| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Marvell NAND flash controller driver |
| * |
| * Copyright (C) 2017 Marvell |
| * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> |
| * |
| * |
| * This NAND controller driver handles two versions of the hardware, |
| * one is called NFCv1 and is available on PXA SoCs and the other is |
| * called NFCv2 and is available on Armada SoCs. |
| * |
| * The main visible difference is that NFCv1 only has Hamming ECC |
| * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA |
| * is not used with NFCv2. |
| * |
| * The ECC layouts are depicted in details in Marvell AN-379, but here |
| * is a brief description. |
| * |
| * When using Hamming, the data is split in 512B chunks (either 1, 2 |
| * or 4) and each chunk will have its own ECC "digest" of 6B at the |
| * beginning of the OOB area and eventually the remaining free OOB |
| * bytes (also called "spare" bytes in the driver). This engine |
| * corrects up to 1 bit per chunk and detects reliably an error if |
| * there are at most 2 bitflips. Here is the page layout used by the |
| * controller when Hamming is chosen: |
| * |
| * +-------------------------------------------------------------+ |
| * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | |
| * +-------------------------------------------------------------+ |
| * |
| * When using the BCH engine, there are N identical (data + free OOB + |
| * ECC) sections and potentially an extra one to deal with |
| * configurations where the chosen (data + free OOB + ECC) sizes do |
| * not align with the page (data + OOB) size. ECC bytes are always |
| * 30B per ECC chunk. Here is the page layout used by the controller |
| * when BCH is chosen: |
| * |
| * +----------------------------------------- |
| * | Data 1 | Free OOB bytes 1 | ECC 1 | ... |
| * +----------------------------------------- |
| * |
| * ------------------------------------------- |
| * ... | Data N | Free OOB bytes N | ECC N | |
| * ------------------------------------------- |
| * |
| * --------------------------------------------+ |
| * Last Data | Last Free OOB bytes | Last ECC | |
| * --------------------------------------------+ |
| * |
| * In both cases, the layout seen by the user is always: all data |
| * first, then all free OOB bytes and finally all ECC bytes. With BCH, |
| * ECC bytes are 30B long and are padded with 0xFF to align on 32 |
| * bytes. |
| * |
| * The controller has certain limitations that are handled by the |
| * driver: |
| * - It can only read 2k at a time. To overcome this limitation, the |
| * driver issues data cycles on the bus, without issuing new |
| * CMD + ADDR cycles. The Marvell term is "naked" operations. |
| * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 |
| * bits. What can be tuned is the ECC block size as long as it |
| * stays between 512B and 2kiB. It's usually chosen based on the |
| * chip ECC requirements. For instance, using 2kiB ECC chunks |
| * provides 4b/512B correctability. |
| * - The controller will always treat data bytes, free OOB bytes |
| * and ECC bytes in that order, no matter what the real layout is |
| * (which is usually all data then all OOB bytes). The |
| * marvell_nfc_layouts array below contains the currently |
| * supported layouts. |
| * - Because of these weird layouts, the Bad Block Markers can be |
| * located in data section. In this case, the NAND_BBT_NO_OOB_BBM |
| * option must be set to prevent scanning/writing bad block |
| * markers. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/clk.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/of.h> |
| #include <linux/iopoll.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/regmap.h> |
| #include <asm/unaligned.h> |
| |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dma/pxa-dma.h> |
| #include <linux/platform_data/mtd-nand-pxa3xx.h> |
| |
| /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ |
| #define FIFO_DEPTH 8 |
| #define FIFO_REP(x) (x / sizeof(u32)) |
| #define BCH_SEQ_READS (32 / FIFO_DEPTH) |
| /* NFC does not support transfers of larger chunks at a time */ |
| #define MAX_CHUNK_SIZE 2112 |
| /* NFCv1 cannot read more that 7 bytes of ID */ |
| #define NFCV1_READID_LEN 7 |
| /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ |
| #define POLL_PERIOD 0 |
| #define POLL_TIMEOUT 100000 |
| /* Interrupt maximum wait period in ms */ |
| #define IRQ_TIMEOUT 1000 |
| /* Latency in clock cycles between SoC pins and NFC logic */ |
| #define MIN_RD_DEL_CNT 3 |
| /* Maximum number of contiguous address cycles */ |
| #define MAX_ADDRESS_CYC_NFCV1 5 |
| #define MAX_ADDRESS_CYC_NFCV2 7 |
| /* System control registers/bits to enable the NAND controller on some SoCs */ |
| #define GENCONF_SOC_DEVICE_MUX 0x208 |
| #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) |
| #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) |
| #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) |
| #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) |
| #define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27) |
| #define GENCONF_CLK_GATING_CTRL 0x220 |
| #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) |
| #define GENCONF_ND_CLK_CTRL 0x700 |
| #define GENCONF_ND_CLK_CTRL_EN BIT(0) |
| |
| /* NAND controller data flash control register */ |
| #define NDCR 0x00 |
| #define NDCR_ALL_INT GENMASK(11, 0) |
| #define NDCR_CS1_CMDDM BIT(7) |
| #define NDCR_CS0_CMDDM BIT(8) |
| #define NDCR_RDYM BIT(11) |
| #define NDCR_ND_ARB_EN BIT(12) |
| #define NDCR_RA_START BIT(15) |
| #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) |
| #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) |
| #define NDCR_DWIDTH_M BIT(26) |
| #define NDCR_DWIDTH_C BIT(27) |
| #define NDCR_ND_RUN BIT(28) |
| #define NDCR_DMA_EN BIT(29) |
| #define NDCR_ECC_EN BIT(30) |
| #define NDCR_SPARE_EN BIT(31) |
| #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ |
| NDCR_DWIDTH_M | NDCR_DWIDTH_C)) |
| |
| /* NAND interface timing parameter 0 register */ |
| #define NDTR0 0x04 |
| #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) |
| #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) |
| #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) |
| #define NDTR0_SEL_NRE_EDGE BIT(7) |
| #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) |
| #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) |
| #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) |
| #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) |
| #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) |
| #define NDTR0_SELCNTR BIT(26) |
| #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) |
| |
| /* NAND interface timing parameter 1 register */ |
| #define NDTR1 0x0C |
| #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) |
| #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) |
| #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) |
| #define NDTR1_PRESCALE BIT(14) |
| #define NDTR1_WAIT_MODE BIT(15) |
| #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) |
| |
| /* NAND controller status register */ |
| #define NDSR 0x14 |
| #define NDSR_WRCMDREQ BIT(0) |
| #define NDSR_RDDREQ BIT(1) |
| #define NDSR_WRDREQ BIT(2) |
| #define NDSR_CORERR BIT(3) |
| #define NDSR_UNCERR BIT(4) |
| #define NDSR_CMDD(cs) BIT(8 - cs) |
| #define NDSR_RDY(rb) BIT(11 + rb) |
| #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) |
| |
| /* NAND ECC control register */ |
| #define NDECCCTRL 0x28 |
| #define NDECCCTRL_BCH_EN BIT(0) |
| |
| /* NAND controller data buffer register */ |
| #define NDDB 0x40 |
| |
| /* NAND controller command buffer 0 register */ |
| #define NDCB0 0x48 |
| #define NDCB0_CMD1(x) ((x & 0xFF) << 0) |
| #define NDCB0_CMD2(x) ((x & 0xFF) << 8) |
| #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) |
| #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) |
| #define NDCB0_DBC BIT(19) |
| #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) |
| #define NDCB0_CSEL BIT(24) |
| #define NDCB0_RDY_BYP BIT(27) |
| #define NDCB0_LEN_OVRD BIT(28) |
| #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) |
| |
| /* NAND controller command buffer 1 register */ |
| #define NDCB1 0x4C |
| #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) |
| #define NDCB1_ADDRS_PAGE(x) (x << 16) |
| |
| /* NAND controller command buffer 2 register */ |
| #define NDCB2 0x50 |
| #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) |
| #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) |
| |
| /* NAND controller command buffer 3 register */ |
| #define NDCB3 0x54 |
| #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) |
| #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) |
| |
| /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ |
| #define TYPE_READ 0 |
| #define TYPE_WRITE 1 |
| #define TYPE_ERASE 2 |
| #define TYPE_READ_ID 3 |
| #define TYPE_STATUS 4 |
| #define TYPE_RESET 5 |
| #define TYPE_NAKED_CMD 6 |
| #define TYPE_NAKED_ADDR 7 |
| #define TYPE_MASK 7 |
| #define XTYPE_MONOLITHIC_RW 0 |
| #define XTYPE_LAST_NAKED_RW 1 |
| #define XTYPE_FINAL_COMMAND 3 |
| #define XTYPE_READ 4 |
| #define XTYPE_WRITE_DISPATCH 4 |
| #define XTYPE_NAKED_RW 5 |
| #define XTYPE_COMMAND_DISPATCH 6 |
| #define XTYPE_MASK 7 |
| |
| /** |
| * struct marvell_hw_ecc_layout - layout of Marvell ECC |
| * |
| * Marvell ECC engine works differently than the others, in order to limit the |
| * size of the IP, hardware engineers chose to set a fixed strength at 16 bits |
| * per subpage, and depending on a the desired strength needed by the NAND chip, |
| * a particular layout mixing data/spare/ecc is defined, with a possible last |
| * chunk smaller that the others. |
| * |
| * @writesize: Full page size on which the layout applies |
| * @chunk: Desired ECC chunk size on which the layout applies |
| * @strength: Desired ECC strength (per chunk size bytes) on which the |
| * layout applies |
| * @nchunks: Total number of chunks |
| * @full_chunk_cnt: Number of full-sized chunks, which is the number of |
| * repetitions of the pattern: |
| * (data_bytes + spare_bytes + ecc_bytes). |
| * @data_bytes: Number of data bytes per chunk |
| * @spare_bytes: Number of spare bytes per chunk |
| * @ecc_bytes: Number of ecc bytes per chunk |
| * @last_data_bytes: Number of data bytes in the last chunk |
| * @last_spare_bytes: Number of spare bytes in the last chunk |
| * @last_ecc_bytes: Number of ecc bytes in the last chunk |
| */ |
| struct marvell_hw_ecc_layout { |
| /* Constraints */ |
| int writesize; |
| int chunk; |
| int strength; |
| /* Corresponding layout */ |
| int nchunks; |
| int full_chunk_cnt; |
| int data_bytes; |
| int spare_bytes; |
| int ecc_bytes; |
| int last_data_bytes; |
| int last_spare_bytes; |
| int last_ecc_bytes; |
| }; |
| |
| #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ |
| { \ |
| .writesize = ws, \ |
| .chunk = dc, \ |
| .strength = ds, \ |
| .nchunks = nc, \ |
| .full_chunk_cnt = fcc, \ |
| .data_bytes = db, \ |
| .spare_bytes = sb, \ |
| .ecc_bytes = eb, \ |
| .last_data_bytes = ldb, \ |
| .last_spare_bytes = lsb, \ |
| .last_ecc_bytes = leb, \ |
| } |
| |
| /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ |
| static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { |
| MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), |
| MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), |
| MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), |
| MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), |
| MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,64, 30), |
| MARVELL_LAYOUT( 2048, 512, 12, 3, 2, 704, 0, 30,640, 0, 30), |
| MARVELL_LAYOUT( 2048, 512, 16, 5, 4, 512, 0, 30, 0, 32, 30), |
| MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), |
| MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), |
