| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * KVM Microsoft Hyper-V emulation |
| * |
| * derived from arch/x86/kvm/x86.c |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright (C) 2008 Qumranet, Inc. |
| * Copyright IBM Corporation, 2008 |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com> |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Amit Shah <amit.shah@qumranet.com> |
| * Ben-Ami Yassour <benami@il.ibm.com> |
| * Andrey Smetanin <asmetanin@virtuozzo.com> |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include "x86.h" |
| #include "lapic.h" |
| #include "ioapic.h" |
| #include "cpuid.h" |
| #include "hyperv.h" |
| #include "mmu.h" |
| #include "xen.h" |
| |
| #include <linux/cpu.h> |
| #include <linux/kvm_host.h> |
| #include <linux/highmem.h> |
| #include <linux/sched/cputime.h> |
| #include <linux/spinlock.h> |
| #include <linux/eventfd.h> |
| |
| #include <asm/apicdef.h> |
| #include <asm/mshyperv.h> |
| #include <trace/events/kvm.h> |
| |
| #include "trace.h" |
| #include "irq.h" |
| #include "fpu.h" |
| |
| #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK) |
| |
| /* |
| * As per Hyper-V TLFS, extended hypercalls start from 0x8001 |
| * (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value |
| * where each bit tells which extended hypercall is available besides |
| * HvExtCallQueryCapabilities. |
| * |
| * 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit |
| * assigned. |
| * |
| * 0x8002 - Bit 0 |
| * 0x8003 - Bit 1 |
| * .. |
| * 0x8041 - Bit 63 |
| * |
| * Therefore, HV_EXT_CALL_MAX = 0x8001 + 64 |
| */ |
| #define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64) |
| |
| static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, |
| bool vcpu_kick); |
| |
| static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint) |
| { |
| return atomic64_read(&synic->sint[sint]); |
| } |
| |
| static inline int synic_get_sint_vector(u64 sint_value) |
| { |
| if (sint_value & HV_SYNIC_SINT_MASKED) |
| return -1; |
| return sint_value & HV_SYNIC_SINT_VECTOR_MASK; |
| } |
| |
| static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic, |
| int vector) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { |
| if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic, |
| int vector) |
| { |
| int i; |
| u64 sint_value; |
| |
| for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { |
| sint_value = synic_read_sint(synic, i); |
| if (synic_get_sint_vector(sint_value) == vector && |
| sint_value & HV_SYNIC_SINT_AUTO_EOI) |
| return true; |
| } |
| return false; |
| } |
| |
| static void synic_update_vector(struct kvm_vcpu_hv_synic *synic, |
| int vector) |
| { |
| struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); |
| struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); |
| bool auto_eoi_old, auto_eoi_new; |
| |
| if (vector < HV_SYNIC_FIRST_VALID_VECTOR) |
| return; |
| |
| if (synic_has_vector_connected(synic, vector)) |
| __set_bit(vector, synic->vec_bitmap); |
| else |
| __clear_bit(vector, synic->vec_bitmap); |
| |
| auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256); |
| |
| if (synic_has_vector_auto_eoi(synic, vector)) |
| __set_bit(vector, synic->auto_eoi_bitmap); |
| else |
| __clear_bit(vector, synic->auto_eoi_bitmap); |
| |
| auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256); |
| |
| if (auto_eoi_old == auto_eoi_new) |
| return; |
| |
| if (!enable_apicv) |
| return; |
| |
| down_write(&vcpu->kvm->arch.apicv_update_lock); |
| |
| if (auto_eoi_new) |
| hv->synic_auto_eoi_used++; |
| else |
| hv->synic_auto_eoi_used--; |
| |
| /* |
| * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on |
| * the hypervisor to manually inject IRQs. |
| */ |
| __kvm_set_or_clear_apicv_inhibit(vcpu->kvm, |
| APICV_INHIBIT_REASON_HYPERV, |
| !!hv->synic_auto_eoi_used); |
| |
| up_write(&vcpu->kvm->arch.apicv_update_lock); |
| } |
| |
| static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint, |
| u64 data, bool host) |
| { |
| int vector, old_vector; |
| bool masked; |
| |
| vector = data & HV_SYNIC_SINT_VECTOR_MASK; |
| masked = data & HV_SYNIC_SINT_MASKED; |
| |
| /* |
| * Valid vectors are 16-255, however, nested Hyper-V attempts to write |
| * default '0x10000' value on boot and this should not #GP. We need to |
| * allow zero-initing the register from host as well. |
| */ |
| if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked) |
| return 1; |
| /* |
| * Guest may configure multiple SINTs to use the same vector, so |
| * we maintain a bitmap of vectors handled by synic, and a |
| * bitmap of vectors with auto-eoi behavior. The bitmaps are |
| * updated here, and atomically queried on fast paths. |
| */ |
| old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK; |
| |
| atomic64_set(&synic->sint[sint], data); |
| |
| synic_update_vector(synic, old_vector); |
| |
| synic_update_vector(synic, vector); |
| |
| /* Load SynIC vectors into EOI exit bitmap */ |
| kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic)); |
| return 0; |
| } |
| |
| static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx) |
| { |
| struct kvm_vcpu *vcpu = NULL; |
| unsigned long i; |
| |
| if (vpidx >= KVM_MAX_VCPUS) |
| return NULL; |
| |
| vcpu = kvm_get_vcpu(kvm, vpidx); |
| if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx) |
| return vcpu; |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| if (kvm_hv_get_vpindex(vcpu) == vpidx) |
| return vcpu; |
| return NULL; |
| } |
| |
| static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx) |
| { |
| struct kvm_vcpu *vcpu; |
| struct kvm_vcpu_hv_synic *synic; |
| |
| vcpu = get_vcpu_by_vpidx(kvm, vpidx); |
| if (!vcpu || !to_hv_vcpu(vcpu)) |
| return NULL; |
| synic = to_hv_synic(vcpu); |
| return (synic->active) ? synic : NULL; |
| } |
| |
| static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| struct kvm_vcpu_hv_stimer *stimer; |
| int gsi, idx; |
| |
| trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint); |
| |
| /* Try to deliver pending Hyper-V SynIC timers messages */ |
| for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) { |
| stimer = &hv_vcpu->stimer[idx]; |
| if (stimer->msg_pending && stimer->config.enable && |
| !stimer->config.direct_mode && |
| stimer->config.sintx == sint) |
| stimer_mark_pending(stimer, false); |
| } |
| |
| idx = srcu_read_lock(&kvm->irq_srcu); |
| gsi = atomic_read(&synic->sint_to_gsi[sint]); |
| if (gsi != -1) |
| kvm_notify_acked_gsi(kvm, gsi); |
| srcu_read_unlock(&kvm->irq_srcu, idx); |
| } |
| |
| static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr) |
| { |
| struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| |
| hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC; |
| hv_vcpu->exit.u.synic.msr = msr; |
| hv_vcpu->exit.u.synic.control = synic->control; |
| hv_vcpu->exit.u.synic.evt_page = synic->evt_page; |
| hv_vcpu->exit.u.synic.msg_page = synic->msg_page; |
| |
| kvm_make_request(KVM_REQ_HV_EXIT, vcpu); |
| } |
| |
| static int synic_set_msr(struct kvm_vcpu_hv_synic *synic, |
| u32 msr, u64 data, bool host) |
| { |
| struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); |
| int ret; |
| |
| if (!synic->active && (!host || data)) |
| return 1; |
| |
| trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host); |
| |
| ret = 0; |
| switch (msr) { |
| case HV_X64_MSR_SCONTROL: |
| synic->control = data; |
| if (!host) |
| synic_exit(synic, msr); |
| break; |
| case HV_X64_MSR_SVERSION: |
| if (!host) { |
| ret = 1; |
| break; |
| } |
| synic->version = data; |
| break; |
| case HV_X64_MSR_SIEFP: |
| if ((data & HV_SYNIC_SIEFP_ENABLE) && !host && |
| !synic->dont_zero_synic_pages) |
| if (kvm_clear_guest(vcpu->kvm, |
| data & PAGE_MASK, PAGE_SIZE)) { |
| ret = 1; |
| break; |
| } |
| synic->evt_page = data; |
| if (!host) |
| synic_exit(synic, msr); |
| break; |
| case HV_X64_MSR_SIMP: |
| if ((data & HV_SYNIC_SIMP_ENABLE) && !host && |
| !synic->dont_zero_synic_pages) |
| if (kvm_clear_guest(vcpu->kvm, |
| data & PAGE_MASK, PAGE_SIZE)) { |
| ret = 1; |
| break; |
| } |
| synic->msg_page = data; |
| if (!host) |
| synic_exit(synic, msr); |
| break; |
| case HV_X64_MSR_EOM: { |
| int i; |
| |
| if (!synic->active) |
| break; |
| |
| for (i = 0; i < ARRAY_SIZE(synic->sint); i++) |
| kvm_hv_notify_acked_sint(vcpu, i); |
| break; |
| } |
| case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: |
| ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host); |
| break; |
| default: |
| ret = 1; |
| break; |
| } |
| return ret; |
| } |
| |
| static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| |
| return hv_vcpu->cpuid_cache.syndbg_cap_eax & |
| HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; |
| } |
| |
| static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); |
| |
| if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL) |
| hv->hv_syndbg.control.status = |
| vcpu->run->hyperv.u.syndbg.status; |
| return 1; |
| } |
| |
| static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr) |
| { |
| struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| |
| hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG; |
| hv_vcpu->exit.u.syndbg.msr = msr; |
| hv_vcpu->exit.u.syndbg.control = syndbg->control.control; |
| hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page; |
| hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page; |
| hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page; |
| vcpu->arch.complete_userspace_io = |
| kvm_hv_syndbg_complete_userspace; |
| |
| kvm_make_request(KVM_REQ_HV_EXIT, vcpu); |
| } |
| |
| static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) |
| { |
| struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); |
| |
| if (!kvm_hv_is_syndbg_enabled(vcpu) && !host) |
| return 1; |
| |
| trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id, |
| to_hv_vcpu(vcpu)->vp_index, msr, data); |
| switch (msr) { |
| case HV_X64_MSR_SYNDBG_CONTROL: |
| syndbg->control.control = data; |
| if (!host) |
| syndbg_exit(vcpu, msr); |
| break; |
| case HV_X64_MSR_SYNDBG_STATUS: |
| syndbg->control.status = data; |
| break; |
| case HV_X64_MSR_SYNDBG_SEND_BUFFER: |
| syndbg->control.send_page = data; |
| break; |
| case HV_X64_MSR_SYNDBG_RECV_BUFFER: |
