| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * CPPC (Collaborative Processor Performance Control) driver for |
| * interfacing with the CPUfreq layer and governors. See |
| * cppc_acpi.c for CPPC specific methods. |
| * |
| * (C) Copyright 2014, 2015 Linaro Ltd. |
| * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> |
| */ |
| |
| #define pr_fmt(fmt) "CPPC Cpufreq:" fmt |
| |
| #include <linux/arch_topology.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/dmi.h> |
| #include <linux/irq_work.h> |
| #include <linux/kthread.h> |
| #include <linux/time.h> |
| #include <linux/vmalloc.h> |
| #include <uapi/linux/sched/types.h> |
| |
| #include <asm/unaligned.h> |
| |
| #include <acpi/cppc_acpi.h> |
| |
| /* Minimum struct length needed for the DMI processor entry we want */ |
| #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48 |
| |
| /* Offset in the DMI processor structure for the max frequency */ |
| #define DMI_PROCESSOR_MAX_SPEED 0x14 |
| |
| /* |
| * This list contains information parsed from per CPU ACPI _CPC and _PSD |
| * structures: e.g. the highest and lowest supported performance, capabilities, |
| * desired performance, level requested etc. Depending on the share_type, not |
| * all CPUs will have an entry in the list. |
| */ |
| static LIST_HEAD(cpu_data_list); |
| |
| static bool boost_supported; |
| |
| struct cppc_workaround_oem_info { |
| char oem_id[ACPI_OEM_ID_SIZE + 1]; |
| char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; |
| u32 oem_revision; |
| }; |
| |
| static struct cppc_workaround_oem_info wa_info[] = { |
| { |
| .oem_id = "HISI ", |
| .oem_table_id = "HIP07 ", |
| .oem_revision = 0, |
| }, { |
| .oem_id = "HISI ", |
| .oem_table_id = "HIP08 ", |
| .oem_revision = 0, |
| } |
| }; |
| |
| static struct cpufreq_driver cppc_cpufreq_driver; |
| |
| static enum { |
| FIE_UNSET = -1, |
| FIE_ENABLED, |
| FIE_DISABLED |
| } fie_disabled = FIE_UNSET; |
| |
| #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE |
| module_param(fie_disabled, int, 0444); |
| MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)"); |
| |
| /* Frequency invariance support */ |
| struct cppc_freq_invariance { |
| int cpu; |
| struct irq_work irq_work; |
| struct kthread_work work; |
| struct cppc_perf_fb_ctrs prev_perf_fb_ctrs; |
| struct cppc_cpudata *cpu_data; |
| }; |
| |
| static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv); |
| static struct kthread_worker *kworker_fie; |
| |
| static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu); |
| static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, |
| struct cppc_perf_fb_ctrs *fb_ctrs_t0, |
| struct cppc_perf_fb_ctrs *fb_ctrs_t1); |
| |
| /** |
| * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance |
| * @work: The work item. |
| * |
| * The CPPC driver register itself with the topology core to provide its own |
| * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which |
| * gets called by the scheduler on every tick. |
| * |
| * Note that the arch specific counters have higher priority than CPPC counters, |
| * if available, though the CPPC driver doesn't need to have any special |
| * handling for that. |
| * |
| * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we |
| * reach here from hard-irq context), which then schedules a normal work item |
| * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable |
| * based on the counter updates since the last tick. |
| */ |
| static void cppc_scale_freq_workfn(struct kthread_work *work) |
| { |
| struct cppc_freq_invariance *cppc_fi; |
| struct cppc_perf_fb_ctrs fb_ctrs = {0}; |
| struct cppc_cpudata *cpu_data; |
| unsigned long local_freq_scale; |