| MARVELL_LAYOUT( 4096, 512, 12, 6, 5, 704, 0, 30,576, 32, 30), |
| MARVELL_LAYOUT( 4096, 512, 16, 9, 8, 512, 0, 30, 0, 32, 30), |
| MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), |
| MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), |
| MARVELL_LAYOUT( 8192, 512, 12, 12, 11, 704, 0, 30,448, 64, 30), |
| MARVELL_LAYOUT( 8192, 512, 16, 17, 16, 512, 0, 30, 0, 32, 30), |
| }; |
| |
| /** |
| * struct marvell_nand_chip_sel - CS line description |
| * |
| * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection |
| * is made by a field in NDCB0 register, and in another field in NDCB2 register. |
| * The datasheet describes the logic with an error: ADDR5 field is once |
| * declared at the beginning of NDCB2, and another time at its end. Because the |
| * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical |
| * to use the last bit of this field instead of the first ones. |
| * |
| * @cs: Wanted CE lane. |
| * @ndcb0_csel: Value of the NDCB0 register with or without the flag |
| * selecting the wanted CE lane. This is set once when |
| * the Device Tree is probed. |
| * @rb: Ready/Busy pin for the flash chip |
| */ |
| struct marvell_nand_chip_sel { |
| unsigned int cs; |
| u32 ndcb0_csel; |
| unsigned int rb; |
| }; |
| |
| /** |
| * struct marvell_nand_chip - stores NAND chip device related information |
| * |
| * @chip: Base NAND chip structure |
| * @node: Used to store NAND chips into a list |
| * @layout: NAND layout when using hardware ECC |
| * @ndcr: Controller register value for this NAND chip |
| * @ndtr0: Timing registers 0 value for this NAND chip |
| * @ndtr1: Timing registers 1 value for this NAND chip |
| * @addr_cyc: Amount of cycles needed to pass column address |
| * @selected_die: Current active CS |
| * @nsels: Number of CS lines required by the NAND chip |
| * @sels: Array of CS lines descriptions |
| */ |
| struct marvell_nand_chip { |
| struct nand_chip chip; |
| struct list_head node; |
| const struct marvell_hw_ecc_layout *layout; |
| u32 ndcr; |
| u32 ndtr0; |
| u32 ndtr1; |
| int addr_cyc; |
| int selected_die; |
| unsigned int nsels; |
| struct marvell_nand_chip_sel sels[]; |
| }; |
| |
| static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) |
| { |
| return container_of(chip, struct marvell_nand_chip, chip); |
| } |
| |
| static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip |
| *nand) |
| { |
| return &nand->sels[nand->selected_die]; |
| } |
| |
| /** |
| * struct marvell_nfc_caps - NAND controller capabilities for distinction |
| * between compatible strings |
| * |
| * @max_cs_nb: Number of Chip Select lines available |
| * @max_rb_nb: Number of Ready/Busy lines available |
| * @need_system_controller: Indicates if the SoC needs to have access to the |
| * system controller (ie. to enable the NAND controller) |
| * @legacy_of_bindings: Indicates if DT parsing must be done using the old |
| * fashion way |
| * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. |
| * BCH error detection and correction algorithm, |
| * NDCB3 register has been added |
| * @use_dma: Use dma for data transfers |
| * @max_mode_number: Maximum timing mode supported by the controller |
| */ |
| struct marvell_nfc_caps { |
| unsigned int max_cs_nb; |
| unsigned int max_rb_nb; |
| bool need_system_controller; |
| bool legacy_of_bindings; |
| bool is_nfcv2; |
| bool use_dma; |
| unsigned int max_mode_number; |
| }; |
| |
| /** |
| * struct marvell_nfc - stores Marvell NAND controller information |
| * |
| * @controller: Base controller structure |
| * @dev: Parent device (used to print error messages) |
| * @regs: NAND controller registers |
| * @core_clk: Core clock |
| * @reg_clk: Registers clock |
| * @complete: Completion object to wait for NAND controller events |
| * @assigned_cs: Bitmask describing already assigned CS lines |
| * @chips: List containing all the NAND chips attached to |
| * this NAND controller |
| * @selected_chip: Currently selected target chip |
| * @caps: NAND controller capabilities for each compatible string |
| * @use_dma: Whetner DMA is used |
| * @dma_chan: DMA channel (NFCv1 only) |
| * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) |
| */ |
| struct marvell_nfc { |
| struct nand_controller controller; |
| struct device *dev; |
| void __iomem *regs; |
| struct clk *core_clk; |
| struct clk *reg_clk; |
| struct completion complete; |
| unsigned long assigned_cs; |
| struct list_head chips; |
| struct nand_chip *selected_chip; |
| const struct marvell_nfc_caps *caps; |
| |
| /* DMA (NFCv1 only) */ |
| bool use_dma; |
| struct dma_chan *dma_chan; |
| u8 *dma_buf; |
| }; |
| |
| static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) |
| { |
| return container_of(ctrl, struct marvell_nfc, controller); |
| } |
| |
| /** |
| * struct marvell_nfc_timings - NAND controller timings expressed in NAND |
| * Controller clock cycles |
| * |
| * @tRP: ND_nRE pulse width |
| * @tRH: ND_nRE high duration |
| * @tWP: ND_nWE pulse time |
| * @tWH: ND_nWE high duration |
| * @tCS: Enable signal setup time |
| * @tCH: Enable signal hold time |
| * @tADL: Address to write data delay |
| * @tAR: ND_ALE low to ND_nRE low delay |
| * @tWHR: ND_nWE high to ND_nRE low for status read |
| * @tRHW: ND_nRE high duration, read to write delay |
| * @tR: ND_nWE high to ND_nRE low for read |
| */ |
| struct marvell_nfc_timings { |
| /* NDTR0 fields */ |
| unsigned int tRP; |
| unsigned int tRH; |
| unsigned int tWP; |
| unsigned int tWH; |
| unsigned int tCS; |
| unsigned int tCH; |
| unsigned int tADL; |
| /* NDTR1 fields */ |
| unsigned int tAR; |
| unsigned int tWHR; |
| unsigned int tRHW; |
| unsigned int tR; |
| }; |
| |
| /** |
| * TO_CYCLES() - Derives a duration in numbers of clock cycles. |
| * |
| * @ps: Duration in pico-seconds |
| * @period_ns: Clock period in nano-seconds |
| * |
| * Convert the duration in nano-seconds, then divide by the period and |
| * return the number of clock periods. |
| */ |
| #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) |
| #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ |
| period_ns)) |
| |
| /** |
| * struct marvell_nfc_op - filled during the parsing of the ->exec_op() |
| * subop subset of instructions. |
| * |
| * @ndcb: Array of values written to NDCBx registers |
| * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle |
| * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin |
| * @rdy_delay_ns: Optional delay after waiting for the RB pin |
| * @data_delay_ns: Optional delay after the data xfer |
| * @data_instr_idx: Index of the data instruction in the subop |
| * @data_instr: Pointer to the data instruction in the subop |
| */ |
| struct marvell_nfc_op { |
| u32 ndcb[4]; |
| unsigned int cle_ale_delay_ns; |
| unsigned int rdy_timeout_ms; |
| unsigned int rdy_delay_ns; |
| unsigned int data_delay_ns; |
| unsigned int data_instr_idx; |
| const struct nand_op_instr *data_instr; |
| }; |
| |
| /* |
| * Internal helper to conditionnally apply a delay (from the above structure, |
| * most of the time). |
| */ |
| static void cond_delay(unsigned int ns) |
| { |
| if (!ns) |
| return; |
| |
| if (ns < 10000) |
| ndelay(ns); |
| else |
| udelay(DIV_ROUND_UP(ns, 1000)); |
| } |
| |
| /* |
| * The controller has many flags that could generate interrupts, most of them |
| * are disabled and polling is used. For the very slow signals, using interrupts |
| * may relax the CPU charge. |
| */ |
| static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) |
| { |
| u32 reg; |
| |
| /* Writing 1 disables the interrupt */ |
| reg = readl_relaxed(nfc->regs + NDCR); |
| writel_relaxed(reg | int_mask, nfc->regs + NDCR); |
| } |
| |
| static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) |
| { |
| u32 reg; |
| |
| /* Writing 0 enables the interrupt */ |
| reg = readl_relaxed(nfc->regs + NDCR); |
| writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); |
| } |
| |
| static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) |
| { |
| u32 reg; |
| |
| reg = readl_relaxed(nfc->regs + NDSR); |
| writel_relaxed(int_mask, nfc->regs + NDSR); |
| |
| return reg & int_mask; |
| } |
| |
| static void marvell_nfc_force_byte_access(struct nand_chip *chip, |
| bool force_8bit) |
| { |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| u32 ndcr; |
| |
| /* |
| * Callers of this function do not verify if the NAND is using a 16-bit |
| * an 8-bit bus for normal operations, so we need to take care of that |
| * here by leaving the configuration unchanged if the NAND does not have |
| * the NAND_BUSWIDTH_16 flag set. |
| */ |
| if (!(chip->options & NAND_BUSWIDTH_16)) |
| return; |
| |
| ndcr = readl_relaxed(nfc->regs + NDCR); |
| |
| if (force_8bit) |
| ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); |
| else |
| ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; |
| |
| writel_relaxed(ndcr, nfc->regs + NDCR); |
| } |
| |
| static int marvell_nfc_wait_ndrun(struct nand_chip *chip) |
| { |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| u32 val; |
| int ret; |
| |
| /* |
| * The command is being processed, wait for the ND_RUN bit to be |
| * cleared by the NFC. If not, we must clear it by hand. |
| */ |
| ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, |
| (val & NDCR_ND_RUN) == 0, |
| POLL_PERIOD, POLL_TIMEOUT); |
| if (ret) { |
| dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); |
| writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, |
| nfc->regs + NDCR); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Any time a command has to be sent to the controller, the following sequence |
| * has to be followed: |
| * - call marvell_nfc_prepare_cmd() |
| * -> activate the ND_RUN bit that will kind of 'start a job' |
| * -> wait the signal indicating the NFC is waiting for a command |
| * - send the command (cmd and address cycles) |
| * - enventually send or receive the data |
| * - call marvell_nfc_end_cmd() with the corresponding flag |
| * -> wait the flag to be triggered or cancel the job with a timeout |
| * |
| * The following helpers are here to factorize the code a bit so that |
| * specialized functions responsible for executing the actual NAND |
| * operations do not have to replicate the same code blocks. |
| */ |
| static int marvell_nfc_prepare_cmd(struct nand_chip *chip) |
| { |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| u32 ndcr, val; |
| int ret; |
| |
| /* Poll ND_RUN and clear NDSR before issuing any command */ |
| ret = marvell_nfc_wait_ndrun(chip); |
| if (ret) { |
| dev_err(nfc->dev, "Last operation did not succeed\n"); |
| return ret; |
| } |
| |
| ndcr = readl_relaxed(nfc->regs + NDCR); |
| writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); |
| |
| /* Assert ND_RUN bit and wait the NFC to be ready */ |
| writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); |
| ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, |
| val & NDSR_WRCMDREQ, |
| POLL_PERIOD, POLL_TIMEOUT); |
| if (ret) { |
| dev_err(nfc->dev, "Timeout on WRCMDRE\n"); |
| return -ETIMEDOUT; |
| } |
| |
| /* Command may be written, clear WRCMDREQ status bit */ |
| writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); |
| |
| return 0; |
| } |
| |
| static void marvell_nfc_send_cmd(struct nand_chip *chip, |
| struct marvell_nfc_op *nfc_op) |
| { |
| struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| |
| dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" |
| "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", |
| (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], |
| nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); |
| |
| writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], |
| nfc->regs + NDCB0); |
| writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); |
| writel(nfc_op->ndcb[2], nfc->regs + NDCB0); |
| |
| /* |
| * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 |
