| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * USB4 specific functionality |
| * |
| * Copyright (C) 2019, Intel Corporation |
| * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> |
| * Rajmohan Mani <rajmohan.mani@intel.com> |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/ktime.h> |
| |
| #include "sb_regs.h" |
| #include "tb.h" |
| |
| #define USB4_DATA_DWORDS 16 |
| #define USB4_DATA_RETRIES 3 |
| |
| enum usb4_switch_op { |
| USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10, |
| USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11, |
| USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12, |
| USB4_SWITCH_OP_NVM_WRITE = 0x20, |
| USB4_SWITCH_OP_NVM_AUTH = 0x21, |
| USB4_SWITCH_OP_NVM_READ = 0x22, |
| USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23, |
| USB4_SWITCH_OP_DROM_READ = 0x24, |
| USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25, |
| }; |
| |
| enum usb4_sb_target { |
| USB4_SB_TARGET_ROUTER, |
| USB4_SB_TARGET_PARTNER, |
| USB4_SB_TARGET_RETIMER, |
| }; |
| |
| #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2) |
| #define USB4_NVM_READ_OFFSET_SHIFT 2 |
| #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24) |
| #define USB4_NVM_READ_LENGTH_SHIFT 24 |
| |
| #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK |
| #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT |
| |
| #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2) |
| #define USB4_DROM_ADDRESS_SHIFT 2 |
| #define USB4_DROM_SIZE_MASK GENMASK(19, 15) |
| #define USB4_DROM_SIZE_SHIFT 15 |
| |
| #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0) |
| |
| typedef int (*read_block_fn)(void *, unsigned int, void *, size_t); |
| typedef int (*write_block_fn)(void *, const void *, size_t); |
| |
| static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit, |
| u32 value, int timeout_msec) |
| { |
| ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); |
| |
| do { |
| u32 val; |
| int ret; |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); |
| if (ret) |
| return ret; |
| |
| if ((val & bit) == value) |
| return 0; |
| |
| usleep_range(50, 100); |
| } while (ktime_before(ktime_get(), timeout)); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int usb4_switch_op_read_data(struct tb_switch *sw, void *data, |
| size_t dwords) |
| { |
| if (dwords > USB4_DATA_DWORDS) |
| return -EINVAL; |
| |
| return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords); |
| } |
| |
| static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data, |
| size_t dwords) |
| { |
| if (dwords > USB4_DATA_DWORDS) |
| return -EINVAL; |
| |
| return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords); |
| } |
| |
| static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata) |
| { |
| return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); |
| } |
| |
| static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata) |
| { |
| return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); |
| } |
| |
| static int usb4_do_read_data(u16 address, void *buf, size_t size, |
| read_block_fn read_block, void *read_block_data) |
| { |
| unsigned int retries = USB4_DATA_RETRIES; |
| unsigned int offset; |
| |
| offset = address & 3; |
| address = address & ~3; |
| |
| do { |
| size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4); |
| unsigned int dwaddress, dwords; |
| u8 data[USB4_DATA_DWORDS * 4]; |
| int ret; |
| |
| dwaddress = address / 4; |
| dwords = ALIGN(nbytes, 4) / 4; |
| |
| ret = read_block(read_block_data, dwaddress, data, dwords); |
| if (ret) { |
| if (ret != -ENODEV && retries--) |
| continue; |
| return ret; |
| } |
| |
| memcpy(buf, data + offset, nbytes); |
| |
| size -= nbytes; |
| address += nbytes; |
| buf += nbytes; |
| } while (size > 0); |
| |
| return 0; |
| } |
| |
| static int usb4_do_write_data(unsigned int address, const void *buf, size_t size, |
| write_block_fn write_next_block, void *write_block_data) |
| { |
| unsigned int retries = USB4_DATA_RETRIES; |
| unsigned int offset; |
| |
| offset = address & 3; |
| address = address & ~3; |
| |
| do { |
| u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4); |
| u8 data[USB4_DATA_DWORDS * 4]; |
| int ret; |
| |
| memcpy(data + offset, buf, nbytes); |
| |
| ret = write_next_block(write_block_data, data, nbytes / 4); |
| if (ret) { |
| if (ret == -ETIMEDOUT) { |
| if (retries--) |
| continue; |
| ret = -EIO; |
| } |
| return ret; |
| } |
| |
| size -= nbytes; |
| address += nbytes; |
| buf += nbytes; |
| } while (size > 0); |
| |
| return 0; |
| } |
| |
| static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status) |
| { |
| u32 val; |
| int ret; |
| |
| val = opcode | ROUTER_CS_26_OV; |
| ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500); |
| if (ret) |
| return ret; |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); |
| if (ret) |
| return ret; |
| |
| if (val & ROUTER_CS_26_ONS) |
| return -EOPNOTSUPP; |
| |
| *status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT; |
| return 0; |
| } |
| |
| static bool link_is_usb4(struct tb_port *port) |
| { |
| u32 val; |
| |
| if (!port->cap_usb4) |
| return false; |
| |
| if (tb_port_read(port, &val, TB_CFG_PORT, |
| port->cap_usb4 + PORT_CS_18, 1)) |
| return false; |
| |
