| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (c) 2016, The Linux Foundation. All rights reserved. |
| */ |
| #include <linux/bitops.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dma/qcom_adm.h> |
| #include <linux/dma/qcom_bam_dma.h> |
| #include <linux/module.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| |
| /* NANDc reg offsets */ |
| #define NAND_FLASH_CMD 0x00 |
| #define NAND_ADDR0 0x04 |
| #define NAND_ADDR1 0x08 |
| #define NAND_FLASH_CHIP_SELECT 0x0c |
| #define NAND_EXEC_CMD 0x10 |
| #define NAND_FLASH_STATUS 0x14 |
| #define NAND_BUFFER_STATUS 0x18 |
| #define NAND_DEV0_CFG0 0x20 |
| #define NAND_DEV0_CFG1 0x24 |
| #define NAND_DEV0_ECC_CFG 0x28 |
| #define NAND_AUTO_STATUS_EN 0x2c |
| #define NAND_DEV1_CFG0 0x30 |
| #define NAND_DEV1_CFG1 0x34 |
| #define NAND_READ_ID 0x40 |
| #define NAND_READ_STATUS 0x44 |
| #define NAND_DEV_CMD0 0xa0 |
| #define NAND_DEV_CMD1 0xa4 |
| #define NAND_DEV_CMD2 0xa8 |
| #define NAND_DEV_CMD_VLD 0xac |
| #define SFLASHC_BURST_CFG 0xe0 |
| #define NAND_ERASED_CW_DETECT_CFG 0xe8 |
| #define NAND_ERASED_CW_DETECT_STATUS 0xec |
| #define NAND_EBI2_ECC_BUF_CFG 0xf0 |
| #define FLASH_BUF_ACC 0x100 |
| |
| #define NAND_CTRL 0xf00 |
| #define NAND_VERSION 0xf08 |
| #define NAND_READ_LOCATION_0 0xf20 |
| #define NAND_READ_LOCATION_1 0xf24 |
| #define NAND_READ_LOCATION_2 0xf28 |
| #define NAND_READ_LOCATION_3 0xf2c |
| #define NAND_READ_LOCATION_LAST_CW_0 0xf40 |
| #define NAND_READ_LOCATION_LAST_CW_1 0xf44 |
| #define NAND_READ_LOCATION_LAST_CW_2 0xf48 |
| #define NAND_READ_LOCATION_LAST_CW_3 0xf4c |
| |
| /* dummy register offsets, used by write_reg_dma */ |
| #define NAND_DEV_CMD1_RESTORE 0xdead |
| #define NAND_DEV_CMD_VLD_RESTORE 0xbeef |
| |
| /* NAND_FLASH_CMD bits */ |
| #define PAGE_ACC BIT(4) |
| #define LAST_PAGE BIT(5) |
| |
| /* NAND_FLASH_CHIP_SELECT bits */ |
| #define NAND_DEV_SEL 0 |
| #define DM_EN BIT(2) |
| |
| /* NAND_FLASH_STATUS bits */ |
| #define FS_OP_ERR BIT(4) |
| #define FS_READY_BSY_N BIT(5) |
| #define FS_MPU_ERR BIT(8) |
| #define FS_DEVICE_STS_ERR BIT(16) |
| #define FS_DEVICE_WP BIT(23) |
| |
| /* NAND_BUFFER_STATUS bits */ |
| #define BS_UNCORRECTABLE_BIT BIT(8) |
| #define BS_CORRECTABLE_ERR_MSK 0x1f |
| |
| /* NAND_DEVn_CFG0 bits */ |
| #define DISABLE_STATUS_AFTER_WRITE 4 |
| #define CW_PER_PAGE 6 |
| #define UD_SIZE_BYTES 9 |
| #define UD_SIZE_BYTES_MASK GENMASK(18, 9) |
| #define ECC_PARITY_SIZE_BYTES_RS 19 |
| #define SPARE_SIZE_BYTES 23 |
| #define SPARE_SIZE_BYTES_MASK GENMASK(26, 23) |
| #define NUM_ADDR_CYCLES 27 |
| #define STATUS_BFR_READ 30 |
| #define SET_RD_MODE_AFTER_STATUS 31 |
| |
| /* NAND_DEVn_CFG0 bits */ |
| #define DEV0_CFG1_ECC_DISABLE 0 |
| #define WIDE_FLASH 1 |
| #define NAND_RECOVERY_CYCLES 2 |
| #define CS_ACTIVE_BSY 5 |
| #define BAD_BLOCK_BYTE_NUM 6 |
| #define BAD_BLOCK_IN_SPARE_AREA 16 |
| #define WR_RD_BSY_GAP 17 |
| #define ENABLE_BCH_ECC 27 |
| |
| /* NAND_DEV0_ECC_CFG bits */ |
| #define ECC_CFG_ECC_DISABLE 0 |
| #define ECC_SW_RESET 1 |
| #define ECC_MODE 4 |
| #define ECC_PARITY_SIZE_BYTES_BCH 8 |
| #define ECC_NUM_DATA_BYTES 16 |
| #define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16) |
| #define ECC_FORCE_CLK_OPEN 30 |
| |
| /* NAND_DEV_CMD1 bits */ |
| #define READ_ADDR 0 |
| |
| /* NAND_DEV_CMD_VLD bits */ |
| #define READ_START_VLD BIT(0) |
| #define READ_STOP_VLD BIT(1) |
| #define WRITE_START_VLD BIT(2) |
| #define ERASE_START_VLD BIT(3) |
| #define SEQ_READ_START_VLD BIT(4) |
| |
| /* NAND_EBI2_ECC_BUF_CFG bits */ |
| #define NUM_STEPS 0 |
| |
| /* NAND_ERASED_CW_DETECT_CFG bits */ |
| #define ERASED_CW_ECC_MASK 1 |
| #define AUTO_DETECT_RES 0 |
| #define MASK_ECC BIT(ERASED_CW_ECC_MASK) |
| #define RESET_ERASED_DET BIT(AUTO_DETECT_RES) |
| #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) |
| #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) |
| #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) |
| |
| /* NAND_ERASED_CW_DETECT_STATUS bits */ |
| #define PAGE_ALL_ERASED BIT(7) |
| #define CODEWORD_ALL_ERASED BIT(6) |
| #define PAGE_ERASED BIT(5) |
| #define CODEWORD_ERASED BIT(4) |
| #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) |
| #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) |
| |
| /* NAND_READ_LOCATION_n bits */ |
| #define READ_LOCATION_OFFSET 0 |
| #define READ_LOCATION_SIZE 16 |
| #define READ_LOCATION_LAST 31 |
| |
| /* Version Mask */ |
| #define NAND_VERSION_MAJOR_MASK 0xf0000000 |
| #define NAND_VERSION_MAJOR_SHIFT 28 |
| #define NAND_VERSION_MINOR_MASK 0x0fff0000 |
| #define NAND_VERSION_MINOR_SHIFT 16 |
| |
| /* NAND OP_CMDs */ |
| #define OP_PAGE_READ 0x2 |
| #define OP_PAGE_READ_WITH_ECC 0x3 |
| #define OP_PAGE_READ_WITH_ECC_SPARE 0x4 |
| #define OP_PAGE_READ_ONFI_READ 0x5 |
| #define OP_PROGRAM_PAGE 0x6 |
| #define OP_PAGE_PROGRAM_WITH_ECC 0x7 |
| #define OP_PROGRAM_PAGE_SPARE 0x9 |
| #define OP_BLOCK_ERASE 0xa |
| #define OP_CHECK_STATUS 0xc |
| #define OP_FETCH_ID 0xb |
| #define OP_RESET_DEVICE 0xd |
| |
| /* Default Value for NAND_DEV_CMD_VLD */ |
| #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \ |
| ERASE_START_VLD | SEQ_READ_START_VLD) |
| |
| /* NAND_CTRL bits */ |
| #define BAM_MODE_EN BIT(0) |
| |
| /* |
| * the NAND controller performs reads/writes with ECC in 516 byte chunks. |
| * the driver calls the chunks 'step' or 'codeword' interchangeably |
| */ |
| #define NANDC_STEP_SIZE 512 |
| |
| /* |
| * the largest page size we support is 8K, this will have 16 steps/codewords |
| * of 512 bytes each |
| */ |
| #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) |
| |
| /* we read at most 3 registers per codeword scan */ |
| #define MAX_REG_RD (3 * MAX_NUM_STEPS) |
| |
| /* ECC modes supported by the controller */ |
| #define ECC_NONE BIT(0) |
| #define ECC_RS_4BIT BIT(1) |
| #define ECC_BCH_4BIT BIT(2) |
| #define ECC_BCH_8BIT BIT(3) |
| |
| #define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc) \ |
| nandc_set_reg(chip, reg, \ |
| ((cw_offset) << READ_LOCATION_OFFSET) | \ |
| ((read_size) << READ_LOCATION_SIZE) | \ |
| ((is_last_read_loc) << READ_LOCATION_LAST)) |
| |
| #define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc) \ |
| nandc_set_reg(chip, reg, \ |
| ((cw_offset) << READ_LOCATION_OFFSET) | \ |
| ((read_size) << READ_LOCATION_SIZE) | \ |
| ((is_last_read_loc) << READ_LOCATION_LAST)) |
| /* |
| * Returns the actual register address for all NAND_DEV_ registers |
| * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD) |
| */ |
| #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg)) |
| |
| /* Returns the NAND register physical address */ |
| #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset)) |
| |
| /* Returns the dma address for reg read buffer */ |
| #define reg_buf_dma_addr(chip, vaddr) \ |
| ((chip)->reg_read_dma + \ |
| ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf)) |
| |
| #define QPIC_PER_CW_CMD_ELEMENTS 32 |
| #define QPIC_PER_CW_CMD_SGL 32 |
| #define QPIC_PER_CW_DATA_SGL 8 |
| |
| #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000) |
| |
| /* |
| * Flags used in DMA descriptor preparation helper functions |
| * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma) |
| */ |
| /* Don't set the EOT in current tx BAM sgl */ |
| #define NAND_BAM_NO_EOT BIT(0) |
| /* Set the NWD flag in current BAM sgl */ |
| #define NAND_BAM_NWD BIT(1) |
| /* Finish writing in the current BAM sgl and start writing in another BAM sgl */ |
| #define NAND_BAM_NEXT_SGL BIT(2) |
| /* |
| * Erased codeword status is being used two times in single transfer so this |
| * flag will determine the current value of erased codeword status register |
| */ |
| #define NAND_ERASED_CW_SET BIT(4) |
| |
| #define MAX_ADDRESS_CYCLE 5 |
| |
| /* |
| * This data type corresponds to the BAM transaction which will be used for all |
| * NAND transfers. |
| * @bam_ce - the array of BAM command elements |
| * @cmd_sgl - sgl for NAND BAM command pipe |
| * @data_sgl - sgl for NAND BAM consumer/producer pipe |
| * @last_data_desc - last DMA desc in data channel (tx/rx). |
| * @last_cmd_desc - last DMA desc in command channel. |
| * @txn_done - completion for NAND transfer. |
| * @bam_ce_pos - the index in bam_ce which is available for next sgl |
| * @bam_ce_start - the index in bam_ce which marks the start position ce |
| * for current sgl. It will be used for size calculation |
| * for current sgl |
| * @cmd_sgl_pos - current index in command sgl. |
| * @cmd_sgl_start - start index in command sgl. |
| * @tx_sgl_pos - current index in data sgl for tx. |
| * @tx_sgl_start - start index in data sgl for tx. |
| * @rx_sgl_pos - current index in data sgl for rx. |
| * @rx_sgl_start - start index in data sgl for rx. |
| * @wait_second_completion - wait for second DMA desc completion before making |
| * the NAND transfer completion. |
| */ |
| struct bam_transaction { |
| struct bam_cmd_element *bam_ce; |
| struct scatterlist *cmd_sgl; |
| struct scatterlist *data_sgl; |
| struct dma_async_tx_descriptor *last_data_desc; |
| struct dma_async_tx_descriptor *last_cmd_desc; |
| struct completion txn_done; |
| u32 bam_ce_pos; |
| u32 bam_ce_start; |
| u32 cmd_sgl_pos; |
| u32 cmd_sgl_start; |
| u32 tx_sgl_pos; |
| u32 tx_sgl_start; |
| u32 rx_sgl_pos; |
| u32 rx_sgl_start; |
| bool wait_second_completion; |
| }; |
| |
| /* |
| * This data type corresponds to the nand dma descriptor |