| * fields are used (only available on NFCv2). |
| */ |
| if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || |
| NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { |
| if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) |
| writel(nfc_op->ndcb[3], nfc->regs + NDCB0); |
| } |
| } |
| |
| static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, |
| const char *label) |
| { |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| u32 val; |
| int ret; |
| |
| ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, |
| val & flag, |
| POLL_PERIOD, POLL_TIMEOUT); |
| |
| if (ret) { |
| dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", |
| label, val); |
| if (nfc->dma_chan) |
| dmaengine_terminate_all(nfc->dma_chan); |
| return ret; |
| } |
| |
| /* |
| * DMA function uses this helper to poll on CMDD bits without wanting |
| * them to be cleared. |
| */ |
| if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) |
| return 0; |
| |
| writel_relaxed(flag, nfc->regs + NDSR); |
| |
| return 0; |
| } |
| |
| static int marvell_nfc_wait_cmdd(struct nand_chip *chip) |
| { |
| struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); |
| |
| return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); |
| } |
| |
| static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, |
| u32 expected_val, unsigned long timeout_ms) |
| { |
| unsigned long limit; |
| u32 st; |
| |
| limit = jiffies + msecs_to_jiffies(timeout_ms); |
| do { |
| st = readl_relaxed(nfc->regs + NDSR); |
| if (st & NDSR_RDY(1)) |
| st |= NDSR_RDY(0); |
| |
| if ((st & mask) == expected_val) |
| return 0; |
| |
| cpu_relax(); |
| } while (time_after(limit, jiffies)); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) |
| { |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u32 pending; |
| int ret; |
| |
| /* Timeout is expressed in ms */ |
| if (!timeout_ms) |
| timeout_ms = IRQ_TIMEOUT; |
| |
| if (mtd->oops_panic_write) { |
| ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), |
| NDSR_RDY(0), |
| timeout_ms); |
| } else { |
| init_completion(&nfc->complete); |
| |
| marvell_nfc_enable_int(nfc, NDCR_RDYM); |
| ret = wait_for_completion_timeout(&nfc->complete, |
| msecs_to_jiffies(timeout_ms)); |
| marvell_nfc_disable_int(nfc, NDCR_RDYM); |
| } |
| pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); |
| |
| /* |
| * In case the interrupt was not served in the required time frame, |
| * check if the ISR was not served or if something went actually wrong. |
| */ |
| if (!ret && !pending) { |
| dev_err(nfc->dev, "Timeout waiting for RB signal\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static void marvell_nfc_select_target(struct nand_chip *chip, |
| unsigned int die_nr) |
| { |
| struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| u32 ndcr_generic; |
| |
| /* |
| * Reset the NDCR register to a clean state for this particular chip, |
| * also clear ND_RUN bit. |
| */ |
| ndcr_generic = readl_relaxed(nfc->regs + NDCR) & |
| NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; |
| writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); |
| |
| /* Also reset the interrupt status register */ |
| marvell_nfc_clear_int(nfc, NDCR_ALL_INT); |
| |
| if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) |
| return; |
| |
| writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); |
| writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); |
| |
| nfc->selected_chip = chip; |
| marvell_nand->selected_die = die_nr; |
| } |
| |
| static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) |
| { |
| struct marvell_nfc *nfc = dev_id; |
| u32 st = readl_relaxed(nfc->regs + NDSR); |
| u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; |
| |
| /* |
| * RDY interrupt mask is one bit in NDCR while there are two status |
| * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). |
| */ |
| if (st & NDSR_RDY(1)) |
| st |= NDSR_RDY(0); |
| |
| if (!(st & ien)) |
| return IRQ_NONE; |
| |
| marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); |
| |
| if (st & (NDSR_RDY(0) | NDSR_RDY(1))) |
| complete(&nfc->complete); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* HW ECC related functions */ |
| static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) |
| { |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| u32 ndcr = readl_relaxed(nfc->regs + NDCR); |
| |
| if (!(ndcr & NDCR_ECC_EN)) { |
| writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); |
| |
| /* |
| * When enabling BCH, set threshold to 0 to always know the |
| * number of corrected bitflips. |
| */ |
| if (chip->ecc.algo == NAND_ECC_ALGO_BCH) |
| writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); |
| } |
| } |
| |
| static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) |
| { |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| u32 ndcr = readl_relaxed(nfc->regs + NDCR); |
| |
| if (ndcr & NDCR_ECC_EN) { |
| writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); |
| if (chip->ecc.algo == NAND_ECC_ALGO_BCH) |
| writel_relaxed(0, nfc->regs + NDECCCTRL); |
| } |
| } |
| |
| /* DMA related helpers */ |
| static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) |
| { |
| u32 reg; |
| |
| reg = readl_relaxed(nfc->regs + NDCR); |
| writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); |
| } |
| |
| static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) |
| { |
| u32 reg; |
| |
| reg = readl_relaxed(nfc->regs + NDCR); |
| writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); |
| } |
| |
| /* Read/write PIO/DMA accessors */ |
| static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, |
| enum dma_data_direction direction, |
| unsigned int len) |
| { |
| unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); |
| struct dma_async_tx_descriptor *tx; |
| struct scatterlist sg; |
| dma_cookie_t cookie; |
| int ret; |
| |
| marvell_nfc_enable_dma(nfc); |
| /* Prepare the DMA transfer */ |
| sg_init_one(&sg, nfc->dma_buf, dma_len); |
| ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); |
| if (!ret) { |
| dev_err(nfc->dev, "Could not map DMA S/G list\n"); |
| return -ENXIO; |
| } |
| |
| tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, |
| direction == DMA_FROM_DEVICE ? |
| DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT); |
| if (!tx) { |
| dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); |
| dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); |
| return -ENXIO; |
| } |
| |
| /* Do the task and wait for it to finish */ |
| cookie = dmaengine_submit(tx); |
| ret = dma_submit_error(cookie); |
| if (ret) |
| return -EIO; |
| |
| dma_async_issue_pending(nfc->dma_chan); |
| ret = marvell_nfc_wait_cmdd(nfc->selected_chip); |
| dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); |
| marvell_nfc_disable_dma(nfc); |
| if (ret) { |
| dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", |
| dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); |
| dmaengine_terminate_all(nfc->dma_chan); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, |
| unsigned int len) |
| { |
| unsigned int last_len = len % FIFO_DEPTH; |
| unsigned int last_full_offset = round_down(len, FIFO_DEPTH); |
| int i; |
| |
| for (i = 0; i < last_full_offset; i += FIFO_DEPTH) |
| ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); |
| |
| if (last_len) { |
| u8 tmp_buf[FIFO_DEPTH]; |
| |
| ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); |
| memcpy(in + last_full_offset, tmp_buf, last_len); |
| } |
| |
| return 0; |
| } |
| |
| static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, |
| unsigned int len) |
| { |
| unsigned int last_len = len % FIFO_DEPTH; |
| unsigned int last_full_offset = round_down(len, FIFO_DEPTH); |
| int i; |
| |
| for (i = 0; i < last_full_offset; i += FIFO_DEPTH) |
| iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); |
| |
| if (last_len) { |
| u8 tmp_buf[FIFO_DEPTH]; |
| |
| memcpy(tmp_buf, out + last_full_offset, last_len); |
| iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); |
| } |
| |
| return 0; |
| } |
| |
| static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, |
| u8 *data, int data_len, |
| u8 *spare, int spare_len, |
| u8 *ecc, int ecc_len, |
| unsigned int *max_bitflips) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int bf; |
| |
| /* |
| * Blank pages (all 0xFF) that have not been written may be recognized |
| * as bad if bitflips occur, so whenever an uncorrectable error occurs, |
| * check if the entire page (with ECC bytes) is actually blank or not. |
| */ |
| if (!data) |
| data_len = 0; |
| if (!spare) |
| spare_len = 0; |
| if (!ecc) |
| ecc_len = 0; |
| |
| bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, |
| spare, spare_len, chip->ecc.strength); |
| if (bf < 0) { |
| mtd->ecc_stats.failed++; |
| return; |
| } |
| |
| /* Update the stats and max_bitflips */ |
| mtd->ecc_stats.corrected += bf; |
| *max_bitflips = max_t(unsigned int, *max_bitflips, bf); |
| } |
| |
| /* |
| * Check if a chunk is correct or not according to the hardware ECC engine. |
| * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however |
| * mtd->ecc_stats.failure is not, the function will instead return a non-zero |
| * value indicating that a check on the emptyness of the subpage must be |
| * performed before actually declaring the subpage as "corrupted". |
| */ |
| static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, |
| unsigned int *max_bitflips) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| int bf = 0; |
| u32 ndsr; |
| |
| ndsr = readl_relaxed(nfc->regs + NDSR); |
| |
| /* Check uncorrectable error flag */ |
| if (ndsr & NDSR_UNCERR) { |
| writel_relaxed(ndsr, nfc->regs + NDSR); |
| |
| /* |
| * Do not increment ->ecc_stats.failed now, instead, return a |
| * non-zero value to indicate that this chunk was apparently |
| * bad, and it should be check to see if it empty or not. If |
| * the chunk (with ECC bytes) is not declared empty, the calling |
| * function must increment the failure count. |
| */ |
| return -EBADMSG; |
| } |
| |
| /* Check correctable error flag */ |
| if (ndsr & NDSR_CORERR) { |
| writel_relaxed(ndsr, nfc->regs + NDSR); |
| |
| if (chip->ecc.algo == NAND_ECC_ALGO_BCH) |
| bf = NDSR_ERRCNT(ndsr); |
| else |
| bf = 1; |
| } |
| |
| /* Update the stats and max_bitflips */ |
| mtd->ecc_stats.corrected += bf; |
| *max_bitflips = max_t(unsigned int, *max_bitflips, bf); |
| |
| return 0; |
| } |
| |
| /* Hamming read helpers */ |
| static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, |
| u8 *data_buf, u8 *oob_buf, |
| bool raw, int page) |
| { |
| struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| struct marvell_nfc_op nfc_op = { |
| .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | |
| NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | |
| NDCB0_DBC | |
| NDCB0_CMD1(NAND_CMD_READ0) | |
| NDCB0_CMD2(NAND_CMD_READSTART), |
| .ndcb[1] = NDCB1_ADDRS_PAGE(page), |
| .ndcb[2] = NDCB2_ADDR5_PAGE(page), |
| }; |
| unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); |
| int ret; |
| |
| /* NFCv2 needs more information about the operation being executed */ |
| if (nfc->caps->is_nfcv2) |
| nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); |
| |
| ret = marvell_nfc_prepare_cmd(chip); |
| if (ret) |
| return ret; |
| |
| marvell_nfc_send_cmd(chip, &nfc_op); |
| ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
| "RDDREQ while draining FIFO (data/oob)"); |
| if (ret) |
| return ret; |
| |
| /* |
| * Read the page then the OOB area. Unlike what is shown in current |
| * documentation, spare bytes are protected by the ECC engine, and must |
| * be at the beginning of the OOB area or running this driver on legacy |
| * systems will prevent the discovery of the BBM/BBT. |
| */ |
| if (nfc->use_dma) { |
| marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, |