| return !(val & PORT_CS_18_TCM); |
| } |
| |
| /** |
| * usb4_switch_setup() - Additional setup for USB4 device |
| * @sw: USB4 router to setup |
| * |
| * USB4 routers need additional settings in order to enable all the |
| * tunneling. This function enables USB and PCIe tunneling if it can be |
| * enabled (e.g the parent switch also supports them). If USB tunneling |
| * is not available for some reason (like that there is Thunderbolt 3 |
| * switch upstream) then the internal xHCI controller is enabled |
| * instead. |
| */ |
| int usb4_switch_setup(struct tb_switch *sw) |
| { |
| struct tb_port *downstream_port; |
| struct tb_switch *parent; |
| bool tbt3, xhci; |
| u32 val = 0; |
| int ret; |
| |
| if (!tb_route(sw)) |
| return 0; |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1); |
| if (ret) |
| return ret; |
| |
| parent = tb_switch_parent(sw); |
| downstream_port = tb_port_at(tb_route(sw), parent); |
| sw->link_usb4 = link_is_usb4(downstream_port); |
| tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3"); |
| |
| xhci = val & ROUTER_CS_6_HCI; |
| tbt3 = !(val & ROUTER_CS_6_TNS); |
| |
| tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n", |
| tbt3 ? "yes" : "no", xhci ? "yes" : "no"); |
| |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); |
| if (ret) |
| return ret; |
| |
| if (sw->link_usb4 && tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) { |
| val |= ROUTER_CS_5_UTO; |
| xhci = false; |
| } |
| |
| /* Only enable PCIe tunneling if the parent router supports it */ |
| if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) { |
| val |= ROUTER_CS_5_PTO; |
| /* |
| * xHCI can be enabled if PCIe tunneling is supported |
| * and the parent does not have any USB3 dowstream |
| * adapters (so we cannot do USB 3.x tunneling). |
| */ |
| if (xhci) |
| val |= ROUTER_CS_5_HCO; |
| } |
| |
| /* TBT3 supported by the CM */ |
| val |= ROUTER_CS_5_C3S; |
| /* Tunneling configuration is ready now */ |
| val |= ROUTER_CS_5_CV; |
| |
| ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); |
| if (ret) |
| return ret; |
| |
| return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR, |
| ROUTER_CS_6_CR, 50); |
| } |
| |
| /** |
| * usb4_switch_read_uid() - Read UID from USB4 router |
| * @sw: USB4 router |
| * @uid: UID is stored here |
| * |
| * Reads 64-bit UID from USB4 router config space. |
| */ |
| int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid) |
| { |
| return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2); |
| } |
| |
| static int usb4_switch_drom_read_block(void *data, |
| unsigned int dwaddress, void *buf, |
| size_t dwords) |
| { |
| struct tb_switch *sw = data; |
| u8 status = 0; |
| u32 metadata; |
| int ret; |
| |
| metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK; |
| metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) & |
| USB4_DROM_ADDRESS_MASK; |
| |
| ret = usb4_switch_op_write_metadata(sw, metadata); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status); |
| if (ret) |
| return ret; |
| |
| if (status) |
| return -EIO; |
| |
| return usb4_switch_op_read_data(sw, buf, dwords); |
| } |
| |
| /** |
| * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM |
| * @sw: USB4 router |
| * @address: Byte address inside DROM to start reading |
| * @buf: Buffer where the DROM content is stored |
| * @size: Number of bytes to read from DROM |
| * |
| * Uses USB4 router operations to read router DROM. For devices this |
| * should always work but for hosts it may return %-EOPNOTSUPP in which |
| * case the host router does not have DROM. |
| */ |
| int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf, |
| size_t size) |
| { |
| return usb4_do_read_data(address, buf, size, |
| usb4_switch_drom_read_block, sw); |
| } |
| |
| static int usb4_set_port_configured(struct tb_port *port, bool configured) |
| { |
| int ret; |
| u32 val; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, |
| port->cap_usb4 + PORT_CS_19, 1); |
| if (ret) |
| return ret; |
| |
| if (configured) |
| val |= PORT_CS_19_PC; |
| else |
| val &= ~PORT_CS_19_PC; |
| |
| return tb_port_write(port, &val, TB_CFG_PORT, |
| port->cap_usb4 + PORT_CS_19, 1); |
| } |
| |
| /** |
| * usb4_switch_configure_link() - Set upstream USB4 link configured |
| * @sw: USB4 router |
| * |
| * Sets the upstream USB4 link to be configured for power management |
| * purposes. |
| */ |
| int usb4_switch_configure_link(struct tb_switch *sw) |
| { |
| struct tb_port *up; |
| |
| if (!tb_route(sw)) |
| return 0; |
| |
| up = tb_upstream_port(sw); |
| return usb4_set_port_configured(up, true); |
| } |
| |
| /** |
| * usb4_switch_unconfigure_link() - Un-set upstream USB4 link configuration |
| * @sw: USB4 router |
| * |
| * Reverse of usb4_switch_configure_link(). |
| */ |
| void usb4_switch_unconfigure_link(struct tb_switch *sw) |
| { |
| struct tb_port *up; |
| |
| if (sw->is_unplugged || !tb_route(sw)) |
| return; |
| |
| up = tb_upstream_port(sw); |
| usb4_set_port_configured(up, false); |
| } |
| |
| /** |
| * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding |
| * @sw: USB4 router |
| * |
| * Checks whether conditions are met so that lane bonding can be |
| * established with the upstream router. Call only for device routers. |
| */ |
