| /* |
| * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver |
| * |
| * Copyright (c) 2008-2009 USI Co., Ltd. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions, and the following disclaimer, |
| * without modification. |
| * 2. Redistributions in binary form must reproduce at minimum a disclaimer |
| * substantially similar to the "NO WARRANTY" disclaimer below |
| * ("Disclaimer") and any redistribution must be conditioned upon |
| * including a substantially similar Disclaimer requirement for further |
| * binary redistribution. |
| * 3. Neither the names of the above-listed copyright holders nor the names |
| * of any contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * Alternatively, this software may be distributed under the terms of the |
| * GNU General Public License ("GPL") version 2 as published by the Free |
| * Software Foundation. |
| * |
| * NO WARRANTY |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGES. |
| * |
| */ |
| #include <linux/slab.h> |
| #include "pm8001_sas.h" |
| #include "pm8001_hwi.h" |
| #include "pm8001_chips.h" |
| #include "pm8001_ctl.h" |
| |
| /** |
| * read_main_config_table - read the configure table and save it. |
| * @pm8001_ha: our hba card information |
| */ |
| static void read_main_config_table(struct pm8001_hba_info *pm8001_ha) |
| { |
| void __iomem *address = pm8001_ha->main_cfg_tbl_addr; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.signature = |
| pm8001_mr32(address, 0x00); |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.interface_rev = |
| pm8001_mr32(address, 0x04); |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.firmware_rev = |
| pm8001_mr32(address, 0x08); |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.max_out_io = |
| pm8001_mr32(address, 0x0C); |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.max_sgl = |
| pm8001_mr32(address, 0x10); |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.ctrl_cap_flag = |
| pm8001_mr32(address, 0x14); |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.gst_offset = |
| pm8001_mr32(address, 0x18); |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_queue_offset = |
| pm8001_mr32(address, MAIN_IBQ_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_queue_offset = |
| pm8001_mr32(address, MAIN_OBQ_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.hda_mode_flag = |
| pm8001_mr32(address, MAIN_HDA_FLAGS_OFFSET); |
| |
| /* read analog Setting offset from the configuration table */ |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.anolog_setup_table_offset = |
| pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET); |
| |
| /* read Error Dump Offset and Length */ |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset0 = |
| pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length0 = |
| pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH); |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset1 = |
| pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length1 = |
| pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH); |
| } |
| |
| /** |
| * read_general_status_table - read the general status table and save it. |
| * @pm8001_ha: our hba card information |
| */ |
| static void read_general_status_table(struct pm8001_hba_info *pm8001_ha) |
| { |
| void __iomem *address = pm8001_ha->general_stat_tbl_addr; |
| pm8001_ha->gs_tbl.pm8001_tbl.gst_len_mpistate = |
| pm8001_mr32(address, 0x00); |
| pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state0 = |
| pm8001_mr32(address, 0x04); |
| pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state1 = |
| pm8001_mr32(address, 0x08); |
| pm8001_ha->gs_tbl.pm8001_tbl.msgu_tcnt = |
| pm8001_mr32(address, 0x0C); |
| pm8001_ha->gs_tbl.pm8001_tbl.iop_tcnt = |
| pm8001_mr32(address, 0x10); |
| pm8001_ha->gs_tbl.pm8001_tbl.rsvd = |
| pm8001_mr32(address, 0x14); |
| pm8001_ha->gs_tbl.pm8001_tbl.phy_state[0] = |
| pm8001_mr32(address, 0x18); |
| pm8001_ha->gs_tbl.pm8001_tbl.phy_state[1] = |
| pm8001_mr32(address, 0x1C); |
| pm8001_ha->gs_tbl.pm8001_tbl.phy_state[2] = |
| pm8001_mr32(address, 0x20); |
| pm8001_ha->gs_tbl.pm8001_tbl.phy_state[3] = |
| pm8001_mr32(address, 0x24); |
| pm8001_ha->gs_tbl.pm8001_tbl.phy_state[4] = |
| pm8001_mr32(address, 0x28); |
| pm8001_ha->gs_tbl.pm8001_tbl.phy_state[5] = |
| pm8001_mr32(address, 0x2C); |
| pm8001_ha->gs_tbl.pm8001_tbl.phy_state[6] = |
| pm8001_mr32(address, 0x30); |
| pm8001_ha->gs_tbl.pm8001_tbl.phy_state[7] = |
| pm8001_mr32(address, 0x34); |
| pm8001_ha->gs_tbl.pm8001_tbl.gpio_input_val = |
| pm8001_mr32(address, 0x38); |
| pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[0] = |
| pm8001_mr32(address, 0x3C); |
| pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[1] = |
| pm8001_mr32(address, 0x40); |
| pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[0] = |
| pm8001_mr32(address, 0x44); |
| pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[1] = |
| pm8001_mr32(address, 0x48); |
| pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[2] = |
| pm8001_mr32(address, 0x4C); |
| pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[3] = |
| pm8001_mr32(address, 0x50); |
| pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[4] = |
| pm8001_mr32(address, 0x54); |
| pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[5] = |
| pm8001_mr32(address, 0x58); |
| pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[6] = |
| pm8001_mr32(address, 0x5C); |
| pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[7] = |
| pm8001_mr32(address, 0x60); |
| } |
| |
| /** |
| * read_inbnd_queue_table - read the inbound queue table and save it. |
| * @pm8001_ha: our hba card information |
| */ |
| static void read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha) |
| { |
| int i; |
| void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; |
| for (i = 0; i < PM8001_MAX_INB_NUM; i++) { |
| u32 offset = i * 0x20; |
| pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = |
| get_pci_bar_index(pm8001_mr32(address, (offset + 0x14))); |
| pm8001_ha->inbnd_q_tbl[i].pi_offset = |
| pm8001_mr32(address, (offset + 0x18)); |
| } |
| } |
| |
| /** |
| * read_outbnd_queue_table - read the outbound queue table and save it. |
| * @pm8001_ha: our hba card information |
| */ |
| static void read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha) |
| { |
| int i; |
| void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; |
| for (i = 0; i < PM8001_MAX_OUTB_NUM; i++) { |
| u32 offset = i * 0x24; |
| pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = |
| get_pci_bar_index(pm8001_mr32(address, (offset + 0x14))); |
| pm8001_ha->outbnd_q_tbl[i].ci_offset = |
| pm8001_mr32(address, (offset + 0x18)); |
| } |
| } |
| |
| /** |
| * init_default_table_values - init the default table. |
| * @pm8001_ha: our hba card information |
| */ |
| static void init_default_table_values(struct pm8001_hba_info *pm8001_ha) |
| { |
| int i; |
| u32 offsetib, offsetob; |
| void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr; |
| void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr; |
| |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd = 0; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3 = 0; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7 = 0; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3 = 0; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7 = 0; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid0_3 = |
| 0; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid4_7 = |
| 0; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid0_3 = 0; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid4_7 = 0; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid0_3 = 0; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid4_7 = 0; |
| |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr = |
| pm8001_ha->memoryMap.region[AAP1].phys_addr_hi; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr = |
| pm8001_ha->memoryMap.region[AAP1].phys_addr_lo; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size = |
| PM8001_EVENT_LOG_SIZE; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option = 0x01; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr = |
| pm8001_ha->memoryMap.region[IOP].phys_addr_hi; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr = |
| pm8001_ha->memoryMap.region[IOP].phys_addr_lo; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size = |
| PM8001_EVENT_LOG_SIZE; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option = 0x01; |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt = 0x01; |
| for (i = 0; i < PM8001_MAX_INB_NUM; i++) { |
| pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt = |
| PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x00<<30); |
| pm8001_ha->inbnd_q_tbl[i].upper_base_addr = |
| pm8001_ha->memoryMap.region[IB + i].phys_addr_hi; |
| pm8001_ha->inbnd_q_tbl[i].lower_base_addr = |
| pm8001_ha->memoryMap.region[IB + i].phys_addr_lo; |
| pm8001_ha->inbnd_q_tbl[i].base_virt = |
| (u8 *)pm8001_ha->memoryMap.region[IB + i].virt_ptr; |
| pm8001_ha->inbnd_q_tbl[i].total_length = |
| pm8001_ha->memoryMap.region[IB + i].total_len; |
| pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr = |
| pm8001_ha->memoryMap.region[CI + i].phys_addr_hi; |
| pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr = |
| pm8001_ha->memoryMap.region[CI + i].phys_addr_lo; |
| pm8001_ha->inbnd_q_tbl[i].ci_virt = |
| pm8001_ha->memoryMap.region[CI + i].virt_ptr; |
| offsetib = i * 0x20; |
| pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = |
| get_pci_bar_index(pm8001_mr32(addressib, |
| (offsetib + 0x14))); |
| pm8001_ha->inbnd_q_tbl[i].pi_offset = |
| pm8001_mr32(addressib, (offsetib + 0x18)); |
| pm8001_ha->inbnd_q_tbl[i].producer_idx = 0; |
| pm8001_ha->inbnd_q_tbl[i].consumer_index = 0; |
| } |
| for (i = 0; i < PM8001_MAX_OUTB_NUM; i++) { |
| pm8001_ha->outbnd_q_tbl[i].element_size_cnt = |
| PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x01<<30); |
| pm8001_ha->outbnd_q_tbl[i].upper_base_addr = |
| pm8001_ha->memoryMap.region[OB + i].phys_addr_hi; |
| pm8001_ha->outbnd_q_tbl[i].lower_base_addr = |
| pm8001_ha->memoryMap.region[OB + i].phys_addr_lo; |
| pm8001_ha->outbnd_q_tbl[i].base_virt = |
| (u8 *)pm8001_ha->memoryMap.region[OB + i].virt_ptr; |
| pm8001_ha->outbnd_q_tbl[i].total_length = |
| pm8001_ha->memoryMap.region[OB + i].total_len; |
| pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr = |
| pm8001_ha->memoryMap.region[PI + i].phys_addr_hi; |
| pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr = |
| pm8001_ha->memoryMap.region[PI + i].phys_addr_lo; |
| pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay = |
| 0 | (10 << 16) | (i << 24); |
| pm8001_ha->outbnd_q_tbl[i].pi_virt = |
| pm8001_ha->memoryMap.region[PI + i].virt_ptr; |
| offsetob = i * 0x24; |
| pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = |
| get_pci_bar_index(pm8001_mr32(addressob, |
| offsetob + 0x14)); |
| pm8001_ha->outbnd_q_tbl[i].ci_offset = |
| pm8001_mr32(addressob, (offsetob + 0x18)); |
| pm8001_ha->outbnd_q_tbl[i].consumer_idx = 0; |
| pm8001_ha->outbnd_q_tbl[i].producer_index = 0; |
| } |
| } |
| |
| /** |
| * update_main_config_table - update the main default table to the HBA. |
| * @pm8001_ha: our hba card information |
| */ |
| static void update_main_config_table(struct pm8001_hba_info *pm8001_ha) |
| { |
| void __iomem *address = pm8001_ha->main_cfg_tbl_addr; |
| pm8001_mw32(address, 0x24, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd); |
| pm8001_mw32(address, 0x28, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3); |
| pm8001_mw32(address, 0x2C, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7); |
| pm8001_mw32(address, 0x30, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3); |
| pm8001_mw32(address, 0x34, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7); |
| pm8001_mw32(address, 0x38, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl. |
| outbound_tgt_ITNexus_event_pid0_3); |
| pm8001_mw32(address, 0x3C, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl. |
| outbound_tgt_ITNexus_event_pid4_7); |
| pm8001_mw32(address, 0x40, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl. |
| outbound_tgt_ssp_event_pid0_3); |
| pm8001_mw32(address, 0x44, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl. |
| outbound_tgt_ssp_event_pid4_7); |
| pm8001_mw32(address, 0x48, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl. |
| outbound_tgt_smp_event_pid0_3); |
| pm8001_mw32(address, 0x4C, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl. |
| outbound_tgt_smp_event_pid4_7); |
| pm8001_mw32(address, 0x50, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr); |
| pm8001_mw32(address, 0x54, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr); |
| pm8001_mw32(address, 0x58, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size); |
| pm8001_mw32(address, 0x5C, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option); |
| pm8001_mw32(address, 0x60, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr); |
| pm8001_mw32(address, 0x64, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr); |
| pm8001_mw32(address, 0x68, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size); |
| pm8001_mw32(address, 0x6C, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option); |
| pm8001_mw32(address, 0x70, |
| pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt); |
| } |
| |
| /** |
| * update_inbnd_queue_table - update the inbound queue table to the HBA. |
| * @pm8001_ha: our hba card information |
| */ |
| static void update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha, |
| int number) |
| { |
| void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; |
| u16 offset = number * 0x20; |
| pm8001_mw32(address, offset + 0x00, |
| pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt); |
| pm8001_mw32(address, offset + 0x04, |
| pm8001_ha->inbnd_q_tbl[number].upper_base_addr); |
| pm8001_mw32(address, offset + 0x08, |
| pm8001_ha->inbnd_q_tbl[number].lower_base_addr); |
| pm8001_mw32(address, offset + 0x0C, |
| pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr); |
| pm8001_mw32(address, offset + 0x10, |
| pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr); |
| } |
| |
| /** |
| * update_outbnd_queue_table - update the outbound queue table to the HBA. |
| * @pm8001_ha: our hba card information |
| */ |
| static void update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha, |
| int number) |
| { |
| void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; |
| u16 offset = number * 0x24; |
| pm8001_mw32(address, offset + 0x00, |
| pm8001_ha->outbnd_q_tbl[number].element_size_cnt); |
| pm8001_mw32(address, offset + 0x04, |
| pm8001_ha->outbnd_q_tbl[number].upper_base_addr); |
| pm8001_mw32(address, offset + 0x08, |
| pm8001_ha->outbnd_q_tbl[number].lower_base_addr); |
| pm8001_mw32(address, offset + 0x0C, |
| pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr); |
| pm8001_mw32(address, offset + 0x10, |
| pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr); |
| pm8001_mw32(address, offset + 0x1C, |
| pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay); |
| } |
| |
| /** |
| * pm8001_bar4_shift - function is called to shift BAR base address |
| * @pm8001_ha : our hba card infomation |
| * @shiftValue : shifting value in memory bar. |
| */ |
| int pm8001_bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shiftValue) |
| { |
| u32 regVal; |
| unsigned long start; |
| |
| /* program the inbound AXI translation Lower Address */ |
| pm8001_cw32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW, shiftValue); |
| |
| /* confirm the setting is written */ |
| start = jiffies + HZ; /* 1 sec */ |
| do { |
| regVal = pm8001_cr32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW); |
| } while ((regVal != shiftValue) && time_before(jiffies, start)); |
| |
| if (regVal != shiftValue) { |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("TIMEOUT:SPC_IBW_AXI_TRANSLATION_LOW" |
| " = 0x%x\n", regVal)); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /** |
| * mpi_set_phys_g3_with_ssc |
| * @pm8001_ha: our hba card information |
| * @SSCbit: set SSCbit to 0 to disable all phys ssc; 1 to enable all phys ssc. |
| */ |
| static void mpi_set_phys_g3_with_ssc(struct pm8001_hba_info *pm8001_ha, |
| u32 SSCbit) |
| { |
| u32 value, offset, i; |
| unsigned long flags; |
| |
| #define SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR 0x00030000 |
| #define SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR 0x00040000 |
| #define SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET 0x1074 |
| #define SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET 0x1074 |
| #define PHY_G3_WITHOUT_SSC_BIT_SHIFT 12 |
| #define PHY_G3_WITH_SSC_BIT_SHIFT 13 |
| #define SNW3_PHY_CAPABILITIES_PARITY 31 |
| |
| /* |
| * Using shifted destination address 0x3_0000:0x1074 + 0x4000*N (N=0:3) |
| * Using shifted destination address 0x4_0000:0x1074 + 0x4000*(N-4) (N=4:7) |
| */ |
| spin_lock_irqsave(&pm8001_ha->lock, flags); |
| if (-1 == pm8001_bar4_shift(pm8001_ha, |
| SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR)) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| return; |
| } |
| |
| for (i = 0; i < 4; i++) { |
| offset = SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET + 0x4000 * i; |
| pm8001_cw32(pm8001_ha, 2, offset, 0x80001501); |
| } |
| /* shift membase 3 for SAS2_SETTINGS_LOCAL_PHY 4 - 7 */ |
| if (-1 == pm8001_bar4_shift(pm8001_ha, |
| SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR)) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| return; |
| } |
| for (i = 4; i < 8; i++) { |
| offset = SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET + 0x4000 * (i-4); |
| pm8001_cw32(pm8001_ha, 2, offset, 0x80001501); |
| } |
| /************************************************************* |
| Change the SSC upspreading value to 0x0 so that upspreading is disabled. |
| Device MABC SMOD0 Controls |
| Address: (via MEMBASE-III): |
| Using shifted destination address 0x0_0000: with Offset 0xD8 |
| |
| 31:28 R/W Reserved Do not change |
| 27:24 R/W SAS_SMOD_SPRDUP 0000 |
| 23:20 R/W SAS_SMOD_SPRDDN 0000 |
| 19:0 R/W Reserved Do not change |
| Upon power-up this register will read as 0x8990c016, |
| and I would like you to change the SAS_SMOD_SPRDUP bits to 0b0000 |
| so that the written value will be 0x8090c016. |
| This will ensure only down-spreading SSC is enabled on the SPC. |
| *************************************************************/ |
| value = pm8001_cr32(pm8001_ha, 2, 0xd8); |
| pm8001_cw32(pm8001_ha, 2, 0xd8, 0x8000C016); |
| |
| /*set the shifted destination address to 0x0 to avoid error operation */ |
| pm8001_bar4_shift(pm8001_ha, 0x0); |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| return; |
| } |
| |
| /** |
| * mpi_set_open_retry_interval_reg |
| * @pm8001_ha: our hba card information |
| * @interval - interval time for each OPEN_REJECT (RETRY). The units are in 1us. |
| */ |
| static void mpi_set_open_retry_interval_reg(struct pm8001_hba_info *pm8001_ha, |
| u32 interval) |
| { |
| u32 offset; |
| u32 value; |
| u32 i; |
| unsigned long flags; |
| |
| #define OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR 0x00030000 |
| #define OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR 0x00040000 |
| #define OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET 0x30B4 |
| #define OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET 0x30B4 |
| #define OPEN_RETRY_INTERVAL_REG_MASK 0x0000FFFF |
| |
| value = interval & OPEN_RETRY_INTERVAL_REG_MASK; |
| spin_lock_irqsave(&pm8001_ha->lock, flags); |
| /* shift bar and set the OPEN_REJECT(RETRY) interval time of PHY 0 -3.*/ |
| if (-1 == pm8001_bar4_shift(pm8001_ha, |
| OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR)) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| return; |