| syndbg->control.recv_page = data; |
| break; |
| case HV_X64_MSR_SYNDBG_PENDING_BUFFER: |
| syndbg->control.pending_page = data; |
| if (!host) |
| syndbg_exit(vcpu, msr); |
| break; |
| case HV_X64_MSR_SYNDBG_OPTIONS: |
| syndbg->options = data; |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) |
| { |
| struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); |
| |
| if (!kvm_hv_is_syndbg_enabled(vcpu) && !host) |
| return 1; |
| |
| switch (msr) { |
| case HV_X64_MSR_SYNDBG_CONTROL: |
| *pdata = syndbg->control.control; |
| break; |
| case HV_X64_MSR_SYNDBG_STATUS: |
| *pdata = syndbg->control.status; |
| break; |
| case HV_X64_MSR_SYNDBG_SEND_BUFFER: |
| *pdata = syndbg->control.send_page; |
| break; |
| case HV_X64_MSR_SYNDBG_RECV_BUFFER: |
| *pdata = syndbg->control.recv_page; |
| break; |
| case HV_X64_MSR_SYNDBG_PENDING_BUFFER: |
| *pdata = syndbg->control.pending_page; |
| break; |
| case HV_X64_MSR_SYNDBG_OPTIONS: |
| *pdata = syndbg->options; |
| break; |
| default: |
| break; |
| } |
| |
| trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata); |
| |
| return 0; |
| } |
| |
| static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata, |
| bool host) |
| { |
| int ret; |
| |
| if (!synic->active && !host) |
| return 1; |
| |
| ret = 0; |
| switch (msr) { |
| case HV_X64_MSR_SCONTROL: |
| *pdata = synic->control; |
| break; |
| case HV_X64_MSR_SVERSION: |
| *pdata = synic->version; |
| break; |
| case HV_X64_MSR_SIEFP: |
| *pdata = synic->evt_page; |
| break; |
| case HV_X64_MSR_SIMP: |
| *pdata = synic->msg_page; |
| break; |
| case HV_X64_MSR_EOM: |
| *pdata = 0; |
| break; |
| case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: |
| *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]); |
| break; |
| default: |
| ret = 1; |
| break; |
| } |
| return ret; |
| } |
| |
| static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint) |
| { |
| struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); |
| struct kvm_lapic_irq irq; |
| int ret, vector; |
| |
| if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm)) |
| return -EINVAL; |
| |
| if (sint >= ARRAY_SIZE(synic->sint)) |
| return -EINVAL; |
| |
| vector = synic_get_sint_vector(synic_read_sint(synic, sint)); |
| if (vector < 0) |
| return -ENOENT; |
| |
| memset(&irq, 0, sizeof(irq)); |
| irq.shorthand = APIC_DEST_SELF; |
| irq.dest_mode = APIC_DEST_PHYSICAL; |
| irq.delivery_mode = APIC_DM_FIXED; |
| irq.vector = vector; |
| irq.level = 1; |
| |
| ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL); |
| trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret); |
| return ret; |
| } |
| |
| int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint) |
| { |
| struct kvm_vcpu_hv_synic *synic; |
| |
| synic = synic_get(kvm, vpidx); |
| if (!synic) |
| return -EINVAL; |
| |
| return synic_set_irq(synic, sint); |
| } |
| |
| void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector) |
| { |
| struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); |
| int i; |
| |
| trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector); |
| |
| for (i = 0; i < ARRAY_SIZE(synic->sint); i++) |
| if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) |
| kvm_hv_notify_acked_sint(vcpu, i); |
| } |
| |
| static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi) |
| { |
| struct kvm_vcpu_hv_synic *synic; |
| |
| synic = synic_get(kvm, vpidx); |
| if (!synic) |
| return -EINVAL; |
| |
| if (sint >= ARRAY_SIZE(synic->sint_to_gsi)) |
| return -EINVAL; |
| |
| atomic_set(&synic->sint_to_gsi[sint], gsi); |
| return 0; |
| } |
| |
| void kvm_hv_irq_routing_update(struct kvm *kvm) |
| { |
| struct kvm_irq_routing_table *irq_rt; |
| struct kvm_kernel_irq_routing_entry *e; |
| u32 gsi; |
| |
| irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu, |
| lockdep_is_held(&kvm->irq_lock)); |
| |
| for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) { |
| hlist_for_each_entry(e, &irq_rt->map[gsi], link) { |
| if (e->type == KVM_IRQ_ROUTING_HV_SINT) |
| kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu, |
| e->hv_sint.sint, gsi); |
| } |
| } |
| } |
| |
| static void synic_init(struct kvm_vcpu_hv_synic *synic) |
| { |
| int i; |
| |
| memset(synic, 0, sizeof(*synic)); |
| synic->version = HV_SYNIC_VERSION_1; |
| for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { |
| atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED); |
| atomic_set(&synic->sint_to_gsi[i], -1); |
| } |
| } |
| |
| static u64 get_time_ref_counter(struct kvm *kvm) |
| { |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| struct kvm_vcpu *vcpu; |
| u64 tsc; |
| |
| /* |
| * Fall back to get_kvmclock_ns() when TSC page hasn't been set up, |
| * is broken, disabled or being updated. |
| */ |
| if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET) |
| return div_u64(get_kvmclock_ns(kvm), 100); |
| |
| vcpu = kvm_get_vcpu(kvm, 0); |
| tsc = kvm_read_l1_tsc(vcpu, rdtsc()); |
| return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64) |
| + hv->tsc_ref.tsc_offset; |
| } |
| |
| static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, |
| bool vcpu_kick) |
| { |
| struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); |
| |
| set_bit(stimer->index, |
| to_hv_vcpu(vcpu)->stimer_pending_bitmap); |
| kvm_make_request(KVM_REQ_HV_STIMER, vcpu); |
| if (vcpu_kick) |
| kvm_vcpu_kick(vcpu); |
| } |
| |
| static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer) |
| { |
| struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); |
| |
| trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id, |
| stimer->index); |
| |
| hrtimer_cancel(&stimer->timer); |
| clear_bit(stimer->index, |
| to_hv_vcpu(vcpu)->stimer_pending_bitmap); |
| stimer->msg_pending = false; |
| stimer->exp_time = 0; |
| } |
| |
| static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer) |
| { |
| struct kvm_vcpu_hv_stimer *stimer; |
| |
| stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer); |
| trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id, |
| stimer->index); |
| stimer_mark_pending(stimer, true); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| /* |
| * stimer_start() assumptions: |
| * a) stimer->count is not equal to 0 |
| * b) stimer->config has HV_STIMER_ENABLE flag |
| */ |
| static int stimer_start(struct kvm_vcpu_hv_stimer *stimer) |
| { |
| u64 time_now; |
| ktime_t ktime_now; |
| |
| time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm); |
| ktime_now = ktime_get(); |
| |
| if (stimer->config.periodic) { |
| if (stimer->exp_time) { |
| if (time_now >= stimer->exp_time) { |
| u64 remainder; |
| |
| div64_u64_rem(time_now - stimer->exp_time, |
| stimer->count, &remainder); |
| stimer->exp_time = |
| time_now + (stimer->count - remainder); |
| } |
| } else |
| stimer->exp_time = time_now + stimer->count; |
| |
| trace_kvm_hv_stimer_start_periodic( |
| hv_stimer_to_vcpu(stimer)->vcpu_id, |
| stimer->index, |
| time_now, stimer->exp_time); |
| |
| hrtimer_start(&stimer->timer, |
| ktime_add_ns(ktime_now, |
| 100 * (stimer->exp_time - time_now)), |
| HRTIMER_MODE_ABS); |
| return 0; |
| } |
| stimer->exp_time = stimer->count; |
| if (time_now >= stimer->count) { |
| /* |
| * Expire timer according to Hypervisor Top-Level Functional |
| * specification v4(15.3.1): |
| * "If a one shot is enabled and the specified count is in |
| * the past, it will expire immediately." |
| */ |
| stimer_mark_pending(stimer, false); |
| return 0; |
| } |
| |
| trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id, |
| stimer->index, |
| time_now, stimer->count); |
| |
| hrtimer_start(&stimer->timer, |
| ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)), |
| HRTIMER_MODE_ABS); |
| return 0; |
| } |
| |
| static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config, |
| bool host) |
| { |
| union hv_stimer_config new_config = {.as_uint64 = config}, |
| old_config = {.as_uint64 = stimer->config.as_uint64}; |
| struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); |
| |
| if (!synic->active && (!host || config)) |
| return 1; |
| |
| if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode && |
| !(hv_vcpu->cpuid_cache.features_edx & |
| HV_STIMER_DIRECT_MODE_AVAILABLE))) |
| return 1; |
| |
| trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id, |
| stimer->index, config, host); |
| |
| stimer_cleanup(stimer); |
| if (old_config.enable && |
| !new_config.direct_mode && new_config.sintx == 0) |
| new_config.enable = 0; |
| stimer->config.as_uint64 = new_config.as_uint64; |
| |
| if (stimer->config.enable) |
| stimer_mark_pending(stimer, false); |
| |
| return 0; |
| } |
| |
| static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count, |
| bool host) |
| { |
| struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); |
| struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); |
| |
| if (!synic->active && (!host || count)) |
| return 1; |
| |
| trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id, |
| stimer->index, count, host); |
| |
| stimer_cleanup(stimer); |
| stimer->count = count; |
| if (stimer->count == 0) |
| stimer->config.enable = 0; |
| else if (stimer->config.auto_enable) |
| stimer->config.enable = 1; |
| |
| if (stimer->config.enable) |
| stimer_mark_pending(stimer, false); |
| |
| return 0; |
| } |
| |
| static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig) |
| { |
| *pconfig = stimer->config.as_uint64; |
| return 0; |
| } |
| |
| static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount) |
| { |
| *pcount = stimer->count; |
| return 0; |
| } |
| |
| static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint, |
| struct hv_message *src_msg, bool no_retry) |
| { |
| struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); |
| int msg_off = offsetof(struct hv_message_page, sint_message[sint]); |
| gfn_t msg_page_gfn; |
| struct hv_message_header hv_hdr; |
| int r; |
| |
| if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE)) |
| return -ENOENT; |
| |
| msg_page_gfn = synic->msg_page >> PAGE_SHIFT; |
| |
| /* |
| * Strictly following the spec-mandated ordering would assume setting |
| * .msg_pending before checking .message_type. However, this function |