| bool usb4_switch_lane_bonding_possible(struct tb_switch *sw) |
| { |
| struct tb_port *up; |
| int ret; |
| u32 val; |
| |
| up = tb_upstream_port(sw); |
| ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1); |
| if (ret) |
| return false; |
| |
| return !!(val & PORT_CS_18_BE); |
| } |
| |
| /** |
| * usb4_switch_set_sleep() - Prepare the router to enter sleep |
| * @sw: USB4 router |
| * |
| * Enables wakes and sets sleep bit for the router. Returns when the |
| * router sleep ready bit has been asserted. |
| */ |
| int usb4_switch_set_sleep(struct tb_switch *sw) |
| { |
| int ret; |
| u32 val; |
| |
| /* Set sleep bit and wait for sleep ready to be asserted */ |
| ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); |
| if (ret) |
| return ret; |
| |
| val |= ROUTER_CS_5_SLP; |
| |
| ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); |
| if (ret) |
| return ret; |
| |
| return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR, |
| ROUTER_CS_6_SLPR, 500); |
| } |
| |
| /** |
| * usb4_switch_nvm_sector_size() - Return router NVM sector size |
| * @sw: USB4 router |
| * |
| * If the router supports NVM operations this function returns the NVM |
| * sector size in bytes. If NVM operations are not supported returns |
| * %-EOPNOTSUPP. |
| */ |
| int usb4_switch_nvm_sector_size(struct tb_switch *sw) |
| { |
| u32 metadata; |
| u8 status; |
| int ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status); |
| if (ret) |
| return ret; |
| |
| if (status) |
| return status == 0x2 ? -EOPNOTSUPP : -EIO; |
| |
| ret = usb4_switch_op_read_metadata(sw, &metadata); |
| if (ret) |
| return ret; |
| |
| return metadata & USB4_NVM_SECTOR_SIZE_MASK; |
| } |
| |
| static int usb4_switch_nvm_read_block(void *data, |
| unsigned int dwaddress, void *buf, size_t dwords) |
| { |
| struct tb_switch *sw = data; |
| u8 status = 0; |
| u32 metadata; |
| int ret; |
| |
| metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) & |
| USB4_NVM_READ_LENGTH_MASK; |
| metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) & |
| USB4_NVM_READ_OFFSET_MASK; |
| |
| ret = usb4_switch_op_write_metadata(sw, metadata); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status); |
| if (ret) |
| return ret; |
| |
| if (status) |
| return -EIO; |
| |
| return usb4_switch_op_read_data(sw, buf, dwords); |
| } |
| |
| /** |
| * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM |
| * @sw: USB4 router |
| * @address: Starting address in bytes |
| * @buf: Read data is placed here |
| * @size: How many bytes to read |
| * |
| * Reads NVM contents of the router. If NVM is not supported returns |
| * %-EOPNOTSUPP. |
| */ |
| int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, |
| size_t size) |
| { |
| return usb4_do_read_data(address, buf, size, |
| usb4_switch_nvm_read_block, sw); |
| } |
| |
| static int usb4_switch_nvm_set_offset(struct tb_switch *sw, |
| unsigned int address) |
| { |
| u32 metadata, dwaddress; |
| u8 status = 0; |
| int ret; |
| |
| dwaddress = address / 4; |
| metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & |
| USB4_NVM_SET_OFFSET_MASK; |
| |
| ret = usb4_switch_op_write_metadata(sw, metadata); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status); |
| if (ret) |
| return ret; |
| |
| return status ? -EIO : 0; |
| } |
| |
| static int usb4_switch_nvm_write_next_block(void *data, const void *buf, |
| size_t dwords) |
| { |
| struct tb_switch *sw = data; |
| u8 status; |
| int ret; |
| |
| ret = usb4_switch_op_write_data(sw, buf, dwords); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status); |
| if (ret) |
| return ret; |
| |
| return status ? -EIO : 0; |
| } |
| |
| /** |
| * usb4_switch_nvm_write() - Write to the router NVM |
| * @sw: USB4 router |
| * @address: Start address where to write in bytes |
| * @buf: Pointer to the data to write |
| * @size: Size of @buf in bytes |
| * |
| * Writes @buf to the router NVM using USB4 router operations. If NVM |
| * write is not supported returns %-EOPNOTSUPP. |
| */ |
| int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address, |
| const void *buf, size_t size) |
| { |
| int ret; |
| |
| ret = usb4_switch_nvm_set_offset(sw, address); |
| if (ret) |
| return ret; |
| |
| return usb4_do_write_data(address, buf, size, |
| usb4_switch_nvm_write_next_block, sw); |
| } |
| |
| /** |
| * usb4_switch_nvm_authenticate() - Authenticate new NVM |
| * @sw: USB4 router |
| * |
| * After the new NVM has been written via usb4_switch_nvm_write(), this |
| * function triggers NVM authentication process. If the authentication |
| * is successful the router is power cycled and the new NVM starts |
| * running. In case of failure returns negative errno. |
| */ |
| int usb4_switch_nvm_authenticate(struct tb_switch *sw) |
| { |
| u8 status = 0; |
| int ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status); |
| if (ret) |
| return ret; |
| |
| switch (status) { |
| case 0x0: |
| tb_sw_dbg(sw, "NVM authentication successful\n"); |
| return 0; |
| case 0x1: |
| return -EINVAL; |
| case 0x2: |
| return -EAGAIN; |
| case 0x3: |
| return -EOPNOTSUPP; |
| default: |
| return -EIO; |
| } |
| } |
| |
| /** |
| * usb4_switch_query_dp_resource() - Query availability of DP IN resource |
| * @sw: USB4 router |
| * @in: DP IN adapter |
