| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Freescale Integrated Flash Controller NAND driver |
| * |
| * Copyright 2011-2012 Freescale Semiconductor, Inc |
| * |
| * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/of_address.h> |
| #include <linux/slab.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/fsl_ifc.h> |
| #include <linux/iopoll.h> |
| |
| #define ERR_BYTE 0xFF /* Value returned for read |
| bytes when read failed */ |
| #define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait |
| for IFC NAND Machine */ |
| |
| struct fsl_ifc_ctrl; |
| |
| /* mtd information per set */ |
| struct fsl_ifc_mtd { |
| struct nand_chip chip; |
| struct fsl_ifc_ctrl *ctrl; |
| |
| struct device *dev; |
| int bank; /* Chip select bank number */ |
| unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ |
| u8 __iomem *vbase; /* Chip select base virtual address */ |
| }; |
| |
| /* overview of the fsl ifc controller */ |
| struct fsl_ifc_nand_ctrl { |
| struct nand_controller controller; |
| struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; |
| |
| void __iomem *addr; /* Address of assigned IFC buffer */ |
| unsigned int page; /* Last page written to / read from */ |
| unsigned int read_bytes;/* Number of bytes read during command */ |
| unsigned int column; /* Saved column from SEQIN */ |
| unsigned int index; /* Pointer to next byte to 'read' */ |
| unsigned int oob; /* Non zero if operating on OOB data */ |
| unsigned int eccread; /* Non zero for a full-page ECC read */ |
| unsigned int counter; /* counter for the initializations */ |
| unsigned int max_bitflips; /* Saved during READ0 cmd */ |
| }; |
| |
| static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl; |
| |
| /* |
| * Generic flash bbt descriptors |
| */ |
| static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; |
| static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; |
| |
| static struct nand_bbt_descr bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 2, /* 0 on 8-bit small page */ |
| .len = 4, |
| .veroffs = 6, |
| .maxblocks = 4, |
| .pattern = bbt_pattern, |
| }; |
| |
| static struct nand_bbt_descr bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 2, /* 0 on 8-bit small page */ |
| .len = 4, |
| .veroffs = 6, |
| .maxblocks = 4, |
| .pattern = mirror_pattern, |
| }; |
| |
| static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->offset = 8; |
| oobregion->length = chip->ecc.total; |
| |
| return 0; |
| } |
| |
| static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (section > 1) |
| return -ERANGE; |
| |
| if (mtd->writesize == 512 && |
| !(chip->options & NAND_BUSWIDTH_16)) { |
| if (!section) { |
| oobregion->offset = 0; |
| oobregion->length = 5; |
| } else { |
| oobregion->offset = 6; |
| oobregion->length = 2; |
| } |
| |
| return 0; |
| } |
| |
| if (!section) { |
| oobregion->offset = 2; |
| oobregion->length = 6; |
| } else { |
| oobregion->offset = chip->ecc.total + 8; |
| oobregion->length = mtd->oobsize - oobregion->offset; |
| } |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = { |
| .ecc = fsl_ifc_ooblayout_ecc, |
| .free = fsl_ifc_ooblayout_free, |
| }; |
| |
| /* |
| * Set up the IFC hardware block and page address fields, and the ifc nand |
| * structure addr field to point to the correct IFC buffer in memory |
| */ |
| static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; |
| int buf_num; |
| |
| ifc_nand_ctrl->page = page_addr; |
| /* Program ROW0/COL0 */ |
| ifc_out32(page_addr, &ifc->ifc_nand.row0); |
| ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0); |
| |
| buf_num = page_addr & priv->bufnum_mask; |
| |
| ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); |
| ifc_nand_ctrl->index = column; |
| |
| /* for OOB data point to the second half of the buffer */ |
| if (oob) |
| ifc_nand_ctrl->index += mtd->writesize; |
| } |
| |