| } |
| for (i = 0; i < 4; i++) { |
| offset = OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET + 0x4000 * i; |
| pm8001_cw32(pm8001_ha, 2, offset, value); |
| } |
| |
| if (-1 == pm8001_bar4_shift(pm8001_ha, |
| OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR)) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| return; |
| } |
| for (i = 4; i < 8; i++) { |
| offset = OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET + 0x4000 * (i-4); |
| pm8001_cw32(pm8001_ha, 2, offset, value); |
| } |
| /*set the shifted destination address to 0x0 to avoid error operation */ |
| pm8001_bar4_shift(pm8001_ha, 0x0); |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| return; |
| } |
| |
| /** |
| * mpi_init_check - check firmware initialization status. |
| * @pm8001_ha: our hba card information |
| */ |
| static int mpi_init_check(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 max_wait_count; |
| u32 value; |
| u32 gst_len_mpistate; |
| /* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the |
| table is updated */ |
| pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_UPDATE); |
| /* wait until Inbound DoorBell Clear Register toggled */ |
| max_wait_count = 1 * 1000 * 1000;/* 1 sec */ |
| do { |
| udelay(1); |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); |
| value &= SPC_MSGU_CFG_TABLE_UPDATE; |
| } while ((value != 0) && (--max_wait_count)); |
| |
| if (!max_wait_count) |
| return -1; |
| /* check the MPI-State for initialization */ |
| gst_len_mpistate = |
| pm8001_mr32(pm8001_ha->general_stat_tbl_addr, |
| GST_GSTLEN_MPIS_OFFSET); |
| if (GST_MPI_STATE_INIT != (gst_len_mpistate & GST_MPI_STATE_MASK)) |
| return -1; |
| /* check MPI Initialization error */ |
| gst_len_mpistate = gst_len_mpistate >> 16; |
| if (0x0000 != gst_len_mpistate) |
| return -1; |
| return 0; |
| } |
| |
| /** |
| * check_fw_ready - The LLDD check if the FW is ready, if not, return error. |
| * @pm8001_ha: our hba card information |
| */ |
| static int check_fw_ready(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 value, value1; |
| u32 max_wait_count; |
| /* check error state */ |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); |
| value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); |
| /* check AAP error */ |
| if (SCRATCH_PAD1_ERR == (value & SCRATCH_PAD_STATE_MASK)) { |
| /* error state */ |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); |
| return -1; |
| } |
| |
| /* check IOP error */ |
| if (SCRATCH_PAD2_ERR == (value1 & SCRATCH_PAD_STATE_MASK)) { |
| /* error state */ |
| value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3); |
| return -1; |
| } |
| |
| /* bit 4-31 of scratch pad1 should be zeros if it is not |
| in error state*/ |
| if (value & SCRATCH_PAD1_STATE_MASK) { |
| /* error case */ |
| pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); |
| return -1; |
| } |
| |
| /* bit 2, 4-31 of scratch pad2 should be zeros if it is not |
| in error state */ |
| if (value1 & SCRATCH_PAD2_STATE_MASK) { |
| /* error case */ |
| return -1; |
| } |
| |
| max_wait_count = 1 * 1000 * 1000;/* 1 sec timeout */ |
| |
| /* wait until scratch pad 1 and 2 registers in ready state */ |
| do { |
| udelay(1); |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) |
| & SCRATCH_PAD1_RDY; |
| value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) |
| & SCRATCH_PAD2_RDY; |
| if ((--max_wait_count) == 0) |
| return -1; |
| } while ((value != SCRATCH_PAD1_RDY) || (value1 != SCRATCH_PAD2_RDY)); |
| return 0; |
| } |
| |
| static void init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha) |
| { |
| void __iomem *base_addr; |
| u32 value; |
| u32 offset; |
| u32 pcibar; |
| u32 pcilogic; |
| |
| value = pm8001_cr32(pm8001_ha, 0, 0x44); |
| offset = value & 0x03FFFFFF; |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("Scratchpad 0 Offset: %x\n", offset)); |
| pcilogic = (value & 0xFC000000) >> 26; |
| pcibar = get_pci_bar_index(pcilogic); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("Scratchpad 0 PCI BAR: %d\n", pcibar)); |
| pm8001_ha->main_cfg_tbl_addr = base_addr = |
| pm8001_ha->io_mem[pcibar].memvirtaddr + offset; |
| pm8001_ha->general_stat_tbl_addr = |
| base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x18); |
| pm8001_ha->inbnd_q_tbl_addr = |
| base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C); |
| pm8001_ha->outbnd_q_tbl_addr = |
| base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x20); |
| } |
| |
| /** |
| * pm8001_chip_init - the main init function that initialize whole PM8001 chip. |
| * @pm8001_ha: our hba card information |
| */ |
| static int pm8001_chip_init(struct pm8001_hba_info *pm8001_ha) |
| { |
| u8 i = 0; |
| u16 deviceid; |
| pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid); |
| /* 8081 controllers need BAR shift to access MPI space |
| * as this is shared with BIOS data */ |
| if (deviceid == 0x8081 || deviceid == 0x0042) { |
| if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Shift Bar4 to 0x%x failed\n", |
| GSM_SM_BASE)); |
| return -1; |
| } |
| } |
| /* check the firmware status */ |
| if (-1 == check_fw_ready(pm8001_ha)) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Firmware is not ready!\n")); |
| return -EBUSY; |
| } |
| |
| /* Initialize pci space address eg: mpi offset */ |
| init_pci_device_addresses(pm8001_ha); |
| init_default_table_values(pm8001_ha); |
| read_main_config_table(pm8001_ha); |
| read_general_status_table(pm8001_ha); |
| read_inbnd_queue_table(pm8001_ha); |
| read_outbnd_queue_table(pm8001_ha); |
| /* update main config table ,inbound table and outbound table */ |
| update_main_config_table(pm8001_ha); |
| for (i = 0; i < PM8001_MAX_INB_NUM; i++) |
| update_inbnd_queue_table(pm8001_ha, i); |
| for (i = 0; i < PM8001_MAX_OUTB_NUM; i++) |
| update_outbnd_queue_table(pm8001_ha, i); |
| /* 8081 controller donot require these operations */ |
| if (deviceid != 0x8081 && deviceid != 0x0042) { |
| mpi_set_phys_g3_with_ssc(pm8001_ha, 0); |
| /* 7->130ms, 34->500ms, 119->1.5s */ |
| mpi_set_open_retry_interval_reg(pm8001_ha, 119); |
| } |
| /* notify firmware update finished and check initialization status */ |
| if (0 == mpi_init_check(pm8001_ha)) { |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("MPI initialize successful!\n")); |
| } else |
| return -EBUSY; |
| /*This register is a 16-bit timer with a resolution of 1us. This is the |
| timer used for interrupt delay/coalescing in the PCIe Application Layer. |
| Zero is not a valid value. A value of 1 in the register will cause the |
| interrupts to be normal. A value greater than 1 will cause coalescing |
| delays.*/ |
| pm8001_cw32(pm8001_ha, 1, 0x0033c0, 0x1); |
| pm8001_cw32(pm8001_ha, 1, 0x0033c4, 0x0); |
| return 0; |
| } |
| |
| static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 max_wait_count; |
| u32 value; |
| u32 gst_len_mpistate; |
| u16 deviceid; |
| pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid); |
| if (deviceid == 0x8081 || deviceid == 0x0042) { |
| if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Shift Bar4 to 0x%x failed\n", |
| GSM_SM_BASE)); |
| return -1; |
| } |
| } |
| init_pci_device_addresses(pm8001_ha); |
| /* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the |
| table is stop */ |
| pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_RESET); |
| |
| /* wait until Inbound DoorBell Clear Register toggled */ |
| max_wait_count = 1 * 1000 * 1000;/* 1 sec */ |
| do { |
| udelay(1); |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); |
| value &= SPC_MSGU_CFG_TABLE_RESET; |
| } while ((value != 0) && (--max_wait_count)); |
| |
| if (!max_wait_count) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("TIMEOUT:IBDB value/=0x%x\n", value)); |
| return -1; |
| } |
| |
| /* check the MPI-State for termination in progress */ |
| /* wait until Inbound DoorBell Clear Register toggled */ |
| max_wait_count = 1 * 1000 * 1000; /* 1 sec */ |
| do { |
| udelay(1); |
| gst_len_mpistate = |
| pm8001_mr32(pm8001_ha->general_stat_tbl_addr, |
| GST_GSTLEN_MPIS_OFFSET); |
| if (GST_MPI_STATE_UNINIT == |
| (gst_len_mpistate & GST_MPI_STATE_MASK)) |
| break; |
| } while (--max_wait_count); |
| if (!max_wait_count) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk(" TIME OUT MPI State = 0x%x\n", |
| gst_len_mpistate & GST_MPI_STATE_MASK)); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /** |
| * soft_reset_ready_check - Function to check FW is ready for soft reset. |
| * @pm8001_ha: our hba card information |
| */ |
| static u32 soft_reset_ready_check(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 regVal, regVal1, regVal2; |
| if (mpi_uninit_check(pm8001_ha) != 0) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("MPI state is not ready\n")); |
| return -1; |
| } |
| /* read the scratch pad 2 register bit 2 */ |
| regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) |
| & SCRATCH_PAD2_FWRDY_RST; |
| if (regVal == SCRATCH_PAD2_FWRDY_RST) { |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("Firmware is ready for reset .\n")); |
| } else { |
| unsigned long flags; |
| /* Trigger NMI twice via RB6 */ |
| spin_lock_irqsave(&pm8001_ha->lock, flags); |
| if (-1 == pm8001_bar4_shift(pm8001_ha, RB6_ACCESS_REG)) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Shift Bar4 to 0x%x failed\n", |
| RB6_ACCESS_REG)); |
| return -1; |
| } |
| pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, |
| RB6_MAGIC_NUMBER_RST); |
| pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, RB6_MAGIC_NUMBER_RST); |
| /* wait for 100 ms */ |
| mdelay(100); |
| regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) & |
| SCRATCH_PAD2_FWRDY_RST; |
| if (regVal != SCRATCH_PAD2_FWRDY_RST) { |
| regVal1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); |
| regVal2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("TIMEOUT:MSGU_SCRATCH_PAD1" |
| "=0x%x, MSGU_SCRATCH_PAD2=0x%x\n", |
| regVal1, regVal2)); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SCRATCH_PAD0 value = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0))); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SCRATCH_PAD3 value = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3))); |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| return -1; |
| } |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| } |
| return 0; |
| } |
| |
| /** |
| * pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all |
| * the FW register status to the originated status. |
| * @pm8001_ha: our hba card information |
| */ |
| static int |
| pm8001_chip_soft_rst(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 regVal, toggleVal; |
| u32 max_wait_count; |
| u32 regVal1, regVal2, regVal3; |
| u32 signature = 0x252acbcd; /* for host scratch pad0 */ |
| unsigned long flags; |
| |
| /* step1: Check FW is ready for soft reset */ |
| if (soft_reset_ready_check(pm8001_ha) != 0) { |
| PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("FW is not ready\n")); |
| return -1; |
| } |
| |
| /* step 2: clear NMI status register on AAP1 and IOP, write the same |
| value to clear */ |
| /* map 0x60000 to BAR4(0x20), BAR2(win) */ |
| spin_lock_irqsave(&pm8001_ha->lock, flags); |
| if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_AAP1_ADDR_BASE)) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Shift Bar4 to 0x%x failed\n", |
| MBIC_AAP1_ADDR_BASE)); |
| return -1; |
| } |
| regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("MBIC - NMI Enable VPE0 (IOP)= 0x%x\n", regVal)); |
| pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP, 0x0); |
| /* map 0x70000 to BAR4(0x20), BAR2(win) */ |
| if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_IOP_ADDR_BASE)) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Shift Bar4 to 0x%x failed\n", |
| MBIC_IOP_ADDR_BASE)); |
| return -1; |
| } |
| regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("MBIC - NMI Enable VPE0 (AAP1)= 0x%x\n", regVal)); |
| pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1, 0x0); |
| |
| regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("PCIE -Event Interrupt Enable = 0x%x\n", regVal)); |
| pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE, 0x0); |
| |
| regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("PCIE - Event Interrupt = 0x%x\n", regVal)); |
| pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT, regVal); |
| |
| regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("PCIE -Error Interrupt Enable = 0x%x\n", regVal)); |
| pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE, 0x0); |
| |
| regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("PCIE - Error Interrupt = 0x%x\n", regVal)); |
| pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT, regVal); |
| |
| /* read the scratch pad 1 register bit 2 */ |
| regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) |
| & SCRATCH_PAD1_RST; |
| toggleVal = regVal ^ SCRATCH_PAD1_RST; |
| |
| /* set signature in host scratch pad0 register to tell SPC that the |
| host performs the soft reset */ |
| pm8001_cw32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0, signature); |
| |
| /* read required registers for confirmming */ |
| /* map 0x0700000 to BAR4(0x20), BAR2(win) */ |
| if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Shift Bar4 to 0x%x failed\n", |
| GSM_ADDR_BASE)); |
| return -1; |
| } |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x0(0x00007b88)-GSM Configuration and" |
| " Reset = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET))); |
| |
| /* step 3: host read GSM Configuration and Reset register */ |
| regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET); |
| /* Put those bits to low */ |
| /* GSM XCBI offset = 0x70 0000 |
| 0x00 Bit 13 COM_SLV_SW_RSTB 1 |
| 0x00 Bit 12 QSSP_SW_RSTB 1 |
| 0x00 Bit 11 RAAE_SW_RSTB 1 |
| 0x00 Bit 9 RB_1_SW_RSTB 1 |
| 0x00 Bit 8 SM_SW_RSTB 1 |
| */ |
| regVal &= ~(0x00003b00); |
| /* host write GSM Configuration and Reset register */ |
| pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x0 (0x00007b88 ==> 0x00004088) - GSM " |
| "Configuration and Reset is set to = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET))); |
| |
| /* step 4: */ |
| /* disable GSM - Read Address Parity Check */ |
| regVal1 = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x700038 - Read Address Parity Check " |
| "Enable = 0x%x\n", regVal1)); |
| pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, 0x0); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x700038 - Read Address Parity Check Enable" |
| "is set to = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK))); |
| |
| /* disable GSM - Write Address Parity Check */ |
| regVal2 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x700040 - Write Address Parity Check" |
| " Enable = 0x%x\n", regVal2)); |
| pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, 0x0); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x700040 - Write Address Parity Check " |
| "Enable is set to = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK))); |
| |
| /* disable GSM - Write Data Parity Check */ |
| regVal3 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x300048 - Write Data Parity Check" |
| " Enable = 0x%x\n", regVal3)); |
| pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, 0x0); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x300048 - Write Data Parity Check Enable" |
| "is set to = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK))); |
| |
| /* step 5: delay 10 usec */ |
| udelay(10); |
| /* step 5-b: set GPIO-0 output control to tristate anyway */ |
| if (-1 == pm8001_bar4_shift(pm8001_ha, GPIO_ADDR_BASE)) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("Shift Bar4 to 0x%x failed\n", |
| GPIO_ADDR_BASE)); |
| return -1; |
| } |
| regVal = pm8001_cr32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GPIO Output Control Register:" |
| " = 0x%x\n", regVal)); |
| /* set GPIO-0 output control to tri-state */ |
| regVal &= 0xFFFFFFFC; |
| pm8001_cw32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET, regVal); |
| |
| /* Step 6: Reset the IOP and AAP1 */ |
| /* map 0x00000 to BAR4(0x20), BAR2(win) */ |
| if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SPC Shift Bar4 to 0x%x failed\n", |
| SPC_TOP_LEVEL_ADDR_BASE)); |
| return -1; |
| } |
| regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("Top Register before resetting IOP/AAP1" |
| ":= 0x%x\n", regVal)); |
| regVal &= ~(SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS); |
| pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); |
| |
| /* step 7: Reset the BDMA/OSSP */ |
| regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("Top Register before resetting BDMA/OSSP" |
| ": = 0x%x\n", regVal)); |
| regVal &= ~(SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP); |
| pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); |
| |
| /* step 8: delay 10 usec */ |
| udelay(10); |
| |
| /* step 9: bring the BDMA and OSSP out of reset */ |
| regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("Top Register before bringing up BDMA/OSSP" |
| ":= 0x%x\n", regVal)); |
| regVal |= (SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP); |
| pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); |
| |
| /* step 10: delay 10 usec */ |
| udelay(10); |
| |
| /* step 11: reads and sets the GSM Configuration and Reset Register */ |
| /* map 0x0700000 to BAR4(0x20), BAR2(win) */ |
| if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SPC Shift Bar4 to 0x%x failed\n", |
| GSM_ADDR_BASE)); |
| return -1; |
| } |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x0 (0x00007b88)-GSM Configuration and " |
| "Reset = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET))); |
| regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET); |
| /* Put those bits to high */ |
| /* GSM XCBI offset = 0x70 0000 |
| 0x00 Bit 13 COM_SLV_SW_RSTB 1 |
| 0x00 Bit 12 QSSP_SW_RSTB 1 |
| 0x00 Bit 11 RAAE_SW_RSTB 1 |
| 0x00 Bit 9 RB_1_SW_RSTB 1 |
| 0x00 Bit 8 SM_SW_RSTB 1 |
| */ |
| regVal |= (GSM_CONFIG_RESET_VALUE); |
| pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM (0x00004088 ==> 0x00007b88) - GSM" |
| " Configuration and Reset is set to = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET))); |
| |
| /* step 12: Restore GSM - Read Address Parity Check */ |
| regVal = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK); |
| /* just for debugging */ |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x700038 - Read Address Parity Check Enable" |
| " = 0x%x\n", regVal)); |
| pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, regVal1); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x700038 - Read Address Parity" |
| " Check Enable is set to = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK))); |
| /* Restore GSM - Write Address Parity Check */ |
| regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK); |
| pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, regVal2); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x700040 - Write Address Parity Check" |
| " Enable is set to = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK))); |
| /* Restore GSM - Write Data Parity Check */ |
| regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK); |
| pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, regVal3); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GSM 0x700048 - Write Data Parity Check Enable" |
| "is set to = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK))); |
| |
| /* step 13: bring the IOP and AAP1 out of reset */ |
| /* map 0x00000 to BAR4(0x20), BAR2(win) */ |
| if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Shift Bar4 to 0x%x failed\n", |
| SPC_TOP_LEVEL_ADDR_BASE)); |
| return -1; |
| } |
| regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); |
| regVal |= (SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS); |
| pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); |
| |
| /* step 14: delay 10 usec - Normal Mode */ |
| udelay(10); |
| /* check Soft Reset Normal mode or Soft Reset HDA mode */ |
| if (signature == SPC_SOFT_RESET_SIGNATURE) { |
| /* step 15 (Normal Mode): wait until scratch pad1 register |
| bit 2 toggled */ |
| max_wait_count = 2 * 1000 * 1000;/* 2 sec */ |
| do { |
| udelay(1); |
| regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) & |
| SCRATCH_PAD1_RST; |
| } while ((regVal != toggleVal) && (--max_wait_count)); |
| |
| if (!max_wait_count) { |
| regVal = pm8001_cr32(pm8001_ha, 0, |
| MSGU_SCRATCH_PAD_1); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("TIMEOUT : ToggleVal 0x%x," |
| "MSGU_SCRATCH_PAD1 = 0x%x\n", |
| toggleVal, regVal)); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SCRATCH_PAD0 value = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 0, |
| MSGU_SCRATCH_PAD_0))); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SCRATCH_PAD2 value = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 0, |
| MSGU_SCRATCH_PAD_2))); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SCRATCH_PAD3 value = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 0, |
| MSGU_SCRATCH_PAD_3))); |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| return -1; |
| } |
| |
| /* step 16 (Normal) - Clear ODMR and ODCR */ |
| pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); |
| pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); |
| |
| /* step 17 (Normal Mode): wait for the FW and IOP to get |
| ready - 1 sec timeout */ |
| /* Wait for the SPC Configuration Table to be ready */ |
| if (check_fw_ready(pm8001_ha) == -1) { |
| regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); |
| /* return error if MPI Configuration Table not ready */ |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("FW not ready SCRATCH_PAD1" |
| " = 0x%x\n", regVal)); |
| regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); |
| /* return error if MPI Configuration Table not ready */ |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("FW not ready SCRATCH_PAD2" |
| " = 0x%x\n", regVal)); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SCRATCH_PAD0 value = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 0, |
| MSGU_SCRATCH_PAD_0))); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SCRATCH_PAD3 value = 0x%x\n", |
| pm8001_cr32(pm8001_ha, 0, |
| MSGU_SCRATCH_PAD_3))); |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| return -1; |
| } |
| } |
| pm8001_bar4_shift(pm8001_ha, 0); |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SPC soft reset Complete\n")); |
| return 0; |
| } |
| |
| static void pm8001_hw_chip_rst(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 i; |
| u32 regVal; |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("chip reset start\n")); |
| |
| /* do SPC chip reset. */ |
| regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET); |
| regVal &= ~(SPC_REG_RESET_DEVICE); |
| pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal); |
| |
| /* delay 10 usec */ |
| udelay(10); |
| |
| /* bring chip reset out of reset */ |
| regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET); |
| regVal |= SPC_REG_RESET_DEVICE; |
| pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal); |
| |
| /* delay 10 usec */ |
| udelay(10); |
| |
| /* wait for 20 msec until the firmware gets reloaded */ |
| i = 20; |
| do { |
| mdelay(1); |
| } while ((--i) != 0); |
| |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("chip reset finished\n")); |
| } |
| |
| /** |
| * pm8001_chip_iounmap - which maped when initialized. |
| * @pm8001_ha: our hba card information |
| */ |
| void pm8001_chip_iounmap(struct pm8001_hba_info *pm8001_ha) |
| { |
| s8 bar, logical = 0; |
| for (bar = 0; bar < 6; bar++) { |
| /* |
| ** logical BARs for SPC: |
| ** bar 0 and 1 - logical BAR0 |
| ** bar 2 and 3 - logical BAR1 |
| ** bar4 - logical BAR2 |
| ** bar5 - logical BAR3 |
| ** Skip the appropriate assignments: |
| */ |
| if ((bar == 1) || (bar == 3)) |
| continue; |
| if (pm8001_ha->io_mem[logical].memvirtaddr) { |
| iounmap(pm8001_ha->io_mem[logical].memvirtaddr); |
| logical++; |
| } |
| } |
| } |
| |
| #ifndef PM8001_USE_MSIX |
| /** |
| * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt |
| * @pm8001_ha: our hba card information |
| */ |
| static void |
| pm8001_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha) |
| { |
| pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); |
| pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); |
| } |
| |
| /** |
| * pm8001_chip_intx_interrupt_disable- disable PM8001 chip interrupt |
| * @pm8001_ha: our hba card information |
| */ |
| static void |
| pm8001_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha) |
| { |
| pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_MASK_ALL); |
| } |
| |
| #else |
| |
| /** |
| * pm8001_chip_msix_interrupt_enable - enable PM8001 chip interrupt |
| * @pm8001_ha: our hba card information |
| */ |
| static void |
| pm8001_chip_msix_interrupt_enable(struct pm8001_hba_info *pm8001_ha, |
| u32 int_vec_idx) |
| { |
| u32 msi_index; |
| u32 value; |
| msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE; |
| msi_index += MSIX_TABLE_BASE; |
| pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_ENABLE); |
| value = (1 << int_vec_idx); |
| pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, value); |
| |
| } |
| |
| /** |
| * pm8001_chip_msix_interrupt_disable - disable PM8001 chip interrupt |
| * @pm8001_ha: our hba card information |
| */ |
| static void |
| pm8001_chip_msix_interrupt_disable(struct pm8001_hba_info *pm8001_ha, |
| u32 int_vec_idx) |
| { |
| u32 msi_index; |
| msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE; |
| msi_index += MSIX_TABLE_BASE; |
| pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_DISABLE); |
| } |
| #endif |
| |
| /** |
| * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt |
| * @pm8001_ha: our hba card information |
| */ |
| static void |
| pm8001_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha, u8 vec) |
| { |
| #ifdef PM8001_USE_MSIX |
| pm8001_chip_msix_interrupt_enable(pm8001_ha, 0); |
| #else |
| pm8001_chip_intx_interrupt_enable(pm8001_ha); |
| #endif |
| } |
| |
| /** |
| * pm8001_chip_intx_interrupt_disable- disable PM8001 chip interrupt |
| * @pm8001_ha: our hba card information |
| */ |
| static void |
| pm8001_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha, u8 vec) |
| { |
| #ifdef PM8001_USE_MSIX |
| pm8001_chip_msix_interrupt_disable(pm8001_ha, 0); |
| #else |
| pm8001_chip_intx_interrupt_disable(pm8001_ha); |
| #endif |
| } |
| |
| /** |
| * pm8001_mpi_msg_free_get - get the free message buffer for transfer |
| * inbound queue. |
| * @circularQ: the inbound queue we want to transfer to HBA. |
| * @messageSize: the message size of this transfer, normally it is 64 bytes |
| * @messagePtr: the pointer to message. |
| */ |
| int pm8001_mpi_msg_free_get(struct inbound_queue_table *circularQ, |
| u16 messageSize, void **messagePtr) |
| { |
| u32 offset, consumer_index; |
| struct mpi_msg_hdr *msgHeader; |
| u8 bcCount = 1; /* only support single buffer */ |
| |
| /* Checks is the requested message size can be allocated in this queue*/ |
| if (messageSize > IOMB_SIZE_SPCV) { |
| *messagePtr = NULL; |
| return -1; |
| } |
| |
| /* Stores the new consumer index */ |
| consumer_index = pm8001_read_32(circularQ->ci_virt); |
| circularQ->consumer_index = cpu_to_le32(consumer_index); |
| if (((circularQ->producer_idx + bcCount) % PM8001_MPI_QUEUE) == |
| le32_to_cpu(circularQ->consumer_index)) { |
| *messagePtr = NULL; |
| return -1; |
| } |
| /* get memory IOMB buffer address */ |
| offset = circularQ->producer_idx * messageSize; |
| /* increment to next bcCount element */ |
| circularQ->producer_idx = (circularQ->producer_idx + bcCount) |
| % PM8001_MPI_QUEUE; |
| /* Adds that distance to the base of the region virtual address plus |
| the message header size*/ |
| msgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + offset); |
| *messagePtr = ((void *)msgHeader) + sizeof(struct mpi_msg_hdr); |
| return 0; |
| } |
| |
| /** |
| * pm8001_mpi_build_cmd- build the message queue for transfer, update the PI to |
| * FW to tell the fw to get this message from IOMB. |
| * @pm8001_ha: our hba card information |
| * @circularQ: the inbound queue we want to transfer to HBA. |
| * @opCode: the operation code represents commands which LLDD and fw recognized. |
| * @payload: the command payload of each operation command. |
| */ |
| int pm8001_mpi_build_cmd(struct pm8001_hba_info *pm8001_ha, |
| struct inbound_queue_table *circularQ, |
| u32 opCode, void *payload, u32 responseQueue) |
| { |
| u32 Header = 0, hpriority = 0, bc = 1, category = 0x02; |
| void *pMessage; |
| |
| if (pm8001_mpi_msg_free_get(circularQ, pm8001_ha->iomb_size, |
| &pMessage) < 0) { |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("No free mpi buffer\n")); |
| return -ENOMEM; |
| } |
| BUG_ON(!payload); |
| /*Copy to the payload*/ |
| memcpy(pMessage, payload, (pm8001_ha->iomb_size - |
| sizeof(struct mpi_msg_hdr))); |
| |
| /*Build the header*/ |
| Header = ((1 << 31) | (hpriority << 30) | ((bc & 0x1f) << 24) |
| | ((responseQueue & 0x3F) << 16) |
| | ((category & 0xF) << 12) | (opCode & 0xFFF)); |
| |
| pm8001_write_32((pMessage - 4), 0, cpu_to_le32(Header)); |
| /*Update the PI to the firmware*/ |
| pm8001_cw32(pm8001_ha, circularQ->pi_pci_bar, |
| circularQ->pi_offset, circularQ->producer_idx); |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("INB Q %x OPCODE:%x , UPDATED PI=%d CI=%d\n", |
| responseQueue, opCode, circularQ->producer_idx, |
| circularQ->consumer_index)); |
| return 0; |
| } |
| |
| u32 pm8001_mpi_msg_free_set(struct pm8001_hba_info *pm8001_ha, void *pMsg, |
| struct outbound_queue_table *circularQ, u8 bc) |
| { |
| u32 producer_index; |
| struct mpi_msg_hdr *msgHeader; |
| struct mpi_msg_hdr *pOutBoundMsgHeader; |
| |
| msgHeader = (struct mpi_msg_hdr *)(pMsg - sizeof(struct mpi_msg_hdr)); |
| pOutBoundMsgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + |
| circularQ->consumer_idx * pm8001_ha->iomb_size); |
| if (pOutBoundMsgHeader != msgHeader) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("consumer_idx = %d msgHeader = %p\n", |
| circularQ->consumer_idx, msgHeader)); |
| |
| /* Update the producer index from SPC */ |
| producer_index = pm8001_read_32(circularQ->pi_virt); |
| circularQ->producer_index = cpu_to_le32(producer_index); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("consumer_idx = %d producer_index = %d" |
| "msgHeader = %p\n", circularQ->consumer_idx, |
| circularQ->producer_index, msgHeader)); |
| return 0; |
| } |
| /* free the circular queue buffer elements associated with the message*/ |
| circularQ->consumer_idx = (circularQ->consumer_idx + bc) |
| % PM8001_MPI_QUEUE; |
| /* update the CI of outbound queue */ |
| pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset, |
| circularQ->consumer_idx); |
| /* Update the producer index from SPC*/ |
| producer_index = pm8001_read_32(circularQ->pi_virt); |
| circularQ->producer_index = cpu_to_le32(producer_index); |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk(" CI=%d PI=%d\n", circularQ->consumer_idx, |
| circularQ->producer_index)); |
| return 0; |
| } |
| |
| /** |
| * pm8001_mpi_msg_consume- get the MPI message from outbound queue |
| * message table. |
| * @pm8001_ha: our hba card information |
| * @circularQ: the outbound queue table. |
| * @messagePtr1: the message contents of this outbound message. |
| * @pBC: the message size. |
| */ |
| u32 pm8001_mpi_msg_consume(struct pm8001_hba_info *pm8001_ha, |
| struct outbound_queue_table *circularQ, |
| void **messagePtr1, u8 *pBC) |
| { |
| struct mpi_msg_hdr *msgHeader; |
| __le32 msgHeader_tmp; |
| u32 header_tmp; |
| do { |
| /* If there are not-yet-delivered messages ... */ |
| if (le32_to_cpu(circularQ->producer_index) |
| != circularQ->consumer_idx) { |
| /*Get the pointer to the circular queue buffer element*/ |
| msgHeader = (struct mpi_msg_hdr *) |
| (circularQ->base_virt + |
| circularQ->consumer_idx * pm8001_ha->iomb_size); |
| /* read header */ |
| header_tmp = pm8001_read_32(msgHeader); |
| msgHeader_tmp = cpu_to_le32(header_tmp); |
| if (0 != (le32_to_cpu(msgHeader_tmp) & 0x80000000)) { |
| if (OPC_OUB_SKIP_ENTRY != |
| (le32_to_cpu(msgHeader_tmp) & 0xfff)) { |
| *messagePtr1 = |
| ((u8 *)msgHeader) + |
| sizeof(struct mpi_msg_hdr); |
| *pBC = (u8)((le32_to_cpu(msgHeader_tmp) |
| >> 24) & 0x1f); |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk(": CI=%d PI=%d " |
| "msgHeader=%x\n", |
| circularQ->consumer_idx, |
| circularQ->producer_index, |
| msgHeader_tmp)); |
| return MPI_IO_STATUS_SUCCESS; |
| } else { |
| circularQ->consumer_idx = |
| (circularQ->consumer_idx + |
| ((le32_to_cpu(msgHeader_tmp) |
| >> 24) & 0x1f)) |
| % PM8001_MPI_QUEUE; |
| msgHeader_tmp = 0; |
| pm8001_write_32(msgHeader, 0, 0); |
| /* update the CI of outbound queue */ |
| pm8001_cw32(pm8001_ha, |
| circularQ->ci_pci_bar, |
| circularQ->ci_offset, |
| circularQ->consumer_idx); |
| } |
| } else { |
| circularQ->consumer_idx = |
| (circularQ->consumer_idx + |
| ((le32_to_cpu(msgHeader_tmp) >> 24) & |
| 0x1f)) % PM8001_MPI_QUEUE; |
| msgHeader_tmp = 0; |
| pm8001_write_32(msgHeader, 0, 0); |
| /* update the CI of outbound queue */ |
| pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, |
| circularQ->ci_offset, |
| circularQ->consumer_idx); |
| return MPI_IO_STATUS_FAIL; |
| } |
| } else { |
| u32 producer_index; |
| void *pi_virt = circularQ->pi_virt; |
| /* spurious interrupt during setup if |
| * kexec-ing and driver doing a doorbell access |
| * with the pre-kexec oq interrupt setup |
| */ |
| if (!pi_virt) |
| break; |
| /* Update the producer index from SPC */ |
| producer_index = pm8001_read_32(pi_virt); |
| circularQ->producer_index = cpu_to_le32(producer_index); |
| } |
| } while (le32_to_cpu(circularQ->producer_index) != |
| circularQ->consumer_idx); |
| /* while we don't have any more not-yet-delivered message */ |
| /* report empty */ |
| return MPI_IO_STATUS_BUSY; |
| } |
| |
| void pm8001_work_fn(struct work_struct *work) |
| { |
| struct pm8001_work *pw = container_of(work, struct pm8001_work, work); |
| struct pm8001_device *pm8001_dev; |
| struct domain_device *dev; |
| |
| /* |
| * So far, all users of this stash an associated structure here. |
| * If we get here, and this pointer is null, then the action |
| * was cancelled. This nullification happens when the device |
| * goes away. |
| */ |
| pm8001_dev = pw->data; /* Most stash device structure */ |
| if ((pm8001_dev == NULL) |
| || ((pw->handler != IO_XFER_ERROR_BREAK) |
| && (pm8001_dev->dev_type == SAS_PHY_UNUSED))) { |
| kfree(pw); |
| return; |
| } |
| |
| switch (pw->handler) { |
| case IO_XFER_ERROR_BREAK: |
| { /* This one stashes the sas_task instead */ |
| struct sas_task *t = (struct sas_task *)pm8001_dev; |
| u32 tag; |
| struct pm8001_ccb_info *ccb; |
| struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; |
| unsigned long flags, flags1; |
| struct task_status_struct *ts; |
| int i; |
| |
| if (pm8001_query_task(t) == TMF_RESP_FUNC_SUCC) |
| break; /* Task still on lu */ |
| spin_lock_irqsave(&pm8001_ha->lock, flags); |
| |
| spin_lock_irqsave(&t->task_state_lock, flags1); |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags1); |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| break; /* Task got completed by another */ |
| } |
| spin_unlock_irqrestore(&t->task_state_lock, flags1); |
| |
| /* Search for a possible ccb that matches the task */ |
| for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { |
| ccb = &pm8001_ha->ccb_info[i]; |
| tag = ccb->ccb_tag; |
| if ((tag != 0xFFFFFFFF) && (ccb->task == t)) |
| break; |
| } |
| if (!ccb) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| break; /* Task got freed by another */ |
| } |
| ts = &t->task_status; |
| ts->resp = SAS_TASK_COMPLETE; |
| /* Force the midlayer to retry */ |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_dev = ccb->device; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| spin_lock_irqsave(&t->task_state_lock, flags1); |
| t->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| t->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags1); |
| PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p" |
| " done with event 0x%x resp 0x%x stat 0x%x but" |
| " aborted by upper layer!\n", |
| t, pw->handler, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| } else { |
| spin_unlock_irqrestore(&t->task_state_lock, flags1); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/* in order to force CPU ordering */ |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| t->task_done(t); |
| } |
| } break; |
| case IO_XFER_OPEN_RETRY_TIMEOUT: |
| { /* This one stashes the sas_task instead */ |
| struct sas_task *t = (struct sas_task *)pm8001_dev; |
| u32 tag; |
| struct pm8001_ccb_info *ccb; |
| struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; |
| unsigned long flags, flags1; |
| int i, ret = 0; |
| |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); |
| |
| ret = pm8001_query_task(t); |
| |
| PM8001_IO_DBG(pm8001_ha, |
| switch (ret) { |
| case TMF_RESP_FUNC_SUCC: |
| pm8001_printk("...Task on lu\n"); |
| break; |
| |
| case TMF_RESP_FUNC_COMPLETE: |
| pm8001_printk("...Task NOT on lu\n"); |
| break; |
| |
| default: |
| pm8001_printk("...query task failed!!!\n"); |
| break; |
| }); |
| |
| spin_lock_irqsave(&pm8001_ha->lock, flags); |
| |
| spin_lock_irqsave(&t->task_state_lock, flags1); |
| |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags1); |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */ |
| (void)pm8001_abort_task(t); |
| break; /* Task got completed by another */ |
| } |
| |
| spin_unlock_irqrestore(&t->task_state_lock, flags1); |
| |
| /* Search for a possible ccb that matches the task */ |
| for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { |
| ccb = &pm8001_ha->ccb_info[i]; |
| tag = ccb->ccb_tag; |
| if ((tag != 0xFFFFFFFF) && (ccb->task == t)) |
| break; |
| } |
| if (!ccb) { |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */ |
| (void)pm8001_abort_task(t); |
| break; /* Task got freed by another */ |
| } |
| |
| pm8001_dev = ccb->device; |
| dev = pm8001_dev->sas_device; |
| |
| switch (ret) { |
| case TMF_RESP_FUNC_SUCC: /* task on lu */ |
| ccb->open_retry = 1; /* Snub completion */ |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| ret = pm8001_abort_task(t); |
| ccb->open_retry = 0; |
| switch (ret) { |
| case TMF_RESP_FUNC_SUCC: |
| case TMF_RESP_FUNC_COMPLETE: |
| break; |
| default: /* device misbehavior */ |
| ret = TMF_RESP_FUNC_FAILED; |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("...Reset phy\n")); |
| pm8001_I_T_nexus_reset(dev); |
| break; |
| } |
| break; |
| |
| case TMF_RESP_FUNC_COMPLETE: /* task not on lu */ |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| /* Do we need to abort the task locally? */ |
| break; |
| |
| default: /* device misbehavior */ |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| ret = TMF_RESP_FUNC_FAILED; |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("...Reset phy\n")); |
| pm8001_I_T_nexus_reset(dev); |
| } |
| |
| if (ret == TMF_RESP_FUNC_FAILED) |
| t = NULL; |
| pm8001_open_reject_retry(pm8001_ha, t, pm8001_dev); |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("...Complete\n")); |
| } break; |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: |
| dev = pm8001_dev->sas_device; |
| pm8001_I_T_nexus_event_handler(dev); |
| break; |
| case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: |
| dev = pm8001_dev->sas_device; |
| pm8001_I_T_nexus_reset(dev); |
| break; |
| case IO_DS_IN_ERROR: |