| * |
| * For DP tunneling this function can be used to query availability of |
| * DP IN resource. Returns true if the resource is available for DP |
| * tunneling, false otherwise. |
| */ |
| bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) |
| { |
| u8 status; |
| int ret; |
| |
| ret = usb4_switch_op_write_metadata(sw, in->port); |
| if (ret) |
| return false; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status); |
| /* |
| * If DP resource allocation is not supported assume it is |
| * always available. |
| */ |
| if (ret == -EOPNOTSUPP) |
| return true; |
| else if (ret) |
| return false; |
| |
| return !status; |
| } |
| |
| /** |
| * usb4_switch_alloc_dp_resource() - Allocate DP IN resource |
| * @sw: USB4 router |
| * @in: DP IN adapter |
| * |
| * Allocates DP IN resource for DP tunneling using USB4 router |
| * operations. If the resource was allocated returns %0. Otherwise |
| * returns negative errno, in particular %-EBUSY if the resource is |
| * already allocated. |
| */ |
| int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) |
| { |
| u8 status; |
| int ret; |
| |
| ret = usb4_switch_op_write_metadata(sw, in->port); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status); |
| if (ret == -EOPNOTSUPP) |
| return 0; |
| else if (ret) |
| return ret; |
| |
| return status ? -EBUSY : 0; |
| } |
| |
| /** |
| * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource |
| * @sw: USB4 router |
| * @in: DP IN adapter |
| * |
| * Releases the previously allocated DP IN resource. |
| */ |
| int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) |
| { |
| u8 status; |
| int ret; |
| |
| ret = usb4_switch_op_write_metadata(sw, in->port); |
| if (ret) |
| return ret; |
| |
| ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status); |
| if (ret == -EOPNOTSUPP) |
| return 0; |
| else if (ret) |
| return ret; |
| |
| return status ? -EIO : 0; |
| } |
| |
| static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port) |
| { |
| struct tb_port *p; |
| int usb4_idx = 0; |
| |
| /* Assume port is primary */ |
| tb_switch_for_each_port(sw, p) { |
| if (!tb_port_is_null(p)) |
| continue; |
| if (tb_is_upstream_port(p)) |
| continue; |
| if (!p->link_nr) { |
| if (p == port) |
| break; |
| usb4_idx++; |
| } |
| } |
| |
| return usb4_idx; |
| } |
| |
| /** |
| * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter |
| * @sw: USB4 router |
| * @port: USB4 port |
| * |
| * USB4 routers have direct mapping between USB4 ports and PCIe |
| * downstream adapters where the PCIe topology is extended. This |
| * function returns the corresponding downstream PCIe adapter or %NULL |
| * if no such mapping was possible. |
| */ |
| struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw, |
| const struct tb_port *port) |
| { |
| int usb4_idx = usb4_port_idx(sw, port); |
| struct tb_port *p; |
| int pcie_idx = 0; |
| |
| /* Find PCIe down port matching usb4_port */ |
| tb_switch_for_each_port(sw, p) { |
| if (!tb_port_is_pcie_down(p)) |
| continue; |
| |
| if (pcie_idx == usb4_idx) |
| return p; |
| |
| pcie_idx++; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter |
| * @sw: USB4 router |
| * @port: USB4 port |
| * |
| * USB4 routers have direct mapping between USB4 ports and USB 3.x |
| * downstream adapters where the USB 3.x topology is extended. This |
| * function returns the corresponding downstream USB 3.x adapter or |
| * %NULL if no such mapping was possible. |
| */ |
| struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw, |
| const struct tb_port *port) |
| { |
| int usb4_idx = usb4_port_idx(sw, port); |
| struct tb_port *p; |
| int usb_idx = 0; |
| |
| /* Find USB3 down port matching usb4_port */ |
| tb_switch_for_each_port(sw, p) { |
| if (!tb_port_is_usb3_down(p)) |
| continue; |
| |
| if (usb_idx == usb4_idx) |
| return p; |
| |
| usb_idx++; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * usb4_port_unlock() - Unlock USB4 downstream port |
| * @port: USB4 port to unlock |
| * |
| * Unlocks USB4 downstream port so that the connection manager can |
| * access the router below this port. |
| */ |
| int usb4_port_unlock(struct tb_port *port) |
| { |
| int ret; |
| u32 val; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1); |
| if (ret) |
| return ret; |
| |
| val &= ~ADP_CS_4_LCK; |
| return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1); |
| } |
| |
| static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit, |
| u32 value, int timeout_msec) |
| { |
| ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); |
| |
| do { |
| u32 val; |
| int ret; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1); |
| if (ret) |
| return ret; |
| |
| if ((val & bit) == value) |
| return 0; |
| |
| usleep_range(50, 100); |
| } while (ktime_before(ktime_get(), timeout)); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords) |
| { |
| if (dwords > USB4_DATA_DWORDS) |
| return -EINVAL; |
| |
| return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2, |
| dwords); |
| } |
| |
| static int usb4_port_write_data(struct tb_port *port, const void *data, |
| size_t dwords) |
| { |
| if (dwords > USB4_DATA_DWORDS) |
| return -EINVAL; |
| |
| return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2, |
| dwords); |
| } |