| * is only called in vcpu context so the entire update is atomic from |
| * guest POV and thus the exact order here doesn't matter. |
| */ |
| r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type, |
| msg_off + offsetof(struct hv_message, |
| header.message_type), |
| sizeof(hv_hdr.message_type)); |
| if (r < 0) |
| return r; |
| |
| if (hv_hdr.message_type != HVMSG_NONE) { |
| if (no_retry) |
| return 0; |
| |
| hv_hdr.message_flags.msg_pending = 1; |
| r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, |
| &hv_hdr.message_flags, |
| msg_off + |
| offsetof(struct hv_message, |
| header.message_flags), |
| sizeof(hv_hdr.message_flags)); |
| if (r < 0) |
| return r; |
| return -EAGAIN; |
| } |
| |
| r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off, |
| sizeof(src_msg->header) + |
| src_msg->header.payload_size); |
| if (r < 0) |
| return r; |
| |
| r = synic_set_irq(synic, sint); |
| if (r < 0) |
| return r; |
| if (r == 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer) |
| { |
| struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); |
| struct hv_message *msg = &stimer->msg; |
| struct hv_timer_message_payload *payload = |
| (struct hv_timer_message_payload *)&msg->u.payload; |
| |
| /* |
| * To avoid piling up periodic ticks, don't retry message |
| * delivery for them (within "lazy" lost ticks policy). |
| */ |
| bool no_retry = stimer->config.periodic; |
| |
| payload->expiration_time = stimer->exp_time; |
| payload->delivery_time = get_time_ref_counter(vcpu->kvm); |
| return synic_deliver_msg(to_hv_synic(vcpu), |
| stimer->config.sintx, msg, |
| no_retry); |
| } |
| |
| static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer) |
| { |
| struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); |
| struct kvm_lapic_irq irq = { |
| .delivery_mode = APIC_DM_FIXED, |
| .vector = stimer->config.apic_vector |
| }; |
| |
| if (lapic_in_kernel(vcpu)) |
| return !kvm_apic_set_irq(vcpu, &irq, NULL); |
| return 0; |
| } |
| |
| static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer) |
| { |
| int r, direct = stimer->config.direct_mode; |
| |
| stimer->msg_pending = true; |
| if (!direct) |
| r = stimer_send_msg(stimer); |
| else |
| r = stimer_notify_direct(stimer); |
| trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id, |
| stimer->index, direct, r); |
| if (!r) { |
| stimer->msg_pending = false; |
| if (!(stimer->config.periodic)) |
| stimer->config.enable = 0; |
| } |
| } |
| |
| void kvm_hv_process_stimers(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| struct kvm_vcpu_hv_stimer *stimer; |
| u64 time_now, exp_time; |
| int i; |
| |
| if (!hv_vcpu) |
| return; |
| |
| for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) |
| if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) { |
| stimer = &hv_vcpu->stimer[i]; |
| if (stimer->config.enable) { |
| exp_time = stimer->exp_time; |
| |
| if (exp_time) { |
| time_now = |
| get_time_ref_counter(vcpu->kvm); |
| if (time_now >= exp_time) |
| stimer_expiration(stimer); |
| } |
| |
| if ((stimer->config.enable) && |
| stimer->count) { |
| if (!stimer->msg_pending) |
| stimer_start(stimer); |
| } else |
| stimer_cleanup(stimer); |
| } |
| } |
| } |
| |
| void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| int i; |
| |
| if (!hv_vcpu) |
| return; |
| |
| for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) |
| stimer_cleanup(&hv_vcpu->stimer[i]); |
| |
| kfree(hv_vcpu); |
| vcpu->arch.hyperv = NULL; |
| } |
| |
| bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| |
| if (!hv_vcpu) |
| return false; |
| |
| if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) |
| return false; |
| return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; |
| } |
| EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled); |
| |
| int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| |
| if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu)) |
| return -EFAULT; |
| |
| return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, |
| &hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page); |
| |
| static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer) |
| { |
| struct hv_message *msg = &stimer->msg; |
| struct hv_timer_message_payload *payload = |
| (struct hv_timer_message_payload *)&msg->u.payload; |
| |
| memset(&msg->header, 0, sizeof(msg->header)); |
| msg->header.message_type = HVMSG_TIMER_EXPIRED; |
| msg->header.payload_size = sizeof(*payload); |
| |
| payload->timer_index = stimer->index; |
| payload->expiration_time = 0; |
| payload->delivery_time = 0; |
| } |
| |
| static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index) |
| { |
| memset(stimer, 0, sizeof(*stimer)); |
| stimer->index = timer_index; |
| hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
| stimer->timer.function = stimer_timer_callback; |
| stimer_prepare_msg(stimer); |
| } |
| |
| int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| int i; |
| |
| if (hv_vcpu) |
| return 0; |
| |
| hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT); |
| if (!hv_vcpu) |
| return -ENOMEM; |
| |
| vcpu->arch.hyperv = hv_vcpu; |
| hv_vcpu->vcpu = vcpu; |
| |
| synic_init(&hv_vcpu->synic); |
| |
| bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); |
| for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) |
| stimer_init(&hv_vcpu->stimer[i], i); |
| |
| hv_vcpu->vp_index = vcpu->vcpu_idx; |
| |
| for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) { |
| INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries); |
| spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock); |
| } |
| |
| return 0; |
| } |
| |
| int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages) |
| { |
| struct kvm_vcpu_hv_synic *synic; |
| int r; |
| |
| r = kvm_hv_vcpu_init(vcpu); |
| if (r) |
| return r; |
| |
| synic = to_hv_synic(vcpu); |
| |
| synic->active = true; |
| synic->dont_zero_synic_pages = dont_zero_synic_pages; |
| synic->control = HV_SYNIC_CONTROL_ENABLE; |
| return 0; |
| } |
| |
| static bool kvm_hv_msr_partition_wide(u32 msr) |
| { |
| bool r = false; |
| |
| switch (msr) { |
| case HV_X64_MSR_GUEST_OS_ID: |
| case HV_X64_MSR_HYPERCALL: |
| case HV_X64_MSR_REFERENCE_TSC: |
| case HV_X64_MSR_TIME_REF_COUNT: |
| case HV_X64_MSR_CRASH_CTL: |
| case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
| case HV_X64_MSR_RESET: |
| case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
| case HV_X64_MSR_TSC_EMULATION_CONTROL: |
| case HV_X64_MSR_TSC_EMULATION_STATUS: |
| case HV_X64_MSR_TSC_INVARIANT_CONTROL: |
| case HV_X64_MSR_SYNDBG_OPTIONS: |
| case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: |
| r = true; |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata) |
| { |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| size_t size = ARRAY_SIZE(hv->hv_crash_param); |
| |
| if (WARN_ON_ONCE(index >= size)) |
| return -EINVAL; |
| |
| *pdata = hv->hv_crash_param[array_index_nospec(index, size)]; |
| return 0; |
| } |
| |
| static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata) |
| { |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| |
| *pdata = hv->hv_crash_ctl; |
| return 0; |
| } |
| |
| static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data) |
| { |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| |
| hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY; |
| |
| return 0; |
| } |
| |
| static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data) |
| { |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| size_t size = ARRAY_SIZE(hv->hv_crash_param); |
| |
| if (WARN_ON_ONCE(index >= size)) |
| return -EINVAL; |
| |
| hv->hv_crash_param[array_index_nospec(index, size)] = data; |
| return 0; |
| } |
| |
| /* |
| * The kvmclock and Hyper-V TSC page use similar formulas, and converting |
| * between them is possible: |
| * |
| * kvmclock formula: |
| * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32) |
| * + system_time |
| * |
| * Hyper-V formula: |
| * nsec/100 = ticks * scale / 2^64 + offset |
| * |
| * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula. |
| * By dividing the kvmclock formula by 100 and equating what's left we get: |
| * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 |
| * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100 |
| * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100 |
| * |
| * Now expand the kvmclock formula and divide by 100: |
| * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32) |
| * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) |
| * + system_time |
| * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 |
| * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100 |
| * + system_time / 100 |
| * |
| * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64: |
| * nsec/100 = ticks * scale / 2^64 |
| * - tsc_timestamp * scale / 2^64 |
| * + system_time / 100 |
| * |
| * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out: |
| * offset = system_time / 100 - tsc_timestamp * scale / 2^64 |
| * |
| * These two equivalencies are implemented in this function. |
| */ |
| static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock, |
| struct ms_hyperv_tsc_page *tsc_ref) |
| { |
| u64 max_mul; |
| |
| if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT)) |
| return false; |
| |
| /* |
| * check if scale would overflow, if so we use the time ref counter |
| * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64 |
| * tsc_to_system_mul / 100 >= 2^(32-tsc_shift) |
| * tsc_to_system_mul >= 100 * 2^(32-tsc_shift) |
| */ |
| max_mul = 100ull << (32 - hv_clock->tsc_shift); |
| if (hv_clock->tsc_to_system_mul >= max_mul) |
| return false; |
| |
| /* |
| * Otherwise compute the scale and offset according to the formulas |
| * derived above. |
| */ |
| tsc_ref->tsc_scale = |
| mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift), |
| hv_clock->tsc_to_system_mul, |
| 100); |
| |
| tsc_ref->tsc_offset = hv_clock->system_time; |
| do_div(tsc_ref->tsc_offset, 100); |
| tsc_ref->tsc_offset -= |
| mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64); |
| return true; |
| } |
| |
| /* |
| * Don't touch TSC page values if the guest has opted for TSC emulation after |
