| /* SPDX-License-Identifier: GPL-2.0-only |
| * Copyright (C) 2020 Marvell. |
| */ |
| #ifndef __OTX2_CPTLF_H |
| #define __OTX2_CPTLF_H |
| |
| #include <linux/soc/marvell/octeontx2/asm.h> |
| #include <mbox.h> |
| #include <rvu.h> |
| #include "otx2_cpt_common.h" |
| #include "otx2_cpt_reqmgr.h" |
| |
| /* |
| * CPT instruction and pending queues user requested length in CPT_INST_S msgs |
| */ |
| #define OTX2_CPT_USER_REQUESTED_QLEN_MSGS 8200 |
| |
| /* |
| * CPT instruction queue size passed to HW is in units of 40*CPT_INST_S |
| * messages. |
| */ |
| #define OTX2_CPT_SIZE_DIV40 (OTX2_CPT_USER_REQUESTED_QLEN_MSGS/40) |
| |
| /* |
| * CPT instruction and pending queues length in CPT_INST_S messages |
| */ |
| #define OTX2_CPT_INST_QLEN_MSGS ((OTX2_CPT_SIZE_DIV40 - 1) * 40) |
| |
| /* |
| * LDWB is getting incorrectly used when IQB_LDWB = 1 and CPT instruction |
| * queue has less than 320 free entries. So, increase HW instruction queue |
| * size by 320 and give 320 entries less for SW/NIX RX as a workaround. |
| */ |
| #define OTX2_CPT_INST_QLEN_EXTRA_BYTES (320 * OTX2_CPT_INST_SIZE) |
| #define OTX2_CPT_EXTRA_SIZE_DIV40 (320/40) |
| |
| /* CPT instruction queue length in bytes */ |
| #define OTX2_CPT_INST_QLEN_BYTES \ |
| ((OTX2_CPT_SIZE_DIV40 * 40 * OTX2_CPT_INST_SIZE) + \ |
| OTX2_CPT_INST_QLEN_EXTRA_BYTES) |
| |
| /* CPT instruction group queue length in bytes */ |
| #define OTX2_CPT_INST_GRP_QLEN_BYTES \ |
| ((OTX2_CPT_SIZE_DIV40 + OTX2_CPT_EXTRA_SIZE_DIV40) * 16) |
| |
| /* CPT FC length in bytes */ |
| #define OTX2_CPT_Q_FC_LEN 128 |
| |
| /* CPT instruction queue alignment */ |
| #define OTX2_CPT_INST_Q_ALIGNMENT 128 |
| |
| /* Mask which selects all engine groups */ |
| #define OTX2_CPT_ALL_ENG_GRPS_MASK 0xFF |
| |
| /* Maximum LFs supported in OcteonTX2 for CPT */ |
| #define OTX2_CPT_MAX_LFS_NUM 64 |
| |
| /* Queue priority */ |
| #define OTX2_CPT_QUEUE_HI_PRIO 0x1 |
| #define OTX2_CPT_QUEUE_LOW_PRIO 0x0 |
| |
| enum otx2_cptlf_state { |
| OTX2_CPTLF_IN_RESET, |
| OTX2_CPTLF_STARTED, |
| }; |
| |
| struct otx2_cpt_inst_queue { |
| u8 *vaddr; |
| u8 *real_vaddr; |
| dma_addr_t dma_addr; |
| dma_addr_t real_dma_addr; |
| u32 size; |
| }; |
| |
| struct otx2_cptlfs_info; |
| struct otx2_cptlf_wqe { |
| struct tasklet_struct work; |
| struct otx2_cptlfs_info *lfs; |
| u8 lf_num; |
| }; |
| |
| struct otx2_cptlf_info { |
| struct otx2_cptlfs_info *lfs; /* Ptr to cptlfs_info struct */ |
| void __iomem *lmtline; /* Address of LMTLINE */ |
| void __iomem *ioreg; /* LMTLINE send register */ |
| int msix_offset; /* MSI-X interrupts offset */ |
| cpumask_var_t affinity_mask; /* IRQs affinity mask */ |
| u8 irq_name[OTX2_CPT_LF_MSIX_VECTORS][32];/* Interrupts name */ |
| u8 is_irq_reg[OTX2_CPT_LF_MSIX_VECTORS]; /* Is interrupt registered */ |
| u8 slot; /* Slot number of this LF */ |
| |
| struct otx2_cpt_inst_queue iqueue;/* Instruction queue */ |
| struct otx2_cpt_pending_queue pqueue; /* Pending queue */ |
| struct otx2_cptlf_wqe *wqe; /* Tasklet work info */ |
