_device; |
| } |
| EXPORT_SYMBOL_GPL(dma_need_sync); |
| |
| unsigned long dma_get_merge_boundary(struct device *dev) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| if (!ops || !ops->get_merge_boundary) |
| return 0; /* can't merge */ |
| |
| return ops->get_merge_boundary(dev); |
| } |
| EXPORT_SYMBOL_GPL(dma_get_merge_boundary); |