| * migration. KVM doesn't fully support reenlightenment notifications and TSC |
| * access emulation and Hyper-V is known to expect the values in TSC page to |
| * stay constant before TSC access emulation is disabled from guest side |
| * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC |
| * frequency and guest visible TSC value across migration (and prevent it when |
| * TSC scaling is unsupported). |
| */ |
| static inline bool tsc_page_update_unsafe(struct kvm_hv *hv) |
| { |
| return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) && |
| hv->hv_tsc_emulation_control; |
| } |
| |
| void kvm_hv_setup_tsc_page(struct kvm *kvm, |
| struct pvclock_vcpu_time_info *hv_clock) |
| { |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| u32 tsc_seq; |
| u64 gfn; |
| |
| BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence)); |
| BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0); |
| |
| mutex_lock(&hv->hv_lock); |
| |
| if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN || |
| hv->hv_tsc_page_status == HV_TSC_PAGE_SET || |
| hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET) |
| goto out_unlock; |
| |
| if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)) |
| goto out_unlock; |
| |
| gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; |
| /* |
| * Because the TSC parameters only vary when there is a |
| * change in the master clock, do not bother with caching. |
| */ |
| if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn), |
| &tsc_seq, sizeof(tsc_seq)))) |
| goto out_err; |
| |
| if (tsc_seq && tsc_page_update_unsafe(hv)) { |
| if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref))) |
| goto out_err; |
| |
| hv->hv_tsc_page_status = HV_TSC_PAGE_SET; |
| goto out_unlock; |
| } |
| |
| /* |
| * While we're computing and writing the parameters, force the |
| * guest to use the time reference count MSR. |
| */ |
| hv->tsc_ref.tsc_sequence = 0; |
| if (kvm_write_guest(kvm, gfn_to_gpa(gfn), |
| &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) |
| goto out_err; |
| |
| if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref)) |
| goto out_err; |
| |
| /* Ensure sequence is zero before writing the rest of the struct. */ |
| smp_wmb(); |
| if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref))) |
| goto out_err; |
| |
| /* |
| * Now switch to the TSC page mechanism by writing the sequence. |
| */ |
| tsc_seq++; |
| if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0) |
| tsc_seq = 1; |
| |
| /* Write the struct entirely before the non-zero sequence. */ |
| smp_wmb(); |
| |
| hv->tsc_ref.tsc_sequence = tsc_seq; |
| if (kvm_write_guest(kvm, gfn_to_gpa(gfn), |
| &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) |
| goto out_err; |
| |
| hv->hv_tsc_page_status = HV_TSC_PAGE_SET; |
| goto out_unlock; |
| |
| out_err: |
| hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN; |
| out_unlock: |
| mutex_unlock(&hv->hv_lock); |
| } |
| |
| void kvm_hv_request_tsc_page_update(struct kvm *kvm) |
| { |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| |
| mutex_lock(&hv->hv_lock); |
| |
| if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET && |
| !tsc_page_update_unsafe(hv)) |
| hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED; |
| |
| mutex_unlock(&hv->hv_lock); |
| } |
| |
| static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr) |
| { |
| if (!hv_vcpu->enforce_cpuid) |
| return true; |
| |
| switch (msr) { |
| case HV_X64_MSR_GUEST_OS_ID: |
| case HV_X64_MSR_HYPERCALL: |
| return hv_vcpu->cpuid_cache.features_eax & |
| HV_MSR_HYPERCALL_AVAILABLE; |
| case HV_X64_MSR_VP_RUNTIME: |
| return hv_vcpu->cpuid_cache.features_eax & |
| HV_MSR_VP_RUNTIME_AVAILABLE; |
| case HV_X64_MSR_TIME_REF_COUNT: |
| return hv_vcpu->cpuid_cache.features_eax & |
| HV_MSR_TIME_REF_COUNT_AVAILABLE; |
| case HV_X64_MSR_VP_INDEX: |
| return hv_vcpu->cpuid_cache.features_eax & |
| HV_MSR_VP_INDEX_AVAILABLE; |
| case HV_X64_MSR_RESET: |
| return hv_vcpu->cpuid_cache.features_eax & |
| HV_MSR_RESET_AVAILABLE; |
| case HV_X64_MSR_REFERENCE_TSC: |
| return hv_vcpu->cpuid_cache.features_eax & |
| HV_MSR_REFERENCE_TSC_AVAILABLE; |
| case HV_X64_MSR_SCONTROL: |
| case HV_X64_MSR_SVERSION: |
| case HV_X64_MSR_SIEFP: |
| case HV_X64_MSR_SIMP: |
| case HV_X64_MSR_EOM: |
| case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: |
| return hv_vcpu->cpuid_cache.features_eax & |
| HV_MSR_SYNIC_AVAILABLE; |
| case HV_X64_MSR_STIMER0_CONFIG: |
| case HV_X64_MSR_STIMER1_CONFIG: |
| case HV_X64_MSR_STIMER2_CONFIG: |
| case HV_X64_MSR_STIMER3_CONFIG: |
| case HV_X64_MSR_STIMER0_COUNT: |
| case HV_X64_MSR_STIMER1_COUNT: |
| case HV_X64_MSR_STIMER2_COUNT: |
| case HV_X64_MSR_STIMER3_COUNT: |
| return hv_vcpu->cpuid_cache.features_eax & |
| HV_MSR_SYNTIMER_AVAILABLE; |
| case HV_X64_MSR_EOI: |
| case HV_X64_MSR_ICR: |
| case HV_X64_MSR_TPR: |
| case HV_X64_MSR_VP_ASSIST_PAGE: |
| return hv_vcpu->cpuid_cache.features_eax & |
| HV_MSR_APIC_ACCESS_AVAILABLE; |
| case HV_X64_MSR_TSC_FREQUENCY: |
| case HV_X64_MSR_APIC_FREQUENCY: |
| return hv_vcpu->cpuid_cache.features_eax & |
| HV_ACCESS_FREQUENCY_MSRS; |
| case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
| case HV_X64_MSR_TSC_EMULATION_CONTROL: |
| case HV_X64_MSR_TSC_EMULATION_STATUS: |
| return hv_vcpu->cpuid_cache.features_eax & |
| HV_ACCESS_REENLIGHTENMENT; |
| case HV_X64_MSR_TSC_INVARIANT_CONTROL: |
| return hv_vcpu->cpuid_cache.features_eax & |
| HV_ACCESS_TSC_INVARIANT; |
| case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
| case HV_X64_MSR_CRASH_CTL: |
| return hv_vcpu->cpuid_cache.features_edx & |
| HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; |
| case HV_X64_MSR_SYNDBG_OPTIONS: |
| case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: |
| return hv_vcpu->cpuid_cache.features_edx & |
| HV_FEATURE_DEBUG_MSRS_AVAILABLE; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data, |
| bool host) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| |
| if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr))) |
| return 1; |
| |
| switch (msr) { |
| case HV_X64_MSR_GUEST_OS_ID: |
| hv->hv_guest_os_id = data; |
| /* setting guest os id to zero disables hypercall page */ |
| if (!hv->hv_guest_os_id) |
| hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; |
| break; |
| case HV_X64_MSR_HYPERCALL: { |
| u8 instructions[9]; |
| int i = 0; |
| u64 addr; |
| |
| /* if guest os id is not set hypercall should remain disabled */ |
| if (!hv->hv_guest_os_id) |
| break; |
| if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { |
| hv->hv_hypercall = data; |
| break; |
| } |
| |
| /* |
| * If Xen and Hyper-V hypercalls are both enabled, disambiguate |
| * the same way Xen itself does, by setting the bit 31 of EAX |
| * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just |
| * going to be clobbered on 64-bit. |
| */ |
| if (kvm_xen_hypercall_enabled(kvm)) { |
| /* orl $0x80000000, %eax */ |
| instructions[i++] = 0x0d; |
| instructions[i++] = 0x00; |
| instructions[i++] = 0x00; |
| instructions[i++] = 0x00; |
| instructions[i++] = 0x80; |
| } |
| |
| /* vmcall/vmmcall */ |
| static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i); |
| i += 3; |
| |
| /* ret */ |
| ((unsigned char *)instructions)[i++] = 0xc3; |
| |
| addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK; |
| if (kvm_vcpu_write_guest(vcpu, addr, instructions, i)) |
| return 1; |
| hv->hv_hypercall = data; |
| break; |
| } |
| case HV_X64_MSR_REFERENCE_TSC: |
| hv->hv_tsc_page = data; |
| if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) { |
| if (!host) |
| hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED; |
| else |
| hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED; |
| kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
| } else { |
| hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET; |
| } |
| break; |
| case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
| return kvm_hv_msr_set_crash_data(kvm, |
| msr - HV_X64_MSR_CRASH_P0, |
| data); |
| case HV_X64_MSR_CRASH_CTL: |
| if (host) |
| return kvm_hv_msr_set_crash_ctl(kvm, data); |
| |
| if (data & HV_CRASH_CTL_CRASH_NOTIFY) { |
| vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n", |
| hv->hv_crash_param[0], |
| hv->hv_crash_param[1], |
| hv->hv_crash_param[2], |
| hv->hv_crash_param[3], |
| hv->hv_crash_param[4]); |
| |
| /* Send notification about crash to user space */ |
| kvm_make_request(KVM_REQ_HV_CRASH, vcpu); |
| } |
| break; |
| case HV_X64_MSR_RESET: |
| if (data == 1) { |
| vcpu_debug(vcpu, "hyper-v reset requested\n"); |
| kvm_make_request(KVM_REQ_HV_RESET, vcpu); |
| } |
| break; |
| case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
| hv->hv_reenlightenment_control = data; |
| break; |
| case HV_X64_MSR_TSC_EMULATION_CONTROL: |
| hv->hv_tsc_emulation_control = data; |
| break; |
| case HV_X64_MSR_TSC_EMULATION_STATUS: |
| if (data && !host) |
| return 1; |
| |
| hv->hv_tsc_emulation_status = data; |
| break; |
| case HV_X64_MSR_TIME_REF_COUNT: |
| /* read-only, but still ignore it if host-initiated */ |
| if (!host) |
| return 1; |
| break; |
| case HV_X64_MSR_TSC_INVARIANT_CONTROL: |
| /* Only bit 0 is supported */ |
| if (data & ~HV_EXPOSE_INVARIANT_TSC) |
| return 1; |
| |
| /* The feature can't be disabled from the guest */ |
| if (!host && hv->hv_invtsc_control && !data) |
| return 1; |
| |
| hv->hv_invtsc_control = data; |
| break; |
| case HV_X64_MSR_SYNDBG_OPTIONS: |
| case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: |
| return syndbg_set_msr(vcpu, msr, data, host); |
| default: |
| kvm_pr_unimpl_wrmsr(vcpu, msr, data); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Calculate cpu time spent by current task in 100ns units */ |
| static u64 current_task_runtime_100ns(void) |
| { |
| u64 utime, stime; |
| |
| task_cputime_adjusted(current, &utime, &stime); |
| |
| return div_u64(utime + stime, 100); |
| } |
| |
| static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) |
| { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| |
| if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr))) |
| return 1; |
| |
| switch (msr) { |
| case HV_X64_MSR_VP_INDEX: { |
| struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); |