| /* returns nonzero if entire page is blank */ |
| static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, |
| u32 eccstat, unsigned int bufnum) |
| { |
| return (eccstat >> ((3 - bufnum % 4) * 8)) & 15; |
| } |
| |
| /* |
| * execute IFC NAND command and wait for it to complete |
| */ |
| static void fsl_ifc_run_command(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; |
| struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; |
| u32 eccstat; |
| int i; |
| |
| /* set the chip select for NAND Transaction */ |
| ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT, |
| &ifc->ifc_nand.nand_csel); |
| |
| dev_vdbg(priv->dev, |
| "%s: fir0=%08x fcr0=%08x\n", |
| __func__, |
| ifc_in32(&ifc->ifc_nand.nand_fir0), |
| ifc_in32(&ifc->ifc_nand.nand_fcr0)); |
| |
| ctrl->nand_stat = 0; |
| |
| /* start read/write seq */ |
| ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); |
| |
| /* wait for command complete flag or timeout */ |
| wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, |
| msecs_to_jiffies(IFC_TIMEOUT_MSECS)); |
| |
| /* ctrl->nand_stat will be updated from IRQ context */ |
| if (!ctrl->nand_stat) |
| dev_err(priv->dev, "Controller is not responding\n"); |
| if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER) |
| dev_err(priv->dev, "NAND Flash Timeout Error\n"); |
| if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER) |
| dev_err(priv->dev, "NAND Flash Write Protect Error\n"); |
| |
| nctrl->max_bitflips = 0; |
| |
| if (nctrl->eccread) { |
| int errors; |
| int bufnum = nctrl->page & priv->bufnum_mask; |
| int sector_start = bufnum * chip->ecc.steps; |
| int sector_end = sector_start + chip->ecc.steps - 1; |
| __be32 __iomem *eccstat_regs; |
| |
| eccstat_regs = ifc->ifc_nand.nand_eccstat; |
| eccstat = ifc_in32(&eccstat_regs[sector_start / 4]); |
| |
| for (i = sector_start; i <= sector_end; i++) { |
| if (i != sector_start && !(i % 4)) |
| eccstat = ifc_in32(&eccstat_regs[i / 4]); |
| |
| errors = check_read_ecc(mtd, ctrl, eccstat, i); |
| |
| if (errors == 15) { |
| /* |
| * Uncorrectable error. |
| * We'll check for blank pages later. |
| * |
| * We disable ECCER reporting due to... |
| * erratum IFC-A002770 -- so report it now if we |
| * see an uncorrectable error in ECCSTAT. |
| */ |
| ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER; |
| continue; |
| } |
| |
| mtd->ecc_stats.corrected += errors; |
| nctrl->max_bitflips = max_t(unsigned int, |
| nctrl->max_bitflips, |
| errors); |
| } |
| |
| nctrl->eccread = 0; |
| } |
| } |
| |
| static void fsl_ifc_do_read(struct nand_chip *chip, |
| int oob, |
| struct mtd_info *mtd) |
| { |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; |
| |
| /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ |
| if (mtd->writesize > 512) { |
| ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
| (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | |
| (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| ifc_out32(0x0, &ifc->ifc_nand.nand_fir1); |
| |
| ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | |
| (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT), |
| &ifc->ifc_nand.nand_fcr0); |
| } else { |
| ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
| (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| ifc_out32(0x0, &ifc->ifc_nand.nand_fir1); |
| |
| if (oob) |
| ifc_out32(NAND_CMD_READOOB << |
| IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| else |
| ifc_out32(NAND_CMD_READ0 << |
| IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| } |
| } |
| |
| /* cmdfunc send commands to the IFC NAND Machine */ |
| static void fsl_ifc_cmdfunc(struct nand_chip *chip, unsigned int command, |
| int column, int page_addr) { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; |
| |
| /* clear the read buffer */ |
| ifc_nand_ctrl->read_bytes = 0; |
| if (command != NAND_CMD_PAGEPROG) |