| * @dma_desc - low level DMA engine descriptor |
| * @list - list for desc_info |
| * |
| * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by |
| * ADM |
| * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM |
| * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM |
| * @dir - DMA transfer direction |
| */ |
| struct desc_info { |
| struct dma_async_tx_descriptor *dma_desc; |
| struct list_head node; |
| |
| union { |
| struct scatterlist adm_sgl; |
| struct { |
| struct scatterlist *bam_sgl; |
| int sgl_cnt; |
| }; |
| }; |
| enum dma_data_direction dir; |
| }; |
| |
| /* |
| * holds the current register values that we want to write. acts as a contiguous |
| * chunk of memory which we use to write the controller registers through DMA. |
| */ |
| struct nandc_regs { |
| __le32 cmd; |
| __le32 addr0; |
| __le32 addr1; |
| __le32 chip_sel; |
| __le32 exec; |
| |
| __le32 cfg0; |
| __le32 cfg1; |
| __le32 ecc_bch_cfg; |
| |
| __le32 clrflashstatus; |
| __le32 clrreadstatus; |
| |
| __le32 cmd1; |
| __le32 vld; |
| |
| __le32 orig_cmd1; |
| __le32 orig_vld; |
| |
| __le32 ecc_buf_cfg; |
| __le32 read_location0; |
| __le32 read_location1; |
| __le32 read_location2; |
| __le32 read_location3; |
| __le32 read_location_last0; |
| __le32 read_location_last1; |
| __le32 read_location_last2; |
| __le32 read_location_last3; |
| |
| __le32 erased_cw_detect_cfg_clr; |
| __le32 erased_cw_detect_cfg_set; |
| }; |
| |
| /* |
| * NAND controller data struct |
| * |
| * @dev: parent device |
| * |
| * @base: MMIO base |
| * |
| * @core_clk: controller clock |
| * @aon_clk: another controller clock |
| * |
| * @regs: a contiguous chunk of memory for DMA register |
| * writes. contains the register values to be |
| * written to controller |
| * |
| * @props: properties of current NAND controller, |
| * initialized via DT match data |
| * |
| * @controller: base controller structure |
| * @host_list: list containing all the chips attached to the |
| * controller |
| * |
| * @chan: dma channel |
| * @cmd_crci: ADM DMA CRCI for command flow control |
| * @data_crci: ADM DMA CRCI for data flow control |
| * |
| * @desc_list: DMA descriptor list (list of desc_infos) |
| * |
| * @data_buffer: our local DMA buffer for page read/writes, |
| * used when we can't use the buffer provided |
| * by upper layers directly |
| * @reg_read_buf: local buffer for reading back registers via DMA |
| * |
| * @base_phys: physical base address of controller registers |
| * @base_dma: dma base address of controller registers |
| * @reg_read_dma: contains dma address for register read buffer |
| * |
| * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf |
| * functions |
| * @max_cwperpage: maximum QPIC codewords required. calculated |
| * from all connected NAND devices pagesize |
| * |
| * @reg_read_pos: marker for data read in reg_read_buf |
| * |
| * @cmd1/vld: some fixed controller register values |
| * |
| * @exec_opwrite: flag to select correct number of code word |
| * while reading status |
| */ |
| struct qcom_nand_controller { |
| struct device *dev; |
| |
| void __iomem *base; |
| |
| struct clk *core_clk; |
| struct clk *aon_clk; |
| |
| struct nandc_regs *regs; |
| struct bam_transaction *bam_txn; |
| |
| const struct qcom_nandc_props *props; |
| |
| struct nand_controller controller; |
| struct list_head host_list; |
| |
| union { |
| /* will be used only by QPIC for BAM DMA */ |
| struct { |
| struct dma_chan *tx_chan; |
| struct dma_chan *rx_chan; |
| struct dma_chan *cmd_chan; |
| }; |
| |
| /* will be used only by EBI2 for ADM DMA */ |
| struct { |
| struct dma_chan *chan; |
| unsigned int cmd_crci; |
| unsigned int data_crci; |
| }; |
| }; |
| |
| struct list_head desc_list; |
| |
| u8 *data_buffer; |
| __le32 *reg_read_buf; |
| |
| phys_addr_t base_phys; |
| dma_addr_t base_dma; |
| dma_addr_t reg_read_dma; |
| |
| int buf_size; |
| int buf_count; |
| int buf_start; |
| unsigned int max_cwperpage; |
| |
| int reg_read_pos; |
| |
| u32 cmd1, vld; |
| bool exec_opwrite; |
| }; |
| |
| /* |
| * NAND special boot partitions |
| * |
| * @page_offset: offset of the partition where spare data is not protected |
| * by ECC (value in pages) |
| * @page_offset: size of the partition where spare data is not protected |
| * by ECC (value in pages) |
| */ |
| struct qcom_nand_boot_partition { |
| u32 page_offset; |
| u32 page_size; |
| }; |
| |
| /* |
| * Qcom op for each exec_op transfer |
| * |
| * @data_instr: data instruction pointer |
| * @data_instr_idx: data instruction index |
| * @rdy_timeout_ms: wait ready timeout in ms |
| * @rdy_delay_ns: Additional delay in ns |
| * @addr1_reg: Address1 register value |
| * @addr2_reg: Address2 register value |
| * @cmd_reg: CMD register value |
| * @flag: flag for misc instruction |
| */ |
| struct qcom_op { |
| const struct nand_op_instr *data_instr; |
| unsigned int data_instr_idx; |
| unsigned int rdy_timeout_ms; |
| unsigned int rdy_delay_ns; |
| u32 addr1_reg; |
| u32 addr2_reg; |
| u32 cmd_reg; |
| u8 flag; |
| }; |
| |
| /* |
| * NAND chip structure |
| * |
| * @boot_partitions: array of boot partitions where offset and size of the |
| * boot partitions are stored |
| * |
| * @chip: base NAND chip structure |
| * @node: list node to add itself to host_list in |
| * qcom_nand_controller |
| * |
| * @nr_boot_partitions: count of the boot partitions where spare data is not |
| * protected by ECC |
| * |
| * @cs: chip select value for this chip |
| * @cw_size: the number of bytes in a single step/codeword |
| * of a page, consisting of all data, ecc, spare |
| * and reserved bytes |
| * @cw_data: the number of bytes within a codeword protected |
| * by ECC |
| * @ecc_bytes_hw: ECC bytes used by controller hardware for this |
| * chip |
| * |
| * @last_command: keeps track of last command on this chip. used |
| * for reading correct status |
| * |
| * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for |
| * ecc/non-ecc mode for the current nand flash |
| * device |
| * |
| * @status: value to be returned if NAND_CMD_STATUS command |
| * is executed |
| * @codeword_fixup: keep track of the current layout used by |
| * the driver for read/write operation. |
| * @use_ecc: request the controller to use ECC for the |
| * upcoming read/write |
| * @bch_enabled: flag to tell whether BCH ECC mode is used |
| */ |
| struct qcom_nand_host { |
| struct qcom_nand_boot_partition *boot_partitions; |
| |
| struct nand_chip chip; |
| struct list_head node; |
| |
| int nr_boot_partitions; |
| |
| int cs; |
| int cw_size; |
| int cw_data; |
| int ecc_bytes_hw; |
| int spare_bytes; |
| int bbm_size; |
| |
| int last_command; |
| |
| u32 cfg0, cfg1; |
| u32 cfg0_raw, cfg1_raw; |
| u32 ecc_buf_cfg; |
| u32 ecc_bch_cfg; |
| u32 clrflashstatus; |
| u32 clrreadstatus; |
| |
| u8 status; |
| bool codeword_fixup; |
| bool use_ecc; |
| bool bch_enabled; |
| }; |
| |
| /* |
| * This data type corresponds to the NAND controller properties which varies |
| * among different NAND controllers. |
| * @ecc_modes - ecc mode for NAND |
| * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset |
| * @is_bam - whether NAND controller is using BAM |
| * @is_qpic - whether NAND CTRL is part of qpic IP |
| * @qpic_v2 - flag to indicate QPIC IP version 2 |
| * @use_codeword_fixup - whether NAND has different layout for boot partitions |
| */ |
| struct qcom_nandc_props { |
| u32 ecc_modes; |
| u32 dev_cmd_reg_start; |
| bool is_bam; |
| bool is_qpic; |
| bool qpic_v2; |
| bool use_codeword_fixup; |
| }; |
| |
| /* Frees the BAM transaction memory */ |
| static void free_bam_transaction(struct qcom_nand_controller *nandc) |
| { |
| struct bam_transaction *bam_txn = nandc->bam_txn; |
| |
| devm_kfree(nandc->dev, bam_txn); |
| } |
| |
| /* Allocates and Initializes the BAM transaction */ |
| static struct bam_transaction * |
| alloc_bam_transaction(struct qcom_nand_controller *nandc) |
| { |
| struct bam_transaction *bam_txn; |
| size_t bam_txn_size; |
| unsigned int num_cw = nandc->max_cwperpage; |
| void *bam_txn_buf; |
| |
| bam_txn_size = |
| sizeof(*bam_txn) + num_cw * |
| ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) + |
| (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) + |
| (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL)); |
| |
| bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL); |
| if (!bam_txn_buf) |
| return NULL; |
| |
| bam_txn = bam_txn_buf; |
| bam_txn_buf += sizeof(*bam_txn); |
| |
| bam_txn->bam_ce = bam_txn_buf; |
| bam_txn_buf += |
| sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw; |
| |
| bam_txn->cmd_sgl = bam_txn_buf; |
| bam_txn_buf += |
| sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw; |
| |
| bam_txn->data_sgl = bam_txn_buf; |
| |
| init_completion(&bam_txn->txn_done); |
| |
| return bam_txn; |
| } |
| |
| /* Clears the BAM transaction indexes */ |
| static void clear_bam_transaction(struct qcom_nand_controller *nandc) |
| { |
| struct bam_transaction *bam_txn = nandc->bam_txn; |
| |
| if (!nandc->props->is_bam) |
| return; |
| |
| bam_txn->bam_ce_pos = 0; |
| bam_txn->bam_ce_start = 0; |
| bam_txn->cmd_sgl_pos = 0; |
| bam_txn->cmd_sgl_start = 0; |
| bam_txn->tx_sgl_pos = 0; |
| bam_txn->tx_sgl_start = 0; |
| bam_txn->rx_sgl_pos = 0; |
| bam_txn->rx_sgl_start = 0; |
| bam_txn->last_data_desc = NULL; |
| bam_txn->wait_second_completion = false; |
| |
| sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage * |
| QPIC_PER_CW_CMD_SGL); |
| sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage * |
| QPIC_PER_CW_DATA_SGL); |
| |
| reinit_completion(&bam_txn->txn_done); |
| } |
| |
| /* Callback for DMA descriptor completion */ |
| static void qpic_bam_dma_done(void *data) |
| { |
| struct bam_transaction *bam_txn = data; |
| |
| /* |
| * In case of data transfer with NAND, 2 callbacks will be generated. |
| * One for command channel and another one for data channel. |
| * If current transaction has data descriptors |
| * (i.e. wait_second_completion is true), then set this to false |
| * and wait for second DMA descriptor completion. |
| */ |
| if (bam_txn->wait_second_completion) |
| bam_txn->wait_second_completion = false; |
| else |
| complete(&bam_txn->txn_done); |
| } |
| |
| static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) |
| { |
| return container_of(chip, struct qcom_nand_host, chip); |
| } |
| |
| static inline struct qcom_nand_controller * |
| get_qcom_nand_controller(struct nand_chip *chip) |
| { |
| return container_of(chip->controller, struct qcom_nand_controller, |
| controller); |
| } |
| |
| static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) |
| { |
| return ioread32(nandc->base + offset); |
| } |
| |
| static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, |
| u32 val) |
| { |
| iowrite32(val, nandc->base + offset); |
| } |
| |
| static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, |
| bool is_cpu) |
| { |
| if (!nandc->props->is_bam) |
| return; |
| |
| if (is_cpu) |
| dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma, |
| MAX_REG_RD * |
| sizeof(*nandc->reg_read_buf), |
| DMA_FROM_DEVICE); |
| else |
| dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma, |
| MAX_REG_RD * |
| sizeof(*nandc->reg_read_buf), |
| DMA_FROM_DEVICE); |
| } |
| |
| static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) |
| { |
| switch (offset) { |
| case NAND_FLASH_CMD: |
| return ®s->cmd; |
| case NAND_ADDR0: |
| return ®s->addr0; |
| case NAND_ADDR1: |
| return ®s->addr1; |
| case NAND_FLASH_CHIP_SELECT: |
| return ®s->chip_sel; |
| case NAND_EXEC_CMD: |
| return ®s->exec; |
| case NAND_FLASH_STATUS: |
| return ®s->clrflashstatus; |
| case NAND_DEV0_CFG0: |
| return ®s->cfg0; |
| case NAND_DEV0_CFG1: |
| return ®s->cfg1; |
| case NAND_DEV0_ECC_CFG: |
| return ®s->ecc_bch_cfg; |
| case NAND_READ_STATUS: |
| return ®s->clrreadstatus; |
| case NAND_DEV_CMD1: |
| return ®s->cmd1; |
| case NAND_DEV_CMD1_RESTORE: |
| return ®s->orig_cmd1; |
| case NAND_DEV_CMD_VLD: |
| return ®s->vld; |
| case NAND_DEV_CMD_VLD_RESTORE: |
| return ®s->orig_vld; |
| case NAND_EBI2_ECC_BUF_CFG: |
| return ®s->ecc_buf_cfg; |
| case NAND_READ_LOCATION_0: |
| return ®s->read_location0; |
| case NAND_READ_LOCATION_1: |
| return ®s->read_location1; |
| case NAND_READ_LOCATION_2: |
| return ®s->read_location2; |
| case NAND_READ_LOCATION_3: |
| return ®s->read_location3; |
| case NAND_READ_LOCATION_LAST_CW_0: |
| return ®s->read_location_last0; |
| case NAND_READ_LOCATION_LAST_CW_1: |
| return ®s->read_location_last1; |
| case NAND_READ_LOCATION_LAST_CW_2: |
| return ®s->read_location_last2; |
| case NAND_READ_LOCATION_LAST_CW_3: |
| return ®s->read_location_last3; |
| default: |
| return NULL; |
| } |
| } |
| |
| static void nandc_set_reg(struct nand_chip *chip, int offset, |
| u32 val) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nandc_regs *regs = nandc->regs; |
| __le32 *reg; |
| |
| reg = offset_to_nandc_reg(regs, offset); |
| |
| if (reg) |
| *reg = cpu_to_le32(val); |
| } |
| |
| /* Helper to check the code word, whether it is last cw or not */ |
| static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw) |
| { |
| return cw == (ecc->steps - 1); |
| } |
| |
| /* helper to configure location register values */ |
| static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg, |
| int cw_offset, int read_size, int is_last_read_loc) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int reg_base = NAND_READ_LOCATION_0; |
| |
| if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) |
| reg_base = NAND_READ_LOCATION_LAST_CW_0; |
| |
| reg_base += reg * 4; |
| |
| if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) |
| return nandc_set_read_loc_last(chip, reg_base, cw_offset, |
| read_size, is_last_read_loc); |
| else |
| return nandc_set_read_loc_first(chip, reg_base, cw_offset, |
| read_size, is_last_read_loc); |
| } |
| |
| /* helper to configure address register values */ |
| static void set_address(struct qcom_nand_host *host, u16 column, int page) |
| { |
| struct nand_chip *chip = &host->chip; |
| |
| if (chip->options & NAND_BUSWIDTH_16) |
| column >>= 1; |
| |
| nandc_set_reg(chip, NAND_ADDR0, page << 16 | column); |
| nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff); |
| } |
| |
| /* |
| * update_rw_regs: set up read/write register values, these will be |
| * written to the NAND controller registers via DMA |
| * |
| * @num_cw: number of steps for the read/write operation |
| * @read: read or write operation |
| * @cw : which code word |
| */ |
| static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw) |
| { |
| struct nand_chip *chip = &host->chip; |
| u32 cmd, cfg0, cfg1, ecc_bch_cfg; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| |
| if (read) { |
| if (host->use_ecc) |
| cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; |
| else |
| cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE; |
| } else { |
| cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; |
| } |
| |
| if (host->use_ecc) { |
| cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) | |
| (num_cw - 1) << CW_PER_PAGE; |
| |
| cfg1 = host->cfg1; |
| ecc_bch_cfg = host->ecc_bch_cfg; |
| } else { |
| cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) | |
| (num_cw - 1) << CW_PER_PAGE; |
| |
| cfg1 = host->cfg1_raw; |
| ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; |
| } |
| |
| nandc_set_reg(chip, NAND_FLASH_CMD, cmd); |
| nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0); |
| nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1); |
| nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg); |
| if (!nandc->props->qpic_v2) |
| nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg); |
| nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus); |
| nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus); |
| nandc_set_reg(chip, NAND_EXEC_CMD, 1); |
| |
| if (read) |
| nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ? |
| host->cw_data : host->cw_size, 1); |
| } |
| |
| /* |
| * Maps the scatter gather list for DMA transfer and forms the DMA descriptor |
| * for BAM. This descriptor will be added in the NAND DMA descriptor queue |
| * which will be submitted to DMA engine. |
| */ |
| static int prepare_bam_async_desc(struct qcom_nand_controller *nandc, |
| struct dma_chan *chan, |
| unsigned long flags) |
| { |
| struct desc_info *desc; |
| struct scatterlist *sgl; |
| unsigned int sgl_cnt; |
| int ret; |
| struct bam_transaction *bam_txn = nandc->bam_txn; |
| enum dma_transfer_direction dir_eng; |
| struct dma_async_tx_descriptor *dma_desc; |
| |
| desc = kzalloc(sizeof(*desc), GFP_KERNEL); |
| if (!desc) |
| return -ENOMEM; |
| |
| if (chan == nandc->cmd_chan) { |
| sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start]; |
| sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start; |
| bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos; |
| dir_eng = DMA_MEM_TO_DEV; |
| desc->dir = DMA_TO_DEVICE; |
| } else if (chan == nandc->tx_chan) { |
| sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start]; |
| sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start; |
| bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos; |
| dir_eng = DMA_MEM_TO_DEV; |
| desc->dir = DMA_TO_DEVICE; |
| } else { |
| sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start]; |
| sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start; |
| bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos; |
| dir_eng = DMA_DEV_TO_MEM; |
| desc->dir = DMA_FROM_DEVICE; |
| } |
| |
| sg_mark_end(sgl + sgl_cnt - 1); |
| ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir); |
| if (ret == 0) { |
| dev_err(nandc->dev, "failure in mapping desc\n"); |
| kfree(desc); |
| return -ENOMEM; |
| } |
| |
| desc->sgl_cnt = sgl_cnt; |
| desc->bam_sgl = sgl; |
| |
| dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng, |
| flags); |
| |
| if (!dma_desc) { |
| dev_err(nandc->dev, "failure in prep desc\n"); |
| dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir); |
| kfree(desc); |
| return -EINVAL; |
| } |
| |
| desc->dma_desc = dma_desc; |
| |
| /* update last data/command descriptor */ |
| if (chan == nandc->cmd_chan) |
| bam_txn->last_cmd_desc = dma_desc; |
| else |
| bam_txn->last_data_desc = dma_desc; |
| |
| list_add_tail(&desc->node, &nandc->desc_list); |
| |
| return 0; |
| } |
| |
| /* |
| * Prepares the command descriptor for BAM DMA which will be used for NAND |
| * register reads and writes. The command descriptor requires the command |
| * to be formed in command element type so this function uses the command |
| * element from bam transaction ce array and fills the same with required |
| * data. A single SGL can contain multiple command elements so |
| * NAND_BAM_NEXT_SGL will be used for starting the separate SGL |