| lt->data_bytes + oob_bytes); |
| memcpy(data_buf, nfc->dma_buf, lt->data_bytes); |
| memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); |
| } else { |
| marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); |
| marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); |
| } |
| |
| ret = marvell_nfc_wait_cmdd(chip); |
| return ret; |
| } |
| |
| static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| marvell_nfc_select_target(chip, chip->cur_cs); |
| return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, |
| true, page); |
| } |
| |
| static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; |
| int max_bitflips = 0, ret; |
| u8 *raw_buf; |
| |
| marvell_nfc_select_target(chip, chip->cur_cs); |
| marvell_nfc_enable_hw_ecc(chip); |
| marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, |
| page); |
| ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); |
| marvell_nfc_disable_hw_ecc(chip); |
| |
| if (!ret) |
| return max_bitflips; |
| |
| /* |
| * When ECC failures are detected, check if the full page has been |
| * written or not. Ignore the failure if it is actually empty. |
| */ |
| raw_buf = kmalloc(full_sz, GFP_KERNEL); |
| if (!raw_buf) |
| return -ENOMEM; |
| |
| marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + |
| lt->data_bytes, true, page); |
| marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, |
| &max_bitflips); |
| kfree(raw_buf); |
| |
| return max_bitflips; |
| } |
| |
| /* |
| * Spare area in Hamming layouts is not protected by the ECC engine (even if |
| * it appears before the ECC bytes when reading), the ->read_oob_raw() function |
| * also stands for ->read_oob(). |
| */ |
| static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) |
| { |
| u8 *buf = nand_get_data_buf(chip); |
| |
| marvell_nfc_select_target(chip, chip->cur_cs); |
| return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, |
| true, page); |
| } |
| |
| /* Hamming write helpers */ |
| static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, |
| const u8 *data_buf, |
| const u8 *oob_buf, bool raw, |
| int page) |
| { |
| const struct nand_sdr_timings *sdr = |
| nand_get_sdr_timings(nand_get_interface_config(chip)); |
| struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| struct marvell_nfc_op nfc_op = { |
| .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | |
| NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | |
| NDCB0_CMD1(NAND_CMD_SEQIN) | |
| NDCB0_CMD2(NAND_CMD_PAGEPROG) | |
| NDCB0_DBC, |
| .ndcb[1] = NDCB1_ADDRS_PAGE(page), |
| .ndcb[2] = NDCB2_ADDR5_PAGE(page), |
| }; |
| unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); |
| u8 status; |
| int ret; |
| |
| /* NFCv2 needs more information about the operation being executed */ |
| if (nfc->caps->is_nfcv2) |
| nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); |
| |
| ret = marvell_nfc_prepare_cmd(chip); |
| if (ret) |
| return ret; |
| |
| marvell_nfc_send_cmd(chip, &nfc_op); |
| ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, |
| "WRDREQ while loading FIFO (data)"); |
| if (ret) |
| return ret; |
| |
| /* Write the page then the OOB area */ |
| if (nfc->use_dma) { |
| memcpy(nfc->dma_buf, data_buf, lt->data_bytes); |
| memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); |
| marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + |
| lt->ecc_bytes + lt->spare_bytes); |
| } else { |
| marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); |
| marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); |
| } |
| |
| ret = marvell_nfc_wait_cmdd(chip); |
| if (ret) |
| return ret; |
| |
| ret = marvell_nfc_wait_op(chip, |
| PSEC_TO_MSEC(sdr->tPROG_max)); |
| if (ret) |
| return ret; |
| |
| /* Check write status on the chip side */ |
| ret = nand_status_op(chip, &status); |
| if (ret) |
| return ret; |
| |
| if (status & NAND_STATUS_FAIL) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, |
| const u8 *buf, |
| int oob_required, int page) |
| { |
| marvell_nfc_select_target(chip, chip->cur_cs); |
| return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, |
| true, page); |
| } |
| |
| static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, |
| const u8 *buf, |
| int oob_required, int page) |
| { |
| int ret; |
| |
| marvell_nfc_select_target(chip, chip->cur_cs); |
| marvell_nfc_enable_hw_ecc(chip); |
| ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, |
| false, page); |
| marvell_nfc_disable_hw_ecc(chip); |
| |
| return ret; |
| } |
| |
| /* |
| * Spare area in Hamming layouts is not protected by the ECC engine (even if |
| * it appears before the ECC bytes when reading), the ->write_oob_raw() function |
| * also stands for ->write_oob(). |
| */ |
| static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, |
| int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u8 *buf = nand_get_data_buf(chip); |
| |
| memset(buf, 0xFF, mtd->writesize); |
| |
| marvell_nfc_select_target(chip, chip->cur_cs); |
| return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, |
| true, page); |
| } |
| |
| /* BCH read helpers */ |
| static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| u8 *oob = chip->oob_poi; |
| int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; |
| int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + |
| lt->last_spare_bytes; |
| int data_len = lt->data_bytes; |
| int spare_len = lt->spare_bytes; |
| int ecc_len = lt->ecc_bytes; |
| int chunk; |
| |
| marvell_nfc_select_target(chip, chip->cur_cs); |
| |
| if (oob_required) |
| memset(chip->oob_poi, 0xFF, mtd->oobsize); |
| |
| nand_read_page_op(chip, page, 0, NULL, 0); |
| |
| for (chunk = 0; chunk < lt->nchunks; chunk++) { |
| /* Update last chunk length */ |
| if (chunk >= lt->full_chunk_cnt) { |
| data_len = lt->last_data_bytes; |
| spare_len = lt->last_spare_bytes; |
| ecc_len = lt->last_ecc_bytes; |
| } |
| |
| /* Read data bytes*/ |
| nand_change_read_column_op(chip, chunk * chunk_size, |
| buf + (lt->data_bytes * chunk), |
| data_len, false); |
| |
| /* Read spare bytes */ |
| nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), |
| spare_len, false, false); |
| |
| /* Read ECC bytes */ |
| nand_read_data_op(chip, oob + ecc_offset + |
| (ALIGN(lt->ecc_bytes, 32) * chunk), |
| ecc_len, false, false); |
| } |
| |
| return 0; |
| } |
| |
| static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, |
| u8 *data, unsigned int data_len, |
| u8 *spare, unsigned int spare_len, |
| int page) |
| { |
| struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| int i, ret; |
| struct marvell_nfc_op nfc_op = { |
| .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | |
| NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | |
| NDCB0_LEN_OVRD, |
| .ndcb[1] = NDCB1_ADDRS_PAGE(page), |
| .ndcb[2] = NDCB2_ADDR5_PAGE(page), |
| .ndcb[3] = data_len + spare_len, |
| }; |
| |
| ret = marvell_nfc_prepare_cmd(chip); |
| if (ret) |
| return; |
| |
| if (chunk == 0) |
| nfc_op.ndcb[0] |= NDCB0_DBC | |
| NDCB0_CMD1(NAND_CMD_READ0) | |
| NDCB0_CMD2(NAND_CMD_READSTART); |
| |
| /* |
| * Trigger the monolithic read on the first chunk, then naked read on |
| * intermediate chunks and finally a last naked read on the last chunk. |
| */ |
| if (chunk == 0) |
| nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); |
| else if (chunk < lt->nchunks - 1) |
| nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); |
| else |
| nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); |
| |
| marvell_nfc_send_cmd(chip, &nfc_op); |
| |
| /* |
| * According to the datasheet, when reading from NDDB |
| * with BCH enabled, after each 32 bytes reads, we |
| * have to make sure that the NDSR.RDDREQ bit is set. |
| * |
| * Drain the FIFO, 8 32-bit reads at a time, and skip |
| * the polling on the last read. |
| * |
| * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. |
| */ |
| for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { |
| marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
| "RDDREQ while draining FIFO (data)"); |
| marvell_nfc_xfer_data_in_pio(nfc, data, |
| FIFO_DEPTH * BCH_SEQ_READS); |
| data += FIFO_DEPTH * BCH_SEQ_READS; |
| } |
| |
| for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { |
| marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
| "RDDREQ while draining FIFO (OOB)"); |
| marvell_nfc_xfer_data_in_pio(nfc, spare, |
| FIFO_DEPTH * BCH_SEQ_READS); |
| spare += FIFO_DEPTH * BCH_SEQ_READS; |
| } |
| } |
| |
| static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, |
| u8 *buf, int oob_required, |
| int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| int data_len = lt->data_bytes, spare_len = lt->spare_bytes; |
| u8 *data = buf, *spare = chip->oob_poi; |
| int max_bitflips = 0; |
| u32 failure_mask = 0; |
| int chunk, ret; |
| |
| marvell_nfc_select_target(chip, chip->cur_cs); |
| |
| /* |
| * With BCH, OOB is not fully used (and thus not read entirely), not |
| * expected bytes could show up at the end of the OOB buffer if not |
| * explicitly erased. |
| */ |
| if (oob_required) |
| memset(chip->oob_poi, 0xFF, mtd->oobsize); |
| |
| marvell_nfc_enable_hw_ecc(chip); |
| |
| for (chunk = 0; chunk < lt->nchunks; chunk++) { |
| /* Update length for the last chunk */ |
| if (chunk >= lt->full_chunk_cnt) { |
| data_len = lt->last_data_bytes; |
| spare_len = lt->last_spare_bytes; |
| } |
| |
| /* Read the chunk and detect number of bitflips */ |
| marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, |
| spare, spare_len, page); |
| ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); |
| if (ret) |
| failure_mask |= BIT(chunk); |
| |
| data += data_len; |
| spare += spare_len; |
| } |
| |
| marvell_nfc_disable_hw_ecc(chip); |
| |
| if (!failure_mask) |
| return max_bitflips; |
| |
| /* |
| * Please note that dumping the ECC bytes during a normal read with OOB |
| * area would add a significant overhead as ECC bytes are "consumed" by |
| * the controller in normal mode and must be re-read in raw mode. To |
| * avoid dropping the performances, we prefer not to include them. The |
| * user should re-read the page in raw mode if ECC bytes are required. |
| */ |
| |
| /* |
| * In case there is any subpage read error, we usually re-read only ECC |
| * bytes in raw mode and check if the whole page is empty. In this case, |
| * it is normal that the ECC check failed and we just ignore the error. |
| * |
| * However, it has been empirically observed that for some layouts (e.g |
| * 2k page, 8b strength per 512B chunk), the controller tries to correct |
| * bits and may create itself bitflips in the erased area. To overcome |
| * this strange behavior, the whole page is re-read in raw mode, not |
| * only the ECC bytes. |
| */ |
| for (chunk = 0; chunk < lt->nchunks; chunk++) { |
| int data_off_in_page, spare_off_in_page, ecc_off_in_page; |
| int data_off, spare_off, ecc_off; |
| int data_len, spare_len, ecc_len; |
| |
| /* No failure reported for this chunk, move to the next one */ |
| if (!(failure_mask & BIT(chunk))) |
| continue; |
| |
| data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + |
| lt->ecc_bytes); |
| spare_off_in_page = data_off_in_page + |
| (chunk < lt->full_chunk_cnt ? lt->data_bytes : |
| lt->last_data_bytes); |
| ecc_off_in_page = spare_off_in_page + |
| (chunk < lt->full_chunk_cnt ? lt->spare_bytes : |
| lt->last_spare_bytes); |
| |
| data_off = chunk * lt->data_bytes; |
| spare_off = chunk * lt->spare_bytes; |
| ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + |
| lt->last_spare_bytes + |
| (chunk * (lt->ecc_bytes + 2)); |
| |
| data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : |
| lt->last_data_bytes; |
| spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : |
| lt->last_spare_bytes; |
| ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : |
| lt->last_ecc_bytes; |
| |
| /* |