| u64 perf; |
| |
| cppc_fi = container_of(work, struct cppc_freq_invariance, work); |
| cpu_data = cppc_fi->cpu_data; |
| |
| if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) { |
| pr_warn("%s: failed to read perf counters\n", __func__); |
| return; |
| } |
| |
| perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs, |
| &fb_ctrs); |
| cppc_fi->prev_perf_fb_ctrs = fb_ctrs; |
| |
| perf <<= SCHED_CAPACITY_SHIFT; |
| local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf); |
| |
| /* This can happen due to counter's overflow */ |
| if (unlikely(local_freq_scale > 1024)) |
| local_freq_scale = 1024; |
| |
| per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale; |
| } |
| |
| static void cppc_irq_work(struct irq_work *irq_work) |
| { |
| struct cppc_freq_invariance *cppc_fi; |
| |
| cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work); |
| kthread_queue_work(kworker_fie, &cppc_fi->work); |
| } |
| |
| static void cppc_scale_freq_tick(void) |
| { |
| struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id()); |
| |
| /* |
| * cppc_get_perf_ctrs() can potentially sleep, call that from the right |
| * context. |
| */ |
| irq_work_queue(&cppc_fi->irq_work); |
| } |
| |
| static struct scale_freq_data cppc_sftd = { |
| .source = SCALE_FREQ_SOURCE_CPPC, |
| .set_freq_scale = cppc_scale_freq_tick, |
| }; |
| |
| static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) |
| { |
| struct cppc_freq_invariance *cppc_fi; |
| int cpu, ret; |
| |
| if (fie_disabled) |
| return; |
| |
| for_each_cpu(cpu, policy->cpus) { |
| cppc_fi = &per_cpu(cppc_freq_inv, cpu); |
| cppc_fi->cpu = cpu; |
| cppc_fi->cpu_data = policy->driver_data; |
| kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn); |
| init_irq_work(&cppc_fi->irq_work, cppc_irq_work); |
| |
| ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs); |
| if (ret) { |
| pr_warn("%s: failed to read perf counters for cpu:%d: %d\n", |
| __func__, cpu, ret); |
| |
| /* |
| * Don't abort if the CPU was offline while the driver |
| * was getting registered. |
| */ |
| if (cpu_online(cpu)) |
| return; |
| } |
| } |
| |
| /* Register for freq-invariance */ |
| topology_set_scale_freq_source(&cppc_sftd, policy->cpus); |
| } |
| |
| /* |
| * We free all the resources on policy's removal and not on CPU removal as the |
| * irq-work are per-cpu and the hotplug core takes care of flushing the pending |
| * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work |
| * fires on another CPU after the concerned CPU is removed, it won't harm. |
| * |
| * We just need to make sure to remove them all on policy->exit(). |
| */ |
| static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) |
| { |
| struct cppc_freq_invariance *cppc_fi; |
| int cpu; |
| |
| if (fie_disabled) |
| return; |
| |
| /* policy->cpus will be empty here, use related_cpus instead */ |
| topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus); |
| |
| for_each_cpu(cpu, policy->related_cpus) { |
| cppc_fi = &per_cpu(cppc_freq_inv, cpu); |
| irq_work_sync(&cppc_fi->irq_work); |
| kthread_cancel_work_sync(&cppc_fi->work); |
| } |
| } |
| |
| static void __init cppc_freq_invariance_init(void) |
| { |
| struct sched_attr attr = { |
| .size = sizeof(struct sched_attr), |
| .sched_policy = SCHED_DEADLINE, |
| .sched_nice = 0, |
| .sched_priority = 0, |
| /* |
| * Fake (unused) bandwidth; workaround to "fix" |
| * priority inheritance. |
| */ |
| .sched_runtime = 1000000, |
| .sched_deadline = 10000000, |
| .sched_period = 10000000, |
| }; |
| int ret; |
| |
| if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) { |
| fie_disabled = FIE_ENABLED; |