| |
| static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target, |
| u8 index, u8 reg, void *buf, u8 size) |
| { |
| size_t dwords = DIV_ROUND_UP(size, 4); |
| int ret; |
| u32 val; |
| |
| if (!port->cap_usb4) |
| return -EINVAL; |
| |
| val = reg; |
| val |= size << PORT_CS_1_LENGTH_SHIFT; |
| val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK; |
| if (target == USB4_SB_TARGET_RETIMER) |
| val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT); |
| val |= PORT_CS_1_PND; |
| |
| ret = tb_port_write(port, &val, TB_CFG_PORT, |
| port->cap_usb4 + PORT_CS_1, 1); |
| if (ret) |
| return ret; |
| |
| ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1, |
| PORT_CS_1_PND, 0, 500); |
| if (ret) |
| return ret; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, |
| port->cap_usb4 + PORT_CS_1, 1); |
| if (ret) |
| return ret; |
| |
| if (val & PORT_CS_1_NR) |
| return -ENODEV; |
| if (val & PORT_CS_1_RC) |
| return -EIO; |
| |
| return buf ? usb4_port_read_data(port, buf, dwords) : 0; |
| } |
| |
| static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target, |
| u8 index, u8 reg, const void *buf, u8 size) |
| { |
| size_t dwords = DIV_ROUND_UP(size, 4); |
| int ret; |
| u32 val; |
| |
| if (!port->cap_usb4) |
| return -EINVAL; |
| |
| if (buf) { |
| ret = usb4_port_write_data(port, buf, dwords); |
| if (ret) |
| return ret; |
| } |
| |
| val = reg; |
| val |= size << PORT_CS_1_LENGTH_SHIFT; |
| val |= PORT_CS_1_WNR_WRITE; |
| val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK; |
| if (target == USB4_SB_TARGET_RETIMER) |
| val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT); |
| val |= PORT_CS_1_PND; |
| |
| ret = tb_port_write(port, &val, TB_CFG_PORT, |
| port->cap_usb4 + PORT_CS_1, 1); |
| if (ret) |
| return ret; |
| |
| ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1, |
| PORT_CS_1_PND, 0, 500); |
| if (ret) |
| return ret; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, |
| port->cap_usb4 + PORT_CS_1, 1); |
| if (ret) |
| return ret; |
| |
| if (val & PORT_CS_1_NR) |
| return -ENODEV; |
| if (val & PORT_CS_1_RC) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target, |
| u8 index, enum usb4_sb_opcode opcode, int timeout_msec) |
| { |
| ktime_t timeout; |
| u32 val; |
| int ret; |
| |
| val = opcode; |
| ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val, |
| sizeof(val)); |
| if (ret) |
| return ret; |
| |
| timeout = ktime_add_ms(ktime_get(), timeout_msec); |
| |
| do { |
| /* Check results */ |
| ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE, |
| &val, sizeof(val)); |
| if (ret) |
| return ret; |
| |
| switch (val) { |
| case 0: |
| return 0; |
| |
| case USB4_SB_OPCODE_ERR: |
| return -EAGAIN; |
| |
| case USB4_SB_OPCODE_ONS: |
| return -EOPNOTSUPP; |
| |
| default: |
| if (val != opcode) |
| return -EIO; |
| break; |
| } |
| } while (ktime_before(ktime_get(), timeout)); |
| |
| return -ETIMEDOUT; |
| } |
| |
| /** |
| * usb4_port_enumerate_retimers() - Send RT broadcast transaction |
| * @port: USB4 port |
| * |
| * This forces the USB4 port to send broadcast RT transaction which |
| * makes the retimers on the link to assign index to themselves. Returns |
| * %0 in case of success and negative errno if there was an error. |
| */ |
| int usb4_port_enumerate_retimers(struct tb_port *port) |
| { |
| u32 val; |
| |
| val = USB4_SB_OPCODE_ENUMERATE_RETIMERS; |
| return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, |
| USB4_SB_OPCODE, &val, sizeof(val)); |
| } |
| |
| static inline int usb4_port_retimer_op(struct tb_port *port, u8 index, |
| enum usb4_sb_opcode opcode, |
| int timeout_msec) |
| { |
| return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode, |
| timeout_msec); |
| } |
| |
| /** |
| * usb4_port_retimer_read() - Read from retimer sideband registers |
| * @port: USB4 port |
| * @index: Retimer index |
| * @reg: Sideband register to read |
| * @buf: Data from @reg is stored here |
| * @size: Number of bytes to read |
| * |
| * Function reads retimer sideband registers starting from @reg. The |
| * retimer is connected to @port at @index. Returns %0 in case of |
| * success, and read data is copied to @buf. If there is no retimer |
| * present at given @index returns %-ENODEV. In any other failure |
| * returns negative errno. |
| */ |
| int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf, |
| u8 size) |
| { |
| return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf, |
| size); |
| } |
| |
| /** |
| * usb4_port_retimer_write() - Write to retimer sideband registers |
| * @port: USB4 port |
| * @index: Retimer index |
| * @reg: Sideband register to write |
| * @buf: Data that is written starting from @reg |
| * @size: Number of bytes to write |
| * |
| * Writes retimer sideband registers starting from @reg. The retimer is |
| * connected to @port at @index. Returns %0 in case of success. If there |
| * is no retimer present at given @index returns %-ENODEV. In any other |
| * failure returns negative errno. |
| */ |
| int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg, |
| const void *buf, u8 size) |
| { |
| return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf, |
| size); |
| } |
| |
| /** |
| * usb4_port_retimer_is_last() - Is the retimer last on-board retimer |