| }; |
| |
| struct cpt_hw_ops { |
| void (*send_cmd)(union otx2_cpt_inst_s *cptinst, u32 insts_num, |
| struct otx2_cptlf_info *lf); |
| u8 (*cpt_get_compcode)(union otx2_cpt_res_s *result); |
| u8 (*cpt_get_uc_compcode)(union otx2_cpt_res_s *result); |
| }; |
| |
| struct otx2_cptlfs_info { |
| /* Registers start address of VF/PF LFs are attached to */ |
| void __iomem *reg_base; |
| #define LMTLINE_SIZE 128 |
| void __iomem *lmt_base; |
| struct pci_dev *pdev; /* Device LFs are attached to */ |
| struct otx2_cptlf_info lf[OTX2_CPT_MAX_LFS_NUM]; |
| struct otx2_mbox *mbox; |
| struct cpt_hw_ops *ops; |
| u8 are_lfs_attached; /* Whether CPT LFs are attached */ |
| u8 lfs_num; /* Number of CPT LFs */ |
| u8 kcrypto_eng_grp_num; /* Kernel crypto engine group number */ |
| u8 kvf_limits; /* Kernel crypto limits */ |
| atomic_t state; /* LF's state. started/reset */ |
| int blkaddr; /* CPT blkaddr: BLKADDR_CPT0/BLKADDR_CPT1 */ |
| }; |
| |
| static inline void otx2_cpt_free_instruction_queues( |
| struct otx2_cptlfs_info *lfs) |
| { |
| struct otx2_cpt_inst_queue *iq; |
| int i; |
| |
| for (i = 0; i < lfs->lfs_num; i++) { |
| iq = &lfs->lf[i].iqueue; |
| if (iq->real_vaddr) |
| dma_free_coherent(&lfs->pdev->dev, |
| iq->size, |
| iq->real_vaddr, |
| iq->real_dma_addr); |
| iq->real_vaddr = NULL; |
| iq->vaddr = NULL; |
| } |
| } |
| |
| static inline int otx2_cpt_alloc_instruction_queues( |
| struct otx2_cptlfs_info *lfs) |
| { |
| struct otx2_cpt_inst_queue *iq; |
| int ret = 0, i; |
| |
| if (!lfs->lfs_num) |
| return -EINVAL; |
| |
| for (i = 0; i < lfs->lfs_num; i++) { |
| iq = &lfs->lf[i].iqueue; |
| iq->size = OTX2_CPT_INST_QLEN_BYTES + |
| OTX2_CPT_Q_FC_LEN + |
| OTX2_CPT_INST_GRP_QLEN_BYTES + |
| OTX2_CPT_INST_Q_ALIGNMENT; |
| iq->real_vaddr = dma_alloc_coherent(&lfs->pdev->dev, iq->size, |
| &iq->real_dma_addr, GFP_KERNEL); |
| if (!iq->real_vaddr) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| iq->vaddr = iq->real_vaddr + OTX2_CPT_INST_GRP_QLEN_BYTES; |
| iq->dma_addr = iq->real_dma_addr + OTX2_CPT_INST_GRP_QLEN_BYTES; |
| |
| /* Align pointers */ |
| iq->vaddr = PTR_ALIGN(iq->vaddr, OTX2_CPT_INST_Q_ALIGNMENT); |
| iq->dma_addr = PTR_ALIGN(iq->dma_addr, |
| OTX2_CPT_INST_Q_ALIGNMENT); |
| } |
| return 0; |
| |
| error: |
| otx2_cpt_free_instruction_queues(lfs); |
| return ret; |
| } |
| |
| static inline void otx2_cptlf_set_iqueues_base_addr( |
| struct otx2_cptlfs_info *lfs) |
| { |
| union otx2_cptx_lf_q_base lf_q_base; |
| int slot; |
| |
| for (slot = 0; slot < lfs->lfs_num; slot++) { |
| lf_q_base.u = lfs->lf[slot].iqueue.dma_addr; |
| otx2_cpt_write64(lfs->reg_base, lfs->blkaddr, slot, |
| OTX2_CPT_LF_Q_BASE, lf_q_base.u); |
| } |
| } |
| |
| static inline void otx2_cptlf_do_set_iqueue_size(struct otx2_cptlf_info *lf) |
| { |
| union otx2_cptx_lf_q_size lf_q_size = { .u = 0x0 }; |
| |
| lf_q_size.s.size_div40 = OTX2_CPT_SIZE_DIV40 + |
| OTX2_CPT_EXTRA_SIZE_DIV40; |
| otx2_cpt_write64(lf->lfs->reg_base, lf->lfs->blkaddr, lf->slot, |