| u32 new_vp_index = (u32)data; |
| |
| if (!host || new_vp_index >= KVM_MAX_VCPUS) |
| return 1; |
| |
| if (new_vp_index == hv_vcpu->vp_index) |
| return 0; |
| |
| /* |
| * The VP index is initialized to vcpu_index by |
| * kvm_hv_vcpu_postcreate so they initially match. Now the |
| * VP index is changing, adjust num_mismatched_vp_indexes if |
| * it now matches or no longer matches vcpu_idx. |
| */ |
| if (hv_vcpu->vp_index == vcpu->vcpu_idx) |
| atomic_inc(&hv->num_mismatched_vp_indexes); |
| else if (new_vp_index == vcpu->vcpu_idx) |
| atomic_dec(&hv->num_mismatched_vp_indexes); |
| |
| hv_vcpu->vp_index = new_vp_index; |
| break; |
| } |
| case HV_X64_MSR_VP_ASSIST_PAGE: { |
| u64 gfn; |
| unsigned long addr; |
| |
| if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) { |
| hv_vcpu->hv_vapic = data; |
| if (kvm_lapic_set_pv_eoi(vcpu, 0, 0)) |
| return 1; |
| break; |
| } |
| gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT; |
| addr = kvm_vcpu_gfn_to_hva(vcpu, gfn); |
| if (kvm_is_error_hva(addr)) |
| return 1; |
| |
| /* |
| * Clear apic_assist portion of struct hv_vp_assist_page |
| * only, there can be valuable data in the rest which needs |
| * to be preserved e.g. on migration. |
| */ |
| if (__put_user(0, (u32 __user *)addr)) |
| return 1; |
| hv_vcpu->hv_vapic = data; |
| kvm_vcpu_mark_page_dirty(vcpu, gfn); |
| if (kvm_lapic_set_pv_eoi(vcpu, |
| gfn_to_gpa(gfn) | KVM_MSR_ENABLED, |
| sizeof(struct hv_vp_assist_page))) |
| return 1; |
| break; |
| } |
| case HV_X64_MSR_EOI: |
| return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); |
| case HV_X64_MSR_ICR: |
| return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); |
| case HV_X64_MSR_TPR: |
| return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); |
| case HV_X64_MSR_VP_RUNTIME: |
| if (!host) |
| return 1; |
| hv_vcpu->runtime_offset = data - current_task_runtime_100ns(); |
| break; |
| case HV_X64_MSR_SCONTROL: |
| case HV_X64_MSR_SVERSION: |
| case HV_X64_MSR_SIEFP: |
| case HV_X64_MSR_SIMP: |
| case HV_X64_MSR_EOM: |
| case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: |
| return synic_set_msr(to_hv_synic(vcpu), msr, data, host); |
| case HV_X64_MSR_STIMER0_CONFIG: |
| case HV_X64_MSR_STIMER1_CONFIG: |
| case HV_X64_MSR_STIMER2_CONFIG: |
| case HV_X64_MSR_STIMER3_CONFIG: { |
| int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; |
| |
| return stimer_set_config(to_hv_stimer(vcpu, timer_index), |
| data, host); |
| } |
| case HV_X64_MSR_STIMER0_COUNT: |
| case HV_X64_MSR_STIMER1_COUNT: |
| case HV_X64_MSR_STIMER2_COUNT: |
| case HV_X64_MSR_STIMER3_COUNT: { |
| int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; |
| |
| return stimer_set_count(to_hv_stimer(vcpu, timer_index), |
| data, host); |
| } |
| case HV_X64_MSR_TSC_FREQUENCY: |
| case HV_X64_MSR_APIC_FREQUENCY: |
| /* read-only, but still ignore it if host-initiated */ |
| if (!host) |
| return 1; |
| break; |
| default: |
| kvm_pr_unimpl_wrmsr(vcpu, msr, data); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, |
| bool host) |
| { |
| u64 data = 0; |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| |
| if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr))) |
| return 1; |
| |
| switch (msr) { |
| case HV_X64_MSR_GUEST_OS_ID: |
| data = hv->hv_guest_os_id; |
| break; |
| case HV_X64_MSR_HYPERCALL: |
| data = hv->hv_hypercall; |
| break; |
| case HV_X64_MSR_TIME_REF_COUNT: |
| data = get_time_ref_counter(kvm); |
| break; |
| case HV_X64_MSR_REFERENCE_TSC: |
| data = hv->hv_tsc_page; |
| break; |
| case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
| return kvm_hv_msr_get_crash_data(kvm, |
| msr - HV_X64_MSR_CRASH_P0, |
| pdata); |
| case HV_X64_MSR_CRASH_CTL: |
| return kvm_hv_msr_get_crash_ctl(kvm, pdata); |
| case HV_X64_MSR_RESET: |
| data = 0; |
| break; |
| case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
| data = hv->hv_reenlightenment_control; |
| break; |
| case HV_X64_MSR_TSC_EMULATION_CONTROL: |
| data = hv->hv_tsc_emulation_control; |
| break; |
| case HV_X64_MSR_TSC_EMULATION_STATUS: |
| data = hv->hv_tsc_emulation_status; |
| break; |
| case HV_X64_MSR_TSC_INVARIANT_CONTROL: |
| data = hv->hv_invtsc_control; |
| break; |
| case HV_X64_MSR_SYNDBG_OPTIONS: |
| case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: |
| return syndbg_get_msr(vcpu, msr, pdata, host); |
| default: |
| kvm_pr_unimpl_rdmsr(vcpu, msr); |
| return 1; |
| } |
| |
| *pdata = data; |
| return 0; |
| } |
| |
| static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, |
| bool host) |
| { |
| u64 data = 0; |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| |
| if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr))) |
| return 1; |
| |
| switch (msr) { |
| case HV_X64_MSR_VP_INDEX: |
| data = hv_vcpu->vp_index; |
| break; |
| case HV_X64_MSR_EOI: |
| return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); |
| case HV_X64_MSR_ICR: |
| return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); |
| case HV_X64_MSR_TPR: |
| return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); |
| case HV_X64_MSR_VP_ASSIST_PAGE: |
| data = hv_vcpu->hv_vapic; |
| break; |
| case HV_X64_MSR_VP_RUNTIME: |
| data = current_task_runtime_100ns() + hv_vcpu->runtime_offset; |
| break; |
| case HV_X64_MSR_SCONTROL: |
| case HV_X64_MSR_SVERSION: |
| case HV_X64_MSR_SIEFP: |
| case HV_X64_MSR_SIMP: |
| case HV_X64_MSR_EOM: |
| case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: |
| return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host); |
| case HV_X64_MSR_STIMER0_CONFIG: |
| case HV_X64_MSR_STIMER1_CONFIG: |
| case HV_X64_MSR_STIMER2_CONFIG: |
| case HV_X64_MSR_STIMER3_CONFIG: { |
| int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; |
| |
| return stimer_get_config(to_hv_stimer(vcpu, timer_index), |
| pdata); |
| } |
| case HV_X64_MSR_STIMER0_COUNT: |
| case HV_X64_MSR_STIMER1_COUNT: |
| case HV_X64_MSR_STIMER2_COUNT: |
| case HV_X64_MSR_STIMER3_COUNT: { |
| int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; |
| |
| return stimer_get_count(to_hv_stimer(vcpu, timer_index), |
| pdata); |
| } |
| case HV_X64_MSR_TSC_FREQUENCY: |
| data = (u64)vcpu->arch.virtual_tsc_khz * 1000; |
| break; |
| case HV_X64_MSR_APIC_FREQUENCY: |
| data = APIC_BUS_FREQUENCY; |
| break; |
| default: |
| kvm_pr_unimpl_rdmsr(vcpu, msr); |
| return 1; |
| } |
| *pdata = data; |
| return 0; |
| } |
| |
| int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) |
| { |
| struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); |
| |
| if (!host && !vcpu->arch.hyperv_enabled) |
| return 1; |
| |
| if (kvm_hv_vcpu_init(vcpu)) |
| return 1; |
| |
| if (kvm_hv_msr_partition_wide(msr)) { |
| int r; |
| |
| mutex_lock(&hv->hv_lock); |
| r = kvm_hv_set_msr_pw(vcpu, msr, data, host); |
| mutex_unlock(&hv->hv_lock); |
| return r; |
| } else |
| return kvm_hv_set_msr(vcpu, msr, data, host); |
| } |
| |
| int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) |
| { |
| struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); |
| |
| if (!host && !vcpu->arch.hyperv_enabled) |
| return 1; |
| |
| if (kvm_hv_vcpu_init(vcpu)) |
| return 1; |
| |
| if (kvm_hv_msr_partition_wide(msr)) { |
| int r; |
| |
| mutex_lock(&hv->hv_lock); |
| r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host); |
| mutex_unlock(&hv->hv_lock); |
| return r; |
| } else |
| return kvm_hv_get_msr(vcpu, msr, pdata, host); |
| } |
| |
| static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks, |
| u64 valid_bank_mask, unsigned long *vcpu_mask) |
| { |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes); |
| u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS]; |
| struct kvm_vcpu *vcpu; |
| int bank, sbank = 0; |
| unsigned long i; |
| u64 *bitmap; |
| |
| BUILD_BUG_ON(sizeof(vp_bitmap) > |
| sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS)); |
| |
| /* |
| * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else |
| * fill a temporary buffer and manually test each vCPU's VP index. |
| */ |
| if (likely(!has_mismatch)) |
| bitmap = (u64 *)vcpu_mask; |
| else |
| bitmap = vp_bitmap; |
| |
| /* |
| * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask |
| * having a '1' for each bank that exists in sparse_banks. Sets must |
| * be in ascending order, i.e. bank0..bankN. |
| */ |
| memset(bitmap, 0, sizeof(vp_bitmap)); |
| for_each_set_bit(bank, (unsigned long *)&valid_bank_mask, |
| KVM_HV_MAX_SPARSE_VCPU_SET_BITS) |
| bitmap[bank] = sparse_banks[sbank++]; |
| |
| if (likely(!has_mismatch)) |
| return; |
| |
| bitmap_zero(vcpu_mask, KVM_MAX_VCPUS); |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap)) |
| __set_bit(i, vcpu_mask); |
| } |
| } |
| |
| static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[]) |
| { |
| int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK; |
| unsigned long sbank; |
| |
| if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask)) |
| return false; |
| |
| /* |
| * The index into the sparse bank is the number of preceding bits in |
| * the valid mask. Optimize for VMs with <64 vCPUs by skipping the |
| * fancy math if there can't possibly be preceding bits. |
| */ |
| if (valid_bit_nr) |
| sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0)); |
| else |
| sbank = 0; |
| |
| return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK, |
| (unsigned long *)&sparse_banks[sbank]); |
| } |
| |
| struct kvm_hv_hcall { |
| /* Hypercall input data */ |
| u64 param; |
| u64 ingpa; |
| u64 outgpa; |
| u16 code; |
| u16 var_cnt; |
| u16 rep_cnt; |
| u16 rep_idx; |
| bool fast; |
| bool rep; |
| sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS]; |
| |
| /* |
| * Current read offset when KVM reads hypercall input data gradually, |
| * either offset in bytes from 'ingpa' for regular hypercalls or the |
| * number of already consumed 'XMM halves' for 'fast' hypercalls. |
| */ |
| union { |
| gpa_t data_offset; |
| int consumed_xmm_halves; |
| }; |
| }; |
| |
| |
| static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc, |
| u16 orig_cnt, u16 cnt_cap, u64 *data) |
| { |
| /* |
| * Preserve the original count when ignoring entries via a "cap", KVM |
| * still needs to validate the guest input (though the non-XMM path |