| ifc_nand_ctrl->index = 0; |
| |
| switch (command) { |
| /* READ0 read the entire buffer to use hardware ECC. */ |
| case NAND_CMD_READ0: |
| ifc_out32(0, &ifc->ifc_nand.nand_fbcr); |
| set_addr(mtd, 0, page_addr, 0); |
| |
| ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; |
| ifc_nand_ctrl->index += column; |
| |
| if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) |
| ifc_nand_ctrl->eccread = 1; |
| |
| fsl_ifc_do_read(chip, 0, mtd); |
| fsl_ifc_run_command(mtd); |
| return; |
| |
| /* READOOB reads only the OOB because no ECC is performed. */ |
| case NAND_CMD_READOOB: |
| ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr); |
| set_addr(mtd, column, page_addr, 1); |
| |
| ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; |
| |
| fsl_ifc_do_read(chip, 1, mtd); |
| fsl_ifc_run_command(mtd); |
| |
| return; |
| |
| case NAND_CMD_READID: |
| case NAND_CMD_PARAM: { |
| /* |
| * For READID, read 8 bytes that are currently used. |
| * For PARAM, read all 3 copies of 256-bytes pages. |
| */ |
| int len = 8; |
| int timing = IFC_FIR_OP_RB; |
| if (command == NAND_CMD_PARAM) { |
| timing = IFC_FIR_OP_RBCD; |
| len = 256 * 3; |
| } |
| |
| ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | |
| (timing << IFC_NAND_FIR0_OP2_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| ifc_out32(column, &ifc->ifc_nand.row3); |
| |
| ifc_out32(len, &ifc->ifc_nand.nand_fbcr); |
| ifc_nand_ctrl->read_bytes = len; |
| |
| set_addr(mtd, 0, 0, 0); |
| fsl_ifc_run_command(mtd); |
| return; |
| } |
| |
| /* ERASE1 stores the block and page address */ |
| case NAND_CMD_ERASE1: |
| set_addr(mtd, 0, page_addr, 0); |
| return; |
| |
| /* ERASE2 uses the block and page address from ERASE1 */ |
| case NAND_CMD_ERASE2: |
| ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| |
| ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | |
| (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT), |
| &ifc->ifc_nand.nand_fcr0); |
| |
| ifc_out32(0, &ifc->ifc_nand.nand_fbcr); |
| ifc_nand_ctrl->read_bytes = 0; |
| fsl_ifc_run_command(mtd); |
| return; |
| |
| /* SEQIN sets up the addr buffer and all registers except the length */ |
| case NAND_CMD_SEQIN: { |
| u32 nand_fcr0; |
| ifc_nand_ctrl->column = column; |
| ifc_nand_ctrl->oob = 0; |
| |
| if (mtd->writesize > 512) { |
| nand_fcr0 = |
| (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | |
| (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) | |
| (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT); |
| |
| ifc_out32( |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
| (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | |
| (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| ifc_out32( |
| (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) | |
| (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) | |
| (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT), |
| &ifc->ifc_nand.nand_fir1); |
| } else { |
| nand_fcr0 = ((NAND_CMD_PAGEPROG << |
| IFC_NAND_FCR0_CMD1_SHIFT) | |
| (NAND_CMD_SEQIN << |
| IFC_NAND_FCR0_CMD2_SHIFT) | |
| (NAND_CMD_STATUS << |
| IFC_NAND_FCR0_CMD3_SHIFT)); |
| |
| ifc_out32( |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | |
| (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| ifc_out32( |
| (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) | |
| (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) | |
| (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) | |
| (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT), |
| &ifc->ifc_nand.nand_fir1); |
| |
| if (column >= mtd->writesize) |
| nand_fcr0 |= |
| NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; |
| else |
| nand_fcr0 |= |
| NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; |
| } |
| |
| if (column >= mtd->writesize) { |
| /* OOB area --> READOOB */ |
| column -= mtd->writesize; |
| ifc_nand_ctrl->oob = 1; |