| dev = pm8001_dev->sas_device; |
| pm8001_I_T_nexus_reset(dev); |
| break; |
| case IO_DS_NON_OPERATIONAL: |
| dev = pm8001_dev->sas_device; |
| pm8001_I_T_nexus_reset(dev); |
| break; |
| } |
| kfree(pw); |
| } |
| |
| int pm8001_handle_event(struct pm8001_hba_info *pm8001_ha, void *data, |
| int handler) |
| { |
| struct pm8001_work *pw; |
| int ret = 0; |
| |
| pw = kmalloc(sizeof(struct pm8001_work), GFP_ATOMIC); |
| if (pw) { |
| pw->pm8001_ha = pm8001_ha; |
| pw->data = data; |
| pw->handler = handler; |
| INIT_WORK(&pw->work, pm8001_work_fn); |
| queue_work(pm8001_wq, &pw->work); |
| } else |
| ret = -ENOMEM; |
| |
| return ret; |
| } |
| |
| static void pm8001_send_abort_all(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_device *pm8001_ha_dev) |
| { |
| int res; |
| u32 ccb_tag; |
| struct pm8001_ccb_info *ccb; |
| struct sas_task *task = NULL; |
| struct task_abort_req task_abort; |
| struct inbound_queue_table *circularQ; |
| u32 opc = OPC_INB_SATA_ABORT; |
| int ret; |
| |
| if (!pm8001_ha_dev) { |
| PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("dev is null\n")); |
| return; |
| } |
| |
| task = sas_alloc_slow_task(GFP_ATOMIC); |
| |
| if (!task) { |
| PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("cannot " |
| "allocate task\n")); |
| return; |
| } |
| |
| task->task_done = pm8001_task_done; |
| |
| res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); |
| if (res) |
| return; |
| |
| ccb = &pm8001_ha->ccb_info[ccb_tag]; |
| ccb->device = pm8001_ha_dev; |
| ccb->ccb_tag = ccb_tag; |
| ccb->task = task; |
| |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| |
| memset(&task_abort, 0, sizeof(task_abort)); |
| task_abort.abort_all = cpu_to_le32(1); |
| task_abort.device_id = cpu_to_le32(pm8001_ha_dev->device_id); |
| task_abort.tag = cpu_to_le32(ccb_tag); |
| |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort, 0); |
| if (ret) |
| pm8001_tag_free(pm8001_ha, ccb_tag); |
| |
| } |
| |
| static void pm8001_send_read_log(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_device *pm8001_ha_dev) |
| { |
| struct sata_start_req sata_cmd; |
| int res; |
| u32 ccb_tag; |
| struct pm8001_ccb_info *ccb; |
| struct sas_task *task = NULL; |
| struct host_to_dev_fis fis; |
| struct domain_device *dev; |
| struct inbound_queue_table *circularQ; |
| u32 opc = OPC_INB_SATA_HOST_OPSTART; |
| |
| task = sas_alloc_slow_task(GFP_ATOMIC); |
| |
| if (!task) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("cannot allocate task !!!\n")); |
| return; |
| } |
| task->task_done = pm8001_task_done; |
| |
| res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); |
| if (res) { |
| sas_free_task(task); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("cannot allocate tag !!!\n")); |
| return; |
| } |
| |
| /* allocate domain device by ourselves as libsas |
| * is not going to provide any |
| */ |
| dev = kzalloc(sizeof(struct domain_device), GFP_ATOMIC); |
| if (!dev) { |
| sas_free_task(task); |
| pm8001_tag_free(pm8001_ha, ccb_tag); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Domain device cannot be allocated\n")); |
| return; |
| } |
| task->dev = dev; |
| task->dev->lldd_dev = pm8001_ha_dev; |
| |
| ccb = &pm8001_ha->ccb_info[ccb_tag]; |
| ccb->device = pm8001_ha_dev; |
| ccb->ccb_tag = ccb_tag; |
| ccb->task = task; |
| pm8001_ha_dev->id |= NCQ_READ_LOG_FLAG; |
| pm8001_ha_dev->id |= NCQ_2ND_RLE_FLAG; |
| |
| memset(&sata_cmd, 0, sizeof(sata_cmd)); |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| |
| /* construct read log FIS */ |
| memset(&fis, 0, sizeof(struct host_to_dev_fis)); |
| fis.fis_type = 0x27; |
| fis.flags = 0x80; |
| fis.command = ATA_CMD_READ_LOG_EXT; |
| fis.lbal = 0x10; |
| fis.sector_count = 0x1; |
| |
| sata_cmd.tag = cpu_to_le32(ccb_tag); |
| sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); |
| sata_cmd.ncqtag_atap_dir_m |= ((0x1 << 7) | (0x5 << 9)); |
| memcpy(&sata_cmd.sata_fis, &fis, sizeof(struct host_to_dev_fis)); |
| |
| res = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd, 0); |
| if (res) { |
| sas_free_task(task); |
| pm8001_tag_free(pm8001_ha, ccb_tag); |
| kfree(dev); |
| } |
| } |
| |
| /** |
| * mpi_ssp_completion- process the event that FW response to the SSP request. |
| * @pm8001_ha: our hba card information |
| * @piomb: the message contents of this outbound message. |
| * |
| * When FW has completed a ssp request for example a IO request, after it has |
| * filled the SG data with the data, it will trigger this event represent |
| * that he has finished the job,please check the coresponding buffer. |
| * So we will tell the caller who maybe waiting the result to tell upper layer |
| * that the task has been finished. |
| */ |
| static void |
| mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha , void *piomb) |
| { |
| struct sas_task *t; |
| struct pm8001_ccb_info *ccb; |
| unsigned long flags; |
| u32 status; |
| u32 param; |
| u32 tag; |
| struct ssp_completion_resp *psspPayload; |
| struct task_status_struct *ts; |
| struct ssp_response_iu *iu; |
| struct pm8001_device *pm8001_dev; |
| psspPayload = (struct ssp_completion_resp *)(piomb + 4); |
| status = le32_to_cpu(psspPayload->status); |
| tag = le32_to_cpu(psspPayload->tag); |
| ccb = &pm8001_ha->ccb_info[tag]; |
| if ((status == IO_ABORTED) && ccb->open_retry) { |
| /* Being completed by another */ |
| ccb->open_retry = 0; |
| return; |
| } |
| pm8001_dev = ccb->device; |
| param = le32_to_cpu(psspPayload->param); |
| |
| t = ccb->task; |
| |
| if (status && status != IO_UNDERFLOW) |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("sas IO status 0x%x\n", status)); |
| if (unlikely(!t || !t->lldd_task || !t->dev)) |
| return; |
| ts = &t->task_status; |
| /* Print sas address of IO failed device */ |
| if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && |
| (status != IO_UNDERFLOW)) |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SAS Address of IO Failure Drive:" |
| "%016llx", SAS_ADDR(t->dev->sas_addr))); |
| |
| switch (status) { |
| case IO_SUCCESS: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS" |
| ",param = %d\n", param)); |
| if (param == 0) { |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_GOOD; |
| } else { |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_PROTO_RESPONSE; |
| ts->residual = param; |
| iu = &psspPayload->ssp_resp_iu; |
| sas_ssp_task_response(pm8001_ha->dev, t, iu); |
| } |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_ABORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_ABORTED IOMB Tag\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_ABORTED_TASK; |
| break; |
| case IO_UNDERFLOW: |
| /* SSP Completion with error */ |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW" |
| ",param = %d\n", param)); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_UNDERRUN; |
| ts->residual = param; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_NO_DEVICE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_NO_DEVICE\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_PHY_DOWN; |
| break; |
| case IO_XFER_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| /* Force the midlayer to retry */ |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_XFER_ERROR_PHY_NOT_READY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_EPROTO; |
| break; |
| case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| case IO_OPEN_CNX_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| if (!t->uldd_task) |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); |
| break; |
| case IO_OPEN_CNX_ERROR_BAD_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_BAD_DEST; |
| break; |
| case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_" |
| "NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_WRONG_DEST; |
| break; |
| case IO_XFER_ERROR_NAK_RECEIVED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_XFER_ERROR_ACK_NAK_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_NAK_R_ERR; |
| break; |
| case IO_XFER_ERROR_DMA: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_DMA\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| case IO_XFER_OPEN_RETRY_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_XFER_ERROR_OFFSET_MISMATCH: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| case IO_PORT_IN_RESET: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_PORT_IN_RESET\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| case IO_DS_NON_OPERATIONAL: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_NON_OPERATIONAL\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| if (!t->uldd_task) |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_DS_NON_OPERATIONAL); |
| break; |
| case IO_DS_IN_RECOVERY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_IN_RECOVERY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| case IO_TM_TAG_NOT_FOUND: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_TM_TAG_NOT_FOUND\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| case IO_SSP_EXT_IU_ZERO_LEN_ERROR: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_SSP_EXT_IU_ZERO_LEN_ERROR\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| default: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("Unknown status 0x%x\n", status)); |
| /* not allowed case. Therefore, return failed status */ |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| } |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("scsi_status = %x\n ", |
| psspPayload->ssp_resp_iu.status)); |
| spin_lock_irqsave(&t->task_state_lock, flags); |
| t->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| t->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with" |
| " io_status 0x%x resp 0x%x " |
| "stat 0x%x but aborted by upper layer!\n", |
| t, status, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| } else { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/* in order to force CPU ordering */ |
| t->task_done(t); |
| } |
| } |
| |
| /*See the comments for mpi_ssp_completion */ |
| static void mpi_ssp_event(struct pm8001_hba_info *pm8001_ha , void *piomb) |
| { |
| struct sas_task *t; |
| unsigned long flags; |
| struct task_status_struct *ts; |
| struct pm8001_ccb_info *ccb; |
| struct pm8001_device *pm8001_dev; |
| struct ssp_event_resp *psspPayload = |
| (struct ssp_event_resp *)(piomb + 4); |
| u32 event = le32_to_cpu(psspPayload->event); |
| u32 tag = le32_to_cpu(psspPayload->tag); |
| u32 port_id = le32_to_cpu(psspPayload->port_id); |
| u32 dev_id = le32_to_cpu(psspPayload->device_id); |
| |
| ccb = &pm8001_ha->ccb_info[tag]; |
| t = ccb->task; |
| pm8001_dev = ccb->device; |
| if (event) |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("sas IO status 0x%x\n", event)); |
| if (unlikely(!t || !t->lldd_task || !t->dev)) |
| return; |
| ts = &t->task_status; |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("port_id = %x,device_id = %x\n", |
| port_id, dev_id)); |
| switch (event) { |
| case IO_OVERFLOW: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n");) |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| ts->residual = 0; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_XFER_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_BREAK\n")); |
| pm8001_handle_event(pm8001_ha, t, IO_XFER_ERROR_BREAK); |
| return; |
| case IO_XFER_ERROR_PHY_NOT_READY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT" |
| "_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_EPROTO; |
| break; |
| case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| case IO_OPEN_CNX_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| if (!t->uldd_task) |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); |
| break; |
| case IO_OPEN_CNX_ERROR_BAD_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_BAD_DEST; |
| break; |
| case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_" |
| "NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_WRONG_DEST; |
| break; |
| case IO_XFER_ERROR_NAK_RECEIVED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_XFER_ERROR_ACK_NAK_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_NAK_R_ERR; |
| break; |
| case IO_XFER_OPEN_RETRY_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); |
| pm8001_handle_event(pm8001_ha, t, IO_XFER_OPEN_RETRY_TIMEOUT); |
| return; |
| case IO_XFER_ERROR_UNEXPECTED_PHASE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_UNEXPECTED_PHASE\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_ERROR_XFER_RDY_OVERRUN: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_XFER_RDY_OVERRUN\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_ERROR_OFFSET_MISMATCH: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_CMD_FRAME_ISSUED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk(" IO_XFER_CMD_FRAME_ISSUED\n")); |
| return; |
| default: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("Unknown status 0x%x\n", event)); |
| /* not allowed case. Therefore, return failed status */ |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| } |
| spin_lock_irqsave(&t->task_state_lock, flags); |
| t->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| t->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with" |
| " event 0x%x resp 0x%x " |
| "stat 0x%x but aborted by upper layer!\n", |
| t, event, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| } else { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/* in order to force CPU ordering */ |
| t->task_done(t); |
| } |
| } |
| |
| /*See the comments for mpi_ssp_completion */ |
| static void |
| mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct sas_task *t; |
| struct pm8001_ccb_info *ccb; |
| u32 param; |
| u32 status; |
| u32 tag; |
| int i, j; |
| u8 sata_addr_low[4]; |
| u32 temp_sata_addr_low; |
| u8 sata_addr_hi[4]; |
| u32 temp_sata_addr_hi; |
| struct sata_completion_resp *psataPayload; |
| struct task_status_struct *ts; |
| struct ata_task_resp *resp ; |
| u32 *sata_resp; |
| struct pm8001_device *pm8001_dev; |
| unsigned long flags; |
| |
| psataPayload = (struct sata_completion_resp *)(piomb + 4); |
| status = le32_to_cpu(psataPayload->status); |
| tag = le32_to_cpu(psataPayload->tag); |
| |
| if (!tag) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("tag null\n")); |
| return; |
| } |
| ccb = &pm8001_ha->ccb_info[tag]; |
| param = le32_to_cpu(psataPayload->param); |
| if (ccb) { |
| t = ccb->task; |
| pm8001_dev = ccb->device; |
| } else { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("ccb null\n")); |
| return; |
| } |
| |
| if (t) { |
| if (t->dev && (t->dev->lldd_dev)) |
| pm8001_dev = t->dev->lldd_dev; |
| } else { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("task null\n")); |
| return; |
| } |
| |
| if ((pm8001_dev && !(pm8001_dev->id & NCQ_READ_LOG_FLAG)) |
| && unlikely(!t || !t->lldd_task || !t->dev)) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("task or dev null\n")); |
| return; |
| } |
| |
| ts = &t->task_status; |
| if (!ts) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("ts null\n")); |
| return; |
| } |
| /* Print sas address of IO failed device */ |
| if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && |
| (status != IO_UNDERFLOW)) { |
| if (!((t->dev->parent) && |
| (dev_is_expander(t->dev->parent->dev_type)))) { |
| for (i = 0 , j = 4; j <= 7 && i <= 3; i++ , j++) |
| sata_addr_low[i] = pm8001_ha->sas_addr[j]; |
| for (i = 0 , j = 0; j <= 3 && i <= 3; i++ , j++) |
| sata_addr_hi[i] = pm8001_ha->sas_addr[j]; |
| memcpy(&temp_sata_addr_low, sata_addr_low, |
| sizeof(sata_addr_low)); |
| memcpy(&temp_sata_addr_hi, sata_addr_hi, |
| sizeof(sata_addr_hi)); |
| temp_sata_addr_hi = (((temp_sata_addr_hi >> 24) & 0xff) |
| |((temp_sata_addr_hi << 8) & |
| 0xff0000) | |
| ((temp_sata_addr_hi >> 8) |
| & 0xff00) | |
| ((temp_sata_addr_hi << 24) & |
| 0xff000000)); |
| temp_sata_addr_low = ((((temp_sata_addr_low >> 24) |
| & 0xff) | |
| ((temp_sata_addr_low << 8) |
| & 0xff0000) | |
| ((temp_sata_addr_low >> 8) |
| & 0xff00) | |
| ((temp_sata_addr_low << 24) |
| & 0xff000000)) + |
| pm8001_dev->attached_phy + |
| 0x10); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SAS Address of IO Failure Drive:" |
| "%08x%08x", temp_sata_addr_hi, |
| temp_sata_addr_low)); |
| } else { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SAS Address of IO Failure Drive:" |
| "%016llx", SAS_ADDR(t->dev->sas_addr))); |
| } |
| } |
| switch (status) { |
| case IO_SUCCESS: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n")); |
| if (param == 0) { |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_GOOD; |
| /* check if response is for SEND READ LOG */ |
| if (pm8001_dev && |
| (pm8001_dev->id & NCQ_READ_LOG_FLAG)) { |
| /* set new bit for abort_all */ |
| pm8001_dev->id |= NCQ_ABORT_ALL_FLAG; |
| /* clear bit for read log */ |
| pm8001_dev->id = pm8001_dev->id & 0x7FFFFFFF; |
| pm8001_send_abort_all(pm8001_ha, pm8001_dev); |
| /* Free the tag */ |
| pm8001_tag_free(pm8001_ha, tag); |
| sas_free_task(t); |
| return; |
| } |
| } else { |
| u8 len; |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_PROTO_RESPONSE; |
| ts->residual = param; |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("SAS_PROTO_RESPONSE len = %d\n", |
| param)); |
| sata_resp = &psataPayload->sata_resp[0]; |
| resp = (struct ata_task_resp *)ts->buf; |
| if (t->ata_task.dma_xfer == 0 && |
| t->data_dir == DMA_FROM_DEVICE) { |
| len = sizeof(struct pio_setup_fis); |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("PIO read len = %d\n", len)); |
| } else if (t->ata_task.use_ncq) { |
| len = sizeof(struct set_dev_bits_fis); |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("FPDMA len = %d\n", len)); |
| } else { |
| len = sizeof(struct dev_to_host_fis); |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("other len = %d\n", len)); |
| } |
| if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) { |
| resp->frame_len = len; |
| memcpy(&resp->ending_fis[0], sata_resp, len); |
| ts->buf_valid_size = sizeof(*resp); |
| } else |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("response to large\n")); |
| } |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_ABORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_ABORTED IOMB Tag\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_ABORTED_TASK; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| /* following cases are to do cases */ |
| case IO_UNDERFLOW: |
| /* SATA Completion with error */ |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_UNDERFLOW param = %d\n", param)); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_UNDERRUN; |
| ts->residual = param; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_NO_DEVICE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_NO_DEVICE\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_PHY_DOWN; |
| break; |
| case IO_XFER_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_INTERRUPTED; |
| break; |
| case IO_XFER_ERROR_PHY_NOT_READY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT" |
| "_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_EPROTO; |
| break; |
| case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| case IO_OPEN_CNX_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; |
| break; |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| if (!t->uldd_task) { |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); |
| return; |
| } |
| break; |
| case IO_OPEN_CNX_ERROR_BAD_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_BAD_DEST; |
| if (!t->uldd_task) { |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); |
| return; |
| } |
| break; |
| case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_" |
| "NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_STP_RESOURCES" |
| "_BUSY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| if (!t->uldd_task) { |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); |
| return; |
| } |
| break; |