| * punts on the checks). |
| */ |
| u16 cnt = min(orig_cnt, cnt_cap); |
| int i, j; |
| |
| if (hc->fast) { |
| /* |
| * Each XMM holds two sparse banks, but do not count halves that |
| * have already been consumed for hypercall parameters. |
| */ |
| if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| |
| for (i = 0; i < cnt; i++) { |
| j = i + hc->consumed_xmm_halves; |
| if (j % 2) |
| data[i] = sse128_hi(hc->xmm[j / 2]); |
| else |
| data[i] = sse128_lo(hc->xmm[j / 2]); |
| } |
| return 0; |
| } |
| |
| return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data, |
| cnt * sizeof(*data)); |
| } |
| |
| static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc, |
| u64 *sparse_banks) |
| { |
| if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS) |
| return -EINVAL; |
| |
| /* Cap var_cnt to ignore banks that cannot contain a legal VP index. */ |
| return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS, |
| sparse_banks); |
| } |
| |
| static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[]) |
| { |
| return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries); |
| } |
| |
| static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo, |
| u64 *entries, int count) |
| { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY; |
| |
| if (!hv_vcpu) |
| return; |
| |
| spin_lock(&tlb_flush_fifo->write_lock); |
| |
| /* |
| * All entries should fit on the fifo leaving one free for 'flush all' |
| * entry in case another request comes in. In case there's not enough |
| * space, just put 'flush all' entry there. |
| */ |
| if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) { |
| WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count); |
| goto out_unlock; |
| } |
| |
| /* |
| * Note: full fifo always contains 'flush all' entry, no need to check the |
| * return value. |
| */ |
| kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1); |
| |
| out_unlock: |
| spin_unlock(&tlb_flush_fifo->write_lock); |
| } |
| |
| int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo; |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE]; |
| int i, j, count; |
| gva_t gva; |
| |
| if (!tdp_enabled || !hv_vcpu) |
| return -EINVAL; |
| |
| tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu)); |
| |
| count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE); |
| |
| for (i = 0; i < count; i++) { |
| if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY) |
| goto out_flush_all; |
| |
| /* |
| * Lower 12 bits of 'address' encode the number of additional |
| * pages to flush. |
| */ |
| gva = entries[i] & PAGE_MASK; |
| for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++) |
| static_call(kvm_x86_flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE); |
| |
| ++vcpu->stat.tlb_flush; |
| } |
| return 0; |
| |
| out_flush_all: |
| kfifo_reset_out(&tlb_flush_fifo->entries); |
| |
| /* Fall back to full flush. */ |
| return -ENOSPC; |
| } |
| |
| static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) |
| { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| u64 *sparse_banks = hv_vcpu->sparse_banks; |
| struct kvm *kvm = vcpu->kvm; |
| struct hv_tlb_flush_ex flush_ex; |
| struct hv_tlb_flush flush; |
| DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS); |
| struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo; |
| /* |
| * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE' |
| * entries on the TLB flush fifo. The last entry, however, needs to be |
| * always left free for 'flush all' entry which gets placed when |
| * there is not enough space to put all the requested entries. |
| */ |
| u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1]; |
| u64 *tlb_flush_entries; |
| u64 valid_bank_mask; |
| struct kvm_vcpu *v; |
| unsigned long i; |
| bool all_cpus; |
| |
| /* |
| * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS |
| * sparse banks. Fail the build if KVM's max allowed number of |
| * vCPUs (>4096) exceeds this limit. |
| */ |
| BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS); |
| |
| /* |
| * 'Slow' hypercall's first parameter is the address in guest's memory |
| * where hypercall parameters are placed. This is either a GPA or a |
| * nested GPA when KVM is handling the call from L2 ('direct' TLB |
| * flush). Translate the address here so the memory can be uniformly |
| * read with kvm_read_guest(). |
| */ |
| if (!hc->fast && is_guest_mode(vcpu)) { |
| hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL); |
| if (unlikely(hc->ingpa == INVALID_GPA)) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| } |
| |
| if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST || |
| hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) { |
| if (hc->fast) { |
| flush.address_space = hc->ingpa; |
| flush.flags = hc->outgpa; |
| flush.processor_mask = sse128_lo(hc->xmm[0]); |
| hc->consumed_xmm_halves = 1; |
| } else { |
| if (unlikely(kvm_read_guest(kvm, hc->ingpa, |
| &flush, sizeof(flush)))) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| hc->data_offset = sizeof(flush); |
| } |
| |
| trace_kvm_hv_flush_tlb(flush.processor_mask, |
| flush.address_space, flush.flags, |
| is_guest_mode(vcpu)); |
| |
| valid_bank_mask = BIT_ULL(0); |
| sparse_banks[0] = flush.processor_mask; |
| |
| /* |
| * Work around possible WS2012 bug: it sends hypercalls |
| * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear, |
| * while also expecting us to flush something and crashing if |
| * we don't. Let's treat processor_mask == 0 same as |
| * HV_FLUSH_ALL_PROCESSORS. |
| */ |
| all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) || |
| flush.processor_mask == 0; |
| } else { |
| if (hc->fast) { |
| flush_ex.address_space = hc->ingpa; |
| flush_ex.flags = hc->outgpa; |
| memcpy(&flush_ex.hv_vp_set, |
| &hc->xmm[0], sizeof(hc->xmm[0])); |
| hc->consumed_xmm_halves = 2; |
| } else { |
| if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex, |
| sizeof(flush_ex)))) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| hc->data_offset = sizeof(flush_ex); |
| } |
| |
| trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask, |
| flush_ex.hv_vp_set.format, |
| flush_ex.address_space, |
| flush_ex.flags, is_guest_mode(vcpu)); |
| |
| valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask; |
| all_cpus = flush_ex.hv_vp_set.format != |
| HV_GENERIC_SET_SPARSE_4K; |
| |
| if (hc->var_cnt != hweight64(valid_bank_mask)) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| |
| if (!all_cpus) { |
| if (!hc->var_cnt) |
| goto ret_success; |
| |
| if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks)) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| } |
| |
| /* |
| * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU |
| * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs' |
| * case (HV_GENERIC_SET_ALL). Always adjust data_offset and |
| * consumed_xmm_halves to make sure TLB flush entries are read |
| * from the correct offset. |
| */ |
| if (hc->fast) |
| hc->consumed_xmm_halves += hc->var_cnt; |
| else |
| hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]); |
| } |
| |
| if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE || |
| hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX || |
| hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) { |
| tlb_flush_entries = NULL; |
| } else { |
| if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries)) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| tlb_flush_entries = __tlb_flush_entries; |
| } |
| |
| /* |
| * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't |
| * analyze it here, flush TLB regardless of the specified address space. |
| */ |
| if (all_cpus && !is_guest_mode(vcpu)) { |
| kvm_for_each_vcpu(i, v, kvm) { |
| tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false); |
| hv_tlb_flush_enqueue(v, tlb_flush_fifo, |
| tlb_flush_entries, hc->rep_cnt); |
| } |
| |
| kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH); |
| } else if (!is_guest_mode(vcpu)) { |
| sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask); |
| |
| for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) { |
| v = kvm_get_vcpu(kvm, i); |
| if (!v) |
| continue; |
| tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false); |
| hv_tlb_flush_enqueue(v, tlb_flush_fifo, |
| tlb_flush_entries, hc->rep_cnt); |
| } |
| |
| kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask); |
| } else { |
| struct kvm_vcpu_hv *hv_v; |
| |
| bitmap_zero(vcpu_mask, KVM_MAX_VCPUS); |
| |
| kvm_for_each_vcpu(i, v, kvm) { |
| hv_v = to_hv_vcpu(v); |
| |
| /* |
| * The following check races with nested vCPUs entering/exiting |
| * and/or migrating between L1's vCPUs, however the only case when |
| * KVM *must* flush the TLB is when the target L2 vCPU keeps |
| * running on the same L1 vCPU from the moment of the request until |
| * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other |
| * cases, e.g. when the target L2 vCPU migrates to a different L1 |
| * vCPU or when the corresponding L1 vCPU temporary switches to a |
| * different L2 vCPU while the request is being processed. |
| */ |
| if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id) |
| continue; |
| |
| if (!all_cpus && |
| !hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask, |
| sparse_banks)) |
| continue; |
| |
| __set_bit(i, vcpu_mask); |
| tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true); |
| hv_tlb_flush_enqueue(v, tlb_flush_fifo, |
| tlb_flush_entries, hc->rep_cnt); |
| } |
| |
| kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask); |
| } |
| |
| ret_success: |
| /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */ |
| return (u64)HV_STATUS_SUCCESS | |
| ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET); |
| } |
| |
| static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector, |
| u64 *sparse_banks, u64 valid_bank_mask) |
| { |
| struct kvm_lapic_irq irq = { |
| .delivery_mode = APIC_DM_FIXED, |
| .vector = vector |
| }; |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (sparse_banks && |
| !hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu), |
| valid_bank_mask, sparse_banks)) |
| continue; |
| |
| /* We fail only when APIC is disabled */ |