| } |
| ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0); |
| set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); |
| return; |
| } |
| |
| /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ |
| case NAND_CMD_PAGEPROG: { |
| if (ifc_nand_ctrl->oob) { |
| ifc_out32(ifc_nand_ctrl->index - |
| ifc_nand_ctrl->column, |
| &ifc->ifc_nand.nand_fbcr); |
| } else { |
| ifc_out32(0, &ifc->ifc_nand.nand_fbcr); |
| } |
| |
| fsl_ifc_run_command(mtd); |
| return; |
| } |
| |
| case NAND_CMD_STATUS: { |
| void __iomem *addr; |
| |
| ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| ifc_out32(1, &ifc->ifc_nand.nand_fbcr); |
| set_addr(mtd, 0, 0, 0); |
| ifc_nand_ctrl->read_bytes = 1; |
| |
| fsl_ifc_run_command(mtd); |
| |
| /* |
| * The chip always seems to report that it is |
| * write-protected, even when it is not. |
| */ |
| addr = ifc_nand_ctrl->addr; |
| if (chip->options & NAND_BUSWIDTH_16) |
| ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr); |
| else |
| ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr); |
| return; |
| } |
| |
| case NAND_CMD_RESET: |
| ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT, |
| &ifc->ifc_nand.nand_fir0); |
| ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| fsl_ifc_run_command(mtd); |
| return; |
| |
| default: |
| dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n", |
| __func__, command); |
| } |
| } |
| |
| static void fsl_ifc_select_chip(struct nand_chip *chip, int cs) |
| { |
| /* The hardware does not seem to support multiple |
| * chips per bank. |
| */ |
| } |
| |
| /* |
| * Write buf to the IFC NAND Controller Data Buffer |
| */ |
| static void fsl_ifc_write_buf(struct nand_chip *chip, const u8 *buf, int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| unsigned int bufsize = mtd->writesize + mtd->oobsize; |
| |
| if (len <= 0) { |
| dev_err(priv->dev, "%s: len %d bytes", __func__, len); |
| return; |
| } |
| |
| if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) { |
| dev_err(priv->dev, |
| "%s: beyond end of buffer (%d requested, %u available)\n", |
| __func__, len, bufsize - ifc_nand_ctrl->index); |
| len = bufsize - ifc_nand_ctrl->index; |
| } |
| |
| memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len); |
| ifc_nand_ctrl->index += len; |
| } |
| |
| /* |
| * Read a byte from either the IFC hardware buffer |
| * read function for 8-bit buswidth |
| */ |
| static uint8_t fsl_ifc_read_byte(struct nand_chip *chip) |
| { |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| unsigned int offset; |
| |
| /* |
| * If there are still bytes in the IFC buffer, then use the |
| * next byte. |
| */ |
| if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { |
| offset = ifc_nand_ctrl->index++; |
| return ifc_in8(ifc_nand_ctrl->addr + offset); |
| } |
| |
| dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); |
| return ERR_BYTE; |
| } |
| |
| /* |
| * Read two bytes from the IFC hardware buffer |
| * read function for 16-bit buswith |
| */ |
| static uint8_t fsl_ifc_read_byte16(struct nand_chip *chip) |
| { |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| uint16_t data; |
| |
| /* |
| * If there are still bytes in the IFC buffer, then use the |
| * next byte. |
| */ |
| if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { |
| data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index); |
| ifc_nand_ctrl->index += 2; |
| return (uint8_t) data; |
| } |
| |
| dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); |
| return ERR_BYTE; |
| } |
| |
| /* |
| * Read from the IFC Controller Data Buffer |
| */ |
| static void fsl_ifc_read_buf(struct nand_chip *chip, u8 *buf, int len) |
| { |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| int avail; |
| |
| if (len < 0) { |
| dev_err(priv->dev, "%s: len %d bytes", __func__, len); |
| return; |
| } |
| |
| avail = min((unsigned int)len, |
| ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); |
| memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail); |
| ifc_nand_ctrl->index += avail; |
| |
| if (len > avail) |
| dev_err(priv->dev, |
| "%s: beyond end of buffer (%d requested, %d available)\n", |
| __func__, len, avail); |
| } |
| |
| /* |
| * This function is called after Program and Erase Operations to |
| * check for success or failure. |
| */ |
| static int fsl_ifc_wait(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; |
| u32 nand_fsr; |
| int status; |
| |
| /* Use READ_STATUS command, but wait for the device to be ready */ |
| ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| ifc_out32(1, &ifc->ifc_nand.nand_fbcr); |
| set_addr(mtd, 0, 0, 0); |
| ifc_nand_ctrl->read_bytes = 1; |
| |
| fsl_ifc_run_command(mtd); |
| |
| nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr); |
| status = nand_fsr >> 24; |
| /* |
| * The chip always seems to report that it is |
| * write-protected, even when it is not. |
| */ |
| return status | NAND_STATUS_WP; |
| } |
| |
| /* |
| * The controller does not check for bitflips in erased pages, |
| * therefore software must check instead. |
| */ |
| static int check_erased_page(struct nand_chip *chip, u8 *buf) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u8 *ecc = chip->oob_poi; |
| const int ecc_size = chip->ecc.bytes; |
| const int pkt_size = chip->ecc.size; |
| int i, res, bitflips = 0; |
| struct mtd_oob_region oobregion = { }; |
| |
| mtd_ooblayout_ecc(mtd, 0, &oobregion); |
| ecc += oobregion.offset; |
| |
| for (i = 0; i < chip->ecc.steps; ++i) { |
| res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size, |
| NULL, 0, |
| chip->ecc.strength); |
| if (res < 0) |
| mtd->ecc_stats.failed++; |
| else |
| mtd->ecc_stats.corrected += res; |
| |
| bitflips = max(res, bitflips); |
| buf += pkt_size; |
| ecc += ecc_size; |
| } |
| |
| return bitflips; |
| } |
| |
| static int fsl_ifc_read_page(struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; |
| |
| nand_read_page_op(chip, page, 0, buf, mtd->writesize); |
| if (oob_required) |
| fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize); |
| |
| if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) { |
| if (!oob_required) |
| fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize); |
| |
| return check_erased_page(chip, buf); |
| } |
| |
| if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) |
| mtd->ecc_stats.failed++; |
| |
| return nctrl->max_bitflips; |
| } |
| |
| /* ECC will be calculated automatically, and errors will be detected in |
| * waitfunc. |
| */ |
| static int fsl_ifc_write_page(struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); |
| fsl_ifc_write_buf(chip, chip->oob_poi, mtd->oobsize); |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static int fsl_ifc_attach_chip(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; |
| u32 csor; |
| |
| csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor); |
| |
| /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ |
| if (csor & CSOR_NAND_ECC_DEC_EN) { |
| chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops); |
| |
| /* Hardware generates ECC per 512 Bytes */ |
| chip->ecc.size = 512; |
| if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) { |
| chip->ecc.bytes = 8; |
| chip->ecc.strength = 4; |
| } else { |
| chip->ecc.bytes = 16; |
| chip->ecc.strength = 8; |
| } |
| } else { |
| chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; |
| chip->ecc.algo = NAND_ECC_ALGO_HAMMING; |
| } |
| |
| dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__, |
| nanddev_ntargets(&chip->base)); |
| dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__, |
| nanddev_target_size(&chip->base)); |
| dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__, |
| chip->pagemask); |
| dev_dbg(priv->dev, "%s: nand->legacy.chip_delay = %d\n", __func__, |