| * after the current command element. |
| */ |
| static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, |
| int reg_off, const void *vaddr, |
| int size, unsigned int flags) |
| { |
| int bam_ce_size; |
| int i, ret; |
| struct bam_cmd_element *bam_ce_buffer; |
| struct bam_transaction *bam_txn = nandc->bam_txn; |
| |
| bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos]; |
| |
| /* fill the command desc */ |
| for (i = 0; i < size; i++) { |
| if (read) |
| bam_prep_ce(&bam_ce_buffer[i], |
| nandc_reg_phys(nandc, reg_off + 4 * i), |
| BAM_READ_COMMAND, |
| reg_buf_dma_addr(nandc, |
| (__le32 *)vaddr + i)); |
| else |
| bam_prep_ce_le32(&bam_ce_buffer[i], |
| nandc_reg_phys(nandc, reg_off + 4 * i), |
| BAM_WRITE_COMMAND, |
| *((__le32 *)vaddr + i)); |
| } |
| |
| bam_txn->bam_ce_pos += size; |
| |
| /* use the separate sgl after this command */ |
| if (flags & NAND_BAM_NEXT_SGL) { |
| bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start]; |
| bam_ce_size = (bam_txn->bam_ce_pos - |
| bam_txn->bam_ce_start) * |
| sizeof(struct bam_cmd_element); |
| sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos], |
| bam_ce_buffer, bam_ce_size); |
| bam_txn->cmd_sgl_pos++; |
| bam_txn->bam_ce_start = bam_txn->bam_ce_pos; |
| |
| if (flags & NAND_BAM_NWD) { |
| ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, |
| DMA_PREP_FENCE | |
| DMA_PREP_CMD); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Prepares the data descriptor for BAM DMA which will be used for NAND |
| * data reads and writes. |
| */ |
| static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, |
| const void *vaddr, |
| int size, unsigned int flags) |
| { |
| int ret; |
| struct bam_transaction *bam_txn = nandc->bam_txn; |
| |
| if (read) { |
| sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos], |
| vaddr, size); |
| bam_txn->rx_sgl_pos++; |
| } else { |
| sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos], |
| vaddr, size); |
| bam_txn->tx_sgl_pos++; |
| |
| /* |
| * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag |
| * is not set, form the DMA descriptor |
| */ |
| if (!(flags & NAND_BAM_NO_EOT)) { |
| ret = prepare_bam_async_desc(nandc, nandc->tx_chan, |
| DMA_PREP_INTERRUPT); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, |
| int reg_off, const void *vaddr, int size, |
| bool flow_control) |
| { |
| struct desc_info *desc; |
| struct dma_async_tx_descriptor *dma_desc; |
| struct scatterlist *sgl; |
| struct dma_slave_config slave_conf; |
| struct qcom_adm_peripheral_config periph_conf = {}; |
| enum dma_transfer_direction dir_eng; |
| int ret; |
| |
| desc = kzalloc(sizeof(*desc), GFP_KERNEL); |
| if (!desc) |
| return -ENOMEM; |
| |
| sgl = &desc->adm_sgl; |
| |
| sg_init_one(sgl, vaddr, size); |
| |
| if (read) { |
| dir_eng = DMA_DEV_TO_MEM; |
| desc->dir = DMA_FROM_DEVICE; |
| } else { |
| dir_eng = DMA_MEM_TO_DEV; |
| desc->dir = DMA_TO_DEVICE; |
| } |
| |
| ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); |
| if (ret == 0) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| memset(&slave_conf, 0x00, sizeof(slave_conf)); |
| |
| slave_conf.device_fc = flow_control; |
| if (read) { |
| slave_conf.src_maxburst = 16; |
| slave_conf.src_addr = nandc->base_dma + reg_off; |
| if (nandc->data_crci) { |
| periph_conf.crci = nandc->data_crci; |
| slave_conf.peripheral_config = &periph_conf; |
| slave_conf.peripheral_size = sizeof(periph_conf); |
| } |
| } else { |
| slave_conf.dst_maxburst = 16; |
| slave_conf.dst_addr = nandc->base_dma + reg_off; |
| if (nandc->cmd_crci) { |
| periph_conf.crci = nandc->cmd_crci; |
| slave_conf.peripheral_config = &periph_conf; |
| slave_conf.peripheral_size = sizeof(periph_conf); |
| } |
| } |
| |
| ret = dmaengine_slave_config(nandc->chan, &slave_conf); |
| if (ret) { |
| dev_err(nandc->dev, "failed to configure dma channel\n"); |
| goto err; |
| } |
| |
| dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); |
| if (!dma_desc) { |
| dev_err(nandc->dev, "failed to prepare desc\n"); |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| desc->dma_desc = dma_desc; |
| |
| list_add_tail(&desc->node, &nandc->desc_list); |
| |
| return 0; |
| err: |
| kfree(desc); |
| |
| return ret; |
| } |
| |
| /* |
| * read_reg_dma: prepares a descriptor to read a given number of |
| * contiguous registers to the reg_read_buf pointer |
| * |
| * @first: offset of the first register in the contiguous block |
| * @num_regs: number of registers to read |
| * @flags: flags to control DMA descriptor preparation |
| */ |
| static int read_reg_dma(struct qcom_nand_controller *nandc, int first, |
| int num_regs, unsigned int flags) |
| { |
| bool flow_control = false; |
| void *vaddr; |
| |
| vaddr = nandc->reg_read_buf + nandc->reg_read_pos; |
| nandc->reg_read_pos += num_regs; |
| |
| if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1) |
| first = dev_cmd_reg_addr(nandc, first); |
| |
| if (nandc->props->is_bam) |
| return prep_bam_dma_desc_cmd(nandc, true, first, vaddr, |
| num_regs, flags); |
| |
| if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) |
| flow_control = true; |
| |
| return prep_adm_dma_desc(nandc, true, first, vaddr, |
| num_regs * sizeof(u32), flow_control); |
| } |
| |
| /* |
| * write_reg_dma: prepares a descriptor to write a given number of |
| * contiguous registers |
| * |
| * @first: offset of the first register in the contiguous block |
| * @num_regs: number of registers to write |
| * @flags: flags to control DMA descriptor preparation |
| */ |
| static int write_reg_dma(struct qcom_nand_controller *nandc, int first, |
| int num_regs, unsigned int flags) |
| { |
| bool flow_control = false; |
| struct nandc_regs *regs = nandc->regs; |
| void *vaddr; |
| |
| vaddr = offset_to_nandc_reg(regs, first); |
| |
| if (first == NAND_ERASED_CW_DETECT_CFG) { |
| if (flags & NAND_ERASED_CW_SET) |
| vaddr = ®s->erased_cw_detect_cfg_set; |
| else |
| vaddr = ®s->erased_cw_detect_cfg_clr; |
| } |
| |
| if (first == NAND_EXEC_CMD) |
| flags |= NAND_BAM_NWD; |
| |
| if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1) |
| first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1); |
| |
| if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD) |
| first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD); |
| |
| if (nandc->props->is_bam) |
| return prep_bam_dma_desc_cmd(nandc, false, first, vaddr, |
| num_regs, flags); |
| |
| if (first == NAND_FLASH_CMD) |
| flow_control = true; |
| |
| return prep_adm_dma_desc(nandc, false, first, vaddr, |
| num_regs * sizeof(u32), flow_control); |
| } |
| |
| /* |
| * read_data_dma: prepares a DMA descriptor to transfer data from the |
| * controller's internal buffer to the buffer 'vaddr' |
| * |
| * @reg_off: offset within the controller's data buffer |
| * @vaddr: virtual address of the buffer we want to write to |
| * @size: DMA transaction size in bytes |
| * @flags: flags to control DMA descriptor preparation |
| */ |
| static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, |
| const u8 *vaddr, int size, unsigned int flags) |
| { |
| if (nandc->props->is_bam) |
| return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags); |
| |
| return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false); |
| } |
| |
| /* |
| * write_data_dma: prepares a DMA descriptor to transfer data from |
| * 'vaddr' to the controller's internal buffer |
| * |
| * @reg_off: offset within the controller's data buffer |
| * @vaddr: virtual address of the buffer we want to read from |
| * @size: DMA transaction size in bytes |
| * @flags: flags to control DMA descriptor preparation |
| */ |
| static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, |
| const u8 *vaddr, int size, unsigned int flags) |
| { |
| if (nandc->props->is_bam) |
| return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags); |
| |
| return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false); |
| } |
| |
| /* |
| * Helper to prepare DMA descriptors for configuring registers |
| * before reading a NAND page. |
| */ |
| static void config_nand_page_read(struct nand_chip *chip) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| |
| write_reg_dma(nandc, NAND_ADDR0, 2, 0); |
| write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); |
| if (!nandc->props->qpic_v2) |
| write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0); |
| write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0); |
| write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, |
| NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); |
| } |
| |
| /* |
| * Helper to prepare DMA descriptors for configuring registers |
| * before reading each codeword in NAND page. |
| */ |
| static void |
| config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| int reg = NAND_READ_LOCATION_0; |
| |
| if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) |
| reg = NAND_READ_LOCATION_LAST_CW_0; |
| |
| if (nandc->props->is_bam) |
| write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL); |
| |
| write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); |
| write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); |
| |
| if (use_ecc) { |
| read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); |
| read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, |
| NAND_BAM_NEXT_SGL); |
| } else { |
| read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); |