| * @port: USB4 port |
| * @index: Retimer index |
| * |
| * If the retimer at @index is last one (connected directly to the |
| * Type-C port) this function returns %1. If it is not returns %0. If |
| * the retimer is not present returns %-ENODEV. Otherwise returns |
| * negative errno. |
| */ |
| int usb4_port_retimer_is_last(struct tb_port *port, u8 index) |
| { |
| u32 metadata; |
| int ret; |
| |
| ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER, |
| 500); |
| if (ret) |
| return ret; |
| |
| ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata, |
| sizeof(metadata)); |
| return ret ? ret : metadata & 1; |
| } |
| |
| /** |
| * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size |
| * @port: USB4 port |
| * @index: Retimer index |
| * |
| * Reads NVM sector size (in bytes) of a retimer at @index. This |
| * operation can be used to determine whether the retimer supports NVM |
| * upgrade for example. Returns sector size in bytes or negative errno |
| * in case of error. Specifically returns %-ENODEV if there is no |
| * retimer at @index. |
| */ |
| int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index) |
| { |
| u32 metadata; |
| int ret; |
| |
| ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE, |
| 500); |
| if (ret) |
| return ret; |
| |
| ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata, |
| sizeof(metadata)); |
| return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK; |
| } |
| |
| static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index, |
| unsigned int address) |
| { |
| u32 metadata, dwaddress; |
| int ret; |
| |
| dwaddress = address / 4; |
| metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & |
| USB4_NVM_SET_OFFSET_MASK; |
| |
| ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata, |
| sizeof(metadata)); |
| if (ret) |
| return ret; |
| |
| return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET, |
| 500); |
| } |
| |
| struct retimer_info { |
| struct tb_port *port; |
| u8 index; |
| }; |
| |
| static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf, |
| size_t dwords) |
| |
| { |
| const struct retimer_info *info = data; |
| struct tb_port *port = info->port; |
| u8 index = info->index; |
| int ret; |
| |
| ret = usb4_port_retimer_write(port, index, USB4_SB_DATA, |
| buf, dwords * 4); |
| if (ret) |
| return ret; |
| |
| return usb4_port_retimer_op(port, index, |
| USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000); |
| } |
| |
| /** |
| * usb4_port_retimer_nvm_write() - Write to retimer NVM |
| * @port: USB4 port |
| * @index: Retimer index |
| * @address: Byte address where to start the write |
| * @buf: Data to write |
| * @size: Size in bytes how much to write |
| * |
| * Writes @size bytes from @buf to the retimer NVM. Used for NVM |
| * upgrade. Returns %0 if the data was written successfully and negative |
| * errno in case of failure. Specifically returns %-ENODEV if there is |
| * no retimer at @index. |
| */ |
| int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address, |
| const void *buf, size_t size) |
| { |
| struct retimer_info info = { .port = port, .index = index }; |
| int ret; |
| |
| ret = usb4_port_retimer_nvm_set_offset(port, index, address); |
| if (ret) |
| return ret; |
| |
| return usb4_do_write_data(address, buf, size, |
| usb4_port_retimer_nvm_write_next_block, &info); |
| } |
| |
| /** |
| * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade |
| * @port: USB4 port |
| * @index: Retimer index |
| * |
| * After the new NVM image has been written via usb4_port_retimer_nvm_write() |
| * this function can be used to trigger the NVM upgrade process. If |
| * successful the retimer restarts with the new NVM and may not have the |
| * index set so one needs to call usb4_port_enumerate_retimers() to |
| * force index to be assigned. |
| */ |
| int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index) |
| { |
| u32 val; |
| |
| /* |
| * We need to use the raw operation here because once the |
| * authentication completes the retimer index is not set anymore |
| * so we do not get back the status now. |
| */ |
| val = USB4_SB_OPCODE_NVM_AUTH_WRITE; |
| return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, |
| USB4_SB_OPCODE, &val, sizeof(val)); |
| } |
| |
| /** |
| * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade |
| * @port: USB4 port |
| * @index: Retimer index |
| * @status: Raw status code read from metadata |
| * |
| * This can be called after usb4_port_retimer_nvm_authenticate() and |
| * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade. |
| * |
| * Returns %0 if the authentication status was successfully read. The |
| * completion metadata (the result) is then stored into @status. If |
| * reading the status fails, returns negative errno. |
| */ |
| int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index, |
| u32 *status) |
| { |
| u32 metadata, val; |
| int ret; |
| |
| ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val, |
| sizeof(val)); |
| if (ret) |
| return ret; |
| |
| switch (val) { |
| case 0: |
| *status = 0; |
| return 0; |
| |
| case USB4_SB_OPCODE_ERR: |
| ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, |
| &metadata, sizeof(metadata)); |
| if (ret) |
| return ret; |
| |