| if (cppc_perf_ctrs_in_pcc()) { |
| pr_info("FIE not enabled on systems with registers in PCC\n"); |
| fie_disabled = FIE_DISABLED; |
| } |
| } |
| |
| if (fie_disabled) |
| return; |
| |
| kworker_fie = kthread_create_worker(0, "cppc_fie"); |
| if (IS_ERR(kworker_fie)) { |
| pr_warn("%s: failed to create kworker_fie: %ld\n", __func__, |
| PTR_ERR(kworker_fie)); |
| fie_disabled = FIE_DISABLED; |
| return; |
| } |
| |
| ret = sched_setattr_nocheck(kworker_fie->task, &attr); |
| if (ret) { |
| pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__, |
| ret); |
| kthread_destroy_worker(kworker_fie); |
| fie_disabled = FIE_DISABLED; |
| } |
| } |
| |
| static void cppc_freq_invariance_exit(void) |
| { |
| if (fie_disabled) |
| return; |
| |
| kthread_destroy_worker(kworker_fie); |
| } |
| |
| #else |
| static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) |
| { |
| } |
| |
| static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) |
| { |
| } |
| |
| static inline void cppc_freq_invariance_init(void) |
| { |
| } |
| |
| static inline void cppc_freq_invariance_exit(void) |
| { |
| } |
| #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */ |
| |
| /* Callback function used to retrieve the max frequency from DMI */ |
| static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private) |
| { |
| const u8 *dmi_data = (const u8 *)dm; |
| u16 *mhz = (u16 *)private; |
| |
| if (dm->type == DMI_ENTRY_PROCESSOR && |
| dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) { |
| u16 val = (u16)get_unaligned((const u16 *) |
| (dmi_data + DMI_PROCESSOR_MAX_SPEED)); |
| *mhz = val > *mhz ? val : *mhz; |
| } |
| } |
| |
| /* Look up the max frequency in DMI */ |
| static u64 cppc_get_dmi_max_khz(void) |
| { |
| u16 mhz = 0; |
| |
| dmi_walk(cppc_find_dmi_mhz, &mhz); |
| |
| /* |
| * Real stupid fallback value, just in case there is no |
| * actual value set. |
| */ |
| mhz = mhz ? mhz : 1; |
| |
| return (1000 * mhz); |
| } |
| |
| /* |
| * If CPPC lowest_freq and nominal_freq registers are exposed then we can |
| * use them to convert perf to freq and vice versa. The conversion is |
| * extrapolated as an affine function passing by the 2 points: |
| * - (Low perf, Low freq) |
| * - (Nominal perf, Nominal perf) |
| */ |
| static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data, |
| unsigned int perf) |
| { |
| struct cppc_perf_caps *caps = &cpu_data->perf_caps; |
| s64 retval, offset = 0; |
| static u64 max_khz; |
| u64 mul, div; |
| |
| if (caps->lowest_freq && caps->nominal_freq) { |
| mul = caps->nominal_freq - caps->lowest_freq; |
| div = caps->nominal_perf - caps->lowest_perf; |
| offset = caps->nominal_freq - div64_u64(caps->nominal_perf * mul, div); |
| } else { |
| if (!max_khz) |
| max_khz = cppc_get_dmi_max_khz(); |
| mul = max_khz; |
| div = caps->highest_perf; |
| } |
| |
| retval = offset + div64_u64(perf * mul, div); |
| if (retval >= 0) |
| return retval; |
| return 0; |
| } |
| |
| static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data, |
| unsigned int freq) |
| { |
| struct cppc_perf_caps *caps = &cpu_data->perf_caps; |
| s64 retval, offset = 0; |
| static u64 max_khz; |
| u64 mul, div; |
| |
| if (caps->lowest_freq && caps->nominal_freq) { |
| mul = caps->nominal_perf - caps->lowest_perf; |
| div = caps->nominal_freq - caps->lowest_freq; |
| offset = caps->nominal_perf - div64_u64(caps->nominal_freq * mul, div); |
| } else { |
| if (!max_khz) |
| max_khz = cppc_get_dmi_max_khz(); |
| mul = caps->highest_perf; |
| div = max_khz; |
| } |
| |
| retval = offset + div64_u64(freq * mul, div); |
| if (retval >= 0) |
| return retval; |
| return 0; |
| } |
| |