| } |
| } |
| |
| /* |
| * Helper to prepare dma descriptors to configure registers needed for reading a |
| * single codeword in page |
| */ |
| static void |
| config_nand_single_cw_page_read(struct nand_chip *chip, |
| bool use_ecc, int cw) |
| { |
| config_nand_page_read(chip); |
| config_nand_cw_read(chip, use_ecc, cw); |
| } |
| |
| /* |
| * Helper to prepare DMA descriptors used to configure registers needed for |
| * before writing a NAND page. |
| */ |
| static void config_nand_page_write(struct nand_chip *chip) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| |
| write_reg_dma(nandc, NAND_ADDR0, 2, 0); |
| write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); |
| if (!nandc->props->qpic_v2) |
| write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, |
| NAND_BAM_NEXT_SGL); |
| } |
| |
| /* |
| * Helper to prepare DMA descriptors for configuring registers |
| * before writing each codeword in NAND page. |
| */ |
| static void config_nand_cw_write(struct nand_chip *chip) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| |
| write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); |
| write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); |
| |
| read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); |
| |
| write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); |
| write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); |
| } |
| |
| /* helpers to submit/free our list of dma descriptors */ |
| static int submit_descs(struct qcom_nand_controller *nandc) |
| { |
| struct desc_info *desc, *n; |
| dma_cookie_t cookie = 0; |
| struct bam_transaction *bam_txn = nandc->bam_txn; |
| int ret = 0; |
| |
| if (nandc->props->is_bam) { |
| if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) { |
| ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0); |
| if (ret) |
| goto err_unmap_free_desc; |
| } |
| |
| if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) { |
| ret = prepare_bam_async_desc(nandc, nandc->tx_chan, |
| DMA_PREP_INTERRUPT); |
| if (ret) |
| goto err_unmap_free_desc; |
| } |
| |
| if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) { |
| ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, |
| DMA_PREP_CMD); |
| if (ret) |
| goto err_unmap_free_desc; |
| } |
| } |
| |
| list_for_each_entry(desc, &nandc->desc_list, node) |
| cookie = dmaengine_submit(desc->dma_desc); |
| |
| if (nandc->props->is_bam) { |
| bam_txn->last_cmd_desc->callback = qpic_bam_dma_done; |
| bam_txn->last_cmd_desc->callback_param = bam_txn; |
| if (bam_txn->last_data_desc) { |
| bam_txn->last_data_desc->callback = qpic_bam_dma_done; |
| bam_txn->last_data_desc->callback_param = bam_txn; |
| bam_txn->wait_second_completion = true; |
| } |
| |
| dma_async_issue_pending(nandc->tx_chan); |
| dma_async_issue_pending(nandc->rx_chan); |
| dma_async_issue_pending(nandc->cmd_chan); |
| |
| if (!wait_for_completion_timeout(&bam_txn->txn_done, |
| QPIC_NAND_COMPLETION_TIMEOUT)) |
| ret = -ETIMEDOUT; |
| } else { |
| if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) |
| ret = -ETIMEDOUT; |
| } |
| |
| err_unmap_free_desc: |
| /* |
| * Unmap the dma sg_list and free the desc allocated by both |
| * prepare_bam_async_desc() and prep_adm_dma_desc() functions. |
| */ |
| list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { |
| list_del(&desc->node); |
| |
| if (nandc->props->is_bam) |
| dma_unmap_sg(nandc->dev, desc->bam_sgl, |
| desc->sgl_cnt, desc->dir); |
| else |
| dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1, |
| desc->dir); |
| |
| kfree(desc); |
| } |
| |
| return ret; |
| } |
| |
| /* reset the register read buffer for next NAND operation */ |
| static void clear_read_regs(struct qcom_nand_controller *nandc) |
| { |
| nandc->reg_read_pos = 0; |
| nandc_read_buffer_sync(nandc, false); |
| } |
| |
| /* |
| * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read |
| * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. |
| * |
| * when using RS ECC, the HW reports the same erros when reading an erased CW, |
| * but it notifies that it is an erased CW by placing special characters at |
| * certain offsets in the buffer. |
| * |
| * verify if the page is erased or not, and fix up the page for RS ECC by |
| * replacing the special characters with 0xff. |
| */ |
| static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) |
| { |
| u8 empty1, empty2; |
| |
| /* |
| * an erased page flags an error in NAND_FLASH_STATUS, check if the page |
| * is erased by looking for 0x54s at offsets 3 and 175 from the |
| * beginning of each codeword |
| */ |
| |
| empty1 = data_buf[3]; |
| empty2 = data_buf[175]; |
| |
| /* |
| * if the erased codework markers, if they exist override them with |
| * 0xffs |
| */ |
| if ((empty1 == 0x54 && empty2 == 0xff) || |
| (empty1 == 0xff && empty2 == 0x54)) { |
| data_buf[3] = 0xff; |
| data_buf[175] = 0xff; |
| } |
| |
| /* |
| * check if the entire chunk contains 0xffs or not. if it doesn't, then |
| * restore the original values at the special offsets |
| */ |
| if (memchr_inv(data_buf, 0xff, data_len)) { |
| data_buf[3] = empty1; |
| data_buf[175] = empty2; |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| struct read_stats { |
| __le32 flash; |
| __le32 buffer; |
| __le32 erased_cw; |
| }; |
| |
| /* reads back FLASH_STATUS register set by the controller */ |
| static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| int i; |
| |
| nandc_read_buffer_sync(nandc, true); |
| |
| for (i = 0; i < cw_cnt; i++) { |
| u32 flash = le32_to_cpu(nandc->reg_read_buf[i]); |
| |
| if (flash & (FS_OP_ERR | FS_MPU_ERR)) |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* performs raw read for one codeword */ |
| static int |
| qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| u8 *data_buf, u8 *oob_buf, int page, int cw) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int data_size1, data_size2, oob_size1, oob_size2; |
| int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; |
| int raw_cw = cw; |
| |
| nand_read_page_op(chip, page, 0, NULL, 0); |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| clear_read_regs(nandc); |
| host->use_ecc = false; |
| |
| if (nandc->props->qpic_v2) |
| raw_cw = ecc->steps - 1; |
| |
| clear_bam_transaction(nandc); |
| set_address(host, host->cw_size * cw, page); |
| update_rw_regs(host, 1, true, raw_cw); |
| config_nand_page_read(chip); |
| |
| data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); |
| oob_size1 = host->bbm_size; |
| |
| if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) { |
| data_size2 = ecc->size - data_size1 - |
| ((ecc->steps - 1) * 4); |
| oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw + |
| host->spare_bytes; |
| } else { |
| data_size2 = host->cw_data - data_size1; |
| oob_size2 = host->ecc_bytes_hw + host->spare_bytes; |
| } |
| |
| if (nandc->props->is_bam) { |
| nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0); |
| read_loc += data_size1; |
| |
| nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0); |
| read_loc += oob_size1; |
| |
| nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0); |
| read_loc += data_size2; |
| |
| nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1); |
| } |
| |
| config_nand_cw_read(chip, false, raw_cw); |
| |
| read_data_dma(nandc, reg_off, data_buf, data_size1, 0); |
| reg_off += data_size1; |
| |
| read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); |
| reg_off += oob_size1; |
| |
| read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0); |
| reg_off += data_size2; |
| |
| read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0); |
| |
| ret = submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure to read raw cw %d\n", cw); |
| return ret; |
| } |
| |
| return check_flash_errors(host, 1); |
| } |
| |
| /* |
| * Bitflips can happen in erased codewords also so this function counts the |
| * number of 0 in each CW for which ECC engine returns the uncorrectable |
| * error. The page will be assumed as erased if this count is less than or |
| * equal to the ecc->strength for each CW. |
| * |
| * 1. Both DATA and OOB need to be checked for number of 0. The |
| * top-level API can be called with only data buf or OOB buf so use |
| * chip->data_buf if data buf is null and chip->oob_poi if oob buf |
| * is null for copying the raw bytes. |
| * 2. Perform raw read for all the CW which has uncorrectable errors. |
| * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes. |
| * The BBM and spare bytes bit flip won’t affect the ECC so don’t check |
| * the number of bitflips in this area. |
| */ |
| static int |
| check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf, |
| u8 *oob_buf, unsigned long uncorrectable_cws, |
| int page, unsigned int max_bitflips) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *cw_data_buf, *cw_oob_buf; |
| int cw, data_size, oob_size, ret; |
| |
| if (!data_buf) |
| data_buf = nand_get_data_buf(chip); |
| |
| if (!oob_buf) { |
| nand_get_data_buf(chip); |
| oob_buf = chip->oob_poi; |
| } |
| |
| for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) { |
| if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) { |
| data_size = ecc->size - ((ecc->steps - 1) * 4); |
| oob_size = (ecc->steps * 4) + host->ecc_bytes_hw; |
| } else { |
| data_size = host->cw_data; |
| oob_size = host->ecc_bytes_hw; |
| } |
| |
| /* determine starting buffer address for current CW */ |