| case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_WRONG_DEST; |
| break; |
| case IO_XFER_ERROR_NAK_RECEIVED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_NAK_R_ERR; |
| break; |
| case IO_XFER_ERROR_ACK_NAK_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_NAK_R_ERR; |
| break; |
| case IO_XFER_ERROR_DMA: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_DMA\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_ABORTED_TASK; |
| break; |
| case IO_XFER_ERROR_SATA_LINK_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_SATA_LINK_TIMEOUT\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| case IO_XFER_ERROR_REJECTED_NCQ_MODE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_REJECTED_NCQ_MODE\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_UNDERRUN; |
| break; |
| case IO_XFER_OPEN_RETRY_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_PORT_IN_RESET: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_PORT_IN_RESET\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| case IO_DS_NON_OPERATIONAL: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_NON_OPERATIONAL\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| if (!t->uldd_task) { |
| pm8001_handle_event(pm8001_ha, pm8001_dev, |
| IO_DS_NON_OPERATIONAL); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); |
| return; |
| } |
| break; |
| case IO_DS_IN_RECOVERY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk(" IO_DS_IN_RECOVERY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| case IO_DS_IN_ERROR: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_IN_ERROR\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| if (!t->uldd_task) { |
| pm8001_handle_event(pm8001_ha, pm8001_dev, |
| IO_DS_IN_ERROR); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); |
| return; |
| } |
| break; |
| case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| default: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("Unknown status 0x%x\n", status)); |
| /* not allowed case. Therefore, return failed status */ |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| } |
| spin_lock_irqsave(&t->task_state_lock, flags); |
| t->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| t->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("task 0x%p done with io_status 0x%x" |
| " resp 0x%x stat 0x%x but aborted by upper layer!\n", |
| t, status, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| } else { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); |
| } |
| } |
| |
| /*See the comments for mpi_ssp_completion */ |
| static void mpi_sata_event(struct pm8001_hba_info *pm8001_ha , void *piomb) |
| { |
| struct sas_task *t; |
| struct task_status_struct *ts; |
| struct pm8001_ccb_info *ccb; |
| struct pm8001_device *pm8001_dev; |
| struct sata_event_resp *psataPayload = |
| (struct sata_event_resp *)(piomb + 4); |
| u32 event = le32_to_cpu(psataPayload->event); |
| u32 tag = le32_to_cpu(psataPayload->tag); |
| u32 port_id = le32_to_cpu(psataPayload->port_id); |
| u32 dev_id = le32_to_cpu(psataPayload->device_id); |
| unsigned long flags; |
| |
| ccb = &pm8001_ha->ccb_info[tag]; |
| |
| if (ccb) { |
| t = ccb->task; |
| pm8001_dev = ccb->device; |
| } else { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("No CCB !!!. returning\n")); |
| } |
| if (event) |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SATA EVENT 0x%x\n", event)); |
| |
| /* Check if this is NCQ error */ |
| if (event == IO_XFER_ERROR_ABORTED_NCQ_MODE) { |
| /* find device using device id */ |
| pm8001_dev = pm8001_find_dev(pm8001_ha, dev_id); |
| /* send read log extension */ |
| if (pm8001_dev) |
| pm8001_send_read_log(pm8001_ha, pm8001_dev); |
| return; |
| } |
| |
| ccb = &pm8001_ha->ccb_info[tag]; |
| t = ccb->task; |
| pm8001_dev = ccb->device; |
| if (event) |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("sata IO status 0x%x\n", event)); |
| if (unlikely(!t || !t->lldd_task || !t->dev)) |
| return; |
| ts = &t->task_status; |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "port_id:0x%x, device_id:0x%x, tag:0x%x, event:0x%x\n", |
| port_id, dev_id, tag, event)); |
| switch (event) { |
| case IO_OVERFLOW: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| ts->residual = 0; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_XFER_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_INTERRUPTED; |
| break; |
| case IO_XFER_ERROR_PHY_NOT_READY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT" |
| "_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_EPROTO; |
| break; |
| case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| case IO_OPEN_CNX_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; |
| break; |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| if (!t->uldd_task) { |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); |
| return; |
| } |
| break; |
| case IO_OPEN_CNX_ERROR_BAD_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_BAD_DEST; |
| break; |
| case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_" |
| "NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_WRONG_DEST; |
| break; |
| case IO_XFER_ERROR_NAK_RECEIVED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_NAK_R_ERR; |
| break; |
| case IO_XFER_ERROR_PEER_ABORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_PEER_ABORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_NAK_R_ERR; |
| break; |
| case IO_XFER_ERROR_REJECTED_NCQ_MODE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_REJECTED_NCQ_MODE\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_UNDERRUN; |
| break; |
| case IO_XFER_OPEN_RETRY_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_ERROR_UNEXPECTED_PHASE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_UNEXPECTED_PHASE\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_ERROR_XFER_RDY_OVERRUN: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_XFER_RDY_OVERRUN\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_ERROR_OFFSET_MISMATCH: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_CMD_FRAME_ISSUED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_CMD_FRAME_ISSUED\n")); |
| break; |
| case IO_XFER_PIO_SETUP_ERROR: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_PIO_SETUP_ERROR\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| default: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("Unknown status 0x%x\n", event)); |
| /* not allowed case. Therefore, return failed status */ |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| } |
| spin_lock_irqsave(&t->task_state_lock, flags); |
| t->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| t->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("task 0x%p done with io_status 0x%x" |
| " resp 0x%x stat 0x%x but aborted by upper layer!\n", |
| t, event, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| } else { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); |
| } |
| } |
| |
| /*See the comments for mpi_ssp_completion */ |
| static void |
| mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct sas_task *t; |
| struct pm8001_ccb_info *ccb; |
| unsigned long flags; |
| u32 status; |
| u32 tag; |
| struct smp_completion_resp *psmpPayload; |
| struct task_status_struct *ts; |
| struct pm8001_device *pm8001_dev; |
| |
| psmpPayload = (struct smp_completion_resp *)(piomb + 4); |
| status = le32_to_cpu(psmpPayload->status); |
| tag = le32_to_cpu(psmpPayload->tag); |
| |
| ccb = &pm8001_ha->ccb_info[tag]; |
| t = ccb->task; |
| ts = &t->task_status; |
| pm8001_dev = ccb->device; |
| if (status) |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("smp IO status 0x%x\n", status)); |
| if (unlikely(!t || !t->lldd_task || !t->dev)) |
| return; |
| |
| switch (status) { |
| case IO_SUCCESS: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_GOOD; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_ABORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_ABORTED IOMB\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_ABORTED_TASK; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_OVERFLOW: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| ts->residual = 0; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_NO_DEVICE: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_NO_DEVICE\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_PHY_DOWN; |
| break; |
| case IO_ERROR_HW_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_ERROR_HW_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_BUSY; |
| break; |
| case IO_XFER_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_BUSY; |
| break; |
| case IO_XFER_ERROR_PHY_NOT_READY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_BUSY; |
| break; |
| case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| case IO_OPEN_CNX_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; |
| break; |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); |
| break; |
| case IO_OPEN_CNX_ERROR_BAD_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_BAD_DEST; |
| break; |
| case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_" |
| "NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_WRONG_DEST; |
| break; |
| case IO_XFER_ERROR_RX_FRAME: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_RX_FRAME\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| case IO_XFER_OPEN_RETRY_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_ERROR_INTERNAL_SMP_RESOURCE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_ERROR_INTERNAL_SMP_RESOURCE\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_QUEUE_FULL; |
| break; |
| case IO_PORT_IN_RESET: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_PORT_IN_RESET\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_DS_NON_OPERATIONAL: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_NON_OPERATIONAL\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| case IO_DS_IN_RECOVERY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_IN_RECOVERY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| default: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("Unknown status 0x%x\n", status)); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| /* not allowed case. Therefore, return failed status */ |
| break; |
| } |
| spin_lock_irqsave(&t->task_state_lock, flags); |
| t->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| t->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with" |
| " io_status 0x%x resp 0x%x " |
| "stat 0x%x but aborted by upper layer!\n", |
| t, status, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| } else { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/* in order to force CPU ordering */ |
| t->task_done(t); |
| } |
| } |
| |
| void pm8001_mpi_set_dev_state_resp(struct pm8001_hba_info *pm8001_ha, |
| void *piomb) |
| { |
| struct set_dev_state_resp *pPayload = |
| (struct set_dev_state_resp *)(piomb + 4); |
| u32 tag = le32_to_cpu(pPayload->tag); |
| struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; |
| struct pm8001_device *pm8001_dev = ccb->device; |
| u32 status = le32_to_cpu(pPayload->status); |
| u32 device_id = le32_to_cpu(pPayload->device_id); |
| u8 pds = le32_to_cpu(pPayload->pds_nds) & PDS_BITS; |
| u8 nds = le32_to_cpu(pPayload->pds_nds) & NDS_BITS; |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Set device id = 0x%x state " |
| "from 0x%x to 0x%x status = 0x%x!\n", |
| device_id, pds, nds, status)); |
| complete(pm8001_dev->setds_completion); |
| ccb->task = NULL; |
| ccb->ccb_tag = 0xFFFFFFFF; |
| pm8001_tag_free(pm8001_ha, tag); |
| } |
| |
| void pm8001_mpi_set_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct get_nvm_data_resp *pPayload = |
| (struct get_nvm_data_resp *)(piomb + 4); |
| u32 tag = le32_to_cpu(pPayload->tag); |
| struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; |
| u32 dlen_status = le32_to_cpu(pPayload->dlen_status); |
| complete(pm8001_ha->nvmd_completion); |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Set nvm data complete!\n")); |
| if ((dlen_status & NVMD_STAT) != 0) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Set nvm data error!\n")); |
| return; |
| } |
| ccb->task = NULL; |
| ccb->ccb_tag = 0xFFFFFFFF; |
| pm8001_tag_free(pm8001_ha, tag); |
| } |
| |
| void |
| pm8001_mpi_get_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct fw_control_ex *fw_control_context; |
| struct get_nvm_data_resp *pPayload = |
| (struct get_nvm_data_resp *)(piomb + 4); |
| u32 tag = le32_to_cpu(pPayload->tag); |
| struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; |
| u32 dlen_status = le32_to_cpu(pPayload->dlen_status); |
| u32 ir_tds_bn_dps_das_nvm = |
| le32_to_cpu(pPayload->ir_tda_bn_dps_das_nvm); |
| void *virt_addr = pm8001_ha->memoryMap.region[NVMD].virt_ptr; |
| fw_control_context = ccb->fw_control_context; |
| |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Get nvm data complete!\n")); |
| if ((dlen_status & NVMD_STAT) != 0) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Get nvm data error!\n")); |
| complete(pm8001_ha->nvmd_completion); |
| return; |
| } |
| |
| if (ir_tds_bn_dps_das_nvm & IPMode) { |
| /* indirect mode - IR bit set */ |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("Get NVMD success, IR=1\n")); |
| if ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == TWI_DEVICE) { |
| if (ir_tds_bn_dps_das_nvm == 0x80a80200) { |
| memcpy(pm8001_ha->sas_addr, |
| ((u8 *)virt_addr + 4), |
| SAS_ADDR_SIZE); |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("Get SAS address" |
| " from VPD successfully!\n")); |
| } |
| } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == C_SEEPROM) |
| || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == VPD_FLASH) || |
| ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == EXPAN_ROM)) { |
| ; |
| } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == AAP1_RDUMP) |
| || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == IOP_RDUMP)) { |
| ; |
| } else { |
| /* Should not be happened*/ |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("(IR=1)Wrong Device type 0x%x\n", |
| ir_tds_bn_dps_das_nvm)); |
| } |
| } else /* direct mode */{ |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("Get NVMD success, IR=0, dataLen=%d\n", |
| (dlen_status & NVMD_LEN) >> 24)); |
| } |
| /* Though fw_control_context is freed below, usrAddr still needs |
| * to be updated as this holds the response to the request function |
| */ |
| memcpy(fw_control_context->usrAddr, |
| pm8001_ha->memoryMap.region[NVMD].virt_ptr, |
| fw_control_context->len); |
| kfree(ccb->fw_control_context); |
| ccb->task = NULL; |
| ccb->ccb_tag = 0xFFFFFFFF; |
| pm8001_tag_free(pm8001_ha, tag); |
| complete(pm8001_ha->nvmd_completion); |
| } |
| |
| int pm8001_mpi_local_phy_ctl(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| u32 tag; |
| struct local_phy_ctl_resp *pPayload = |
| (struct local_phy_ctl_resp *)(piomb + 4); |
| u32 status = le32_to_cpu(pPayload->status); |
| u32 phy_id = le32_to_cpu(pPayload->phyop_phyid) & ID_BITS; |
| u32 phy_op = le32_to_cpu(pPayload->phyop_phyid) & OP_BITS; |
| tag = le32_to_cpu(pPayload->tag); |
| if (status != 0) { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("%x phy execute %x phy op failed!\n", |
| phy_id, phy_op)); |
| } else { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("%x phy execute %x phy op success!\n", |
| phy_id, phy_op)); |
| pm8001_ha->phy[phy_id].reset_success = true; |
| } |
| if (pm8001_ha->phy[phy_id].enable_completion) { |
| complete(pm8001_ha->phy[phy_id].enable_completion); |
| pm8001_ha->phy[phy_id].enable_completion = NULL; |
| } |
| pm8001_tag_free(pm8001_ha, tag); |
| return 0; |
| } |
| |
| /** |
| * pm8001_bytes_dmaed - one of the interface function communication with libsas |
| * @pm8001_ha: our hba card information |
| * @i: which phy that received the event. |
| * |
| * when HBA driver received the identify done event or initiate FIS received |
| * event(for SATA), it will invoke this function to notify the sas layer that |
| * the sas toplogy has formed, please discover the the whole sas domain, |
| * while receive a broadcast(change) primitive just tell the sas |
| * layer to discover the changed domain rather than the whole domain. |
| */ |
| void pm8001_bytes_dmaed(struct pm8001_hba_info *pm8001_ha, int i) |
| { |
| struct pm8001_phy *phy = &pm8001_ha->phy[i]; |
| struct asd_sas_phy *sas_phy = &phy->sas_phy; |
| if (!phy->phy_attached) |
| return; |
| |
| if (sas_phy->phy) { |
| struct sas_phy *sphy = sas_phy->phy; |
| sphy->negotiated_linkrate = sas_phy->linkrate; |
| sphy->minimum_linkrate = phy->minimum_linkrate; |
| sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; |
| sphy->maximum_linkrate = phy->maximum_linkrate; |
| sphy->maximum_linkrate_hw = phy->maximum_linkrate; |
| } |
| |
| if (phy->phy_type & PORT_TYPE_SAS) { |
| struct sas_identify_frame *id; |
| id = (struct sas_identify_frame *)phy->frame_rcvd; |
| id->dev_type = phy->identify.device_type; |
| id->initiator_bits = SAS_PROTOCOL_ALL; |
| id->target_bits = phy->identify.target_port_protocols; |
| } else if (phy->phy_type & PORT_TYPE_SATA) { |
| /*Nothing*/ |
| } |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk("phy %d byte dmaded.\n", i)); |
| |
| sas_phy->frame_rcvd_size = phy->frame_rcvd_size; |
| pm8001_ha->sas->notify_port_event(sas_phy, PORTE_BYTES_DMAED); |
| } |
| |
| /* Get the link rate speed */ |
| void pm8001_get_lrate_mode(struct pm8001_phy *phy, u8 link_rate) |
| { |
| struct sas_phy *sas_phy = phy->sas_phy.phy; |
| |
| switch (link_rate) { |
| case PHY_SPEED_120: |
| phy->sas_phy.linkrate = SAS_LINK_RATE_12_0_GBPS; |
| phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_12_0_GBPS; |
| break; |
| case PHY_SPEED_60: |
| phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS; |
| phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS; |
| break; |
| case PHY_SPEED_30: |
| phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS; |
| phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS; |
| break; |
| case PHY_SPEED_15: |
| phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS; |
| phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS; |
| break; |
| } |
| sas_phy->negotiated_linkrate = phy->sas_phy.linkrate; |
| sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_6_0_GBPS; |
| sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; |
| sas_phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS; |
| sas_phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS; |
| } |
| |
| /** |
| * asd_get_attached_sas_addr -- extract/generate attached SAS address |
| * @phy: pointer to asd_phy |
| * @sas_addr: pointer to buffer where the SAS address is to be written |
| * |
| * This function extracts the SAS address from an IDENTIFY frame |
| * received. If OOB is SATA, then a SAS address is generated from the |
| * HA tables. |
| * |
| * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame |
| * buffer. |
| */ |
| void pm8001_get_attached_sas_addr(struct pm8001_phy *phy, |
| u8 *sas_addr) |
| { |
| if (phy->sas_phy.frame_rcvd[0] == 0x34 |
| && phy->sas_phy.oob_mode == SATA_OOB_MODE) { |
| struct pm8001_hba_info *pm8001_ha = phy->sas_phy.ha->lldd_ha; |
| /* FIS device-to-host */ |
| u64 addr = be64_to_cpu(*(__be64 *)pm8001_ha->sas_addr); |
| addr += phy->sas_phy.id; |
| *(__be64 *)sas_addr = cpu_to_be64(addr); |
| } else { |
| struct sas_identify_frame *idframe = |
| (void *) phy->sas_phy.frame_rcvd; |
| memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE); |
| } |
| } |
| |
| /** |
| * pm8001_hw_event_ack_req- For PM8001,some events need to acknowage to FW. |
| * @pm8001_ha: our hba card information |
| * @Qnum: the outbound queue message number. |
| * @SEA: source of event to ack |
| * @port_id: port id. |
| * @phyId: phy id. |
| * @param0: parameter 0. |
| * @param1: parameter 1. |
| */ |