| static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, |
| unsigned int target_freq, |
| unsigned int relation) |
| |
| { |
| struct cppc_cpudata *cpu_data = policy->driver_data; |
| unsigned int cpu = policy->cpu; |
| struct cpufreq_freqs freqs; |
| u32 desired_perf; |
| int ret = 0; |
| |
| desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq); |
| /* Return if it is exactly the same perf */ |
| if (desired_perf == cpu_data->perf_ctrls.desired_perf) |
| return ret; |
| |
| cpu_data->perf_ctrls.desired_perf = desired_perf; |
| freqs.old = policy->cur; |
| freqs.new = target_freq; |
| |
| cpufreq_freq_transition_begin(policy, &freqs); |
| ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); |
| cpufreq_freq_transition_end(policy, &freqs, ret != 0); |
| |
| if (ret) |
| pr_debug("Failed to set target on CPU:%d. ret:%d\n", |
| cpu, ret); |
| |
| return ret; |
| } |
| |
| static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy, |
| unsigned int target_freq) |
| { |
| struct cppc_cpudata *cpu_data = policy->driver_data; |
| unsigned int cpu = policy->cpu; |
| u32 desired_perf; |
| int ret; |
| |
| desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq); |
| cpu_data->perf_ctrls.desired_perf = desired_perf; |
| ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); |
| |
| if (ret) { |
| pr_debug("Failed to set target on CPU:%d. ret:%d\n", |
| cpu, ret); |
| return 0; |
| } |
| |
| return target_freq; |
| } |
| |
| static int cppc_verify_policy(struct cpufreq_policy_data *policy) |
| { |
| cpufreq_verify_within_cpu_limits(policy); |
| return 0; |
| } |
| |
| /* |
| * The PCC subspace describes the rate at which platform can accept commands |
| * on the shared PCC channel (including READs which do not count towards freq |
| * transition requests), so ideally we need to use the PCC values as a fallback |
| * if we don't have a platform specific transition_delay_us |
| */ |
| #ifdef CONFIG_ARM64 |
| #include <asm/cputype.h> |
| |
| static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) |
| { |
| unsigned long implementor = read_cpuid_implementor(); |
| unsigned long part_num = read_cpuid_part_number(); |
| |
| switch (implementor) { |
| case ARM_CPU_IMP_QCOM: |
| switch (part_num) { |
| case QCOM_CPU_PART_FALKOR_V1: |
| case QCOM_CPU_PART_FALKOR: |
| return 10000; |
| } |
| } |
| return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; |
| } |
| #else |
| static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) |
| { |
| return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; |
| } |
| #endif |
| |
| #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL) |
| |
| static DEFINE_PER_CPU(unsigned int, efficiency_class); |
| static void cppc_cpufreq_register_em(struct cpufreq_policy *policy); |
| |
| /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */ |
| #define CPPC_EM_CAP_STEP (20) |
| /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */ |
| #define CPPC_EM_COST_STEP (1) |
| /* Add a cost gap correspnding to the energy of 4 CPUs. */ |
| #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \ |
| / CPPC_EM_CAP_STEP) |
| |
| static unsigned int get_perf_level_count(struct cpufreq_policy *policy) |
| { |
| struct cppc_perf_caps *perf_caps; |
| unsigned int min_cap, max_cap; |
| struct cppc_cpudata *cpu_data; |
| int cpu = policy->cpu; |
| |
| cpu_data = policy->driver_data; |
| perf_caps = &cpu_data->perf_caps; |
| max_cap = arch_scale_cpu_capacity(cpu); |
| min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, |
| perf_caps->highest_perf); |
| if ((min_cap == 0) || (max_cap < min_cap)) |
| return 0; |
| return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP; |