| cw_data_buf = data_buf + (cw * host->cw_data); |
| cw_oob_buf = oob_buf + (cw * ecc->bytes); |
| |
| ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf, |
| cw_oob_buf, page, cw); |
| if (ret) |
| return ret; |
| |
| /* |
| * make sure it isn't an erased page reported |
| * as not-erased by HW because of a few bitflips |
| */ |
| ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size, |
| cw_oob_buf + host->bbm_size, |
| oob_size, NULL, |
| 0, ecc->strength); |
| if (ret < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += ret; |
| max_bitflips = max_t(unsigned int, max_bitflips, ret); |
| } |
| } |
| |
| return max_bitflips; |
| } |
| |
| /* |
| * reads back status registers set by the controller to notify page read |
| * errors. this is equivalent to what 'ecc->correct()' would do. |
| */ |
| static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, |
| u8 *oob_buf, int page) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| unsigned int max_bitflips = 0, uncorrectable_cws = 0; |
| struct read_stats *buf; |
| bool flash_op_err = false, erased; |
| int i; |
| u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; |
| |
| buf = (struct read_stats *)nandc->reg_read_buf; |
| nandc_read_buffer_sync(nandc, true); |
| |
| for (i = 0; i < ecc->steps; i++, buf++) { |
| u32 flash, buffer, erased_cw; |
| int data_len, oob_len; |
| |
| if (qcom_nandc_is_last_cw(ecc, i)) { |
| data_len = ecc->size - ((ecc->steps - 1) << 2); |
| oob_len = ecc->steps << 2; |
| } else { |
| data_len = host->cw_data; |
| oob_len = 0; |
| } |
| |
| flash = le32_to_cpu(buf->flash); |
| buffer = le32_to_cpu(buf->buffer); |
| erased_cw = le32_to_cpu(buf->erased_cw); |
| |
| /* |
| * Check ECC failure for each codeword. ECC failure can |
| * happen in either of the following conditions |
| * 1. If number of bitflips are greater than ECC engine |
| * capability. |
| * 2. If this codeword contains all 0xff for which erased |
| * codeword detection check will be done. |
| */ |
| if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { |
| /* |
| * For BCH ECC, ignore erased codeword errors, if |
| * ERASED_CW bits are set. |
| */ |
| if (host->bch_enabled) { |
| erased = (erased_cw & ERASED_CW) == ERASED_CW; |
| /* |
| * For RS ECC, HW reports the erased CW by placing |
| * special characters at certain offsets in the buffer. |
| * These special characters will be valid only if |
| * complete page is read i.e. data_buf is not NULL. |
| */ |
| } else if (data_buf) { |
| erased = erased_chunk_check_and_fixup(data_buf, |
| data_len); |
| } else { |
| erased = false; |
| } |
| |
| if (!erased) |
| uncorrectable_cws |= BIT(i); |
| /* |
| * Check if MPU or any other operational error (timeout, |
| * device failure, etc.) happened for this codeword and |
| * make flash_op_err true. If flash_op_err is set, then |
| * EIO will be returned for page read. |
| */ |
| } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { |
| flash_op_err = true; |
| /* |
| * No ECC or operational errors happened. Check the number of |
| * bits corrected and update the ecc_stats.corrected. |
| */ |
| } else { |
| unsigned int stat; |
| |
| stat = buffer & BS_CORRECTABLE_ERR_MSK; |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max(max_bitflips, stat); |
| } |
| |
| if (data_buf) |
| data_buf += data_len; |
| if (oob_buf) |
| oob_buf += oob_len + ecc->bytes; |
| } |
| |
| if (flash_op_err) |
| return -EIO; |
| |
| if (!uncorrectable_cws) |
| return max_bitflips; |
| |
| return check_for_erased_page(host, data_buf_start, oob_buf_start, |
| uncorrectable_cws, page, |
| max_bitflips); |
| } |
| |
| /* |
| * helper to perform the actual page read operation, used by ecc->read_page(), |
| * ecc->read_oob() |
| */ |
| static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, |
| u8 *oob_buf, int page) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; |
| int i, ret; |
| |
| config_nand_page_read(chip); |
| |
| /* queue cmd descs for each codeword */ |
| for (i = 0; i < ecc->steps; i++) { |
| int data_size, oob_size; |
| |
| if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { |
| data_size = ecc->size - ((ecc->steps - 1) << 2); |
| oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + |
| host->spare_bytes; |
| } else { |
| data_size = host->cw_data; |
| oob_size = host->ecc_bytes_hw + host->spare_bytes; |
| } |
| |
| if (nandc->props->is_bam) { |
| if (data_buf && oob_buf) { |
| nandc_set_read_loc(chip, i, 0, 0, data_size, 0); |
| nandc_set_read_loc(chip, i, 1, data_size, |
| oob_size, 1); |
| } else if (data_buf) { |
| nandc_set_read_loc(chip, i, 0, 0, data_size, 1); |
| } else { |
| nandc_set_read_loc(chip, i, 0, data_size, |
| oob_size, 1); |
| } |
| } |
| |
| config_nand_cw_read(chip, true, i); |
| |
| if (data_buf) |
| read_data_dma(nandc, FLASH_BUF_ACC, data_buf, |
| data_size, 0); |
| |
| /* |
| * when ecc is enabled, the controller doesn't read the real |
| * or dummy bad block markers in each chunk. To maintain a |
| * consistent layout across RAW and ECC reads, we just |
| * leave the real/dummy BBM offsets empty (i.e, filled with |
| * 0xffs) |
| */ |
| if (oob_buf) { |
| int j; |
| |
| for (j = 0; j < host->bbm_size; j++) |
| *oob_buf++ = 0xff; |
| |
| read_data_dma(nandc, FLASH_BUF_ACC + data_size, |
| oob_buf, oob_size, 0); |
| } |
| |
| if (data_buf) |
| data_buf += data_size; |
| if (oob_buf) |
| oob_buf += oob_size; |
| } |
| |
| ret = submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure to read page/oob\n"); |
| return ret; |
| } |
| |
| return parse_read_errors(host, data_buf_start, oob_buf_start, page); |
| } |
| |
| /* |
| * a helper that copies the last step/codeword of a page (containing free oob) |
| * into our local buffer |
| */ |
| static int copy_last_cw(struct qcom_nand_host *host, int page) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int size; |
| int ret; |
| |
| clear_read_regs(nandc); |
| |
| size = host->use_ecc ? host->cw_data : host->cw_size; |
| |
| /* prepare a clean read buffer */ |
| memset(nandc->data_buffer, 0xff, size); |
| |
| set_address(host, host->cw_size * (ecc->steps - 1), page); |
| update_rw_regs(host, 1, true, ecc->steps - 1); |
| |
| config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1); |
| |
| read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); |
| |
| ret = submit_descs(nandc); |
| if (ret) |
| dev_err(nandc->dev, "failed to copy last codeword\n"); |
| |
| return ret; |
| } |
| |
| static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page) |
| { |
| struct qcom_nand_boot_partition *boot_partition; |
| u32 start, end; |
| int i; |
| |
| /* |
| * Since the frequent access will be to the non-boot partitions like rootfs, |
| * optimize the page check by: |
| * |
| * 1. Checking if the page lies after the last boot partition. |
| * 2. Checking from the boot partition end. |
| */ |
| |
| /* First check the last boot partition */ |
| boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1]; |
| start = boot_partition->page_offset; |
| end = start + boot_partition->page_size; |
| |
| /* Page is after the last boot partition end. This is NOT a boot partition */ |
| if (page > end) |
| return false; |
| |
| /* Actually check if it's a boot partition */ |
| if (page < end && page >= start) |
| return true; |
| |
| /* Check the other boot partitions starting from the second-last partition */ |
| for (i = host->nr_boot_partitions - 2; i >= 0; i--) { |
| boot_partition = &host->boot_partitions[i]; |
| start = boot_partition->page_offset; |
| end = start + boot_partition->page_size; |
| |
| if (page < end && page >= start) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page) |
| { |
| bool codeword_fixup = qcom_nandc_is_boot_partition(host, page); |
| |
| /* Skip conf write if we are already in the correct mode */ |
| if (codeword_fixup == host->codeword_fixup) |
| return; |
| |
| host->codeword_fixup = codeword_fixup; |
| |
| host->cw_data = codeword_fixup ? 512 : 516; |
| host->spare_bytes = host->cw_size - host->ecc_bytes_hw - |
| host->bbm_size - host->cw_data; |
| |
| host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK); |
| host->cfg0 |= host->spare_bytes << SPARE_SIZE_BYTES | |
| host->cw_data << UD_SIZE_BYTES; |
| |
| host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK; |
| host->ecc_bch_cfg |= host->cw_data << ECC_NUM_DATA_BYTES; |
| host->ecc_buf_cfg = (host->cw_data - 1) << NUM_STEPS; |
| } |
| |
| /* implements ecc->read_page() */ |
| static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *data_buf, *oob_buf = NULL; |
| |
| if (host->nr_boot_partitions) |
| qcom_nandc_codeword_fixup(host, page); |
| |
| nand_read_page_op(chip, page, 0, NULL, 0); |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| host->use_ecc = true; |
| clear_read_regs(nandc); |
| set_address(host, 0, page); |
| update_rw_regs(host, ecc->steps, true, 0); |
| |
| data_buf = buf; |
| oob_buf = oob_required ? chip->oob_poi : NULL; |
| |
| clear_bam_transaction(nandc); |
| |
| return read_page_ecc(host, data_buf, oob_buf, page); |
| } |
| |
| /* implements ecc->read_page_raw() */ |
| static int qcom_nandc_read_page_raw(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int cw, ret; |
| u8 *data_buf = buf, *oob_buf = chip->oob_poi; |
| |
| if (host->nr_boot_partitions) |
| qcom_nandc_codeword_fixup(host, page); |
| |
| for (cw = 0; cw < ecc->steps; cw++) { |
| ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf, |
| page, cw); |
| if (ret) |
| return ret; |
| |
| data_buf += host->cw_data; |
| oob_buf += ecc->bytes; |
| } |
| |
| return 0; |
| } |
| |
| /* implements ecc->read_oob() */ |
| static int qcom_nandc_read_oob(struct nand_chip *chip, int page) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| if (host->nr_boot_partitions) |
| qcom_nandc_codeword_fixup(host, page); |
| |
| clear_read_regs(nandc); |
| clear_bam_transaction(nandc); |
| |
| host->use_ecc = true; |
| set_address(host, 0, page); |
| update_rw_regs(host, ecc->steps, true, 0); |
| |
| return read_page_ecc(host, NULL, chip->oob_poi, page); |
| } |
| |
| /* implements ecc->write_page() */ |
| static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *data_buf, *oob_buf; |
| int i, ret; |
| |
| if (host->nr_boot_partitions) |
| qcom_nandc_codeword_fixup(host, page); |
| |
| nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| |
| set_address(host, 0, page); |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| clear_read_regs(nandc); |
| clear_bam_transaction(nandc); |
| |
| data_buf = (u8 *)buf; |
| oob_buf = chip->oob_poi; |
| |
| host->use_ecc = true; |
| update_rw_regs(host, ecc->steps, false, 0); |
| config_nand_page_write(chip); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| int data_size, oob_size; |
| |
| if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { |
| data_size = ecc->size - ((ecc->steps - 1) << 2); |
| oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + |
| host->spare_bytes; |
| } else { |
| data_size = host->cw_data; |
| oob_size = ecc->bytes; |
| } |
| |
| write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, |
| i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); |
| |
| /* |
| * when ECC is enabled, we don't really need to write anything |
| * to oob for the first n - 1 codewords since these oob regions |
| * just contain ECC bytes that's written by the controller |
| * itself. For the last codeword, we skip the bbm positions and |
| * write to the free oob area. |
| */ |
| if (qcom_nandc_is_last_cw(ecc, i)) { |
| oob_buf += host->bbm_size; |
| |
| write_data_dma(nandc, FLASH_BUF_ACC + data_size, |
| oob_buf, oob_size, 0); |
| } |
| |
| config_nand_cw_write(chip); |
| |
| data_buf += data_size; |
| oob_buf += oob_size; |
| } |
| |
| ret = submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure to write page\n"); |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| /* implements ecc->write_page_raw() */ |
| static int qcom_nandc_write_page_raw(struct nand_chip *chip, |
| const u8 *buf, int oob_required, |
| int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *data_buf, *oob_buf; |
| int i, ret; |
| |
| if (host->nr_boot_partitions) |
| qcom_nandc_codeword_fixup(host, page); |
| |
| nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| clear_read_regs(nandc); |
| clear_bam_transaction(nandc); |
| |
| data_buf = (u8 *)buf; |
| oob_buf = chip->oob_poi; |
| |
| host->use_ecc = false; |
| update_rw_regs(host, ecc->steps, false, 0); |
| config_nand_page_write(chip); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| int data_size1, data_size2, oob_size1, oob_size2; |
| int reg_off = FLASH_BUF_ACC; |
| |
| data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); |
| oob_size1 = host->bbm_size; |
| |
| if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { |
| data_size2 = ecc->size - data_size1 - |
| ((ecc->steps - 1) << 2); |
| oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + |
| host->spare_bytes; |
| } else { |
| data_size2 = host->cw_data - data_size1; |
| oob_size2 = host->ecc_bytes_hw + host->spare_bytes; |
| } |
| |
| write_data_dma(nandc, reg_off, data_buf, data_size1, |
| NAND_BAM_NO_EOT); |
| reg_off += data_size1; |
| data_buf += data_size1; |
| |
| write_data_dma(nandc, reg_off, oob_buf, oob_size1, |
| NAND_BAM_NO_EOT); |
| reg_off += oob_size1; |
| oob_buf += oob_size1; |
| |
| write_data_dma(nandc, reg_off, data_buf, data_size2, |
| NAND_BAM_NO_EOT); |
| reg_off += data_size2; |
| data_buf += data_size2; |
| |
| write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); |
| oob_buf += oob_size2; |
| |
| config_nand_cw_write(chip); |
| } |
| |
| ret = submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure to write raw page\n"); |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| /* |
| * implements ecc->write_oob() |
| * |
| * the NAND controller cannot write only data or only OOB within a codeword |
| * since ECC is calculated for the combined codeword. So update the OOB from |
| * chip->oob_poi, and pad the data area with OxFF before writing. |
| */ |
| static int qcom_nandc_write_oob(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *oob = chip->oob_poi; |
| int data_size, oob_size; |
| int ret; |
| |
| if (host->nr_boot_partitions) |
| qcom_nandc_codeword_fixup(host, page); |
| |
| host->use_ecc = true; |
| clear_bam_transaction(nandc); |
| |
| /* calculate the data and oob size for the last codeword/step */ |
| data_size = ecc->size - ((ecc->steps - 1) << 2); |
| oob_size = mtd->oobavail; |
| |
| memset(nandc->data_buffer, 0xff, host->cw_data); |
| /* override new oob content to last codeword */ |
| mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, |
| 0, mtd->oobavail); |
| |
| set_address(host, host->cw_size * (ecc->steps - 1), page); |
| update_rw_regs(host, 1, false, 0); |
| |
| config_nand_page_write(chip); |
| write_data_dma(nandc, FLASH_BUF_ACC, |
| nandc->data_buffer, data_size + oob_size, 0); |
| config_nand_cw_write(chip); |
| |
| ret = submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure to write oob\n"); |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int page, ret, bbpos, bad = 0; |
| |
| page = (int)(ofs >> chip->page_shift) & chip->pagemask; |
| |
| /* |
| * configure registers for a raw sub page read, the address is set to |
| * the beginning of the last codeword, we don't care about reading ecc |
| * portion of oob. we just want the first few bytes from this codeword |
| * that contains the BBM |
| */ |
| host->use_ecc = false; |
| |
| clear_bam_transaction(nandc); |
| ret = copy_last_cw(host, page); |
| if (ret) |
| goto err; |
| |
| if (check_flash_errors(host, 1)) { |
| dev_warn(nandc->dev, "error when trying to read BBM\n"); |
| goto err; |
| } |
| |
| bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); |
| |
| bad = nandc->data_buffer[bbpos] != 0xff; |
| |
| if (chip->options & NAND_BUSWIDTH_16) |
| bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); |
| err: |
| return bad; |
| } |
| |
| static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int page, ret; |
| |
| clear_read_regs(nandc); |
| clear_bam_transaction(nandc); |
| |
| /* |
| * to mark the BBM as bad, we flash the entire last codeword with 0s. |
| * we don't care about the rest of the content in the codeword since |
| * we aren't going to use this block again |
| */ |
| memset(nandc->data_buffer, 0x00, host->cw_size); |
| |
| page = (int)(ofs >> chip->page_shift) & chip->pagemask; |
| |
| /* prepare write */ |
| host->use_ecc = false; |
| set_address(host, host->cw_size * (ecc->steps - 1), page); |
| update_rw_regs(host, 1, false, ecc->steps - 1); |
| |
| config_nand_page_write(chip); |
| write_data_dma(nandc, FLASH_BUF_ACC, |
| nandc->data_buffer, host->cw_size, 0); |
| config_nand_cw_write(chip); |
| |
| ret = submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure to update BBM\n"); |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| /* |
| * NAND controller page layout info |
| * |
| * Layout with ECC enabled: |
| * |
| * |----------------------| |---------------------------------| |
| * | xx.......yy| | *********xx.......yy| |
| * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| |
| * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| |
| * | xx.......yy| | *********xx.......yy| |
| * |----------------------| |---------------------------------| |
| * codeword 1,2..n-1 codeword n |
| * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> |
| * |
| * n = Number of codewords in the page |
| * . = ECC bytes |
| * * = Spare/free bytes |
| * x = Unused byte(s) |
| * y = Reserved byte(s) |
| * |
| * 2K page: n = 4, spare = 16 bytes |
| * 4K page: n = 8, spare = 32 bytes |
| * 8K page: n = 16, spare = 64 bytes |
| * |
| * the qcom nand controller operates at a sub page/codeword level. each |
| * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. |
| * the number of ECC bytes vary based on the ECC strength and the bus width. |
| * |
| * the first n - 1 codewords contains 516 bytes of user data, the remaining |
| * 12/16 bytes consist of ECC and reserved data. The nth codeword contains |
| * both user data and spare(oobavail) bytes that sum up to 516 bytes. |
| * |
| * When we access a page with ECC enabled, the reserved bytes(s) are not |
| * accessible at all. When reading, we fill up these unreadable positions |
| * with 0xffs. When writing, the controller skips writing the inaccessible |
| * bytes. |
| * |
| * Layout with ECC disabled: |
| * |
| * |------------------------------| |---------------------------------------| |
| * | yy xx.......| | bb *********xx.......| |
| * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| |
| * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| |
| * | yy xx.......| | bb *********xx.......| |
| * |------------------------------| |---------------------------------------| |