| static void pm8001_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha, |
| u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1) |
| { |
| struct hw_event_ack_req payload; |
| u32 opc = OPC_INB_SAS_HW_EVENT_ACK; |
| |
| struct inbound_queue_table *circularQ; |
| |
| memset((u8 *)&payload, 0, sizeof(payload)); |
| circularQ = &pm8001_ha->inbnd_q_tbl[Qnum]; |
| payload.tag = cpu_to_le32(1); |
| payload.sea_phyid_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) | |
| ((phyId & 0x0F) << 4) | (port_id & 0x0F)); |
| payload.param0 = cpu_to_le32(param0); |
| payload.param1 = cpu_to_le32(param1); |
| pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| } |
| |
| static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, |
| u32 phyId, u32 phy_op); |
| |
| /** |
| * hw_event_sas_phy_up -FW tells me a SAS phy up event. |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static void |
| hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct hw_event_resp *pPayload = |
| (struct hw_event_resp *)(piomb + 4); |
| u32 lr_evt_status_phyid_portid = |
| le32_to_cpu(pPayload->lr_evt_status_phyid_portid); |
| u8 link_rate = |
| (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28); |
| u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); |
| u8 phy_id = |
| (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); |
| u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); |
| u8 portstate = (u8)(npip_portstate & 0x0000000F); |
| struct pm8001_port *port = &pm8001_ha->port[port_id]; |
| struct sas_ha_struct *sas_ha = pm8001_ha->sas; |
| struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; |
| unsigned long flags; |
| u8 deviceType = pPayload->sas_identify.dev_type; |
| port->port_state = portstate; |
| phy->phy_state = PHY_STATE_LINK_UP_SPC; |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_SAS_PHY_UP port id = %d, phy id = %d\n", |
| port_id, phy_id)); |
| |
| switch (deviceType) { |
| case SAS_PHY_UNUSED: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("device type no device.\n")); |
| break; |
| case SAS_END_DEVICE: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk("end device.\n")); |
| pm8001_chip_phy_ctl_req(pm8001_ha, phy_id, |
| PHY_NOTIFY_ENABLE_SPINUP); |
| port->port_attached = 1; |
| pm8001_get_lrate_mode(phy, link_rate); |
| break; |
| case SAS_EDGE_EXPANDER_DEVICE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("expander device.\n")); |
| port->port_attached = 1; |
| pm8001_get_lrate_mode(phy, link_rate); |
| break; |
| case SAS_FANOUT_EXPANDER_DEVICE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("fanout expander device.\n")); |
| port->port_attached = 1; |
| pm8001_get_lrate_mode(phy, link_rate); |
| break; |
| default: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("unknown device type(%x)\n", deviceType)); |
| break; |
| } |
| phy->phy_type |= PORT_TYPE_SAS; |
| phy->identify.device_type = deviceType; |
| phy->phy_attached = 1; |
| if (phy->identify.device_type == SAS_END_DEVICE) |
| phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; |
| else if (phy->identify.device_type != SAS_PHY_UNUSED) |
| phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; |
| phy->sas_phy.oob_mode = SAS_OOB_MODE; |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE); |
| spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); |
| memcpy(phy->frame_rcvd, &pPayload->sas_identify, |
| sizeof(struct sas_identify_frame)-4); |
| phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4; |
| pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); |
| spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); |
| if (pm8001_ha->flags == PM8001F_RUN_TIME) |
| mdelay(200);/*delay a moment to wait disk to spinup*/ |
| pm8001_bytes_dmaed(pm8001_ha, phy_id); |
| } |
| |
| /** |
| * hw_event_sata_phy_up -FW tells me a SATA phy up event. |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static void |
| hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct hw_event_resp *pPayload = |
| (struct hw_event_resp *)(piomb + 4); |
| u32 lr_evt_status_phyid_portid = |
| le32_to_cpu(pPayload->lr_evt_status_phyid_portid); |
| u8 link_rate = |
| (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28); |
| u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); |
| u8 phy_id = |
| (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); |
| u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); |
| u8 portstate = (u8)(npip_portstate & 0x0000000F); |
| struct pm8001_port *port = &pm8001_ha->port[port_id]; |
| struct sas_ha_struct *sas_ha = pm8001_ha->sas; |
| struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; |
| unsigned long flags; |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_SATA_PHY_UP port id = %d," |
| " phy id = %d\n", port_id, phy_id)); |
| port->port_state = portstate; |
| phy->phy_state = PHY_STATE_LINK_UP_SPC; |
| port->port_attached = 1; |
| pm8001_get_lrate_mode(phy, link_rate); |
| phy->phy_type |= PORT_TYPE_SATA; |
| phy->phy_attached = 1; |
| phy->sas_phy.oob_mode = SATA_OOB_MODE; |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE); |
| spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); |
| memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4), |
| sizeof(struct dev_to_host_fis)); |
| phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); |
| phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; |
| phy->identify.device_type = SAS_SATA_DEV; |
| pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); |
| spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); |
| pm8001_bytes_dmaed(pm8001_ha, phy_id); |
| } |
| |
| /** |
| * hw_event_phy_down -we should notify the libsas the phy is down. |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static void |
| hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct hw_event_resp *pPayload = |
| (struct hw_event_resp *)(piomb + 4); |
| u32 lr_evt_status_phyid_portid = |
| le32_to_cpu(pPayload->lr_evt_status_phyid_portid); |
| u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); |
| u8 phy_id = |
| (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); |
| u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); |
| u8 portstate = (u8)(npip_portstate & 0x0000000F); |
| struct pm8001_port *port = &pm8001_ha->port[port_id]; |
| struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; |
| port->port_state = portstate; |
| phy->phy_type = 0; |
| phy->identify.device_type = 0; |
| phy->phy_attached = 0; |
| memset(&phy->dev_sas_addr, 0, SAS_ADDR_SIZE); |
| switch (portstate) { |
| case PORT_VALID: |
| break; |
| case PORT_INVALID: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" PortInvalid portID %d\n", port_id)); |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" Last phy Down and port invalid\n")); |
| port->port_attached = 0; |
| pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, |
| port_id, phy_id, 0, 0); |
| break; |
| case PORT_IN_RESET: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" Port In Reset portID %d\n", port_id)); |
| break; |
| case PORT_NOT_ESTABLISHED: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" phy Down and PORT_NOT_ESTABLISHED\n")); |
| port->port_attached = 0; |
| break; |
| case PORT_LOSTCOMM: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" phy Down and PORT_LOSTCOMM\n")); |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" Last phy Down and port invalid\n")); |
| port->port_attached = 0; |
| pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, |
| port_id, phy_id, 0, 0); |
| break; |
| default: |
| port->port_attached = 0; |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" phy Down and(default) = %x\n", |
| portstate)); |
| break; |
| |
| } |
| } |
| |
| /** |
| * pm8001_mpi_reg_resp -process register device ID response. |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| * |
| * when sas layer find a device it will notify LLDD, then the driver register |
| * the domain device to FW, this event is the return device ID which the FW |
| * has assigned, from now,inter-communication with FW is no longer using the |
| * SAS address, use device ID which FW assigned. |
| */ |
| int pm8001_mpi_reg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| u32 status; |
| u32 device_id; |
| u32 htag; |
| struct pm8001_ccb_info *ccb; |
| struct pm8001_device *pm8001_dev; |
| struct dev_reg_resp *registerRespPayload = |
| (struct dev_reg_resp *)(piomb + 4); |
| |
| htag = le32_to_cpu(registerRespPayload->tag); |
| ccb = &pm8001_ha->ccb_info[htag]; |
| pm8001_dev = ccb->device; |
| status = le32_to_cpu(registerRespPayload->status); |
| device_id = le32_to_cpu(registerRespPayload->device_id); |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" register device is status = %d\n", status)); |
| switch (status) { |
| case DEVREG_SUCCESS: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk("DEVREG_SUCCESS\n")); |
| pm8001_dev->device_id = device_id; |
| break; |
| case DEVREG_FAILURE_OUT_OF_RESOURCE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("DEVREG_FAILURE_OUT_OF_RESOURCE\n")); |
| break; |
| case DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED\n")); |
| break; |
| case DEVREG_FAILURE_INVALID_PHY_ID: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("DEVREG_FAILURE_INVALID_PHY_ID\n")); |
| break; |
| case DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED\n")); |
| break; |
| case DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE\n")); |
| break; |
| case DEVREG_FAILURE_PORT_NOT_VALID_STATE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("DEVREG_FAILURE_PORT_NOT_VALID_STATE\n")); |
| break; |
| case DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID\n")); |
| break; |
| default: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("DEVREG_FAILURE_DEVICE_TYPE_NOT_SUPPORTED\n")); |
| break; |
| } |
| complete(pm8001_dev->dcompletion); |
| ccb->task = NULL; |
| ccb->ccb_tag = 0xFFFFFFFF; |
| pm8001_tag_free(pm8001_ha, htag); |
| return 0; |
| } |
| |
| int pm8001_mpi_dereg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| u32 status; |
| u32 device_id; |
| struct dev_reg_resp *registerRespPayload = |
| (struct dev_reg_resp *)(piomb + 4); |
| |
| status = le32_to_cpu(registerRespPayload->status); |
| device_id = le32_to_cpu(registerRespPayload->device_id); |
| if (status != 0) |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" deregister device failed ,status = %x" |
| ", device_id = %x\n", status, device_id)); |
| return 0; |
| } |
| |
| /** |
| * fw_flash_update_resp - Response from FW for flash update command. |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| int pm8001_mpi_fw_flash_update_resp(struct pm8001_hba_info *pm8001_ha, |
| void *piomb) |
| { |
| u32 status; |
| struct fw_flash_Update_resp *ppayload = |
| (struct fw_flash_Update_resp *)(piomb + 4); |
| u32 tag = le32_to_cpu(ppayload->tag); |
| struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; |
| status = le32_to_cpu(ppayload->status); |
| switch (status) { |
| case FLASH_UPDATE_COMPLETE_PENDING_REBOOT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(": FLASH_UPDATE_COMPLETE_PENDING_REBOOT\n")); |
| break; |
| case FLASH_UPDATE_IN_PROGRESS: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(": FLASH_UPDATE_IN_PROGRESS\n")); |
| break; |
| case FLASH_UPDATE_HDR_ERR: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(": FLASH_UPDATE_HDR_ERR\n")); |
| break; |
| case FLASH_UPDATE_OFFSET_ERR: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(": FLASH_UPDATE_OFFSET_ERR\n")); |
| break; |
| case FLASH_UPDATE_CRC_ERR: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(": FLASH_UPDATE_CRC_ERR\n")); |
| break; |
| case FLASH_UPDATE_LENGTH_ERR: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(": FLASH_UPDATE_LENGTH_ERR\n")); |
| break; |
| case FLASH_UPDATE_HW_ERR: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(": FLASH_UPDATE_HW_ERR\n")); |
| break; |
| case FLASH_UPDATE_DNLD_NOT_SUPPORTED: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(": FLASH_UPDATE_DNLD_NOT_SUPPORTED\n")); |
| break; |
| case FLASH_UPDATE_DISABLED: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(": FLASH_UPDATE_DISABLED\n")); |
| break; |
| default: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("No matched status = %d\n", status)); |
| break; |
| } |
| kfree(ccb->fw_control_context); |
| ccb->task = NULL; |
| ccb->ccb_tag = 0xFFFFFFFF; |
| pm8001_tag_free(pm8001_ha, tag); |
| complete(pm8001_ha->nvmd_completion); |
| return 0; |
| } |
| |
| int pm8001_mpi_general_event(struct pm8001_hba_info *pm8001_ha , void *piomb) |
| { |
| u32 status; |
| int i; |
| struct general_event_resp *pPayload = |
| (struct general_event_resp *)(piomb + 4); |
| status = le32_to_cpu(pPayload->status); |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" status = 0x%x\n", status)); |
| for (i = 0; i < GENERAL_EVENT_PAYLOAD; i++) |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("inb_IOMB_payload[0x%x] 0x%x,\n", i, |
| pPayload->inb_IOMB_payload[i])); |
| return 0; |
| } |
| |
| int pm8001_mpi_task_abort_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct sas_task *t; |
| struct pm8001_ccb_info *ccb; |
| unsigned long flags; |
| u32 status ; |
| u32 tag, scp; |
| struct task_status_struct *ts; |
| struct pm8001_device *pm8001_dev; |
| |
| struct task_abort_resp *pPayload = |
| (struct task_abort_resp *)(piomb + 4); |
| |
| status = le32_to_cpu(pPayload->status); |
| tag = le32_to_cpu(pPayload->tag); |
| if (!tag) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk(" TAG NULL. RETURNING !!!")); |
| return -1; |
| } |
| |
| scp = le32_to_cpu(pPayload->scp); |
| ccb = &pm8001_ha->ccb_info[tag]; |
| t = ccb->task; |
| pm8001_dev = ccb->device; /* retrieve device */ |
| |
| if (!t) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk(" TASK NULL. RETURNING !!!")); |
| return -1; |
| } |
| ts = &t->task_status; |
| if (status != 0) |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("task abort failed status 0x%x ," |
| "tag = 0x%x, scp= 0x%x\n", status, tag, scp)); |
| switch (status) { |
| case IO_SUCCESS: |
| PM8001_EH_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_GOOD; |
| break; |
| case IO_NOT_VALID: |
| PM8001_EH_DBG(pm8001_ha, pm8001_printk("IO_NOT_VALID\n")); |
| ts->resp = TMF_RESP_FUNC_FAILED; |
| break; |
| } |
| spin_lock_irqsave(&t->task_state_lock, flags); |
| t->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| t->task_state_flags |= SAS_TASK_STATE_DONE; |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb(); |
| |
| if (pm8001_dev->id & NCQ_ABORT_ALL_FLAG) { |
| pm8001_tag_free(pm8001_ha, tag); |
| sas_free_task(t); |
| /* clear the flag */ |
| pm8001_dev->id &= 0xBFFFFFFF; |
| } else |
| t->task_done(t); |
| |
| return 0; |
| } |
| |
| /** |
| * mpi_hw_event -The hw event has come. |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void* piomb) |
| { |
| unsigned long flags; |
| struct hw_event_resp *pPayload = |
| (struct hw_event_resp *)(piomb + 4); |
| u32 lr_evt_status_phyid_portid = |
| le32_to_cpu(pPayload->lr_evt_status_phyid_portid); |
| u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); |
| u8 phy_id = |
| (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); |
| u16 eventType = |
| (u16)((lr_evt_status_phyid_portid & 0x00FFFF00) >> 8); |
| u8 status = |
| (u8)((lr_evt_status_phyid_portid & 0x0F000000) >> 24); |
| struct sas_ha_struct *sas_ha = pm8001_ha->sas; |
| struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; |
| struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("outbound queue HW event & event type : ")); |
| switch (eventType) { |
| case HW_EVENT_PHY_START_STATUS: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PHY_START_STATUS" |
| " status = %x\n", status)); |
| if (status == 0) { |
| phy->phy_state = 1; |
| if (pm8001_ha->flags == PM8001F_RUN_TIME && |
| phy->enable_completion != NULL) |
| complete(phy->enable_completion); |
| } |
| break; |
| case HW_EVENT_SAS_PHY_UP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PHY_START_STATUS\n")); |
| hw_event_sas_phy_up(pm8001_ha, piomb); |
| break; |
| case HW_EVENT_SATA_PHY_UP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_SATA_PHY_UP\n")); |
| hw_event_sata_phy_up(pm8001_ha, piomb); |
| break; |
| case HW_EVENT_PHY_STOP_STATUS: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PHY_STOP_STATUS " |
| "status = %x\n", status)); |
| if (status == 0) |
| phy->phy_state = 0; |
| break; |
| case HW_EVENT_SATA_SPINUP_HOLD: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_SATA_SPINUP_HOLD\n")); |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD); |
| break; |
| case HW_EVENT_PHY_DOWN: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PHY_DOWN\n")); |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL); |
| phy->phy_attached = 0; |
| phy->phy_state = 0; |
| hw_event_phy_down(pm8001_ha, piomb); |
| break; |
| case HW_EVENT_PORT_INVALID: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PORT_INVALID\n")); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| /* the broadcast change primitive received, tell the LIBSAS this event |
| to revalidate the sas domain*/ |
| case HW_EVENT_BROADCAST_CHANGE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_BROADCAST_CHANGE\n")); |
| pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE, |
| port_id, phy_id, 1, 0); |
| spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); |
| sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE; |
| spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); |
| sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); |
| break; |
| case HW_EVENT_PHY_ERROR: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PHY_ERROR\n")); |
| sas_phy_disconnected(&phy->sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR); |
| break; |
| case HW_EVENT_BROADCAST_EXP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_BROADCAST_EXP\n")); |
| spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); |
| sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP; |
| spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); |
| sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); |
| break; |
| case HW_EVENT_LINK_ERR_INVALID_DWORD: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_LINK_ERR_INVALID_DWORD\n")); |
| pm8001_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_LINK_ERR_DISPARITY_ERROR: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_LINK_ERR_DISPARITY_ERROR\n")); |
| pm8001_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_LINK_ERR_DISPARITY_ERROR, |
| port_id, phy_id, 0, 0); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_LINK_ERR_CODE_VIOLATION: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_LINK_ERR_CODE_VIOLATION\n")); |
| pm8001_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_LINK_ERR_CODE_VIOLATION, |
| port_id, phy_id, 0, 0); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n")); |
| pm8001_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH, |
| port_id, phy_id, 0, 0); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_MALFUNCTION: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_MALFUNCTION\n")); |
| break; |
| case HW_EVENT_BROADCAST_SES: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_BROADCAST_SES\n")); |
| spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); |
| sas_phy->sas_prim = HW_EVENT_BROADCAST_SES; |
| spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); |
| sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); |
| break; |
| case HW_EVENT_INBOUND_CRC_ERROR: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_INBOUND_CRC_ERROR\n")); |
| pm8001_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_INBOUND_CRC_ERROR, |
| port_id, phy_id, 0, 0); |
| break; |
| case HW_EVENT_HARD_RESET_RECEIVED: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_HARD_RESET_RECEIVED\n")); |
| sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET); |