| * Only re-read the ECC bytes, unless we are using the 2k/8b |
| * layout which is buggy in the sense that the ECC engine will |
| * try to correct data bytes anyway, creating bitflips. In this |
| * case, re-read the entire page. |
| */ |
| if (lt->writesize == 2048 && lt->strength == 8) { |
| nand_change_read_column_op(chip, data_off_in_page, |
| buf + data_off, data_len, |
| false); |
| nand_change_read_column_op(chip, spare_off_in_page, |
| chip->oob_poi + spare_off, spare_len, |
| false); |
| } |
| |
| nand_change_read_column_op(chip, ecc_off_in_page, |
| chip->oob_poi + ecc_off, ecc_len, |
| false); |
| |
| /* Check the entire chunk (data + spare + ecc) for emptyness */ |
| marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, |
| chip->oob_poi + spare_off, spare_len, |
| chip->oob_poi + ecc_off, ecc_len, |
| &max_bitflips); |
| } |
| |
| return max_bitflips; |
| } |
| |
| static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) |
| { |
| u8 *buf = nand_get_data_buf(chip); |
| |
| return chip->ecc.read_page_raw(chip, buf, true, page); |
| } |
| |
| static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) |
| { |
| u8 *buf = nand_get_data_buf(chip); |
| |
| return chip->ecc.read_page(chip, buf, true, page); |
| } |
| |
| /* BCH write helpers */ |
| static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, |
| const u8 *buf, |
| int oob_required, int page) |
| { |
| const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; |
| int data_len = lt->data_bytes; |
| int spare_len = lt->spare_bytes; |
| int ecc_len = lt->ecc_bytes; |
| int spare_offset = 0; |
| int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + |
| lt->last_spare_bytes; |
| int chunk; |
| |
| marvell_nfc_select_target(chip, chip->cur_cs); |
| |
| nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| |
| for (chunk = 0; chunk < lt->nchunks; chunk++) { |
| if (chunk >= lt->full_chunk_cnt) { |
| data_len = lt->last_data_bytes; |
| spare_len = lt->last_spare_bytes; |
| ecc_len = lt->last_ecc_bytes; |
| } |
| |
| /* Point to the column of the next chunk */ |
| nand_change_write_column_op(chip, chunk * full_chunk_size, |
| NULL, 0, false); |
| |
| /* Write the data */ |
| nand_write_data_op(chip, buf + (chunk * lt->data_bytes), |
| data_len, false); |
| |
| if (!oob_required) |
| continue; |
| |
| /* Write the spare bytes */ |
| if (spare_len) |
| nand_write_data_op(chip, chip->oob_poi + spare_offset, |
| spare_len, false); |
| |
| /* Write the ECC bytes */ |
| if (ecc_len) |
| nand_write_data_op(chip, chip->oob_poi + ecc_offset, |
| ecc_len, false); |
| |
| spare_offset += spare_len; |
| ecc_offset += ALIGN(ecc_len, 32); |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static int |
| marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, |
| const u8 *data, unsigned int data_len, |
| const u8 *spare, unsigned int spare_len, |
| int page) |
| { |
| struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| u32 xtype; |
| int ret; |
| struct marvell_nfc_op nfc_op = { |
| .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, |
| .ndcb[3] = data_len + spare_len, |
| }; |
| |
| /* |
| * First operation dispatches the CMD_SEQIN command, issue the address |
| * cycles and asks for the first chunk of data. |
| * All operations in the middle (if any) will issue a naked write and |
| * also ask for data. |
| * Last operation (if any) asks for the last chunk of data through a |
| * last naked write. |
| */ |
| if (chunk == 0) { |
| if (lt->nchunks == 1) |
| xtype = XTYPE_MONOLITHIC_RW; |
| else |
| xtype = XTYPE_WRITE_DISPATCH; |
| |
| nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | |
| NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | |
| NDCB0_CMD1(NAND_CMD_SEQIN); |
| nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); |
| nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); |
| } else if (chunk < lt->nchunks - 1) { |
| nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); |
| } else { |
| nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); |
| } |
| |
| /* Always dispatch the PAGEPROG command on the last chunk */ |
| if (chunk == lt->nchunks - 1) |
| nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; |
| |
| ret = marvell_nfc_prepare_cmd(chip); |
| if (ret) |
| return ret; |
| |
| marvell_nfc_send_cmd(chip, &nfc_op); |
| ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, |
| "WRDREQ while loading FIFO (data)"); |
| if (ret) |
| return ret; |
| |
| /* Transfer the contents */ |
| iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); |
| iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); |
| |
| return 0; |
| } |
| |
| static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, |
| const u8 *buf, |
| int oob_required, int page) |
| { |
| const struct nand_sdr_timings *sdr = |
| nand_get_sdr_timings(nand_get_interface_config(chip)); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| const u8 *data = buf; |
| const u8 *spare = chip->oob_poi; |
| int data_len = lt->data_bytes; |
| int spare_len = lt->spare_bytes; |
| int chunk, ret; |
| u8 status; |
| |
| marvell_nfc_select_target(chip, chip->cur_cs); |
| |
| /* Spare data will be written anyway, so clear it to avoid garbage */ |
| if (!oob_required) |
| memset(chip->oob_poi, 0xFF, mtd->oobsize); |
| |
| marvell_nfc_enable_hw_ecc(chip); |
| |
| for (chunk = 0; chunk < lt->nchunks; chunk++) { |
| if (chunk >= lt->full_chunk_cnt) { |
| data_len = lt->last_data_bytes; |
| spare_len = lt->last_spare_bytes; |
| } |
| |
| marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, |
| spare, spare_len, page); |
| data += data_len; |
| spare += spare_len; |
| |
| /* |
| * Waiting only for CMDD or PAGED is not enough, ECC are |
| * partially written. No flag is set once the operation is |
| * really finished but the ND_RUN bit is cleared, so wait for it |
| * before stepping into the next command. |
| */ |
| marvell_nfc_wait_ndrun(chip); |
| } |
| |
| ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); |
| |
| marvell_nfc_disable_hw_ecc(chip); |
| |
| if (ret) |
| return ret; |
| |
| /* Check write status on the chip side */ |
| ret = nand_status_op(chip, &status); |
| if (ret) |
| return ret; |
| |
| if (status & NAND_STATUS_FAIL) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, |
| int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u8 *buf = nand_get_data_buf(chip); |
| |
| memset(buf, 0xFF, mtd->writesize); |
| |
| return chip->ecc.write_page_raw(chip, buf, true, page); |
| } |
| |
| static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u8 *buf = nand_get_data_buf(chip); |
| |
| memset(buf, 0xFF, mtd->writesize); |
| |
| return chip->ecc.write_page(chip, buf, true, page); |
| } |
| |
| /* NAND framework ->exec_op() hooks and related helpers */ |
| static void marvell_nfc_parse_instructions(struct nand_chip *chip, |
| const struct nand_subop *subop, |
| struct marvell_nfc_op *nfc_op) |
| { |
| const struct nand_op_instr *instr = NULL; |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| bool first_cmd = true; |
| unsigned int op_id; |
| int i; |
| |
| /* Reset the input structure as most of its fields will be OR'ed */ |
| memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); |
| |
| for (op_id = 0; op_id < subop->ninstrs; op_id++) { |
| unsigned int offset, naddrs; |
| const u8 *addrs; |
| int len; |
| |
| instr = &subop->instrs[op_id]; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| if (first_cmd) |
| nfc_op->ndcb[0] |= |
| NDCB0_CMD1(instr->ctx.cmd.opcode); |
| else |
| nfc_op->ndcb[0] |= |
| NDCB0_CMD2(instr->ctx.cmd.opcode) | |
| NDCB0_DBC; |
| |
| nfc_op->cle_ale_delay_ns = instr->delay_ns; |
| first_cmd = false; |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| offset = nand_subop_get_addr_start_off(subop, op_id); |
| naddrs = nand_subop_get_num_addr_cyc(subop, op_id); |
| addrs = &instr->ctx.addr.addrs[offset]; |
| |
| nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); |
| |
| for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) |
| nfc_op->ndcb[1] |= addrs[i] << (8 * i); |
| |
| if (naddrs >= 5) |
| nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); |
| if (naddrs >= 6) |
| nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); |
| if (naddrs == 7) |
| nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); |
| |
| nfc_op->cle_ale_delay_ns = instr->delay_ns; |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| nfc_op->data_instr = instr; |
| nfc_op->data_instr_idx = op_id; |
| nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); |
| if (nfc->caps->is_nfcv2) { |
| nfc_op->ndcb[0] |= |
| NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | |
| NDCB0_LEN_OVRD; |
| len = nand_subop_get_data_len(subop, op_id); |
| nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); |
| } |
| nfc_op->data_delay_ns = instr->delay_ns; |
| break; |
| |
| case NAND_OP_DATA_OUT_INSTR: |
| nfc_op->data_instr = instr; |
| nfc_op->data_instr_idx = op_id; |
| nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); |
| if (nfc->caps->is_nfcv2) { |
| nfc_op->ndcb[0] |= |
| NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | |
| NDCB0_LEN_OVRD; |
| len = nand_subop_get_data_len(subop, op_id); |
| nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); |
| } |
| nfc_op->data_delay_ns = instr->delay_ns; |
| break; |
| |
| case NAND_OP_WAITRDY_INSTR: |
| nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; |
| nfc_op->rdy_delay_ns = instr->delay_ns; |
| break; |
| } |
| } |
| } |
| |
| static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, |
| const struct nand_subop *subop, |
| struct marvell_nfc_op *nfc_op) |
| { |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| const struct nand_op_instr *instr = nfc_op->data_instr; |
| unsigned int op_id = nfc_op->data_instr_idx; |
| unsigned int len = nand_subop_get_data_len(subop, op_id); |
| unsigned int offset = nand_subop_get_data_start_off(subop, op_id); |
| bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); |
| int ret; |
| |
| if (instr->ctx.data.force_8bit) |
| marvell_nfc_force_byte_access(chip, true); |
| |
| if (reading) { |
| u8 *in = instr->ctx.data.buf.in + offset; |
| |
| ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); |
| } else { |
| const u8 *out = instr->ctx.data.buf.out + offset; |
| |
| ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); |
| } |
| |
| if (instr->ctx.data.force_8bit) |
| marvell_nfc_force_byte_access(chip, false); |
| |
| return ret; |
| } |
| |
| static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| struct marvell_nfc_op nfc_op; |
| bool reading; |
| int ret; |
| |
| marvell_nfc_parse_instructions(chip, subop, &nfc_op); |
| reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); |
| |
| ret = marvell_nfc_prepare_cmd(chip); |
| if (ret) |
| return ret; |
| |
| marvell_nfc_send_cmd(chip, &nfc_op); |
| ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, |
| "RDDREQ/WRDREQ while draining raw data"); |
| if (ret) |
| return ret; |
| |
| cond_delay(nfc_op.cle_ale_delay_ns); |
| |
| if (reading) { |
| if (nfc_op.rdy_timeout_ms) { |
| ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); |
| if (ret) |
| return ret; |
| } |
| |
| cond_delay(nfc_op.rdy_delay_ns); |
| } |
| |
| marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); |
| ret = marvell_nfc_wait_cmdd(chip); |
| if (ret) |
| return ret; |
| |
| cond_delay(nfc_op.data_delay_ns); |
| |
| if (!reading) { |
| if (nfc_op.rdy_timeout_ms) { |
| ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); |
| if (ret) |
| return ret; |
| } |
| |
| cond_delay(nfc_op.rdy_delay_ns); |
| } |
| |
| /* |
| * NDCR ND_RUN bit should be cleared automatically at the end of each |
| * operation but experience shows that the behavior is buggy when it |
| * comes to writes (with LEN_OVRD). Clear it by hand in this case. |
| */ |