| } |
| |
| /* |
| * The cost is defined as: |
| * cost = power * max_frequency / frequency |
| */ |
| static inline unsigned long compute_cost(int cpu, int step) |
| { |
| return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) + |
| step * CPPC_EM_COST_STEP; |
| } |
| |
| static int cppc_get_cpu_power(struct device *cpu_dev, |
| unsigned long *power, unsigned long *KHz) |
| { |
| unsigned long perf_step, perf_prev, perf, perf_check; |
| unsigned int min_step, max_step, step, step_check; |
| unsigned long prev_freq = *KHz; |
| unsigned int min_cap, max_cap; |
| struct cpufreq_policy *policy; |
| |
| struct cppc_perf_caps *perf_caps; |
| struct cppc_cpudata *cpu_data; |
| |
| policy = cpufreq_cpu_get_raw(cpu_dev->id); |
| cpu_data = policy->driver_data; |
| perf_caps = &cpu_data->perf_caps; |
| max_cap = arch_scale_cpu_capacity(cpu_dev->id); |
| min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, |
| perf_caps->highest_perf); |
| perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf, |
| max_cap); |
| min_step = min_cap / CPPC_EM_CAP_STEP; |
| max_step = max_cap / CPPC_EM_CAP_STEP; |
| |
| perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); |
| step = perf_prev / perf_step; |
| |
| if (step > max_step) |
| return -EINVAL; |
| |
| if (min_step == max_step) { |
| step = max_step; |
| perf = perf_caps->highest_perf; |
| } else if (step < min_step) { |
| step = min_step; |
| perf = perf_caps->lowest_perf; |
| } else { |
| step++; |
| if (step == max_step) |
| perf = perf_caps->highest_perf; |
| else |
| perf = step * perf_step; |
| } |
| |
| *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf); |
| perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); |
| step_check = perf_check / perf_step; |
| |
| /* |
| * To avoid bad integer approximation, check that new frequency value |
| * increased and that the new frequency will be converted to the |
| * desired step value. |
| */ |
| while ((*KHz == prev_freq) || (step_check != step)) { |
| perf++; |
| *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf); |
| perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); |
| step_check = perf_check / perf_step; |
| } |
| |
| /* |
| * With an artificial EM, only the cost value is used. Still the power |
| * is populated such as 0 < power < EM_MAX_POWER. This allows to add |
| * more sense to the artificial performance states. |
| */ |
| *power = compute_cost(cpu_dev->id, step); |
| |
| return 0; |
| } |
| |
| static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz, |
| unsigned long *cost) |
| { |
| unsigned long perf_step, perf_prev; |
| struct cppc_perf_caps *perf_caps; |
| struct cpufreq_policy *policy; |
| struct cppc_cpudata *cpu_data; |
| unsigned int max_cap; |
| int step; |
| |
| policy = cpufreq_cpu_get_raw(cpu_dev->id); |
| cpu_data = policy->driver_data; |
| perf_caps = &cpu_data->perf_caps; |
| max_cap = arch_scale_cpu_capacity(cpu_dev->id); |
| |
| perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, KHz); |
| perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap; |
| step = perf_prev / perf_step; |
| |
| *cost = compute_cost(cpu_dev->id, step); |
| |
| return 0; |
| } |
| |
| static int populate_efficiency_class(void) |
| { |
| struct acpi_madt_generic_interrupt *gicc; |
| DECLARE_BITMAP(used_classes, 256) = {}; |
| int class, cpu, index; |
| |
| for_each_possible_cpu(cpu) { |
| gicc = acpi_cpu_get_madt_gicc(cpu); |
| class = gicc->efficiency_class; |
| bitmap_set(used_classes, class, 1); |
| } |
| |
| if (bitmap_weight(used_classes, 256) <= 1) { |
| pr_debug("Efficiency classes are all equal (=%d). " |
| "No EM registered", class); |
| return -EINVAL; |