| break; |
| case HW_EVENT_ID_FRAME_TIMEOUT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_ID_FRAME_TIMEOUT\n")); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_LINK_ERR_PHY_RESET_FAILED: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_LINK_ERR_PHY_RESET_FAILED\n")); |
| pm8001_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_LINK_ERR_PHY_RESET_FAILED, |
| port_id, phy_id, 0, 0); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_PORT_RESET_TIMER_TMO: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PORT_RESET_TIMER_TMO\n")); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_PORT_RECOVERY_TIMER_TMO: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PORT_RECOVERY_TIMER_TMO\n")); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_PORT_RECOVER: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PORT_RECOVER\n")); |
| break; |
| case HW_EVENT_PORT_RESET_COMPLETE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PORT_RESET_COMPLETE\n")); |
| break; |
| case EVENT_BROADCAST_ASYNCH_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("EVENT_BROADCAST_ASYNCH_EVENT\n")); |
| break; |
| default: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("Unknown event type = %x\n", eventType)); |
| break; |
| } |
| return 0; |
| } |
| |
| /** |
| * process_one_iomb - process one outbound Queue memory block |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| __le32 pHeader = *(__le32 *)piomb; |
| u8 opc = (u8)((le32_to_cpu(pHeader)) & 0xFFF); |
| |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk("process_one_iomb:")); |
| |
| switch (opc) { |
| case OPC_OUB_ECHO: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk("OPC_OUB_ECHO\n")); |
| break; |
| case OPC_OUB_HW_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_HW_EVENT\n")); |
| mpi_hw_event(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SSP_COMP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SSP_COMP\n")); |
| mpi_ssp_completion(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SMP_COMP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SMP_COMP\n")); |
| mpi_smp_completion(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_LOCAL_PHY_CNTRL: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_LOCAL_PHY_CNTRL\n")); |
| pm8001_mpi_local_phy_ctl(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_DEV_REGIST: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_DEV_REGIST\n")); |
| pm8001_mpi_reg_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_DEREG_DEV: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("unregister the device\n")); |
| pm8001_mpi_dereg_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_GET_DEV_HANDLE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GET_DEV_HANDLE\n")); |
| break; |
| case OPC_OUB_SATA_COMP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SATA_COMP\n")); |
| mpi_sata_completion(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SATA_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SATA_EVENT\n")); |
| mpi_sata_event(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SSP_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SSP_EVENT\n")); |
| mpi_ssp_event(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_DEV_HANDLE_ARRIV: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_DEV_HANDLE_ARRIV\n")); |
| /*This is for target*/ |
| break; |
| case OPC_OUB_SSP_RECV_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SSP_RECV_EVENT\n")); |
| /*This is for target*/ |
| break; |
| case OPC_OUB_DEV_INFO: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_DEV_INFO\n")); |
| break; |
| case OPC_OUB_FW_FLASH_UPDATE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_FW_FLASH_UPDATE\n")); |
| pm8001_mpi_fw_flash_update_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_GPIO_RESPONSE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GPIO_RESPONSE\n")); |
| break; |
| case OPC_OUB_GPIO_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GPIO_EVENT\n")); |
| break; |
| case OPC_OUB_GENERAL_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GENERAL_EVENT\n")); |
| pm8001_mpi_general_event(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SSP_ABORT_RSP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SSP_ABORT_RSP\n")); |
| pm8001_mpi_task_abort_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SATA_ABORT_RSP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SATA_ABORT_RSP\n")); |
| pm8001_mpi_task_abort_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SAS_DIAG_MODE_START_END: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SAS_DIAG_MODE_START_END\n")); |
| break; |
| case OPC_OUB_SAS_DIAG_EXECUTE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SAS_DIAG_EXECUTE\n")); |
| break; |
| case OPC_OUB_GET_TIME_STAMP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GET_TIME_STAMP\n")); |
| break; |
| case OPC_OUB_SAS_HW_EVENT_ACK: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SAS_HW_EVENT_ACK\n")); |
| break; |
| case OPC_OUB_PORT_CONTROL: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_PORT_CONTROL\n")); |
| break; |
| case OPC_OUB_SMP_ABORT_RSP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SMP_ABORT_RSP\n")); |
| pm8001_mpi_task_abort_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_GET_NVMD_DATA: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GET_NVMD_DATA\n")); |
| pm8001_mpi_get_nvmd_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SET_NVMD_DATA: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SET_NVMD_DATA\n")); |
| pm8001_mpi_set_nvmd_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_DEVICE_HANDLE_REMOVAL: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_DEVICE_HANDLE_REMOVAL\n")); |
| break; |
| case OPC_OUB_SET_DEVICE_STATE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SET_DEVICE_STATE\n")); |
| pm8001_mpi_set_dev_state_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_GET_DEVICE_STATE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GET_DEVICE_STATE\n")); |
| break; |
| case OPC_OUB_SET_DEV_INFO: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SET_DEV_INFO\n")); |
| break; |
| case OPC_OUB_SAS_RE_INITIALIZE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SAS_RE_INITIALIZE\n")); |
| break; |
| default: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("Unknown outbound Queue IOMB OPC = %x\n", |
| opc)); |
| break; |
| } |
| } |
| |
| static int process_oq(struct pm8001_hba_info *pm8001_ha, u8 vec) |
| { |
| struct outbound_queue_table *circularQ; |
| void *pMsg1 = NULL; |
| u8 uninitialized_var(bc); |
| u32 ret = MPI_IO_STATUS_FAIL; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pm8001_ha->lock, flags); |
| circularQ = &pm8001_ha->outbnd_q_tbl[vec]; |
| do { |
| ret = pm8001_mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc); |
| if (MPI_IO_STATUS_SUCCESS == ret) { |
| /* process the outbound message */ |
| process_one_iomb(pm8001_ha, (void *)(pMsg1 - 4)); |
| /* free the message from the outbound circular buffer */ |
| pm8001_mpi_msg_free_set(pm8001_ha, pMsg1, |
| circularQ, bc); |
| } |
| if (MPI_IO_STATUS_BUSY == ret) { |
| /* Update the producer index from SPC */ |
| circularQ->producer_index = |
| cpu_to_le32(pm8001_read_32(circularQ->pi_virt)); |
| if (le32_to_cpu(circularQ->producer_index) == |
| circularQ->consumer_idx) |
| /* OQ is empty */ |
| break; |
| } |
| } while (1); |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| return ret; |
| } |
| |
| /* DMA_... to our direction translation. */ |
| static const u8 data_dir_flags[] = { |
| [DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT, /* UNSPECIFIED */ |
| [DMA_TO_DEVICE] = DATA_DIR_OUT, /* OUTBOUND */ |
| [DMA_FROM_DEVICE] = DATA_DIR_IN, /* INBOUND */ |
| [DMA_NONE] = DATA_DIR_NONE, /* NO TRANSFER */ |
| }; |
| void |
| pm8001_chip_make_sg(struct scatterlist *scatter, int nr, void *prd) |
| { |
| int i; |
| struct scatterlist *sg; |
| struct pm8001_prd *buf_prd = prd; |
| |
| for_each_sg(scatter, sg, nr, i) { |
| buf_prd->addr = cpu_to_le64(sg_dma_address(sg)); |
| buf_prd->im_len.len = cpu_to_le32(sg_dma_len(sg)); |
| buf_prd->im_len.e = 0; |
| buf_prd++; |
| } |
| } |
| |
| static void build_smp_cmd(u32 deviceID, __le32 hTag, struct smp_req *psmp_cmd) |
| { |
| psmp_cmd->tag = hTag; |
| psmp_cmd->device_id = cpu_to_le32(deviceID); |
| psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1)); |
| } |
| |
| /** |
| * pm8001_chip_smp_req - send a SMP task to FW |
| * @pm8001_ha: our hba card information. |
| * @ccb: the ccb information this request used. |
| */ |
| static int pm8001_chip_smp_req(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_ccb_info *ccb) |
| { |
| int elem, rc; |
| struct sas_task *task = ccb->task; |
| struct domain_device *dev = task->dev; |
| struct pm8001_device *pm8001_dev = dev->lldd_dev; |
| struct scatterlist *sg_req, *sg_resp; |
| u32 req_len, resp_len; |
| struct smp_req smp_cmd; |
| u32 opc; |
| struct inbound_queue_table *circularQ; |
| |
| memset(&smp_cmd, 0, sizeof(smp_cmd)); |
| /* |
| * DMA-map SMP request, response buffers |
| */ |
| sg_req = &task->smp_task.smp_req; |
| elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, DMA_TO_DEVICE); |
| if (!elem) |
| return -ENOMEM; |
| req_len = sg_dma_len(sg_req); |
| |
| sg_resp = &task->smp_task.smp_resp; |
| elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, DMA_FROM_DEVICE); |
| if (!elem) { |
| rc = -ENOMEM; |
| goto err_out; |
| } |
| resp_len = sg_dma_len(sg_resp); |
| /* must be in dwords */ |
| if ((req_len & 0x3) || (resp_len & 0x3)) { |
| rc = -EINVAL; |
| goto err_out_2; |
| } |
| |
| opc = OPC_INB_SMP_REQUEST; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| smp_cmd.tag = cpu_to_le32(ccb->ccb_tag); |
| smp_cmd.long_smp_req.long_req_addr = |
| cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req)); |
| smp_cmd.long_smp_req.long_req_size = |
| cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4); |
| smp_cmd.long_smp_req.long_resp_addr = |
| cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp)); |
| smp_cmd.long_smp_req.long_resp_size = |
| cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4); |
| build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, &smp_cmd); |
| rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, |
| (u32 *)&smp_cmd, 0); |
| if (rc) |
| goto err_out_2; |
| |
| return 0; |
| |
| err_out_2: |
| dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1, |
| DMA_FROM_DEVICE); |
| err_out: |
| dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1, |
| DMA_TO_DEVICE); |
| return rc; |
| } |
| |
| /** |
| * pm8001_chip_ssp_io_req - send a SSP task to FW |
| * @pm8001_ha: our hba card information. |
| * @ccb: the ccb information this request used. |
| */ |
| static int pm8001_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_ccb_info *ccb) |
| { |
| struct sas_task *task = ccb->task; |
| struct domain_device *dev = task->dev; |
| struct pm8001_device *pm8001_dev = dev->lldd_dev; |
| struct ssp_ini_io_start_req ssp_cmd; |
| u32 tag = ccb->ccb_tag; |
| int ret; |
| u64 phys_addr; |
| struct inbound_queue_table *circularQ; |
| u32 opc = OPC_INB_SSPINIIOSTART; |
| memset(&ssp_cmd, 0, sizeof(ssp_cmd)); |
| memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8); |
| ssp_cmd.dir_m_tlr = |
| cpu_to_le32(data_dir_flags[task->data_dir] << 8 | 0x0);/*0 for |
| SAS 1.1 compatible TLR*/ |
| ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len); |
| ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id); |
| ssp_cmd.tag = cpu_to_le32(tag); |
| if (task->ssp_task.enable_first_burst) |
| ssp_cmd.ssp_iu.efb_prio_attr |= 0x80; |
| ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3); |
| ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7); |
| memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cmd->cmnd, |
| task->ssp_task.cmd->cmd_len); |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| |
| /* fill in PRD (scatter/gather) table, if any */ |
| if (task->num_scatter > 1) { |
| pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); |
| phys_addr = ccb->ccb_dma_handle + |
| offsetof(struct pm8001_ccb_info, buf_prd[0]); |
| ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(phys_addr)); |
| ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(phys_addr)); |
| ssp_cmd.esgl = cpu_to_le32(1<<31); |
| } else if (task->num_scatter == 1) { |
| u64 dma_addr = sg_dma_address(task->scatter); |
| ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(dma_addr)); |
| ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(dma_addr)); |
| ssp_cmd.len = cpu_to_le32(task->total_xfer_len); |
| ssp_cmd.esgl = 0; |
| } else if (task->num_scatter == 0) { |
| ssp_cmd.addr_low = 0; |
| ssp_cmd.addr_high = 0; |
| ssp_cmd.len = cpu_to_le32(task->total_xfer_len); |
| ssp_cmd.esgl = 0; |
| } |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &ssp_cmd, 0); |
| return ret; |
| } |
| |
| static int pm8001_chip_sata_req(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_ccb_info *ccb) |
| { |
| struct sas_task *task = ccb->task; |
| struct domain_device *dev = task->dev; |
| struct pm8001_device *pm8001_ha_dev = dev->lldd_dev; |
| u32 tag = ccb->ccb_tag; |
| int ret; |
| struct sata_start_req sata_cmd; |
| u32 hdr_tag, ncg_tag = 0; |
| u64 phys_addr; |
| u32 ATAP = 0x0; |
| u32 dir; |
| struct inbound_queue_table *circularQ; |
| unsigned long flags; |
| u32 opc = OPC_INB_SATA_HOST_OPSTART; |
| memset(&sata_cmd, 0, sizeof(sata_cmd)); |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| if (task->data_dir == DMA_NONE) { |
| ATAP = 0x04; /* no data*/ |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("no data\n")); |
| } else if (likely(!task->ata_task.device_control_reg_update)) { |
| if (task->ata_task.dma_xfer) { |
| ATAP = 0x06; /* DMA */ |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("DMA\n")); |
| } else { |
| ATAP = 0x05; /* PIO*/ |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("PIO\n")); |
| } |
| if (task->ata_task.use_ncq && |
| dev->sata_dev.class != ATA_DEV_ATAPI) { |
| ATAP = 0x07; /* FPDMA */ |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("FPDMA\n")); |
| } |
| } |
| if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag)) { |
| task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); |
| ncg_tag = hdr_tag; |
| } |
| dir = data_dir_flags[task->data_dir] << 8; |
| sata_cmd.tag = cpu_to_le32(tag); |
| sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); |
| sata_cmd.data_len = cpu_to_le32(task->total_xfer_len); |
| sata_cmd.ncqtag_atap_dir_m = |
| cpu_to_le32(((ncg_tag & 0xff)<<16)|((ATAP & 0x3f) << 10) | dir); |
| sata_cmd.sata_fis = task->ata_task.fis; |
| if (likely(!task->ata_task.device_control_reg_update)) |
| sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */ |
| sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */ |
| /* fill in PRD (scatter/gather) table, if any */ |
| if (task->num_scatter > 1) { |
| pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); |
| phys_addr = ccb->ccb_dma_handle + |
| offsetof(struct pm8001_ccb_info, buf_prd[0]); |
| sata_cmd.addr_low = lower_32_bits(phys_addr); |
| sata_cmd.addr_high = upper_32_bits(phys_addr); |
| sata_cmd.esgl = cpu_to_le32(1 << 31); |
| } else if (task->num_scatter == 1) { |
| u64 dma_addr = sg_dma_address(task->scatter); |
| sata_cmd.addr_low = lower_32_bits(dma_addr); |
| sata_cmd.addr_high = upper_32_bits(dma_addr); |
| sata_cmd.len = cpu_to_le32(task->total_xfer_len); |
| sata_cmd.esgl = 0; |
| } else if (task->num_scatter == 0) { |
| sata_cmd.addr_low = 0; |
| sata_cmd.addr_high = 0; |
| sata_cmd.len = cpu_to_le32(task->total_xfer_len); |
| sata_cmd.esgl = 0; |
| } |
| |
| /* Check for read log for failed drive and return */ |
| if (sata_cmd.sata_fis.command == 0x2f) { |
| if (((pm8001_ha_dev->id & NCQ_READ_LOG_FLAG) || |
| (pm8001_ha_dev->id & NCQ_ABORT_ALL_FLAG) || |
| (pm8001_ha_dev->id & NCQ_2ND_RLE_FLAG))) { |
| struct task_status_struct *ts; |
| |
| pm8001_ha_dev->id &= 0xDFFFFFFF; |
| ts = &task->task_status; |
| |
| spin_lock_irqsave(&task->task_state_lock, flags); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_GOOD; |
| task->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| task->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((task->task_state_flags & |
| SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&task->task_state_lock, |
| flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("task 0x%p resp 0x%x " |
| " stat 0x%x but aborted by upper layer " |
| "\n", task, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); |
| } else { |
| spin_unlock_irqrestore(&task->task_state_lock, |
| flags); |
| pm8001_ccb_task_free_done(pm8001_ha, task, |
| ccb, tag); |
| return 0; |
| } |
| } |
| } |
| |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd, 0); |
| return ret; |
| } |
| |
| /** |
| * pm8001_chip_phy_start_req - start phy via PHY_START COMMAND |
| * @pm8001_ha: our hba card information. |
| * @num: the inbound queue number |
| * @phy_id: the phy id which we wanted to start up. |
| */ |
| static int |
| pm8001_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id) |
| { |
| struct phy_start_req payload; |
| struct inbound_queue_table *circularQ; |
| int ret; |
| u32 tag = 0x01; |
| u32 opcode = OPC_INB_PHYSTART; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| memset(&payload, 0, sizeof(payload)); |
| payload.tag = cpu_to_le32(tag); |
| /* |
| ** [0:7] PHY Identifier |
| ** [8:11] link rate 1.5G, 3G, 6G |
| ** [12:13] link mode 01b SAS mode; 10b SATA mode; 11b both |
| ** [14] 0b disable spin up hold; 1b enable spin up hold |
| */ |
| payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE | |
| LINKMODE_AUTO | LINKRATE_15 | |
| LINKRATE_30 | LINKRATE_60 | phy_id); |
| payload.sas_identify.dev_type = SAS_END_DEVICE; |
| payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL; |
| memcpy(payload.sas_identify.sas_addr, |
| pm8001_ha->sas_addr, SAS_ADDR_SIZE); |
| payload.sas_identify.phy_id = phy_id; |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload, 0); |
| return ret; |
| } |
| |
| /** |
| * pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND |
| * @pm8001_ha: our hba card information. |
| * @num: the inbound queue number |
| * @phy_id: the phy id which we wanted to start up. |
| */ |
| static int pm8001_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha, |
| u8 phy_id) |
| { |
| struct phy_stop_req payload; |
| struct inbound_queue_table *circularQ; |
| int ret; |
| u32 tag = 0x01; |
| u32 opcode = OPC_INB_PHYSTOP; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| memset(&payload, 0, sizeof(payload)); |
| payload.tag = cpu_to_le32(tag); |
| payload.phy_id = cpu_to_le32(phy_id); |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload, 0); |
| return ret; |
| } |
| |
| /** |
| * see comments on pm8001_mpi_reg_resp. |
| */ |
| static int pm8001_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_device *pm8001_dev, u32 flag) |
| { |
| struct reg_dev_req payload; |
| u32 opc; |
| u32 stp_sspsmp_sata = 0x4; |
| struct inbound_queue_table *circularQ; |
| u32 linkrate, phy_id; |
| int rc, tag = 0xdeadbeef; |
| struct pm8001_ccb_info *ccb; |
| u8 retryFlag = 0x1; |
| u16 firstBurstSize = 0; |
| u16 ITNT = 2000; |
| struct domain_device *dev = pm8001_dev->sas_device; |
| struct domain_device *parent_dev = dev->parent; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| |
| memset(&payload, 0, sizeof(payload)); |
| rc = pm8001_tag_alloc(pm8001_ha, &tag); |
| if (rc) |
| return rc; |
| ccb = &pm8001_ha->ccb_info[tag]; |
| ccb->device = pm8001_dev; |
| ccb->ccb_tag = tag; |
| payload.tag = cpu_to_le32(tag); |
| if (flag == 1) |
| stp_sspsmp_sata = 0x02; /*direct attached sata */ |
| else { |
| if (pm8001_dev->dev_type == SAS_SATA_DEV) |
| stp_sspsmp_sata = 0x00; /* stp*/ |
| else if (pm8001_dev->dev_type == SAS_END_DEVICE || |