| kvm_apic_set_irq(vcpu, &irq, NULL); |
| } |
| } |
| |
| static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) |
| { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| u64 *sparse_banks = hv_vcpu->sparse_banks; |
| struct kvm *kvm = vcpu->kvm; |
| struct hv_send_ipi_ex send_ipi_ex; |
| struct hv_send_ipi send_ipi; |
| u64 valid_bank_mask; |
| u32 vector; |
| bool all_cpus; |
| |
| if (hc->code == HVCALL_SEND_IPI) { |
| if (!hc->fast) { |
| if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi, |
| sizeof(send_ipi)))) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| sparse_banks[0] = send_ipi.cpu_mask; |
| vector = send_ipi.vector; |
| } else { |
| /* 'reserved' part of hv_send_ipi should be 0 */ |
| if (unlikely(hc->ingpa >> 32 != 0)) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| sparse_banks[0] = hc->outgpa; |
| vector = (u32)hc->ingpa; |
| } |
| all_cpus = false; |
| valid_bank_mask = BIT_ULL(0); |
| |
| trace_kvm_hv_send_ipi(vector, sparse_banks[0]); |
| } else { |
| if (!hc->fast) { |
| if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex, |
| sizeof(send_ipi_ex)))) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| } else { |
| send_ipi_ex.vector = (u32)hc->ingpa; |
| send_ipi_ex.vp_set.format = hc->outgpa; |
| send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]); |
| } |
| |
| trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector, |
| send_ipi_ex.vp_set.format, |
| send_ipi_ex.vp_set.valid_bank_mask); |
| |
| vector = send_ipi_ex.vector; |
| valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask; |
| all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL; |
| |
| if (hc->var_cnt != hweight64(valid_bank_mask)) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| |
| if (all_cpus) |
| goto check_and_send_ipi; |
| |
| if (!hc->var_cnt) |
| goto ret_success; |
| |
| if (!hc->fast) |
| hc->data_offset = offsetof(struct hv_send_ipi_ex, |
| vp_set.bank_contents); |
| else |
| hc->consumed_xmm_halves = 1; |
| |
| if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks)) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| } |
| |
| check_and_send_ipi: |
| if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR)) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| |
| if (all_cpus) |
| kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0); |
| else |
| kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask); |
| |
| ret_success: |
| return HV_STATUS_SUCCESS; |
| } |
| |
| void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled) |
| { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| struct kvm_cpuid_entry2 *entry; |
| |
| vcpu->arch.hyperv_enabled = hyperv_enabled; |
| |
| if (!hv_vcpu) { |
| /* |
| * KVM should have already allocated kvm_vcpu_hv if Hyper-V is |
| * enabled in CPUID. |
| */ |
| WARN_ON_ONCE(vcpu->arch.hyperv_enabled); |
| return; |
| } |
| |
| memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache)); |
| |
| if (!vcpu->arch.hyperv_enabled) |
| return; |
| |
| entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES); |
| if (entry) { |
| hv_vcpu->cpuid_cache.features_eax = entry->eax; |
| hv_vcpu->cpuid_cache.features_ebx = entry->ebx; |
| hv_vcpu->cpuid_cache.features_edx = entry->edx; |
| } |
| |
| entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO); |
| if (entry) { |
| hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax; |
| hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx; |
| } |
| |
| entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); |
| if (entry) |
| hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax; |
| |
| entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES); |
| if (entry) { |
| hv_vcpu->cpuid_cache.nested_eax = entry->eax; |
| hv_vcpu->cpuid_cache.nested_ebx = entry->ebx; |
| } |
| } |
| |
| int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce) |
| { |
| struct kvm_vcpu_hv *hv_vcpu; |
| int ret = 0; |
| |
| if (!to_hv_vcpu(vcpu)) { |
| if (enforce) { |
| ret = kvm_hv_vcpu_init(vcpu); |
| if (ret) |
| return ret; |
| } else { |
| return 0; |
| } |
| } |
| |
| hv_vcpu = to_hv_vcpu(vcpu); |
| hv_vcpu->enforce_cpuid = enforce; |
| |
| return ret; |
| } |
| |
| static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) |
| { |
| bool longmode; |
| |
| longmode = is_64_bit_hypercall(vcpu); |
| if (longmode) |
| kvm_rax_write(vcpu, result); |
| else { |
| kvm_rdx_write(vcpu, result >> 32); |
| kvm_rax_write(vcpu, result & 0xffffffff); |
| } |
| } |
| |
| static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result) |
| { |
| u32 tlb_lock_count = 0; |
| int ret; |
| |
| if (hv_result_success(result) && is_guest_mode(vcpu) && |
| kvm_hv_is_tlb_flush_hcall(vcpu) && |
| kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa, |
| &tlb_lock_count, sizeof(tlb_lock_count))) |
| result = HV_STATUS_INVALID_HYPERCALL_INPUT; |
| |
| trace_kvm_hv_hypercall_done(result); |
| kvm_hv_hypercall_set_result(vcpu, result); |
| ++vcpu->stat.hypercalls; |
| |
| ret = kvm_skip_emulated_instruction(vcpu); |
| |
| if (tlb_lock_count) |
| kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu); |
| |
| return ret; |
| } |
| |
| static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu) |
| { |
| return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result); |
| } |
| |
| static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) |
| { |
| struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); |
| struct eventfd_ctx *eventfd; |
| |
| if (unlikely(!hc->fast)) { |
| int ret; |
| gpa_t gpa = hc->ingpa; |
| |
| if ((gpa & (__alignof__(hc->ingpa) - 1)) || |
| offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE) |
| return HV_STATUS_INVALID_ALIGNMENT; |
| |
| ret = kvm_vcpu_read_guest(vcpu, gpa, |
| &hc->ingpa, sizeof(hc->ingpa)); |
| if (ret < 0) |
| return HV_STATUS_INVALID_ALIGNMENT; |
| } |
| |
| /* |
| * Per spec, bits 32-47 contain the extra "flag number". However, we |
| * have no use for it, and in all known usecases it is zero, so just |
| * report lookup failure if it isn't. |
| */ |
| if (hc->ingpa & 0xffff00000000ULL) |
| return HV_STATUS_INVALID_PORT_ID; |
| /* remaining bits are reserved-zero */ |
| if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK) |
| return HV_STATUS_INVALID_HYPERCALL_INPUT; |
| |
| /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */ |
| rcu_read_lock(); |
| eventfd = idr_find(&hv->conn_to_evt, hc->ingpa); |
| rcu_read_unlock(); |
| if (!eventfd) |
| return HV_STATUS_INVALID_PORT_ID; |
| |
| eventfd_signal(eventfd, 1); |
| return HV_STATUS_SUCCESS; |
| } |
| |
| static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc) |
| { |
| switch (hc->code) { |
| case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: |
| case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: |
| case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: |
| case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: |
| case HVCALL_SEND_IPI_EX: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc) |
| { |
| int reg; |
| |
| kvm_fpu_get(); |
| for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++) |
| _kvm_read_sse_reg(reg, &hc->xmm[reg]); |
| kvm_fpu_put(); |
| } |
| |
| static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code) |
| { |
| if (!hv_vcpu->enforce_cpuid) |
| return true; |
| |
| switch (code) { |
| case HVCALL_NOTIFY_LONG_SPIN_WAIT: |
| return hv_vcpu->cpuid_cache.enlightenments_ebx && |
| hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX; |
| case HVCALL_POST_MESSAGE: |
| return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES; |
| case HVCALL_SIGNAL_EVENT: |
| return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS; |
| case HVCALL_POST_DEBUG_DATA: |
| case HVCALL_RETRIEVE_DEBUG_DATA: |
| case HVCALL_RESET_DEBUG_SESSION: |
| /* |
| * Return 'true' when SynDBG is disabled so the resulting code |
| * will be HV_STATUS_INVALID_HYPERCALL_CODE. |
| */ |
| return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) || |
| hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING; |
| case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: |
| case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: |
| if (!(hv_vcpu->cpuid_cache.enlightenments_eax & |
| HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) |
| return false; |
| fallthrough; |
| case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: |
| case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: |
| return hv_vcpu->cpuid_cache.enlightenments_eax & |
| HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; |
| case HVCALL_SEND_IPI_EX: |
| if (!(hv_vcpu->cpuid_cache.enlightenments_eax & |
| HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) |
| return false; |
| fallthrough; |
| case HVCALL_SEND_IPI: |
| return hv_vcpu->cpuid_cache.enlightenments_eax & |
| HV_X64_CLUSTER_IPI_RECOMMENDED; |
| case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX: |
| return hv_vcpu->cpuid_cache.features_ebx & |
| HV_ENABLE_EXTENDED_HYPERCALLS; |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| int kvm_hv_hypercall(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| struct kvm_hv_hcall hc; |
| u64 ret = HV_STATUS_SUCCESS; |
| |
| /* |
| * hypercall generates UD from non zero cpl and real mode |
| * per HYPER-V spec |
| */ |
| if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| if (is_64_bit_hypercall(vcpu)) { |
| hc.param = kvm_rcx_read(vcpu); |
| hc.ingpa = kvm_rdx_read(vcpu); |
| hc.outgpa = kvm_r8_read(vcpu); |
| } else |
| #endif |
| { |
| hc.param = ((u64)kvm_rdx_read(vcpu) << 32) | |
| (kvm_rax_read(vcpu) & 0xffffffff); |
| hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) | |
| (kvm_rcx_read(vcpu) & 0xffffffff); |
| hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) | |
| (kvm_rsi_read(vcpu) & 0xffffffff); |
| } |
| |
| hc.code = hc.param & 0xffff; |
| hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET; |
| hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT); |
| hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff; |
| hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff; |
| hc.rep = !!(hc.rep_cnt || hc.rep_idx); |
| |
| trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt, |
| hc.rep_idx, hc.ingpa, hc.outgpa); |