| } |
| |
| /* |
| * Squeeze efficiency class values on [0:#efficiency_class-1]. |
| * Values are per spec in [0:255]. |
| */ |
| index = 0; |
| for_each_set_bit(class, used_classes, 256) { |
| for_each_possible_cpu(cpu) { |
| gicc = acpi_cpu_get_madt_gicc(cpu); |
| if (gicc->efficiency_class == class) |
| per_cpu(efficiency_class, cpu) = index; |
| } |
| index++; |
| } |
| cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em; |
| |
| return 0; |
| } |
| |
| static void cppc_cpufreq_register_em(struct cpufreq_policy *policy) |
| { |
| struct cppc_cpudata *cpu_data; |
| struct em_data_callback em_cb = |
| EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost); |
| |
| cpu_data = policy->driver_data; |
| em_dev_register_perf_domain(get_cpu_device(policy->cpu), |
| get_perf_level_count(policy), &em_cb, |
| cpu_data->shared_cpu_map, 0); |
| } |
| |
| #else |
| static int populate_efficiency_class(void) |
| { |
| return 0; |
| } |
| #endif |
| |
| static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu) |
| { |
| struct cppc_cpudata *cpu_data; |
| int ret; |
| |
| cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); |
| if (!cpu_data) |
| goto out; |
| |
| if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL)) |
| goto free_cpu; |
| |
| ret = acpi_get_psd_map(cpu, cpu_data); |
| if (ret) { |
| pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret); |
| goto free_mask; |
| } |
| |
| ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps); |
| if (ret) { |
| pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret); |
| goto free_mask; |
| } |
| |
| /* Convert the lowest and nominal freq from MHz to KHz */ |
| cpu_data->perf_caps.lowest_freq *= 1000; |
| cpu_data->perf_caps.nominal_freq *= 1000; |
| |
| list_add(&cpu_data->node, &cpu_data_list); |
| |
| return cpu_data; |
| |
| free_mask: |
| free_cpumask_var(cpu_data->shared_cpu_map); |
| free_cpu: |
| kfree(cpu_data); |
| out: |
| return NULL; |
| } |
| |
| static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy) |
| { |
| struct cppc_cpudata *cpu_data = policy->driver_data; |
| |
| list_del(&cpu_data->node); |
| free_cpumask_var(cpu_data->shared_cpu_map); |
| kfree(cpu_data); |
| policy->driver_data = NULL; |
| } |
| |
| static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) |
| { |
| unsigned int cpu = policy->cpu; |
| struct cppc_cpudata *cpu_data; |
| struct cppc_perf_caps *caps; |
| int ret; |
| |
| cpu_data = cppc_cpufreq_get_cpu_data(cpu); |
| if (!cpu_data) { |
| pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu); |
| return -ENODEV; |
| } |
| caps = &cpu_data->perf_caps; |
| policy->driver_data = cpu_data; |
| |
| /* |
| * Set min to lowest nonlinear perf to avoid any efficiency penalty (see |
| * Section 8.4.7.1.1.5 of ACPI 6.1 spec) |
| */ |
| policy->min = cppc_cpufreq_perf_to_khz(cpu_data, |
| caps->lowest_nonlinear_perf); |
| policy->max = cppc_cpufreq_perf_to_khz(cpu_data, |
| caps->nominal_perf); |
| |
| /* |
| * Set cpuinfo.min_freq to Lowest to make the full range of performance |
| * available if userspace wants to use any perf between lowest & lowest |
| * nonlinear perf |
| */ |
| policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data, |
| caps->lowest_perf); |
| policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data, |
| caps->nominal_perf); |
| |
| policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu); |
| policy->shared_type = cpu_data->shared_type; |
| |
| switch (policy->shared_type) { |
| case CPUFREQ_SHARED_TYPE_HW: |
| case CPUFREQ_SHARED_TYPE_NONE: |
| /* Nothing to be done - we'll have a policy for each CPU */ |
| break; |
| case CPUFREQ_SHARED_TYPE_ANY: |