| pm8001_dev->dev_type == SAS_EDGE_EXPANDER_DEVICE || |
| pm8001_dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) |
| stp_sspsmp_sata = 0x01; /*ssp or smp*/ |
| } |
| if (parent_dev && dev_is_expander(parent_dev->dev_type)) |
| phy_id = parent_dev->ex_dev.ex_phy->phy_id; |
| else |
| phy_id = pm8001_dev->attached_phy; |
| opc = OPC_INB_REG_DEV; |
| linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ? |
| pm8001_dev->sas_device->linkrate : dev->port->linkrate; |
| payload.phyid_portid = |
| cpu_to_le32(((pm8001_dev->sas_device->port->id) & 0x0F) | |
| ((phy_id & 0x0F) << 4)); |
| payload.dtype_dlr_retry = cpu_to_le32((retryFlag & 0x01) | |
| ((linkrate & 0x0F) * 0x1000000) | |
| ((stp_sspsmp_sata & 0x03) * 0x10000000)); |
| payload.firstburstsize_ITNexustimeout = |
| cpu_to_le32(ITNT | (firstBurstSize * 0x10000)); |
| memcpy(payload.sas_addr, pm8001_dev->sas_device->sas_addr, |
| SAS_ADDR_SIZE); |
| rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| return rc; |
| } |
| |
| /** |
| * see comments on pm8001_mpi_reg_resp. |
| */ |
| int pm8001_chip_dereg_dev_req(struct pm8001_hba_info *pm8001_ha, |
| u32 device_id) |
| { |
| struct dereg_dev_req payload; |
| u32 opc = OPC_INB_DEREG_DEV_HANDLE; |
| int ret; |
| struct inbound_queue_table *circularQ; |
| |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| memset(&payload, 0, sizeof(payload)); |
| payload.tag = cpu_to_le32(1); |
| payload.device_id = cpu_to_le32(device_id); |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("unregister device device_id = %d\n", device_id)); |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| return ret; |
| } |
| |
| /** |
| * pm8001_chip_phy_ctl_req - support the local phy operation |
| * @pm8001_ha: our hba card information. |
| * @num: the inbound queue number |
| * @phy_id: the phy id which we wanted to operate |
| * @phy_op: |
| */ |
| static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, |
| u32 phyId, u32 phy_op) |
| { |
| struct local_phy_ctl_req payload; |
| struct inbound_queue_table *circularQ; |
| int ret; |
| u32 opc = OPC_INB_LOCAL_PHY_CONTROL; |
| memset(&payload, 0, sizeof(payload)); |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| payload.tag = cpu_to_le32(1); |
| payload.phyop_phyid = |
| cpu_to_le32(((phy_op & 0xff) << 8) | (phyId & 0x0F)); |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| return ret; |
| } |
| |
| static u32 pm8001_chip_is_our_interrupt(struct pm8001_hba_info *pm8001_ha) |
| { |
| #ifdef PM8001_USE_MSIX |
| return 1; |
| #else |
| u32 value; |
| |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR); |
| if (value) |
| return 1; |
| return 0; |
| #endif |
| } |
| |
| /** |
| * pm8001_chip_isr - PM8001 isr handler. |
| * @pm8001_ha: our hba card information. |
| * @irq: irq number. |
| * @stat: stat. |
| */ |
| static irqreturn_t |
| pm8001_chip_isr(struct pm8001_hba_info *pm8001_ha, u8 vec) |
| { |
| pm8001_chip_interrupt_disable(pm8001_ha, vec); |
| process_oq(pm8001_ha, vec); |
| pm8001_chip_interrupt_enable(pm8001_ha, vec); |
| return IRQ_HANDLED; |
| } |
| |
| static int send_task_abort(struct pm8001_hba_info *pm8001_ha, u32 opc, |
| u32 dev_id, u8 flag, u32 task_tag, u32 cmd_tag) |
| { |
| struct task_abort_req task_abort; |
| struct inbound_queue_table *circularQ; |
| int ret; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| memset(&task_abort, 0, sizeof(task_abort)); |
| if (ABORT_SINGLE == (flag & ABORT_MASK)) { |
| task_abort.abort_all = 0; |
| task_abort.device_id = cpu_to_le32(dev_id); |
| task_abort.tag_to_abort = cpu_to_le32(task_tag); |
| task_abort.tag = cpu_to_le32(cmd_tag); |
| } else if (ABORT_ALL == (flag & ABORT_MASK)) { |
| task_abort.abort_all = cpu_to_le32(1); |
| task_abort.device_id = cpu_to_le32(dev_id); |
| task_abort.tag = cpu_to_le32(cmd_tag); |
| } |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort, 0); |
| return ret; |
| } |
| |
| /** |
| * pm8001_chip_abort_task - SAS abort task when error or exception happened. |
| * @task: the task we wanted to aborted. |
| * @flag: the abort flag. |
| */ |
| int pm8001_chip_abort_task(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_device *pm8001_dev, u8 flag, u32 task_tag, u32 cmd_tag) |
| { |
| u32 opc, device_id; |
| int rc = TMF_RESP_FUNC_FAILED; |
| PM8001_EH_DBG(pm8001_ha, |
| pm8001_printk("cmd_tag = %x, abort task tag = 0x%x", |
| cmd_tag, task_tag)); |
| if (pm8001_dev->dev_type == SAS_END_DEVICE) |
| opc = OPC_INB_SSP_ABORT; |
| else if (pm8001_dev->dev_type == SAS_SATA_DEV) |
| opc = OPC_INB_SATA_ABORT; |
| else |
| opc = OPC_INB_SMP_ABORT;/* SMP */ |
| device_id = pm8001_dev->device_id; |
| rc = send_task_abort(pm8001_ha, opc, device_id, flag, |
| task_tag, cmd_tag); |
| if (rc != TMF_RESP_FUNC_COMPLETE) |
| PM8001_EH_DBG(pm8001_ha, pm8001_printk("rc= %d\n", rc)); |
| return rc; |
| } |
| |
| /** |
| * pm8001_chip_ssp_tm_req - built the task management command. |
| * @pm8001_ha: our hba card information. |
| * @ccb: the ccb information. |
| * @tmf: task management function. |
| */ |
| int pm8001_chip_ssp_tm_req(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf) |
| { |
| struct sas_task *task = ccb->task; |
| struct domain_device *dev = task->dev; |
| struct pm8001_device *pm8001_dev = dev->lldd_dev; |
| u32 opc = OPC_INB_SSPINITMSTART; |
| struct inbound_queue_table *circularQ; |
| struct ssp_ini_tm_start_req sspTMCmd; |
| int ret; |
| |
| memset(&sspTMCmd, 0, sizeof(sspTMCmd)); |
| sspTMCmd.device_id = cpu_to_le32(pm8001_dev->device_id); |
| sspTMCmd.relate_tag = cpu_to_le32(tmf->tag_of_task_to_be_managed); |
| sspTMCmd.tmf = cpu_to_le32(tmf->tmf); |
| memcpy(sspTMCmd.lun, task->ssp_task.LUN, 8); |
| sspTMCmd.tag = cpu_to_le32(ccb->ccb_tag); |
| if (pm8001_ha->chip_id != chip_8001) |
| sspTMCmd.ds_ads_m = 0x08; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sspTMCmd, 0); |
| return ret; |
| } |
| |
| int pm8001_chip_get_nvmd_req(struct pm8001_hba_info *pm8001_ha, |
| void *payload) |
| { |
| u32 opc = OPC_INB_GET_NVMD_DATA; |
| u32 nvmd_type; |
| int rc; |
| u32 tag; |
| struct pm8001_ccb_info *ccb; |
| struct inbound_queue_table *circularQ; |
| struct get_nvm_data_req nvmd_req; |
| struct fw_control_ex *fw_control_context; |
| struct pm8001_ioctl_payload *ioctl_payload = payload; |
| |
| nvmd_type = ioctl_payload->minor_function; |
| fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); |
| if (!fw_control_context) |
| return -ENOMEM; |
| fw_control_context->usrAddr = (u8 *)ioctl_payload->func_specific; |
| fw_control_context->len = ioctl_payload->length; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| memset(&nvmd_req, 0, sizeof(nvmd_req)); |
| rc = pm8001_tag_alloc(pm8001_ha, &tag); |
| if (rc) { |
| kfree(fw_control_context); |
| return rc; |
| } |
| ccb = &pm8001_ha->ccb_info[tag]; |
| ccb->ccb_tag = tag; |
| ccb->fw_control_context = fw_control_context; |
| nvmd_req.tag = cpu_to_le32(tag); |
| |
| switch (nvmd_type) { |
| case TWI_DEVICE: { |
| u32 twi_addr, twi_page_size; |
| twi_addr = 0xa8; |
| twi_page_size = 2; |
| |
| nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 | |
| twi_page_size << 8 | TWI_DEVICE); |
| nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); |
| nvmd_req.resp_addr_hi = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); |
| nvmd_req.resp_addr_lo = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); |
| break; |
| } |
| case C_SEEPROM: { |
| nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM); |
| nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); |
| nvmd_req.resp_addr_hi = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); |
| nvmd_req.resp_addr_lo = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); |
| break; |
| } |
| case VPD_FLASH: { |
| nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH); |
| nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); |
| nvmd_req.resp_addr_hi = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); |
| nvmd_req.resp_addr_lo = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); |
| break; |
| } |
| case EXPAN_ROM: { |
| nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM); |
| nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); |
| nvmd_req.resp_addr_hi = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); |
| nvmd_req.resp_addr_lo = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); |
| break; |
| } |
| case IOP_RDUMP: { |
| nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | IOP_RDUMP); |
| nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); |
| nvmd_req.vpd_offset = cpu_to_le32(ioctl_payload->offset); |
| nvmd_req.resp_addr_hi = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); |
| nvmd_req.resp_addr_lo = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); |
| break; |
| } |
| default: |
| break; |
| } |
| rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req, 0); |
| if (rc) { |
| kfree(fw_control_context); |
| pm8001_tag_free(pm8001_ha, tag); |
| } |
| return rc; |
| } |
| |
| int pm8001_chip_set_nvmd_req(struct pm8001_hba_info *pm8001_ha, |
| void *payload) |
| { |
| u32 opc = OPC_INB_SET_NVMD_DATA; |
| u32 nvmd_type; |
| int rc; |
| u32 tag; |
| struct pm8001_ccb_info *ccb; |
| struct inbound_queue_table *circularQ; |
| struct set_nvm_data_req nvmd_req; |
| struct fw_control_ex *fw_control_context; |
| struct pm8001_ioctl_payload *ioctl_payload = payload; |
| |
| nvmd_type = ioctl_payload->minor_function; |
| fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); |
| if (!fw_control_context) |
| return -ENOMEM; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| memcpy(pm8001_ha->memoryMap.region[NVMD].virt_ptr, |
| &ioctl_payload->func_specific, |
| ioctl_payload->length); |
| memset(&nvmd_req, 0, sizeof(nvmd_req)); |
| rc = pm8001_tag_alloc(pm8001_ha, &tag); |
| if (rc) { |
| kfree(fw_control_context); |
| return -EBUSY; |
| } |
| ccb = &pm8001_ha->ccb_info[tag]; |
| ccb->fw_control_context = fw_control_context; |
| ccb->ccb_tag = tag; |
| nvmd_req.tag = cpu_to_le32(tag); |
| switch (nvmd_type) { |
| case TWI_DEVICE: { |
| u32 twi_addr, twi_page_size; |
| twi_addr = 0xa8; |
| twi_page_size = 2; |
| nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); |
| nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 | |
| twi_page_size << 8 | TWI_DEVICE); |
| nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); |
| nvmd_req.resp_addr_hi = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); |
| nvmd_req.resp_addr_lo = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); |
| break; |
| } |
| case C_SEEPROM: |
| nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM); |
| nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); |
| nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); |
| nvmd_req.resp_addr_hi = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); |
| nvmd_req.resp_addr_lo = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); |
| break; |
| case VPD_FLASH: |
| nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH); |
| nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); |
| nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); |
| nvmd_req.resp_addr_hi = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); |
| nvmd_req.resp_addr_lo = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); |
| break; |
| case EXPAN_ROM: |
| nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM); |
| nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); |
| nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); |
| nvmd_req.resp_addr_hi = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); |
| nvmd_req.resp_addr_lo = |
| cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); |
| break; |
| default: |
| break; |
| } |
| rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req, 0); |
| if (rc) { |
| kfree(fw_control_context); |
| pm8001_tag_free(pm8001_ha, tag); |
| } |
| return rc; |
| } |
| |
| /** |
| * pm8001_chip_fw_flash_update_build - support the firmware update operation |
| * @pm8001_ha: our hba card information. |
| * @fw_flash_updata_info: firmware flash update param |
| */ |
| int |
| pm8001_chip_fw_flash_update_build(struct pm8001_hba_info *pm8001_ha, |
| void *fw_flash_updata_info, u32 tag) |
| { |
| struct fw_flash_Update_req payload; |
| struct fw_flash_updata_info *info; |
| struct inbound_queue_table *circularQ; |
| int ret; |
| u32 opc = OPC_INB_FW_FLASH_UPDATE; |
| |
| memset(&payload, 0, sizeof(struct fw_flash_Update_req)); |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| info = fw_flash_updata_info; |
| payload.tag = cpu_to_le32(tag); |
| payload.cur_image_len = cpu_to_le32(info->cur_image_len); |
| payload.cur_image_offset = cpu_to_le32(info->cur_image_offset); |
| payload.total_image_len = cpu_to_le32(info->total_image_len); |
| payload.len = info->sgl.im_len.len ; |
| payload.sgl_addr_lo = |
| cpu_to_le32(lower_32_bits(le64_to_cpu(info->sgl.addr))); |
| payload.sgl_addr_hi = |
| cpu_to_le32(upper_32_bits(le64_to_cpu(info->sgl.addr))); |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| return ret; |
| } |
| |
| int |
| pm8001_chip_fw_flash_update_req(struct pm8001_hba_info *pm8001_ha, |
| void *payload) |
| { |
| struct fw_flash_updata_info flash_update_info; |
| struct fw_control_info *fw_control; |
| struct fw_control_ex *fw_control_context; |
| int rc; |
| u32 tag; |
| struct pm8001_ccb_info *ccb; |
| void *buffer = pm8001_ha->memoryMap.region[FW_FLASH].virt_ptr; |
| dma_addr_t phys_addr = pm8001_ha->memoryMap.region[FW_FLASH].phys_addr; |
| struct pm8001_ioctl_payload *ioctl_payload = payload; |
| |
| fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); |
| if (!fw_control_context) |
| return -ENOMEM; |
| fw_control = (struct fw_control_info *)&ioctl_payload->func_specific; |
| memcpy(buffer, fw_control->buffer, fw_control->len); |
| flash_update_info.sgl.addr = cpu_to_le64(phys_addr); |
| flash_update_info.sgl.im_len.len = cpu_to_le32(fw_control->len); |
| flash_update_info.sgl.im_len.e = 0; |
| flash_update_info.cur_image_offset = fw_control->offset; |
| flash_update_info.cur_image_len = fw_control->len; |
| flash_update_info.total_image_len = fw_control->size; |
| fw_control_context->fw_control = fw_control; |
| fw_control_context->virtAddr = buffer; |
| fw_control_context->phys_addr = phys_addr; |
| fw_control_context->len = fw_control->len; |
| rc = pm8001_tag_alloc(pm8001_ha, &tag); |
| if (rc) { |
| kfree(fw_control_context); |
| return -EBUSY; |
| } |
| ccb = &pm8001_ha->ccb_info[tag]; |
| ccb->fw_control_context = fw_control_context; |
| ccb->ccb_tag = tag; |
| rc = pm8001_chip_fw_flash_update_build(pm8001_ha, &flash_update_info, |
| tag); |
| return rc; |
| } |
| |
| ssize_t |
| pm8001_get_gsm_dump(struct device *cdev, u32 length, char *buf) |
| { |
| u32 value, rem, offset = 0, bar = 0; |
| u32 index, work_offset, dw_length; |
| u32 shift_value, gsm_base, gsm_dump_offset; |
| char *direct_data; |
| struct Scsi_Host *shost = class_to_shost(cdev); |
| struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); |
| struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; |
| |
| direct_data = buf; |
| gsm_dump_offset = pm8001_ha->fatal_forensic_shift_offset; |
| |
| /* check max is 1 Mbytes */ |
| if ((length > 0x100000) || (gsm_dump_offset & 3) || |
| ((gsm_dump_offset + length) > 0x1000000)) |
| return -EINVAL; |
| |
| if (pm8001_ha->chip_id == chip_8001) |
| bar = 2; |
| else |
| bar = 1; |
| |
| work_offset = gsm_dump_offset & 0xFFFF0000; |
| offset = gsm_dump_offset & 0x0000FFFF; |
| gsm_dump_offset = work_offset; |
| /* adjust length to dword boundary */ |
| rem = length & 3; |
| dw_length = length >> 2; |
| |
| for (index = 0; index < dw_length; index++) { |
| if ((work_offset + offset) & 0xFFFF0000) { |
| if (pm8001_ha->chip_id == chip_8001) |
| shift_value = ((gsm_dump_offset + offset) & |
| SHIFT_REG_64K_MASK); |
| else |
| shift_value = (((gsm_dump_offset + offset) & |
| SHIFT_REG_64K_MASK) >> |
| SHIFT_REG_BIT_SHIFT); |
| |
| if (pm8001_ha->chip_id == chip_8001) { |
| gsm_base = GSM_BASE; |
| if (-1 == pm8001_bar4_shift(pm8001_ha, |
| (gsm_base + shift_value))) |
| return -EIO; |
| } else { |
| gsm_base = 0; |
| if (-1 == pm80xx_bar4_shift(pm8001_ha, |
| (gsm_base + shift_value))) |
| return -EIO; |
| } |
| gsm_dump_offset = (gsm_dump_offset + offset) & |
| 0xFFFF0000; |
| work_offset = 0; |
| offset = offset & 0x0000FFFF; |
| } |
| value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) & |
| 0x0000FFFF); |
| direct_data += sprintf(direct_data, "%08x ", value); |
| offset += 4; |
| } |
| if (rem != 0) { |
| value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) & |
| 0x0000FFFF); |
| /* xfr for non_dw */ |
| direct_data += sprintf(direct_data, "%08x ", value); |
| } |
| /* Shift back to BAR4 original address */ |
| if (-1 == pm8001_bar4_shift(pm8001_ha, 0)) |
| return -EIO; |
| pm8001_ha->fatal_forensic_shift_offset += 1024; |
| |
| if (pm8001_ha->fatal_forensic_shift_offset >= 0x100000) |
| pm8001_ha->fatal_forensic_shift_offset = 0; |
| return direct_data - buf; |
| } |
| |
| int |
| pm8001_chip_set_dev_state_req(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_device *pm8001_dev, u32 state) |
| { |
| struct set_dev_state_req payload; |
| struct inbound_queue_table *circularQ; |
| struct pm8001_ccb_info *ccb; |
| int rc; |
| u32 tag; |
| u32 opc = OPC_INB_SET_DEVICE_STATE; |
| memset(&payload, 0, sizeof(payload)); |
| rc = pm8001_tag_alloc(pm8001_ha, &tag); |
| if (rc) |
| return -1; |
| ccb = &pm8001_ha->ccb_info[tag]; |
| ccb->ccb_tag = tag; |
| ccb->device = pm8001_dev; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| payload.tag = cpu_to_le32(tag); |
| payload.device_id = cpu_to_le32(pm8001_dev->device_id); |
| payload.nds = cpu_to_le32(state); |
| rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| return rc; |
| |
| } |
| |
| static int |
| pm8001_chip_sas_re_initialization(struct pm8001_hba_info *pm8001_ha) |
| { |
| struct sas_re_initialization_req payload; |
| struct inbound_queue_table *circularQ; |
| struct pm8001_ccb_info *ccb; |
| int rc; |
| u32 tag; |
| u32 opc = OPC_INB_SAS_RE_INITIALIZE; |
| memset(&payload, 0, sizeof(payload)); |
| rc = pm8001_tag_alloc(pm8001_ha, &tag); |
| if (rc) |
| return -ENOMEM; |
| ccb = &pm8001_ha->ccb_info[tag]; |
| ccb->ccb_tag = tag; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| payload.tag = cpu_to_le32(tag); |
| payload.SSAHOLT = cpu_to_le32(0xd << 25); |
| payload.sata_hol_tmo = cpu_to_le32(80); |
| payload.open_reject_cmdretries_data_retries = cpu_to_le32(0xff00ff); |
| rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| if (rc) |
| pm8001_tag_free(pm8001_ha, tag); |
| return rc; |
| |
| } |
| |
| const struct pm8001_dispatch pm8001_8001_dispatch = { |
| .name = "pmc8001", |
| .chip_init = pm8001_chip_init, |
| .chip_soft_rst = pm8001_chip_soft_rst, |
| .chip_rst = pm8001_hw_chip_rst, |
| .chip_iounmap = pm8001_chip_iounmap, |
| .isr = pm8001_chip_isr, |
| .is_our_interrupt = pm8001_chip_is_our_interrupt, |
| .isr_process_oq = process_oq, |
| .interrupt_enable = pm8001_chip_interrupt_enable, |
| .interrupt_disable = pm8001_chip_interrupt_disable, |
| .make_prd = pm8001_chip_make_sg, |
| .smp_req = pm8001_chip_smp_req, |
| .ssp_io_req = pm8001_chip_ssp_io_req, |
| .sata_req = pm8001_chip_sata_req, |
| .phy_start_req = pm8001_chip_phy_start_req, |
| .phy_stop_req = pm8001_chip_phy_stop_req, |
| .reg_dev_req = pm8001_chip_reg_dev_req, |
| .dereg_dev_req = pm8001_chip_dereg_dev_req, |
| .phy_ctl_req = pm8001_chip_phy_ctl_req, |
| .task_abort = pm8001_chip_abort_task, |
| .ssp_tm_req = pm8001_chip_ssp_tm_req, |
| .get_nvmd_req = pm8001_chip_get_nvmd_req, |
| .set_nvmd_req = pm8001_chip_set_nvmd_req, |
| .fw_flash_update_req = pm8001_chip_fw_flash_update_req, |
| .set_dev_state_req = pm8001_chip_set_dev_state_req, |
| .sas_re_init_req = pm8001_chip_sas_re_initialization, |
| }; |