| chip->legacy.chip_delay); |
| dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__, |
| chip->badblockpos); |
| dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__, |
| chip->chip_shift); |
| dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__, |
| chip->page_shift); |
| dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, |
| chip->phys_erase_shift); |
| dev_dbg(priv->dev, "%s: nand->ecc.engine_type = %d\n", __func__, |
| chip->ecc.engine_type); |
| dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, |
| chip->ecc.steps); |
| dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__, |
| chip->ecc.bytes); |
| dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__, |
| chip->ecc.total); |
| dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__, |
| mtd->ooblayout); |
| dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags); |
| dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size); |
| dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__, |
| mtd->erasesize); |
| dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__, |
| mtd->writesize); |
| dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__, |
| mtd->oobsize); |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops fsl_ifc_controller_ops = { |
| .attach_chip = fsl_ifc_attach_chip, |
| }; |
| |
| static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv) |
| { |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs; |
| struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; |
| uint32_t csor = 0, csor_8k = 0, csor_ext = 0; |
| uint32_t cs = priv->bank; |
| |
| if (ctrl->version < FSL_IFC_VERSION_1_1_0) |
| return 0; |
| |
| if (ctrl->version > FSL_IFC_VERSION_1_1_0) { |
| u32 ncfgr, status; |
| int ret; |
| |
| /* Trigger auto initialization */ |
| ncfgr = ifc_in32(&ifc_runtime->ifc_nand.ncfgr); |
| ifc_out32(ncfgr | IFC_NAND_NCFGR_SRAM_INIT_EN, &ifc_runtime->ifc_nand.ncfgr); |
| |
| /* Wait until done */ |
| ret = readx_poll_timeout(ifc_in32, &ifc_runtime->ifc_nand.ncfgr, |
| status, !(status & IFC_NAND_NCFGR_SRAM_INIT_EN), |
| 10, IFC_TIMEOUT_MSECS * 1000); |
| if (ret) |
| dev_err(priv->dev, "Failed to initialize SRAM!\n"); |
| |
| return ret; |
| } |
| |
| /* Save CSOR and CSOR_ext */ |
| csor = ifc_in32(&ifc_global->csor_cs[cs].csor); |
| csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext); |
| |
| /* chage PageSize 8K and SpareSize 1K*/ |
| csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; |
| ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor); |
| ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext); |
| |
| /* READID */ |
| ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT), |
| &ifc_runtime->ifc_nand.nand_fir0); |
| ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc_runtime->ifc_nand.nand_fcr0); |
| ifc_out32(0x0, &ifc_runtime->ifc_nand.row3); |
| |
| ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr); |
| |
| /* Program ROW0/COL0 */ |
| ifc_out32(0x0, &ifc_runtime->ifc_nand.row0); |
| ifc_out32(0x0, &ifc_runtime->ifc_nand.col0); |
| |
| /* set the chip select for NAND Transaction */ |
| ifc_out32(cs << IFC_NAND_CSEL_SHIFT, |
| &ifc_runtime->ifc_nand.nand_csel); |
| |
| /* start read seq */ |
| ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, |
| &ifc_runtime->ifc_nand.nandseq_strt); |
| |
| /* wait for command complete flag or timeout */ |
| wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, |
| msecs_to_jiffies(IFC_TIMEOUT_MSECS)); |
| |
| if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) { |
| pr_err("fsl-ifc: Failed to Initialise SRAM\n"); |
| return -ETIMEDOUT; |
| } |
| |
| /* Restore CSOR and CSOR_ext */ |
| ifc_out32(csor, &ifc_global->csor_cs[cs].csor); |
| ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext); |
| |
| return 0; |
| } |
| |
| static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) |