| OTX2_CPT_LF_Q_SIZE, lf_q_size.u); |
| } |
| |
| static inline void otx2_cptlf_set_iqueues_size(struct otx2_cptlfs_info *lfs) |
| { |
| int slot; |
| |
| for (slot = 0; slot < lfs->lfs_num; slot++) |
| otx2_cptlf_do_set_iqueue_size(&lfs->lf[slot]); |
| } |
| |
| static inline void otx2_cptlf_do_disable_iqueue(struct otx2_cptlf_info *lf) |
| { |
| union otx2_cptx_lf_ctl lf_ctl = { .u = 0x0 }; |
| union otx2_cptx_lf_inprog lf_inprog; |
| u8 blkaddr = lf->lfs->blkaddr; |
| int timeout = 20; |
| |
| /* Disable instructions enqueuing */ |
| otx2_cpt_write64(lf->lfs->reg_base, blkaddr, lf->slot, |
| OTX2_CPT_LF_CTL, lf_ctl.u); |
| |
| /* Wait for instruction queue to become empty */ |
| do { |
| lf_inprog.u = otx2_cpt_read64(lf->lfs->reg_base, blkaddr, |
| lf->slot, OTX2_CPT_LF_INPROG); |
| if (!lf_inprog.s.inflight) |
| break; |
| |
| usleep_range(10000, 20000); |
| if (timeout-- < 0) { |
| dev_err(&lf->lfs->pdev->dev, |
| "Error LF %d is still busy.\n", lf->slot); |
| break; |
| } |
| |
| } while (1); |
| |
| /* |
| * Disable executions in the LF's queue, |
| * the queue should be empty at this point |
| */ |
| lf_inprog.s.eena = 0x0; |
| otx2_cpt_write64(lf->lfs->reg_base, blkaddr, lf->slot, |
| OTX2_CPT_LF_INPROG, lf_inprog.u); |
| } |
| |
| static inline void otx2_cptlf_disable_iqueues(struct otx2_cptlfs_info *lfs) |
| { |
| int slot; |
| |
| for (slot = 0; slot < lfs->lfs_num; slot++) |
| otx2_cptlf_do_disable_iqueue(&lfs->lf[slot]); |
| } |
| |
| static inline void otx2_cptlf_set_iqueue_enq(struct otx2_cptlf_info *lf, |
| bool enable) |
| { |
| u8 blkaddr = lf->lfs->blkaddr; |
| union otx2_cptx_lf_ctl lf_ctl; |
| |
| lf_ctl.u = otx2_cpt_read64(lf->lfs->reg_base, blkaddr, lf->slot, |
| OTX2_CPT_LF_CTL); |
| |
| /* Set iqueue's enqueuing */ |
| lf_ctl.s.ena = enable ? 0x1 : 0x0; |
| otx2_cpt_write64(lf->lfs->reg_base, blkaddr, lf->slot, |
| OTX2_CPT_LF_CTL, lf_ctl.u); |
| } |
| |
| static inline void otx2_cptlf_enable_iqueue_enq(struct otx2_cptlf_info *lf) |
| { |
| otx2_cptlf_set_iqueue_enq(lf, true); |
| } |
| |
| static inline void otx2_cptlf_set_iqueue_exec(struct otx2_cptlf_info *lf, |
| bool enable) |
| { |
| union otx2_cptx_lf_inprog lf_inprog; |
| u8 blkaddr = lf->lfs->blkaddr; |
| |
| lf_inprog.u = otx2_cpt_read64(lf->lfs->reg_base, blkaddr, lf->slot, |
| OTX2_CPT_LF_INPROG); |
| |
| /* Set iqueue's execution */ |
| lf_inprog.s.eena = enable ? 0x1 : 0x0; |
| otx2_cpt_write64(lf->lfs->reg_base, blkaddr, lf->slot, |
| OTX2_CPT_LF_INPROG, lf_inprog.u); |
| } |
| |
| static inline void otx2_cptlf_enable_iqueue_exec(struct otx2_cptlf_info *lf) |
| { |
| otx2_cptlf_set_iqueue_exec(lf, true); |
| } |
| |
| static inline void otx2_cptlf_disable_iqueue_exec(struct otx2_cptlf_info *lf) |
| { |
| otx2_cptlf_set_iqueue_exec(lf, false); |
| } |
| |
| static inline void otx2_cptlf_enable_iqueues(struct otx2_cptlfs_info *lfs) |
| { |
| int slot; |
| |
| for (slot = 0; slot < lfs->lfs_num; slot++) { |
| otx2_cptlf_enable_iqueue_exec(&lfs->lf[slot]); |
| otx2_cptlf_enable_iqueue_enq(&lfs->lf[slot]); |