| |
| if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) { |
| ret = HV_STATUS_ACCESS_DENIED; |
| goto hypercall_complete; |
| } |
| |
| if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) { |
| ret = HV_STATUS_INVALID_HYPERCALL_INPUT; |
| goto hypercall_complete; |
| } |
| |
| if (hc.fast && is_xmm_fast_hypercall(&hc)) { |
| if (unlikely(hv_vcpu->enforce_cpuid && |
| !(hv_vcpu->cpuid_cache.features_edx & |
| HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| kvm_hv_hypercall_read_xmm(&hc); |
| } |
| |
| switch (hc.code) { |
| case HVCALL_NOTIFY_LONG_SPIN_WAIT: |
| if (unlikely(hc.rep || hc.var_cnt)) { |
| ret = HV_STATUS_INVALID_HYPERCALL_INPUT; |
| break; |
| } |
| kvm_vcpu_on_spin(vcpu, true); |
| break; |
| case HVCALL_SIGNAL_EVENT: |
| if (unlikely(hc.rep || hc.var_cnt)) { |
| ret = HV_STATUS_INVALID_HYPERCALL_INPUT; |
| break; |
| } |
| ret = kvm_hvcall_signal_event(vcpu, &hc); |
| if (ret != HV_STATUS_INVALID_PORT_ID) |
| break; |
| fallthrough; /* maybe userspace knows this conn_id */ |
| case HVCALL_POST_MESSAGE: |
| /* don't bother userspace if it has no way to handle it */ |
| if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) { |
| ret = HV_STATUS_INVALID_HYPERCALL_INPUT; |
| break; |
| } |
| goto hypercall_userspace_exit; |
| case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: |
| if (unlikely(hc.var_cnt)) { |
| ret = HV_STATUS_INVALID_HYPERCALL_INPUT; |
| break; |
| } |
| fallthrough; |
| case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: |
| if (unlikely(!hc.rep_cnt || hc.rep_idx)) { |
| ret = HV_STATUS_INVALID_HYPERCALL_INPUT; |
| break; |
| } |
| ret = kvm_hv_flush_tlb(vcpu, &hc); |
| break; |
| case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: |
| if (unlikely(hc.var_cnt)) { |
| ret = HV_STATUS_INVALID_HYPERCALL_INPUT; |
| break; |
| } |
| fallthrough; |
| case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: |
| if (unlikely(hc.rep)) { |
| ret = HV_STATUS_INVALID_HYPERCALL_INPUT; |
| break; |
| } |
| ret = kvm_hv_flush_tlb(vcpu, &hc); |
| break; |
| case HVCALL_SEND_IPI: |
| if (unlikely(hc.var_cnt)) { |
| ret = HV_STATUS_INVALID_HYPERCALL_INPUT; |
| break; |
| } |
| fallthrough; |
| case HVCALL_SEND_IPI_EX: |
| if (unlikely(hc.rep)) { |
| ret = HV_STATUS_INVALID_HYPERCALL_INPUT; |
| break; |
| } |
| ret = kvm_hv_send_ipi(vcpu, &hc); |
| break; |
| case HVCALL_POST_DEBUG_DATA: |
| case HVCALL_RETRIEVE_DEBUG_DATA: |
| if (unlikely(hc.fast)) { |
| ret = HV_STATUS_INVALID_PARAMETER; |
| break; |
| } |
| fallthrough; |
| case HVCALL_RESET_DEBUG_SESSION: { |
| struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); |
| |
| if (!kvm_hv_is_syndbg_enabled(vcpu)) { |
| ret = HV_STATUS_INVALID_HYPERCALL_CODE; |
| break; |
| } |
| |
| if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) { |
| ret = HV_STATUS_OPERATION_DENIED; |
| break; |
| } |
| goto hypercall_userspace_exit; |
| } |
| case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX: |
| if (unlikely(hc.fast)) { |
| ret = HV_STATUS_INVALID_PARAMETER; |
| break; |
| } |
| goto hypercall_userspace_exit; |
| default: |
| ret = HV_STATUS_INVALID_HYPERCALL_CODE; |
| break; |
| } |
| |
| hypercall_complete: |
| return kvm_hv_hypercall_complete(vcpu, ret); |
| |
| hypercall_userspace_exit: |
| vcpu->run->exit_reason = KVM_EXIT_HYPERV; |
| vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL; |
| vcpu->run->hyperv.u.hcall.input = hc.param; |
| vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa; |
| vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa; |
| vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace; |
| return 0; |
| } |
| |
| void kvm_hv_init_vm(struct kvm *kvm) |
| { |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| |
| mutex_init(&hv->hv_lock); |
| idr_init(&hv->conn_to_evt); |
| } |
| |
| void kvm_hv_destroy_vm(struct kvm *kvm) |
| { |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| struct eventfd_ctx *eventfd; |
| int i; |
| |
| idr_for_each_entry(&hv->conn_to_evt, eventfd, i) |
| eventfd_ctx_put(eventfd); |
| idr_destroy(&hv->conn_to_evt); |
| } |
| |
| static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd) |
| { |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| struct eventfd_ctx *eventfd; |
| int ret; |
| |
| eventfd = eventfd_ctx_fdget(fd); |
| if (IS_ERR(eventfd)) |
| return PTR_ERR(eventfd); |
| |
| mutex_lock(&hv->hv_lock); |
| ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1, |
| GFP_KERNEL_ACCOUNT); |
| mutex_unlock(&hv->hv_lock); |
| |
| if (ret >= 0) |
| return 0; |
| |
| if (ret == -ENOSPC) |
| ret = -EEXIST; |
| eventfd_ctx_put(eventfd); |
| return ret; |
| } |
| |
| static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id) |
| { |
| struct kvm_hv *hv = to_kvm_hv(kvm); |
| struct eventfd_ctx *eventfd; |
| |
| mutex_lock(&hv->hv_lock); |
| eventfd = idr_remove(&hv->conn_to_evt, conn_id); |
| mutex_unlock(&hv->hv_lock); |
| |
| if (!eventfd) |
| return -ENOENT; |
| |
| synchronize_srcu(&kvm->srcu); |
| eventfd_ctx_put(eventfd); |
| return 0; |
| } |
| |
| int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args) |
| { |
| if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) || |
| (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK)) |
| return -EINVAL; |
| |
| if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN) |
| return kvm_hv_eventfd_deassign(kvm, args->conn_id); |
| return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd); |
| } |
| |
| int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| uint16_t evmcs_ver = 0; |
| struct kvm_cpuid_entry2 cpuid_entries[] = { |
| { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS }, |
| { .function = HYPERV_CPUID_INTERFACE }, |
| { .function = HYPERV_CPUID_VERSION }, |
| { .function = HYPERV_CPUID_FEATURES }, |
| { .function = HYPERV_CPUID_ENLIGHTMENT_INFO }, |
| { .function = HYPERV_CPUID_IMPLEMENT_LIMITS }, |
| { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS }, |
| { .function = HYPERV_CPUID_SYNDBG_INTERFACE }, |
| { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES }, |
| { .function = HYPERV_CPUID_NESTED_FEATURES }, |
| }; |
| int i, nent = ARRAY_SIZE(cpuid_entries); |
| |
| if (kvm_x86_ops.nested_ops->get_evmcs_version) |
| evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu); |
| |
| if (cpuid->nent < nent) |
| return -E2BIG; |
| |
| if (cpuid->nent > nent) |
| cpuid->nent = nent; |
| |
| for (i = 0; i < nent; i++) { |
| struct kvm_cpuid_entry2 *ent = &cpuid_entries[i]; |
| u32 signature[3]; |
| |
| switch (ent->function) { |
| case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS: |
| memcpy(signature, "Linux KVM Hv", 12); |
| |
| ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; |
| ent->ebx = signature[0]; |
| ent->ecx = signature[1]; |
| ent->edx = signature[2]; |
| break; |
| |
| case HYPERV_CPUID_INTERFACE: |
| ent->eax = HYPERV_CPUID_SIGNATURE_EAX; |
| break; |
| |
| case HYPERV_CPUID_VERSION: |
| /* |
| * We implement some Hyper-V 2016 functions so let's use |
| * this version. |
| */ |
| ent->eax = 0x00003839; |
| ent->ebx = 0x000A0000; |
| break; |
| |
| case HYPERV_CPUID_FEATURES: |
| ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE; |
| ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE; |
| ent->eax |= HV_MSR_SYNIC_AVAILABLE; |
| ent->eax |= HV_MSR_SYNTIMER_AVAILABLE; |
| ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE; |
| ent->eax |= HV_MSR_HYPERCALL_AVAILABLE; |
| ent->eax |= HV_MSR_VP_INDEX_AVAILABLE; |
| ent->eax |= HV_MSR_RESET_AVAILABLE; |
| ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE; |
| ent->eax |= HV_ACCESS_FREQUENCY_MSRS; |
| ent->eax |= HV_ACCESS_REENLIGHTENMENT; |
| ent->eax |= HV_ACCESS_TSC_INVARIANT; |
| |
| ent->ebx |= HV_POST_MESSAGES; |
| ent->ebx |= HV_SIGNAL_EVENTS; |
| ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS; |
| |
| ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE; |
| ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE; |
| ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; |
| |
| ent->ebx |= HV_DEBUGGING; |
| ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE; |
| ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; |
| ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH; |
| |
| /* |
| * Direct Synthetic timers only make sense with in-kernel |
| * LAPIC |
| */ |
| if (!vcpu || lapic_in_kernel(vcpu)) |
| ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE; |
| |
| break; |
| |
| case HYPERV_CPUID_ENLIGHTMENT_INFO: |
| ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; |
| ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; |
| ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; |
| ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED; |
| ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED; |
| if (evmcs_ver) |
| ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; |
| if (!cpu_smt_possible()) |
| ent->eax |= HV_X64_NO_NONARCH_CORESHARING; |
| |
| ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED; |
| /* |
| * Default number of spinlock retry attempts, matches |
| * HyperV 2016. |
| */ |
| ent->ebx = 0x00000FFF; |
| |
| break; |
| |
| case HYPERV_CPUID_IMPLEMENT_LIMITS: |
| /* Maximum number of virtual processors */ |
| ent->eax = KVM_MAX_VCPUS; |
| /* |
| * Maximum number of logical processors, matches |
| * HyperV 2016. |
| */ |
| ent->ebx = 64; |
| |
| break; |
| |
| case HYPERV_CPUID_NESTED_FEATURES: |
| ent->eax = evmcs_ver; |
| ent->eax |= HV_X64_NESTED_DIRECT_FLUSH; |
| ent->eax |= HV_X64_NESTED_MSR_BITMAP; |
| ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL; |
| break; |
| |
| case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS: |
| memcpy(signature, "Linux KVM Hv", 12); |
| |
| ent->eax = 0; |
| ent->ebx = signature[0]; |
| ent->ecx = signature[1]; |
| ent->edx = signature[2]; |
| break; |
| |
| case HYPERV_CPUID_SYNDBG_INTERFACE: |
| memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); |
| ent->eax = signature[0]; |
| break; |
| |
| case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES: |
| ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| if (copy_to_user(entries, cpuid_entries, |
| nent * sizeof(struct kvm_cpuid_entry2))) |
| return -EFAULT; |
| |
| return 0; |
| } |