| { |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; |
| struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs; |
| struct nand_chip *chip = &priv->chip; |
| struct mtd_info *mtd = nand_to_mtd(&priv->chip); |
| u32 csor; |
| int ret; |
| |
| /* Fill in fsl_ifc_mtd structure */ |
| mtd->dev.parent = priv->dev; |
| nand_set_flash_node(chip, priv->dev->of_node); |
| |
| /* fill in nand_chip structure */ |
| /* set up function call table */ |
| if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)) |
| & CSPR_PORT_SIZE_16) |
| chip->legacy.read_byte = fsl_ifc_read_byte16; |
| else |
| chip->legacy.read_byte = fsl_ifc_read_byte; |
| |
| chip->legacy.write_buf = fsl_ifc_write_buf; |
| chip->legacy.read_buf = fsl_ifc_read_buf; |
| chip->legacy.select_chip = fsl_ifc_select_chip; |
| chip->legacy.cmdfunc = fsl_ifc_cmdfunc; |
| chip->legacy.waitfunc = fsl_ifc_wait; |
| chip->legacy.set_features = nand_get_set_features_notsupp; |
| chip->legacy.get_features = nand_get_set_features_notsupp; |
| |
| chip->bbt_td = &bbt_main_descr; |
| chip->bbt_md = &bbt_mirror_descr; |
| |
| ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr); |
| |
| /* set up nand options */ |
| chip->bbt_options = NAND_BBT_USE_FLASH; |
| chip->options = NAND_NO_SUBPAGE_WRITE; |
| |
| if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr) |
| & CSPR_PORT_SIZE_16) { |
| chip->legacy.read_byte = fsl_ifc_read_byte16; |
| chip->options |= NAND_BUSWIDTH_16; |
| } else { |
| chip->legacy.read_byte = fsl_ifc_read_byte; |
| } |
| |
| chip->controller = &ifc_nand_ctrl->controller; |
| nand_set_controller_data(chip, priv); |
| |
| chip->ecc.read_page = fsl_ifc_read_page; |
| chip->ecc.write_page = fsl_ifc_write_page; |
| |
| csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor); |
| |
| switch (csor & CSOR_NAND_PGS_MASK) { |
| case CSOR_NAND_PGS_512: |
| if (!(chip->options & NAND_BUSWIDTH_16)) { |
| /* Avoid conflict with bad block marker */ |
| bbt_main_descr.offs = 0; |
| bbt_mirror_descr.offs = 0; |
| } |
| |
| priv->bufnum_mask = 15; |
| break; |
| |
| case CSOR_NAND_PGS_2K: |
| priv->bufnum_mask = 3; |
| break; |
| |
| case CSOR_NAND_PGS_4K: |
| priv->bufnum_mask = 1; |
| break; |
| |
| case CSOR_NAND_PGS_8K: |
| priv->bufnum_mask = 0; |
| break; |
| |
| default: |
| dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); |
| return -ENODEV; |
| } |
| |
| ret = fsl_ifc_sram_init(priv); |
| if (ret) |
| return ret; |
| |
| /* |
| * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older |
| * versions which had 8KB. Hence bufnum mask needs to be updated. |
| */ |
| if (ctrl->version >= FSL_IFC_VERSION_2_0_0) |
| priv->bufnum_mask = (priv->bufnum_mask * 2) + 1; |
| |
| return 0; |
| } |
| |
| static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) |
| { |
| struct mtd_info *mtd = nand_to_mtd(&priv->chip); |
| |
| kfree(mtd->name); |
| |
| if (priv->vbase) |
| iounmap(priv->vbase); |
| |
| ifc_nand_ctrl->chips[priv->bank] = NULL; |
| |
| return 0; |
| } |
| |
| static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank, |
| phys_addr_t addr) |
| { |
| u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr); |
| |
| if (!(cspr & CSPR_V)) |
| return 0; |
| if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND) |
| return 0; |
| |
| return (cspr & CSPR_BA) == convert_ifc_address(addr); |
| } |
| |
| static DEFINE_MUTEX(fsl_ifc_nand_mutex); |
| |
| static int fsl_ifc_nand_probe(struct platform_device *dev) |
| { |
| struct fsl_ifc_runtime __iomem *ifc; |
| struct fsl_ifc_mtd *priv; |
| struct resource res; |
| static const char *part_probe_types[] |
| = { "cmdlinepart", "RedBoot", "ofpart", NULL }; |
| int ret; |
| int bank; |
| struct device_node *node = dev->dev.of_node; |
| struct mtd_info *mtd; |
| |
| if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs) |
| return -ENODEV; |