| /* |
| * All CPUs in the domain will share a policy and all cpufreq |
| * operations will use a single cppc_cpudata structure stored |
| * in policy->driver_data. |
| */ |
| cpumask_copy(policy->cpus, cpu_data->shared_cpu_map); |
| break; |
| default: |
| pr_debug("Unsupported CPU co-ord type: %d\n", |
| policy->shared_type); |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| policy->fast_switch_possible = cppc_allow_fast_switch(); |
| policy->dvfs_possible_from_any_cpu = true; |
| |
| /* |
| * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost |
| * is supported. |
| */ |
| if (caps->highest_perf > caps->nominal_perf) |
| boost_supported = true; |
| |
| /* Set policy->cur to max now. The governors will adjust later. */ |
| policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf); |
| cpu_data->perf_ctrls.desired_perf = caps->highest_perf; |
| |
| ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); |
| if (ret) { |
| pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", |
| caps->highest_perf, cpu, ret); |
| goto out; |
| } |
| |
| cppc_cpufreq_cpu_fie_init(policy); |
| return 0; |
| |
| out: |
| cppc_cpufreq_put_cpu_data(policy); |
| return ret; |
| } |
| |
| static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy) |
| { |
| struct cppc_cpudata *cpu_data = policy->driver_data; |
| struct cppc_perf_caps *caps = &cpu_data->perf_caps; |
| unsigned int cpu = policy->cpu; |
| int ret; |
| |
| cppc_cpufreq_cpu_fie_exit(policy); |
| |
| cpu_data->perf_ctrls.desired_perf = caps->lowest_perf; |
| |
| ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); |
| if (ret) |
| pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", |
| caps->lowest_perf, cpu, ret); |
| |
| cppc_cpufreq_put_cpu_data(policy); |
| return 0; |
| } |
| |
| static inline u64 get_delta(u64 t1, u64 t0) |
| { |
| if (t1 > t0 || t0 > ~(u32)0) |
| return t1 - t0; |
| |
| return (u32)t1 - (u32)t0; |
| } |
| |
| static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, |
| struct cppc_perf_fb_ctrs *fb_ctrs_t0, |
| struct cppc_perf_fb_ctrs *fb_ctrs_t1) |
| { |
| u64 delta_reference, delta_delivered; |
| u64 reference_perf; |
| |
| reference_perf = fb_ctrs_t0->reference_perf; |
| |
| delta_reference = get_delta(fb_ctrs_t1->reference, |
| fb_ctrs_t0->reference); |
| delta_delivered = get_delta(fb_ctrs_t1->delivered, |
| fb_ctrs_t0->delivered); |
| |
| /* Check to avoid divide-by zero and invalid delivered_perf */ |
| if (!delta_reference || !delta_delivered) |
| return cpu_data->perf_ctrls.desired_perf; |
| |
| return (reference_perf * delta_delivered) / delta_reference; |
| } |
| |
| static unsigned int cppc_cpufreq_get_rate(unsigned int cpu) |
| { |
| struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; |
| struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); |
| struct cppc_cpudata *cpu_data = policy->driver_data; |
| u64 delivered_perf; |
| int ret; |
| |
| cpufreq_cpu_put(policy); |
| |
| ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0); |
| if (ret) |
| return 0; |
| |
| udelay(2); /* 2usec delay between sampling */ |
| |
| ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1); |
| if (ret) |
| return 0; |
| |
| delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0, |
| &fb_ctrs_t1); |
| |
| return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf); |
| } |
| |
| static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state) |
| { |
| struct cppc_cpudata *cpu_data = policy->driver_data; |
| struct cppc_perf_caps *caps = &cpu_data->perf_caps; |
| int ret; |
| |
| if (!boost_supported) { |
| pr_err("BOOST not supported by CPU or firmware\n"); |
| return -EINVAL; |
| } |