| } |
| } |
| |
| static inline void otx2_cpt_fill_inst(union otx2_cpt_inst_s *cptinst, |
| struct otx2_cpt_iq_command *iq_cmd, |
| u64 comp_baddr) |
| { |
| cptinst->u[0] = 0x0; |
| cptinst->s.doneint = true; |
| cptinst->s.res_addr = comp_baddr; |
| cptinst->u[2] = 0x0; |
| cptinst->u[3] = 0x0; |
| cptinst->s.ei0 = iq_cmd->cmd.u; |
| cptinst->s.ei1 = iq_cmd->dptr; |
| cptinst->s.ei2 = iq_cmd->rptr; |
| cptinst->s.ei3 = iq_cmd->cptr.u; |
| } |
| |
| /* |
| * On OcteonTX2 platform the parameter insts_num is used as a count of |
| * instructions to be enqueued. The valid values for insts_num are: |
| * 1 - 1 CPT instruction will be enqueued during LMTST operation |
| * 2 - 2 CPT instructions will be enqueued during LMTST operation |
| */ |
| static inline void otx2_cpt_send_cmd(union otx2_cpt_inst_s *cptinst, |
| u32 insts_num, struct otx2_cptlf_info *lf) |
| { |
| void __iomem *lmtline = lf->lmtline; |
| long ret; |
| |
| /* |
| * Make sure memory areas pointed in CPT_INST_S |
| * are flushed before the instruction is sent to CPT |
| */ |
| dma_wmb(); |
| |
| do { |
| /* Copy CPT command to LMTLINE */ |
| memcpy_toio(lmtline, cptinst, insts_num * OTX2_CPT_INST_SIZE); |
| |
| /* |
| * LDEOR initiates atomic transfer to I/O device |
| * The following will cause the LMTST to fail (the LDEOR |
| * returns zero): |
| * - No stores have been performed to the LMTLINE since it was |
| * last invalidated. |
| * - The bytes which have been stored to LMTLINE since it was |
| * last invalidated form a pattern that is non-contiguous, does |
| * not start at byte 0, or does not end on a 8-byte boundary. |
| * (i.e.comprises a formation of other than 1–16 8-byte |
| * words.) |
| * |
| * These rules are designed such that an operating system |
| * context switch or hypervisor guest switch need have no |
| * knowledge of the LMTST operations; the switch code does not |
| * need to store to LMTCANCEL. Also note as LMTLINE data cannot |
| * be read, there is no information leakage between processes. |
| */ |
| ret = otx2_lmt_flush(lf->ioreg); |
| |
| } while (!ret); |
| } |
| |
| static inline bool otx2_cptlf_started(struct otx2_cptlfs_info *lfs) |
| { |
| return atomic_read(&lfs->state) == OTX2_CPTLF_STARTED; |
| } |
| |
| static inline void otx2_cptlf_set_dev_info(struct otx2_cptlfs_info *lfs, |
| struct pci_dev *pdev, |
| void __iomem *reg_base, |
| struct otx2_mbox *mbox, |
| int blkaddr) |
| { |
| lfs->pdev = pdev; |
| lfs->reg_base = reg_base; |
| lfs->mbox = mbox; |
| lfs->blkaddr = blkaddr; |
| } |
| |
| int otx2_cptlf_init(struct otx2_cptlfs_info *lfs, u8 eng_grp_msk, int pri, |
| int lfs_num); |
| void otx2_cptlf_shutdown(struct otx2_cptlfs_info *lfs); |
| int otx2_cptlf_register_interrupts(struct otx2_cptlfs_info *lfs); |
| void otx2_cptlf_unregister_interrupts(struct otx2_cptlfs_info *lfs); |
| void otx2_cptlf_free_irqs_affinity(struct otx2_cptlfs_info *lfs); |
| int otx2_cptlf_set_irqs_affinity(struct otx2_cptlfs_info *lfs); |
| |
| #endif /* __OTX2_CPTLF_H */ |