| ifc = fsl_ifc_ctrl_dev->rregs; |
| |
| /* get, allocate and map the memory resource */ |
| ret = of_address_to_resource(node, 0, &res); |
| if (ret) { |
| dev_err(&dev->dev, "%s: failed to get resource\n", __func__); |
| return ret; |
| } |
| |
| /* find which chip select it is connected to */ |
| for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) { |
| if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start)) |
| break; |
| } |
| |
| if (bank >= fsl_ifc_ctrl_dev->banks) { |
| dev_err(&dev->dev, "%s: address did not match any chip selects\n", |
| __func__); |
| return -ENODEV; |
| } |
| |
| priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| mutex_lock(&fsl_ifc_nand_mutex); |
| if (!fsl_ifc_ctrl_dev->nand) { |
| ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); |
| if (!ifc_nand_ctrl) { |
| mutex_unlock(&fsl_ifc_nand_mutex); |
| return -ENOMEM; |
| } |
| |
| ifc_nand_ctrl->read_bytes = 0; |
| ifc_nand_ctrl->index = 0; |
| ifc_nand_ctrl->addr = NULL; |
| fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl; |
| |
| nand_controller_init(&ifc_nand_ctrl->controller); |
| } else { |
| ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand; |
| } |
| mutex_unlock(&fsl_ifc_nand_mutex); |
| |
| ifc_nand_ctrl->chips[bank] = priv; |
| priv->bank = bank; |
| priv->ctrl = fsl_ifc_ctrl_dev; |
| priv->dev = &dev->dev; |
| |
| priv->vbase = ioremap(res.start, resource_size(&res)); |
| if (!priv->vbase) { |
| dev_err(priv->dev, "%s: failed to map chip region\n", __func__); |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| dev_set_drvdata(priv->dev, priv); |
| |
| ifc_out32(IFC_NAND_EVTER_EN_OPC_EN | |
| IFC_NAND_EVTER_EN_FTOER_EN | |
| IFC_NAND_EVTER_EN_WPER_EN, |
| &ifc->ifc_nand.nand_evter_en); |
| |
| /* enable NAND Machine Interrupts */ |
| ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN | |
| IFC_NAND_EVTER_INTR_FTOERIR_EN | |
| IFC_NAND_EVTER_INTR_WPERIR_EN, |
| &ifc->ifc_nand.nand_evter_intr_en); |
| |
| mtd = nand_to_mtd(&priv->chip); |
| mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); |
| if (!mtd->name) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| ret = fsl_ifc_chip_init(priv); |
| if (ret) |
| goto err; |
| |
| priv->chip.controller->ops = &fsl_ifc_controller_ops; |
| ret = nand_scan(&priv->chip, 1); |
| if (ret) |
| goto err; |
| |
| /* First look for RedBoot table or partitions on the command |
| * line, these take precedence over device tree information */ |
| ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0); |
| if (ret) |
| goto cleanup_nand; |
| |
| dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n", |
| (unsigned long long)res.start, priv->bank); |
| |
| return 0; |
| |
| cleanup_nand: |
| nand_cleanup(&priv->chip); |
| err: |
| fsl_ifc_chip_remove(priv); |
| |
| return ret; |
| } |
| |
| static void fsl_ifc_nand_remove(struct platform_device *dev) |
| { |
| struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev); |
| struct nand_chip *chip = &priv->chip; |
| int ret; |
| |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| |
| fsl_ifc_chip_remove(priv); |
| |
| mutex_lock(&fsl_ifc_nand_mutex); |
| ifc_nand_ctrl->counter--; |
| if (!ifc_nand_ctrl->counter) { |
| fsl_ifc_ctrl_dev->nand = NULL; |
| kfree(ifc_nand_ctrl); |
| } |
| mutex_unlock(&fsl_ifc_nand_mutex); |
| } |
| |
| static const struct of_device_id fsl_ifc_nand_match[] = { |
| { |
| .compatible = "fsl,ifc-nand", |
| }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match); |
| |
| static struct platform_driver fsl_ifc_nand_driver = { |
| .driver = { |
| .name = "fsl,ifc-nand", |
| .of_match_table = fsl_ifc_nand_match, |
| }, |
| .probe = fsl_ifc_nand_probe, |
| .remove_new = fsl_ifc_nand_remove, |
| }; |
| |
| module_platform_driver(fsl_ifc_nand_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Freescale"); |
| MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver"); |