| if (!reading) { |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| |
| writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, |
| nfc->regs + NDCR); |
| } |
| |
| return 0; |
| } |
| |
| static int marvell_nfc_naked_access_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| struct marvell_nfc_op nfc_op; |
| int ret; |
| |
| marvell_nfc_parse_instructions(chip, subop, &nfc_op); |
| |
| /* |
| * Naked access are different in that they need to be flagged as naked |
| * by the controller. Reset the controller registers fields that inform |
| * on the type and refill them according to the ongoing operation. |
| */ |
| nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | |
| NDCB0_CMD_XTYPE(XTYPE_MASK)); |
| switch (subop->instrs[0].type) { |
| case NAND_OP_CMD_INSTR: |
| nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); |
| break; |
| case NAND_OP_ADDR_INSTR: |
| nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); |
| break; |
| case NAND_OP_DATA_IN_INSTR: |
| nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | |
| NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); |
| break; |
| case NAND_OP_DATA_OUT_INSTR: |
| nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | |
| NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); |
| break; |
| default: |
| /* This should never happen */ |
| break; |
| } |
| |
| ret = marvell_nfc_prepare_cmd(chip); |
| if (ret) |
| return ret; |
| |
| marvell_nfc_send_cmd(chip, &nfc_op); |
| |
| if (!nfc_op.data_instr) { |
| ret = marvell_nfc_wait_cmdd(chip); |
| cond_delay(nfc_op.cle_ale_delay_ns); |
| return ret; |
| } |
| |
| ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, |
| "RDDREQ/WRDREQ while draining raw data"); |
| if (ret) |
| return ret; |
| |
| marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); |
| ret = marvell_nfc_wait_cmdd(chip); |
| if (ret) |
| return ret; |
| |
| /* |
| * NDCR ND_RUN bit should be cleared automatically at the end of each |
| * operation but experience shows that the behavior is buggy when it |
| * comes to writes (with LEN_OVRD). Clear it by hand in this case. |
| */ |
| if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| |
| writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, |
| nfc->regs + NDCR); |
| } |
| |
| return 0; |
| } |
| |
| static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| struct marvell_nfc_op nfc_op; |
| int ret; |
| |
| marvell_nfc_parse_instructions(chip, subop, &nfc_op); |
| |
| ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); |
| cond_delay(nfc_op.rdy_delay_ns); |
| |
| return ret; |
| } |
| |
| static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| struct marvell_nfc_op nfc_op; |
| int ret; |
| |
| marvell_nfc_parse_instructions(chip, subop, &nfc_op); |
| nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); |
| nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); |
| |
| ret = marvell_nfc_prepare_cmd(chip); |
| if (ret) |
| return ret; |
| |
| marvell_nfc_send_cmd(chip, &nfc_op); |
| ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
| "RDDREQ while reading ID"); |
| if (ret) |
| return ret; |
| |
| cond_delay(nfc_op.cle_ale_delay_ns); |
| |
| if (nfc_op.rdy_timeout_ms) { |
| ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); |
| if (ret) |
| return ret; |
| } |
| |
| cond_delay(nfc_op.rdy_delay_ns); |
| |
| marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); |
| ret = marvell_nfc_wait_cmdd(chip); |
| if (ret) |
| return ret; |
| |
| cond_delay(nfc_op.data_delay_ns); |
| |
| return 0; |
| } |
| |
| static int marvell_nfc_read_status_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| struct marvell_nfc_op nfc_op; |
| int ret; |
| |
| marvell_nfc_parse_instructions(chip, subop, &nfc_op); |
| nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); |
| nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); |
| |
| ret = marvell_nfc_prepare_cmd(chip); |
| if (ret) |
| return ret; |
| |
| marvell_nfc_send_cmd(chip, &nfc_op); |
| ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
| "RDDREQ while reading status"); |
| if (ret) |
| return ret; |
| |
| cond_delay(nfc_op.cle_ale_delay_ns); |
| |
| if (nfc_op.rdy_timeout_ms) { |
| ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); |
| if (ret) |
| return ret; |
| } |
| |
| cond_delay(nfc_op.rdy_delay_ns); |
| |
| marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); |
| ret = marvell_nfc_wait_cmdd(chip); |
| if (ret) |
| return ret; |
| |
| cond_delay(nfc_op.data_delay_ns); |
| |
| return 0; |
| } |
| |
| static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| struct marvell_nfc_op nfc_op; |
| int ret; |
| |
| marvell_nfc_parse_instructions(chip, subop, &nfc_op); |
| nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); |
| |
| ret = marvell_nfc_prepare_cmd(chip); |
| if (ret) |
| return ret; |
| |
| marvell_nfc_send_cmd(chip, &nfc_op); |
| ret = marvell_nfc_wait_cmdd(chip); |
| if (ret) |
| return ret; |
| |
| cond_delay(nfc_op.cle_ale_delay_ns); |
| |
| ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); |
| if (ret) |
| return ret; |
| |
| cond_delay(nfc_op.rdy_delay_ns); |
| |
| return 0; |
| } |
| |
| static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| struct marvell_nfc_op nfc_op; |
| int ret; |
| |
| marvell_nfc_parse_instructions(chip, subop, &nfc_op); |
| nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); |
| |
| ret = marvell_nfc_prepare_cmd(chip); |
| if (ret) |
| return ret; |
| |
| marvell_nfc_send_cmd(chip, &nfc_op); |
| ret = marvell_nfc_wait_cmdd(chip); |
| if (ret) |
| return ret; |
| |
| cond_delay(nfc_op.cle_ale_delay_ns); |
| |
| ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); |
| if (ret) |
| return ret; |
| |
| cond_delay(nfc_op.rdy_delay_ns); |
| |
| return 0; |
| } |
| |
| static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( |
| /* Monolithic reads/writes */ |
| NAND_OP_PARSER_PATTERN( |
| marvell_nfc_monolithic_access_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), |
| NAND_OP_PARSER_PATTERN( |
| marvell_nfc_monolithic_access_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), |
| NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), |
| /* Naked commands */ |
| NAND_OP_PARSER_PATTERN( |
| marvell_nfc_naked_access_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false)), |
| NAND_OP_PARSER_PATTERN( |
| marvell_nfc_naked_access_exec, |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), |
| NAND_OP_PARSER_PATTERN( |
| marvell_nfc_naked_access_exec, |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), |
| NAND_OP_PARSER_PATTERN( |
| marvell_nfc_naked_access_exec, |
| NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), |
| NAND_OP_PARSER_PATTERN( |
| marvell_nfc_naked_waitrdy_exec, |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| ); |
| |
| static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( |
| /* Naked commands not supported, use a function for each pattern */ |
| NAND_OP_PARSER_PATTERN( |
| marvell_nfc_read_id_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), |
| NAND_OP_PARSER_PATTERN( |
| marvell_nfc_erase_cmd_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| NAND_OP_PARSER_PATTERN( |
| marvell_nfc_read_status_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), |
| NAND_OP_PARSER_PATTERN( |
| marvell_nfc_reset_cmd_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| NAND_OP_PARSER_PATTERN( |
| marvell_nfc_naked_waitrdy_exec, |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| ); |
| |
| static int marvell_nfc_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, |
| bool check_only) |
| { |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| |
| if (!check_only) |
| marvell_nfc_select_target(chip, op->cs); |
| |
| if (nfc->caps->is_nfcv2) |
| return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, |
| op, check_only); |
| else |
| return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, |
| op, check_only); |
| } |
| |
| /* |
| * Layouts were broken in old pxa3xx_nand driver, these are supposed to be |
| * usable. |
| */ |
| static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + |
| lt->last_ecc_bytes; |
| oobregion->offset = mtd->oobsize - oobregion->length; |
| |
| return 0; |
| } |
| |
| static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| |
| if (section) |
| return -ERANGE; |
| |
| /* |
| * Bootrom looks in bytes 0 & 5 for bad blocks for the |
| * 4KB page / 4bit BCH combination. |
| */ |
| if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) |
| oobregion->offset = 6; |
| else |
| oobregion->offset = 2; |
| |
| oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + |
| lt->last_spare_bytes - oobregion->offset; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { |
| .ecc = marvell_nand_ooblayout_ecc, |
| .free = marvell_nand_ooblayout_free, |
| }; |
| |
| static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, |
| struct nand_ecc_ctrl *ecc) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| const struct marvell_hw_ecc_layout *l; |
| int i; |
| |
| if (!nfc->caps->is_nfcv2 && |
| (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { |
| dev_err(nfc->dev, |
| "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", |
| mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); |
| return -ENOTSUPP; |
| } |
| |
| to_marvell_nand(chip)->layout = NULL; |
| for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { |
| l = &marvell_nfc_layouts[i]; |
| if (mtd->writesize == l->writesize && |
| ecc->size == l->chunk && ecc->strength == l->strength) { |
| to_marvell_nand(chip)->layout = l; |
| break; |
| } |
| } |
| |
| if (!to_marvell_nand(chip)->layout || |
| (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { |
| dev_err(nfc->dev, |
| "ECC strength %d at page size %d is not supported\n", |
| ecc->strength, mtd->writesize); |
| return -ENOTSUPP; |
| } |
| |
| /* Special care for the layout 2k/8-bit/512B */ |
| if (l->writesize == 2048 && l->strength == 8) { |
| if (mtd->oobsize < 128) { |
| dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); |
| return -ENOTSUPP; |
| } else { |
| chip->bbt_options |= NAND_BBT_NO_OOB_BBM; |
| } |
| } |
| |
| mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); |
| ecc->steps = l->nchunks; |
| ecc->size = l->data_bytes; |
| |
| if (ecc->strength == 1) { |
| chip->ecc.algo = NAND_ECC_ALGO_HAMMING; |
| ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; |
| ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; |
| ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; |
| ecc->read_oob = ecc->read_oob_raw; |
| ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; |
| ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; |
| ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; |
| ecc->write_oob = ecc->write_oob_raw; |
| } else { |
| chip->ecc.algo = NAND_ECC_ALGO_BCH; |
| ecc->strength = 16; |
| ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; |
| ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; |
| ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; |
| ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; |
| ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; |
| ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; |
| ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; |
| ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; |
| } |
| |
| return 0; |
| } |
| |
| static int marvell_nand_ecc_init(struct mtd_info *mtd, |
| struct nand_ecc_ctrl *ecc) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| const struct nand_ecc_props *requirements = |
| nanddev_get_ecc_requirements(&chip->base); |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| int ret; |
| |
| if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && |
| (!ecc->size || !ecc->strength)) { |
| if (requirements->step_size && requirements->strength) { |
| ecc->size = requirements->step_size; |