| |
| if (state) |
| policy->max = cppc_cpufreq_perf_to_khz(cpu_data, |
| caps->highest_perf); |
| else |
| policy->max = cppc_cpufreq_perf_to_khz(cpu_data, |
| caps->nominal_perf); |
| policy->cpuinfo.max_freq = policy->max; |
| |
| ret = freq_qos_update_request(policy->max_freq_req, policy->max); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) |
| { |
| struct cppc_cpudata *cpu_data = policy->driver_data; |
| |
| return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf); |
| } |
| cpufreq_freq_attr_ro(freqdomain_cpus); |
| |
| static struct freq_attr *cppc_cpufreq_attr[] = { |
| &freqdomain_cpus, |
| NULL, |
| }; |
| |
| static struct cpufreq_driver cppc_cpufreq_driver = { |
| .flags = CPUFREQ_CONST_LOOPS, |
| .verify = cppc_verify_policy, |
| .target = cppc_cpufreq_set_target, |
| .get = cppc_cpufreq_get_rate, |
| .fast_switch = cppc_cpufreq_fast_switch, |
| .init = cppc_cpufreq_cpu_init, |
| .exit = cppc_cpufreq_cpu_exit, |
| .set_boost = cppc_cpufreq_set_boost, |
| .attr = cppc_cpufreq_attr, |
| .name = "cppc_cpufreq", |
| }; |
| |
| /* |
| * HISI platform does not support delivered performance counter and |
| * reference performance counter. It can calculate the performance using the |
| * platform specific mechanism. We reuse the desired performance register to |
| * store the real performance calculated by the platform. |
| */ |
| static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu) |
| { |
| struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); |
| struct cppc_cpudata *cpu_data = policy->driver_data; |
| u64 desired_perf; |
| int ret; |
| |
| cpufreq_cpu_put(policy); |
| |
| ret = cppc_get_desired_perf(cpu, &desired_perf); |
| if (ret < 0) |
| return -EIO; |
| |
| return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf); |
| } |
| |
| static void cppc_check_hisi_workaround(void) |
| { |
| struct acpi_table_header *tbl; |
| acpi_status status = AE_OK; |
| int i; |
| |
| status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl); |
| if (ACPI_FAILURE(status) || !tbl) |
| return; |
| |
| for (i = 0; i < ARRAY_SIZE(wa_info); i++) { |
| if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) && |
| !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && |
| wa_info[i].oem_revision == tbl->oem_revision) { |
| /* Overwrite the get() callback */ |
| cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate; |
| fie_disabled = FIE_DISABLED; |
| break; |
| } |
| } |
| |
| acpi_put_table(tbl); |
| } |
| |
| static int __init cppc_cpufreq_init(void) |
| { |
| int ret; |
| |
| if (!acpi_cpc_valid()) |
| return -ENODEV; |
| |
| cppc_check_hisi_workaround(); |
| cppc_freq_invariance_init(); |
| populate_efficiency_class(); |
| |
| ret = cpufreq_register_driver(&cppc_cpufreq_driver); |
| if (ret) |
| cppc_freq_invariance_exit(); |
| |
| return ret; |
| } |
| |
| static inline void free_cpu_data(void) |
| { |
| struct cppc_cpudata *iter, *tmp; |
| |
| list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) { |
| free_cpumask_var(iter->shared_cpu_map); |
| list_del(&iter->node); |
| kfree(iter); |
| } |
| |
| } |
| |
| static void __exit cppc_cpufreq_exit(void) |
| { |
| cpufreq_unregister_driver(&cppc_cpufreq_driver); |
| cppc_freq_invariance_exit(); |
| |
| free_cpu_data(); |
| } |
| |
| module_exit(cppc_cpufreq_exit); |
| MODULE_AUTHOR("Ashwin Chaugule"); |
| MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); |
| MODULE_LICENSE("GPL"); |
| |
| late_initcall(cppc_cpufreq_init); |
| |
| static const struct acpi_device_id cppc_acpi_ids[] __used = { |
| {ACPI_PROCESSOR_DEVICE_HID, }, |
| {} |
| }; |
| |
| MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids); |