| *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK; |
| return 0; |
| |
| case USB4_SB_OPCODE_ONS: |
| return -EOPNOTSUPP; |
| |
| default: |
| return -EIO; |
| } |
| } |
| |
| static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress, |
| void *buf, size_t dwords) |
| { |
| const struct retimer_info *info = data; |
| struct tb_port *port = info->port; |
| u8 index = info->index; |
| u32 metadata; |
| int ret; |
| |
| metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT; |
| if (dwords < USB4_DATA_DWORDS) |
| metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT; |
| |
| ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata, |
| sizeof(metadata)); |
| if (ret) |
| return ret; |
| |
| ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500); |
| if (ret) |
| return ret; |
| |
| return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf, |
| dwords * 4); |
| } |
| |
| /** |
| * usb4_port_retimer_nvm_read() - Read contents of retimer NVM |
| * @port: USB4 port |
| * @index: Retimer index |
| * @address: NVM address (in bytes) to start reading |
| * @buf: Data read from NVM is stored here |
| * @size: Number of bytes to read |
| * |
| * Reads retimer NVM and copies the contents to @buf. Returns %0 if the |
| * read was successful and negative errno in case of failure. |
| * Specifically returns %-ENODEV if there is no retimer at @index. |
| */ |
| int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index, |
| unsigned int address, void *buf, size_t size) |
| { |
| struct retimer_info info = { .port = port, .index = index }; |
| |
| return usb4_do_read_data(address, buf, size, |
| usb4_port_retimer_nvm_read_block, &info); |
| } |
| |
| /** |
| * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate |
| * @port: USB3 adapter port |
| * |
| * Return maximum supported link rate of a USB3 adapter in Mb/s. |
| * Negative errno in case of error. |
| */ |
| int usb4_usb3_port_max_link_rate(struct tb_port *port) |
| { |
| int ret, lr; |
| u32 val; |
| |
| if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port)) |
| return -EINVAL; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, |
| port->cap_adap + ADP_USB3_CS_4, 1); |
| if (ret) |
| return ret; |
| |
| lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT; |
| return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000; |
| } |
| |
| /** |
| * usb4_usb3_port_actual_link_rate() - Established USB3 link rate |
| * @port: USB3 adapter port |
| * |
| * Return actual established link rate of a USB3 adapter in Mb/s. If the |
| * link is not up returns %0 and negative errno in case of failure. |
| */ |
| int usb4_usb3_port_actual_link_rate(struct tb_port *port) |
| { |
| int ret, lr; |
| u32 val; |
| |
| if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port)) |
| return -EINVAL; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, |
| port->cap_adap + ADP_USB3_CS_4, 1); |
| if (ret) |
| return ret; |
| |
| if (!(val & ADP_USB3_CS_4_ULV)) |
| return 0; |
| |
| lr = val & ADP_USB3_CS_4_ALR_MASK; |
| return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000; |
| } |
| |
| static int usb4_usb3_port_cm_request(struct tb_port *port, bool request) |
| { |
| int ret; |
| u32 val; |
| |
| if (!tb_port_is_usb3_down(port)) |
| return -EINVAL; |
| if (tb_route(port->sw)) |
| return -EINVAL; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, |
| port->cap_adap + ADP_USB3_CS_2, 1); |
| if (ret) |
| return ret; |
| |
| if (request) |
| val |= ADP_USB3_CS_2_CMR; |
| else |
| val &= ~ADP_USB3_CS_2_CMR; |
| |
| ret = tb_port_write(port, &val, TB_CFG_PORT, |
| port->cap_adap + ADP_USB3_CS_2, 1); |
| if (ret) |
| return ret; |
| |
| /* |
| * We can use val here directly as the CMR bit is in the same place |
| * as HCA. Just mask out others. |
| */ |
| val &= ADP_USB3_CS_2_CMR; |
| return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1, |
| ADP_USB3_CS_1_HCA, val, 1500); |
| } |
| |
| static inline int usb4_usb3_port_set_cm_request(struct tb_port *port) |
| { |
| return usb4_usb3_port_cm_request(port, true); |
| } |
| |
| static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port) |
| { |
| return usb4_usb3_port_cm_request(port, false); |
| } |
| |
| static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale) |
| { |
| unsigned long uframes; |
| |
| uframes = bw * 512UL << scale; |
| return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000); |
| } |
| |
| static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale) |
| { |
| unsigned long uframes; |
| |
| /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */ |
| uframes = ((unsigned long)mbps * 1000 * 1000) / 8000; |
| return DIV_ROUND_UP(uframes, 512UL << scale); |
| } |
| |
| static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port, |
| int *upstream_bw, |
| int *downstream_bw) |
| { |
| u32 val, bw, scale; |
| int ret; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, |
| port->cap_adap + ADP_USB3_CS_2, 1); |
| if (ret) |
| return ret; |
| |
| ret = tb_port_read(port, &scale, TB_CFG_PORT, |
| port->cap_adap + ADP_USB3_CS_3, 1); |
| if (ret) |
| return ret; |
| |
| scale &= ADP_USB3_CS_3_SCALE_MASK; |
| |
| bw = val & ADP_USB3_CS_2_AUBW_MASK; |
| *upstream_bw = usb3_bw_to_mbps(bw, scale); |
| |
| bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT; |
| *downstream_bw = usb3_bw_to_mbps(bw, scale); |
| |
| return 0; |
| } |
| |
| /** |
| * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3 |
| * @port: USB3 adapter port |
| * @upstream_bw: Allocated upstream bandwidth is stored here |
| * @downstream_bw: Allocated downstream bandwidth is stored here |
| * |
| * Stores currently allocated USB3 bandwidth into @upstream_bw and |
| * @downstream_bw in Mb/s. Returns %0 in case of success and negative |
| * errno in failure. |
| */ |
| int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw, |
| int *downstream_bw) |
| { |
| int ret; |
| |
| ret = usb4_usb3_port_set_cm_request(port); |
| if (ret) |
| return ret; |
| |
| ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw, |
| downstream_bw); |
| usb4_usb3_port_clear_cm_request(port); |
| |
| return ret; |
| } |
| |
| static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port, |
| int *upstream_bw, |
| int *downstream_bw) |
| { |
| u32 val, bw, scale; |
| int ret; |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, |
| port->cap_adap + ADP_USB3_CS_1, 1); |
| if (ret) |
| return ret; |
| |
| ret = tb_port_read(port, &scale, TB_CFG_PORT, |
| port->cap_adap + ADP_USB3_CS_3, 1); |
| if (ret) |
| return ret; |
| |
| scale &= ADP_USB3_CS_3_SCALE_MASK; |
| |
| bw = val & ADP_USB3_CS_1_CUBW_MASK; |
| *upstream_bw = usb3_bw_to_mbps(bw, scale); |
| |
| bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT; |
| *downstream_bw = usb3_bw_to_mbps(bw, scale); |
| |
| return 0; |
| } |
| |
| static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port, |
| int upstream_bw, |
| int downstream_bw) |
| { |
| u32 val, ubw, dbw, scale; |
| int ret; |
| |
| /* Read the used scale, hardware default is 0 */ |
| ret = tb_port_read(port, &scale, TB_CFG_PORT, |
| port->cap_adap + ADP_USB3_CS_3, 1); |
| if (ret) |
| return ret; |
| |
| scale &= ADP_USB3_CS_3_SCALE_MASK; |
| ubw = mbps_to_usb3_bw(upstream_bw, scale); |
| dbw = mbps_to_usb3_bw(downstream_bw, scale); |
| |
| ret = tb_port_read(port, &val, TB_CFG_PORT, |
| port->cap_adap + ADP_USB3_CS_2, 1); |
| if (ret) |
| return ret; |
| |
| val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK); |
| val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT; |
| val |= ubw; |
| |
| return tb_port_write(port, &val, TB_CFG_PORT, |
| port->cap_adap + ADP_USB3_CS_2, 1); |
| } |
| |
| /** |
| * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3 |
| * @port: USB3 adapter port |
| * @upstream_bw: New upstream bandwidth |
| * @downstream_bw: New downstream bandwidth |
| * |
| * This can be used to set how much bandwidth is allocated for the USB3 |
| * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the |
| * new values programmed to the USB3 adapter allocation registers. If |
| * the values are lower than what is currently consumed the allocation |
| * is set to what is currently consumed instead (consumed bandwidth |
| * cannot be taken away by CM). The actual new values are returned in |
| * @upstream_bw and @downstream_bw. |
| * |
| * Returns %0 in case of success and negative errno if there was a |
| * failure. |
| */ |
| int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw, |
| int *downstream_bw) |
| { |
| int ret, consumed_up, consumed_down, allocate_up, allocate_down; |
| |
| ret = usb4_usb3_port_set_cm_request(port); |
| if (ret) |
| return ret; |
| |
| ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up, |
| &consumed_down); |
| if (ret) |
| goto err_request; |
| |
| /* Don't allow it go lower than what is consumed */ |
| allocate_up = max(*upstream_bw, consumed_up); |
| allocate_down = max(*downstream_bw, consumed_down); |
| |
| ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up, |
| allocate_down); |
| if (ret) |
| goto err_request; |
| |
| *upstream_bw = allocate_up; |
| *downstream_bw = allocate_down; |
| |
| err_request: |
| usb4_usb3_port_clear_cm_request(port); |
| return ret; |
| } |
| |
| /** |
| * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth |
| * @port: USB3 adapter port |
| * @upstream_bw: New allocated upstream bandwidth |
| * @downstream_bw: New allocated downstream bandwidth |
| * |
| * Releases USB3 allocated bandwidth down to what is actually consumed. |
| * The new bandwidth is returned in @upstream_bw and @downstream_bw. |
| * |
| * Returns 0% in success and negative errno in case of failure. |
| */ |
| int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw, |
| int *downstream_bw) |
| { |
| int ret, consumed_up, consumed_down; |
| |
| ret = usb4_usb3_port_set_cm_request(port); |
| if (ret) |
| return ret; |
| |
| ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up, |
| &consumed_down); |
| if (ret) |
| goto err_request; |
| |
| /* |
| * Always keep 1000 Mb/s to make sure xHCI has at least some |
| * bandwidth available for isochronous traffic. |
| */ |
| if (consumed_up < 1000) |
| consumed_up = 1000; |
| if (consumed_down < 1000) |
| consumed_down = 1000; |
| |
| ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up, |
| consumed_down); |
| if (ret) |
| goto err_request; |
| |
| *upstream_bw = consumed_up; |
| *downstream_bw = consumed_down; |
| |
| err_request: |
| usb4_usb3_port_clear_cm_request(port); |
| return ret; |
| } |