| ecc->strength = requirements->strength; |
| } else { |
| dev_info(nfc->dev, |
| "No minimum ECC strength, using 1b/512B\n"); |
| ecc->size = 512; |
| ecc->strength = 1; |
| } |
| } |
| |
| switch (ecc->engine_type) { |
| case NAND_ECC_ENGINE_TYPE_ON_HOST: |
| ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); |
| if (ret) |
| return ret; |
| break; |
| case NAND_ECC_ENGINE_TYPE_NONE: |
| case NAND_ECC_ENGINE_TYPE_SOFT: |
| case NAND_ECC_ENGINE_TYPE_ON_DIE: |
| if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && |
| mtd->writesize != SZ_2K) { |
| dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", |
| mtd->writesize); |
| return -EINVAL; |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; |
| static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; |
| |
| static struct nand_bbt_descr bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 8, |
| .len = 6, |
| .veroffs = 14, |
| .maxblocks = 8, /* Last 8 blocks in each chip */ |
| .pattern = bbt_pattern |
| }; |
| |
| static struct nand_bbt_descr bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 8, |
| .len = 6, |
| .veroffs = 14, |
| .maxblocks = 8, /* Last 8 blocks in each chip */ |
| .pattern = bbt_mirror_pattern |
| }; |
| |
| static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, |
| const struct nand_interface_config *conf) |
| { |
| struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; |
| const struct nand_sdr_timings *sdr; |
| struct marvell_nfc_timings nfc_tmg; |
| int read_delay; |
| |
| sdr = nand_get_sdr_timings(conf); |
| if (IS_ERR(sdr)) |
| return PTR_ERR(sdr); |
| |
| if (nfc->caps->max_mode_number && nfc->caps->max_mode_number < conf->timings.mode) |
| return -EOPNOTSUPP; |
| |
| /* |
| * SDR timings are given in pico-seconds while NFC timings must be |
| * expressed in NAND controller clock cycles, which is half of the |
| * frequency of the accessible ECC clock retrieved by clk_get_rate(). |
| * This is not written anywhere in the datasheet but was observed |
| * with an oscilloscope. |
| * |
| * NFC datasheet gives equations from which thoses calculations |
| * are derived, they tend to be slightly more restrictives than the |
| * given core timings and may improve the overall speed. |
| */ |
| nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; |
| nfc_tmg.tRH = nfc_tmg.tRP; |
| nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; |
| nfc_tmg.tWH = nfc_tmg.tWP; |
| nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); |
| nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; |
| nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); |
| /* |
| * Read delay is the time of propagation from SoC pins to NFC internal |
| * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In |
| * EDO mode, an additional delay of tRH must be taken into account so |
| * the data is sampled on the falling edge instead of the rising edge. |
| */ |
| read_delay = sdr->tRC_min >= 30000 ? |
| MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; |
| |
| nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); |
| /* |
| * tWHR and tRHW are supposed to be read to write delays (and vice |
| * versa) but in some cases, ie. when doing a change column, they must |
| * be greater than that to be sure tCCS delay is respected. |
| */ |
| nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), |
| period_ns) - 2; |
| nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), |
| period_ns); |
| |
| /* |
| * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. |
| * NFCv1: No WAIT_MODE, tR must be maximal. |
| */ |
| if (nfc->caps->is_nfcv2) { |
| nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); |
| } else { |
| nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, |
| period_ns); |
| if (nfc_tmg.tR + 3 > nfc_tmg.tCH) |
| nfc_tmg.tR = nfc_tmg.tCH - 3; |
| else |
| nfc_tmg.tR = 0; |
| } |
| |
| if (chipnr < 0) |
| return 0; |
| |
| marvell_nand->ndtr0 = |
| NDTR0_TRP(nfc_tmg.tRP) | |
| NDTR0_TRH(nfc_tmg.tRH) | |
| NDTR0_ETRP(nfc_tmg.tRP) | |
| NDTR0_TWP(nfc_tmg.tWP) | |
| NDTR0_TWH(nfc_tmg.tWH) | |
| NDTR0_TCS(nfc_tmg.tCS) | |
| NDTR0_TCH(nfc_tmg.tCH); |
| |
| marvell_nand->ndtr1 = |
| NDTR1_TAR(nfc_tmg.tAR) | |
| NDTR1_TWHR(nfc_tmg.tWHR) | |
| NDTR1_TR(nfc_tmg.tR); |
| |
| if (nfc->caps->is_nfcv2) { |
| marvell_nand->ndtr0 |= |
| NDTR0_RD_CNT_DEL(read_delay) | |
| NDTR0_SELCNTR | |
| NDTR0_TADL(nfc_tmg.tADL); |
| |
| marvell_nand->ndtr1 |= |
| NDTR1_TRHW(nfc_tmg.tRHW) | |
| NDTR1_WAIT_MODE; |
| } |
| |
| /* |
| * Reset nfc->selected_chip so the next command will cause the timing |
| * registers to be updated in marvell_nfc_select_target(). |
| */ |
| nfc->selected_chip = NULL; |
| |
| return 0; |
| } |
| |
| static int marvell_nand_attach_chip(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); |
| struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); |
| int ret; |
| |
| if (pdata && pdata->flash_bbt) |
| chip->bbt_options |= NAND_BBT_USE_FLASH; |
| |
| if (chip->bbt_options & NAND_BBT_USE_FLASH) { |
| /* |
| * We'll use a bad block table stored in-flash and don't |
| * allow writing the bad block marker to the flash. |
| */ |
| chip->bbt_options |= NAND_BBT_NO_OOB_BBM; |
| chip->bbt_td = &bbt_main_descr; |
| chip->bbt_md = &bbt_mirror_descr; |
| } |
| |
| /* Save the chip-specific fields of NDCR */ |
| marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); |
| if (chip->options & NAND_BUSWIDTH_16) |
| marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; |
| |
| /* |
| * On small page NANDs, only one cycle is needed to pass the |
| * column address. |
| */ |
| if (mtd->writesize <= 512) { |
| marvell_nand->addr_cyc = 1; |
| } else { |
| marvell_nand->addr_cyc = 2; |
| marvell_nand->ndcr |= NDCR_RA_START; |
| } |
| |
| /* |
| * Now add the number of cycles needed to pass the row |
| * address. |
| * |
| * Addressing a chip using CS 2 or 3 should also need the third row |
| * cycle but due to inconsistance in the documentation and lack of |
| * hardware to test this situation, this case is not supported. |
| */ |
| if (chip->options & NAND_ROW_ADDR_3) |
| marvell_nand->addr_cyc += 3; |
| else |
| marvell_nand->addr_cyc += 2; |
| |
| if (pdata) { |
| chip->ecc.size = pdata->ecc_step_size; |
| chip->ecc.strength = pdata->ecc_strength; |
| } |
| |
| ret = marvell_nand_ecc_init(mtd, &chip->ecc); |
| if (ret) { |
| dev_err(nfc->dev, "ECC init failed: %d\n", ret); |
| return ret; |
| } |
| |
| if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { |
| /* |
| * Subpage write not available with hardware ECC, prohibit also |
| * subpage read as in userspace subpage access would still be |
| * allowed and subpage write, if used, would lead to numerous |
| * uncorrectable ECC errors. |
| */ |
| chip->options |= NAND_NO_SUBPAGE_WRITE; |
| } |
| |
| if (pdata || nfc->caps->legacy_of_bindings) { |
| /* |
| * We keep the MTD name unchanged to avoid breaking platforms |
| * where the MTD cmdline parser is used and the bootloader |
| * has not been updated to use the new naming scheme. |
| */ |
| mtd->name = "pxa3xx_nand-0"; |
| } else if (!mtd->name) { |
| /* |
| * If the new bindings are used and the bootloader has not been |
| * updated to pass a new mtdparts parameter on the cmdline, you |
| * should define the following property in your NAND node, ie: |
| * |
| * label = "main-storage"; |
| * |
| * This way, mtd->name will be set by the core when |
| * nand_set_flash_node() is called. |
| */ |
| mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, |
| "%s:nand.%d", dev_name(nfc->dev), |
| marvell_nand->sels[0].cs); |
| if (!mtd->name) { |
| dev_err(nfc->dev, "Failed to allocate mtd->name\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops marvell_nand_controller_ops = { |
| .attach_chip = marvell_nand_attach_chip, |
| .exec_op = marvell_nfc_exec_op, |
| .setup_interface = marvell_nfc_setup_interface, |
| }; |
| |
| static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, |
| struct device_node *np) |
| { |
| struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); |
| struct marvell_nand_chip *marvell_nand; |
| struct mtd_info *mtd; |
| struct nand_chip *chip; |
| int nsels, ret, i; |
| u32 cs, rb; |
| |
| /* |
| * The legacy "num-cs" property indicates the number of CS on the only |
| * chip connected to the controller (legacy bindings does not support |
| * more than one chip). The CS and RB pins are always the #0. |
| * |
| * When not using legacy bindings, a couple of "reg" and "nand-rb" |
| * properties must be filled. For each chip, expressed as a subnode, |
| * "reg" points to the CS lines and "nand-rb" to the RB line. |
| */ |
| if (pdata || nfc->caps->legacy_of_bindings) { |
| nsels = 1; |
| } else { |
| nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); |
| if (nsels <= 0) { |
| dev_err(dev, "missing/invalid reg property\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* Alloc the nand chip structure */ |
| marvell_nand = devm_kzalloc(dev, |
| struct_size(marvell_nand, sels, nsels), |
| GFP_KERNEL); |
| if (!marvell_nand) { |
| dev_err(dev, "could not allocate chip structure\n"); |
| return -ENOMEM; |
| } |
| |
| marvell_nand->nsels = nsels; |
| marvell_nand->selected_die = -1; |
| |
| for (i = 0; i < nsels; i++) { |
| if (pdata || nfc->caps->legacy_of_bindings) { |
| /* |
| * Legacy bindings use the CS lines in natural |
| * order (0, 1, ...) |
| */ |
| cs = i; |
| } else { |
| /* Retrieve CS id */ |
| ret = of_property_read_u32_index(np, "reg", i, &cs); |
| if (ret) { |
| dev_err(dev, "could not retrieve reg property: %d\n", |
| ret); |
| return ret; |
| } |
| } |
| |
| if (cs >= nfc->caps->max_cs_nb) { |
| dev_err(dev, "invalid reg value: %u (max CS = %d)\n", |
| cs, nfc->caps->max_cs_nb); |
| return -EINVAL; |
| } |
| |
| if (test_and_set_bit(cs, &nfc->assigned_cs)) { |
| dev_err(dev, "CS %d already assigned\n", cs); |
| return -EINVAL; |
| } |
| |
| /* |
| * The cs variable represents the chip select id, which must be |
| * converted in bit fields for NDCB0 and NDCB2 to select the |
| * right chip. Unfortunately, due to a lack of information on |
| * the subject and incoherent documentation, the user should not |
| * use CS1 and CS3 at all as asserting them is not supported in |
| * a reliable way (due to multiplexing inside ADDR5 field). |
| */ |
| marvell_nand->sels[i].cs = cs; |
| switch (cs) { |
| case 0: |
| case 2: |
| marvell_nand->sels[i].ndcb0_csel = 0; |
| break; |
| case 1: |
| case 3: |
| marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Retrieve RB id */ |
| if (pdata || nfc->caps->legacy_of_bindings) { |
| /* Legacy bindings always use RB #0 */ |
| rb = 0; |
| } else { |
| ret = of_property_read_u32_index(np, "nand-rb", i, |
| &rb); |
| if (ret) { |
| dev_err(dev, |
| "could not retrieve RB property: %d\n", |
| ret); |
| return ret; |
| } |
| } |
| |
| if (rb >= nfc->caps->max_rb_nb) { |
| dev_err(dev, "invalid reg value: %u (max RB = %d)\n", |
| rb, nfc->caps->max_rb_nb); |
| return -EINVAL; |
| } |
| |
| marvell_nand->sels[i].rb = rb; |
| } |
| |
| chip = &marvell_nand->chip; |
| chip->controller = &nfc->controller; |
| nand_set_flash_node(chip, np); |
| |
| if (of_property_read_bool(np, "marvell,nand-keep-config")) |
| chip->options |= NAND_KEEP_TIMINGS; |
| |
| mtd = nand_to_mtd(chip); |
| mtd->dev.parent = dev; |
| |
| /* |
| * Save a reference value for timing registers before |
| * ->setup_interface() is called. |
| */ |
| marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); |
| marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); |
| |
| chip->options |= NAND_BUSWIDTH_AUTO; |
| |
| ret = nand_scan(chip, marvell_nand->nsels); |
| if (ret) { |
| dev_err(dev, "could not scan the nand chip\n"); |
| return ret; |
| } |
| |
| if (pdata) |
| /* Legacy bindings support only one chip */ |
| ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); |
| else |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) { |
| dev_err(dev, "failed to register mtd device: %d\n", ret); |
| nand_cleanup(chip); |
| return ret; |
| } |
| |
| list_add_tail(&marvell_nand->node, &nfc->chips); |
| |
| return 0; |
| } |
| |
| static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) |
| { |
| struct marvell_nand_chip *entry, *temp; |
| struct nand_chip *chip; |
| int ret; |
| |
| list_for_each_entry_safe(entry, temp, &nfc->chips, node) { |
| chip = &entry->chip; |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| list_del(&entry->node); |
| } |
| } |
| |
| static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) |
| { |
| struct device_node *np = dev->of_node; |
| struct device_node *nand_np; |
| int max_cs = nfc->caps->max_cs_nb; |
| int nchips; |
| int ret; |
| |
| if (!np) |
| nchips = 1; |
| else |
| nchips = of_get_child_count(np); |
| |
| if (nchips > max_cs) { |
| dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, |
| max_cs); |
| return -EINVAL; |
| } |
| |
| /* |
| * Legacy bindings do not use child nodes to exhibit NAND chip |
| * properties and layout. Instead, NAND properties are mixed with the |
| * controller ones, and partitions are defined as direct subnodes of the |
| * NAND controller node. |
| */ |
| if (nfc->caps->legacy_of_bindings) { |
| ret = marvell_nand_chip_init(dev, nfc, np); |
| return ret; |
| } |
| |
| for_each_child_of_node(np, nand_np) { |
| ret = marvell_nand_chip_init(dev, nfc, nand_np); |
| if (ret) { |
| of_node_put(nand_np); |
| goto cleanup_chips; |
| } |
| } |
| |
| return 0; |
| |
| cleanup_chips: |
| marvell_nand_chips_cleanup(nfc); |
| |
| return ret; |
| } |
| |
| static int marvell_nfc_init_dma(struct marvell_nfc *nfc) |
| { |
| struct platform_device *pdev = container_of(nfc->dev, |
| struct platform_device, |
| dev); |
| struct dma_slave_config config = {}; |
| struct resource *r; |
| int ret; |
| |
| if (!IS_ENABLED(CONFIG_PXA_DMA)) { |
| dev_warn(nfc->dev, |
| "DMA not enabled in configuration\n"); |
| return -ENOTSUPP; |
| } |
| |
| ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); |
| if (ret) |
| return ret; |
| |
| nfc->dma_chan = dma_request_chan(nfc->dev, "data"); |
| if (IS_ERR(nfc->dma_chan)) { |
| ret = PTR_ERR(nfc->dma_chan); |
| nfc->dma_chan = NULL; |
| return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n"); |
| } |
| |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!r) { |
| ret = -ENXIO; |
| goto release_channel; |
| } |
| |
| config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| config.src_addr = r->start + NDDB; |
| config.dst_addr = r->start + NDDB; |
| config.src_maxburst = 32; |
| config.dst_maxburst = 32; |
| ret = dmaengine_slave_config(nfc->dma_chan, &config); |
| if (ret < 0) { |
| dev_err(nfc->dev, "Failed to configure DMA channel\n"); |
| goto release_channel; |
| } |
| |
| /* |
| * DMA must act on length multiple of 32 and this length may be |
| * bigger than the destination buffer. Use this buffer instead |
| * for DMA transfers and then copy the desired amount of data to |
| * the provided buffer. |
| */ |
| nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); |
| if (!nfc->dma_buf) { |
| ret = -ENOMEM; |
| goto release_channel; |
| } |
| |
| nfc->use_dma = true; |
| |
| return 0; |
| |
| release_channel: |
| dma_release_channel(nfc->dma_chan); |
| nfc->dma_chan = NULL; |
| |
| return ret; |
| } |
| |
| static void marvell_nfc_reset(struct marvell_nfc *nfc) |
| { |
| /* |
| * ECC operations and interruptions are only enabled when specifically |
| * needed. ECC shall not be activated in the early stages (fails probe). |
| * Arbiter flag, even if marked as "reserved", must be set (empirical). |
| * SPARE_EN bit must always be set or ECC bytes will not be at the same |
| * offset in the read page and this will fail the protection. |
| */ |
| writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | |
| NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); |
| writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); |
| writel_relaxed(0, nfc->regs + NDECCCTRL); |
| } |
| |
| static int marvell_nfc_init(struct marvell_nfc *nfc) |
| { |
| struct device_node *np = nfc->dev->of_node; |
| |
| /* |
| * Some SoCs like A7k/A8k need to enable manually the NAND |
| * controller, gated clocks and reset bits to avoid being bootloader |
| * dependent. This is done through the use of the System Functions |
| * registers. |
| */ |
| if (nfc->caps->need_system_controller) { |
| struct regmap *sysctrl_base = |
| syscon_regmap_lookup_by_phandle(np, |
| "marvell,system-controller"); |
| |
| if (IS_ERR(sysctrl_base)) |
| return PTR_ERR(sysctrl_base); |
| |
| regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, |
| GENCONF_SOC_DEVICE_MUX_NFC_EN | |
| GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | |
| GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | |
| GENCONF_SOC_DEVICE_MUX_NFC_INT_EN | |
| GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN); |
| |
| regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, |
| GENCONF_CLK_GATING_CTRL_ND_GATE, |
| GENCONF_CLK_GATING_CTRL_ND_GATE); |
| } |
| |
| /* Configure the DMA if appropriate */ |
| if (!nfc->caps->is_nfcv2) |
| marvell_nfc_init_dma(nfc); |
| |
| marvell_nfc_reset(nfc); |
| |
| return 0; |
| } |
| |
| static int marvell_nfc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct marvell_nfc *nfc; |
| int ret; |
| int irq; |
| |
| nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), |
| GFP_KERNEL); |
| if (!nfc) |
| return -ENOMEM; |
| |
| nfc->dev = dev; |
| nand_controller_init(&nfc->controller); |
| nfc->controller.ops = &marvell_nand_controller_ops; |
| INIT_LIST_HEAD(&nfc->chips); |
| |
| nfc->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(nfc->regs)) |
| return PTR_ERR(nfc->regs); |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| nfc->core_clk = devm_clk_get(&pdev->dev, "core"); |
| |
| /* Managed the legacy case (when the first clock was not named) */ |
| if (nfc->core_clk == ERR_PTR(-ENOENT)) |
| nfc->core_clk = devm_clk_get(&pdev->dev, NULL); |
| |
| if (IS_ERR(nfc->core_clk)) |
| return PTR_ERR(nfc->core_clk); |
| |
| ret = clk_prepare_enable(nfc->core_clk); |
| if (ret) |
| return ret; |
| |
| nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); |
| if (IS_ERR(nfc->reg_clk)) { |
| if (PTR_ERR(nfc->reg_clk) != -ENOENT) { |
| ret = PTR_ERR(nfc->reg_clk); |
| goto unprepare_core_clk; |
| } |
| |
| nfc->reg_clk = NULL; |
| } |
| |
| ret = clk_prepare_enable(nfc->reg_clk); |
| if (ret) |
| goto unprepare_core_clk; |
| |
| marvell_nfc_disable_int(nfc, NDCR_ALL_INT); |
| marvell_nfc_clear_int(nfc, NDCR_ALL_INT); |
| ret = devm_request_irq(dev, irq, marvell_nfc_isr, |
| 0, "marvell-nfc", nfc); |
| if (ret) |
| goto unprepare_reg_clk; |
| |
| /* Get NAND controller capabilities */ |
| if (pdev->id_entry) |
| nfc->caps = (void *)pdev->id_entry->driver_data; |
| else |
| nfc->caps = of_device_get_match_data(&pdev->dev); |
| |
| if (!nfc->caps) { |
| dev_err(dev, "Could not retrieve NFC caps\n"); |
| ret = -EINVAL; |
| goto unprepare_reg_clk; |
| } |
| |
| /* Init the controller and then probe the chips */ |
| ret = marvell_nfc_init(nfc); |
| if (ret) |
| goto unprepare_reg_clk; |
| |
| platform_set_drvdata(pdev, nfc); |
| |
| ret = marvell_nand_chips_init(dev, nfc); |
| if (ret) |
| goto release_dma; |
| |
| return 0; |
| |
| release_dma: |
| if (nfc->use_dma) |
| dma_release_channel(nfc->dma_chan); |
| unprepare_reg_clk: |
| clk_disable_unprepare(nfc->reg_clk); |
| unprepare_core_clk: |
| clk_disable_unprepare(nfc->core_clk); |
| |
| return ret; |
| } |
| |
| static void marvell_nfc_remove(struct platform_device *pdev) |
| { |
| struct marvell_nfc *nfc = platform_get_drvdata(pdev); |
| |
| marvell_nand_chips_cleanup(nfc); |
| |
| if (nfc->use_dma) { |
| dmaengine_terminate_all(nfc->dma_chan); |
| dma_release_channel(nfc->dma_chan); |
| } |
| |
| clk_disable_unprepare(nfc->reg_clk); |
| clk_disable_unprepare(nfc->core_clk); |
| } |
| |
| static int __maybe_unused marvell_nfc_suspend(struct device *dev) |
| { |
| struct marvell_nfc *nfc = dev_get_drvdata(dev); |
| struct marvell_nand_chip *chip; |
| |
| list_for_each_entry(chip, &nfc->chips, node) |
| marvell_nfc_wait_ndrun(&chip->chip); |
| |
| clk_disable_unprepare(nfc->reg_clk); |
| clk_disable_unprepare(nfc->core_clk); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused marvell_nfc_resume(struct device *dev) |
| { |
| struct marvell_nfc *nfc = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = clk_prepare_enable(nfc->core_clk); |
| if (ret < 0) |
| return ret; |
| |
| ret = clk_prepare_enable(nfc->reg_clk); |
| if (ret < 0) { |
| clk_disable_unprepare(nfc->core_clk); |
| return ret; |
| } |
| |
| /* |
| * Reset nfc->selected_chip so the next command will cause the timing |
| * registers to be restored in marvell_nfc_select_target(). |
| */ |
| nfc->selected_chip = NULL; |
| |
| /* Reset registers that have lost their contents */ |
| marvell_nfc_reset(nfc); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops marvell_nfc_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) |
| }; |
| |
| static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { |
| .max_cs_nb = 4, |
| .max_rb_nb = 2, |
| .need_system_controller = true, |
| .is_nfcv2 = true, |
| }; |
| |
| static const struct marvell_nfc_caps marvell_ac5_caps = { |
| .max_cs_nb = 2, |
| .max_rb_nb = 1, |
| .is_nfcv2 = true, |
| .max_mode_number = 3, |
| }; |
| |
| static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { |
| .max_cs_nb = 4, |
| .max_rb_nb = 2, |
| .is_nfcv2 = true, |
| }; |
| |
| static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { |
| .max_cs_nb = 2, |
| .max_rb_nb = 1, |
| .use_dma = true, |
| }; |
| |
| static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { |
| .max_cs_nb = 4, |
| .max_rb_nb = 2, |
| .need_system_controller = true, |
| .legacy_of_bindings = true, |
| .is_nfcv2 = true, |
| }; |
| |
| static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { |
| .max_cs_nb = 4, |
| .max_rb_nb = 2, |
| .legacy_of_bindings = true, |
| .is_nfcv2 = true, |
| }; |
| |
| static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { |
| .max_cs_nb = 2, |
| .max_rb_nb = 1, |
| .legacy_of_bindings = true, |
| .use_dma = true, |
| }; |
| |
| static const struct platform_device_id marvell_nfc_platform_ids[] = { |
| { |
| .name = "pxa3xx-nand", |
| .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, |
| }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); |
| |
| static const struct of_device_id marvell_nfc_of_ids[] = { |
| { |
| .compatible = "marvell,armada-8k-nand-controller", |
| .data = &marvell_armada_8k_nfc_caps, |
| }, |
| { |
| .compatible = "marvell,ac5-nand-controller", |
| .data = &marvell_ac5_caps, |
| }, |
| { |
| .compatible = "marvell,armada370-nand-controller", |
| .data = &marvell_armada370_nfc_caps, |
| }, |
| { |
| .compatible = "marvell,pxa3xx-nand-controller", |
| .data = &marvell_pxa3xx_nfc_caps, |
| }, |
| /* Support for old/deprecated bindings: */ |
| { |
| .compatible = "marvell,armada-8k-nand", |
| .data = &marvell_armada_8k_nfc_legacy_caps, |
| }, |
| { |
| .compatible = "marvell,armada370-nand", |
| .data = &marvell_armada370_nfc_legacy_caps, |
| }, |
| { |
| .compatible = "marvell,pxa3xx-nand", |
| .data = &marvell_pxa3xx_nfc_legacy_caps, |
| }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); |
| |
| static struct platform_driver marvell_nfc_driver = { |
| .driver = { |
| .name = "marvell-nfc", |
| .of_match_table = marvell_nfc_of_ids, |
| .pm = &marvell_nfc_pm_ops, |
| }, |
| .id_table = marvell_nfc_platform_ids, |
| .probe = marvell_nfc_probe, |
| .remove_new = marvell_nfc_remove, |
| }; |
| module_platform_driver(marvell_nfc_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Marvell NAND controller driver"); |