| * codeword 1,2..n-1 codeword n |
| * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> |
| * |
| * n = Number of codewords in the page |
| * . = ECC bytes |
| * * = Spare/free bytes |
| * x = Unused byte(s) |
| * y = Dummy Bad Bock byte(s) |
| * b = Real Bad Block byte(s) |
| * size1/size2 = function of codeword size and 'n' |
| * |
| * when the ECC block is disabled, one reserved byte (or two for 16 bit bus |
| * width) is now accessible. For the first n - 1 codewords, these are dummy Bad |
| * Block Markers. In the last codeword, this position contains the real BBM |
| * |
| * In order to have a consistent layout between RAW and ECC modes, we assume |
| * the following OOB layout arrangement: |
| * |
| * |-----------| |--------------------| |
| * |yyxx.......| |bb*********xx.......| |
| * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| |
| * |yyxx.......| |bb*********xx.......| |
| * |yyxx.......| |bb*********xx.......| |
| * |-----------| |--------------------| |
| * first n - 1 nth OOB region |
| * OOB regions |
| * |
| * n = Number of codewords in the page |
| * . = ECC bytes |
| * * = FREE OOB bytes |
| * y = Dummy bad block byte(s) (inaccessible when ECC enabled) |
| * x = Unused byte(s) |
| * b = Real bad block byte(s) (inaccessible when ECC enabled) |
| * |
| * This layout is read as is when ECC is disabled. When ECC is enabled, the |
| * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, |
| * and assumed as 0xffs when we read a page/oob. The ECC, unused and |
| * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is |
| * the sum of the three). |
| */ |
| static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| if (section > 1) |
| return -ERANGE; |
| |
| if (!section) { |
| oobregion->length = (ecc->bytes * (ecc->steps - 1)) + |
| host->bbm_size; |
| oobregion->offset = 0; |
| } else { |
| oobregion->length = host->ecc_bytes_hw + host->spare_bytes; |
| oobregion->offset = mtd->oobsize - oobregion->length; |
| } |
| |
| return 0; |
| } |
| |
| static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->length = ecc->steps * 4; |
| oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { |
| .ecc = qcom_nand_ooblayout_ecc, |
| .free = qcom_nand_ooblayout_free, |
| }; |
| |
| static int |
| qcom_nandc_calc_ecc_bytes(int step_size, int strength) |
| { |
| return strength == 4 ? 12 : 16; |
| } |
| |
| NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes, |
| NANDC_STEP_SIZE, 4, 8); |
| |
| static int qcom_nand_attach_chip(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| int cwperpage, bad_block_byte, ret; |
| bool wide_bus; |
| int ecc_mode = 1; |
| |
| /* controller only supports 512 bytes data steps */ |
| ecc->size = NANDC_STEP_SIZE; |
| wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; |
| cwperpage = mtd->writesize / NANDC_STEP_SIZE; |
| |
| /* |
| * Each CW has 4 available OOB bytes which will be protected with ECC |
| * so remaining bytes can be used for ECC. |
| */ |
| ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps, |
| mtd->oobsize - (cwperpage * 4)); |
| if (ret) { |
| dev_err(nandc->dev, "No valid ECC settings possible\n"); |
| return ret; |
| } |
| |
| if (ecc->strength >= 8) { |
| /* 8 bit ECC defaults to BCH ECC on all platforms */ |
| host->bch_enabled = true; |
| ecc_mode = 1; |
| |
| if (wide_bus) { |
| host->ecc_bytes_hw = 14; |
| host->spare_bytes = 0; |
| host->bbm_size = 2; |
| } else { |
| host->ecc_bytes_hw = 13; |
| host->spare_bytes = 2; |
| host->bbm_size = 1; |
| } |
| } else { |
| /* |
| * if the controller supports BCH for 4 bit ECC, the controller |
| * uses lesser bytes for ECC. If RS is used, the ECC bytes is |
| * always 10 bytes |
| */ |
| if (nandc->props->ecc_modes & ECC_BCH_4BIT) { |
| /* BCH */ |
| host->bch_enabled = true; |
| ecc_mode = 0; |
| |
| if (wide_bus) { |
| host->ecc_bytes_hw = 8; |
| host->spare_bytes = 2; |
| host->bbm_size = 2; |
| } else { |
| host->ecc_bytes_hw = 7; |
| host->spare_bytes = 4; |
| host->bbm_size = 1; |
| } |
| } else { |
| /* RS */ |
| host->ecc_bytes_hw = 10; |
| |
| if (wide_bus) { |
| host->spare_bytes = 0; |
| host->bbm_size = 2; |
| } else { |
| host->spare_bytes = 1; |
| host->bbm_size = 1; |
| } |
| } |
| } |
| |
| /* |
| * we consider ecc->bytes as the sum of all the non-data content in a |
| * step. It gives us a clean representation of the oob area (even if |
| * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit |
| * ECC and 12 bytes for 4 bit ECC |
| */ |
| ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; |
| |
| ecc->read_page = qcom_nandc_read_page; |
| ecc->read_page_raw = qcom_nandc_read_page_raw; |
| ecc->read_oob = qcom_nandc_read_oob; |
| ecc->write_page = qcom_nandc_write_page; |
| ecc->write_page_raw = qcom_nandc_write_page_raw; |
| ecc->write_oob = qcom_nandc_write_oob; |
| |
| ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| |
| mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); |
| /* Free the initially allocated BAM transaction for reading the ONFI params */ |
| if (nandc->props->is_bam) |
| free_bam_transaction(nandc); |
| |
| nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, |
| cwperpage); |
| |
| /* Now allocate the BAM transaction based on updated max_cwperpage */ |
| if (nandc->props->is_bam) { |
| nandc->bam_txn = alloc_bam_transaction(nandc); |
| if (!nandc->bam_txn) { |
| dev_err(nandc->dev, |
| "failed to allocate bam transaction\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| /* |
| * DATA_UD_BYTES varies based on whether the read/write command protects |
| * spare data with ECC too. We protect spare data by default, so we set |
| * it to main + spare data, which are 512 and 4 bytes respectively. |
| */ |
| host->cw_data = 516; |
| |
| /* |
| * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes |
| * for 8 bit ECC |
| */ |
| host->cw_size = host->cw_data + ecc->bytes; |
| bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; |
| |
| host->cfg0 = (cwperpage - 1) << CW_PER_PAGE |
| | host->cw_data << UD_SIZE_BYTES |
| | 0 << DISABLE_STATUS_AFTER_WRITE |
| | 5 << NUM_ADDR_CYCLES |
| | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS |
| | 0 << STATUS_BFR_READ |
| | 1 << SET_RD_MODE_AFTER_STATUS |
| | host->spare_bytes << SPARE_SIZE_BYTES; |
| |
| host->cfg1 = 7 << NAND_RECOVERY_CYCLES |
| | 0 << CS_ACTIVE_BSY |
| | bad_block_byte << BAD_BLOCK_BYTE_NUM |
| | 0 << BAD_BLOCK_IN_SPARE_AREA |
| | 2 << WR_RD_BSY_GAP |
| | wide_bus << WIDE_FLASH |
| | host->bch_enabled << ENABLE_BCH_ECC; |
| |
| host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE |
| | host->cw_size << UD_SIZE_BYTES |
| | 5 << NUM_ADDR_CYCLES |
| | 0 << SPARE_SIZE_BYTES; |
| |
| host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES |
| | 0 << CS_ACTIVE_BSY |
| | 17 << BAD_BLOCK_BYTE_NUM |
| | 1 << BAD_BLOCK_IN_SPARE_AREA |
| | 2 << WR_RD_BSY_GAP |
| | wide_bus << WIDE_FLASH |
| | 1 << DEV0_CFG1_ECC_DISABLE; |
| |
| host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE |
| | 0 << ECC_SW_RESET |
| | host->cw_data << ECC_NUM_DATA_BYTES |
| | 1 << ECC_FORCE_CLK_OPEN |
| | ecc_mode << ECC_MODE |
| | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH; |
| |
| if (!nandc->props->qpic_v2) |
| host->ecc_buf_cfg = 0x203 << NUM_STEPS; |
| |
| host->clrflashstatus = FS_READY_BSY_N; |
| host->clrreadstatus = 0xc0; |
| nandc->regs->erased_cw_detect_cfg_clr = |
| cpu_to_le32(CLR_ERASED_PAGE_DET); |
| nandc->regs->erased_cw_detect_cfg_set = |
| cpu_to_le32(SET_ERASED_PAGE_DET); |
| |
| dev_dbg(nandc->dev, |
| "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", |
| host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, |
| host->cw_size, host->cw_data, ecc->strength, ecc->bytes, |
| cwperpage); |
| |
| return 0; |
| } |
| |
| static int qcom_op_cmd_mapping(struct nand_chip *chip, u8 opcode, |
| struct qcom_op *q_op) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| int cmd; |
| |
| switch (opcode) { |
| case NAND_CMD_RESET: |
| cmd = OP_RESET_DEVICE; |
| break; |
| case NAND_CMD_READID: |
| cmd = OP_FETCH_ID; |
| break; |
| case NAND_CMD_PARAM: |
| if (nandc->props->qpic_v2) |
| cmd = OP_PAGE_READ_ONFI_READ; |
| else |
| cmd = OP_PAGE_READ; |
| break; |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| cmd = OP_BLOCK_ERASE; |
| break; |
| case NAND_CMD_STATUS: |
| cmd = OP_CHECK_STATUS; |
| break; |
| case NAND_CMD_PAGEPROG: |
| cmd = OP_PROGRAM_PAGE; |
| q_op->flag = OP_PROGRAM_PAGE; |
| nandc->exec_opwrite = true; |
| break; |
| case NAND_CMD_READ0: |
| case NAND_CMD_READSTART: |
| if (host->use_ecc) |
| cmd = OP_PAGE_READ_WITH_ECC; |
| else |
| cmd = OP_PAGE_READ; |
| break; |
| default: |
| dev_err(nandc->dev, "Opcode not supported: %u\n", opcode); |
| return -EOPNOTSUPP; |
| } |
| |
| return cmd; |
| } |
| |
| /* NAND framework ->exec_op() hooks and related helpers */ |
| static int qcom_parse_instructions(struct nand_chip *chip, |
| const struct nand_subop *subop, |
| struct qcom_op *q_op) |
| { |
| const struct nand_op_instr *instr = NULL; |
| unsigned int op_id; |
| int i, ret; |
| |
| for (op_id = 0; op_id < subop->ninstrs; op_id++) { |
| unsigned int offset, naddrs; |
| const u8 *addrs; |
| |
| instr = &subop->instrs[op_id]; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| ret = qcom_op_cmd_mapping(chip, instr->ctx.cmd.opcode, q_op); |
| if (ret < 0) |
| return ret; |
| |
| q_op->cmd_reg = ret; |
| q_op->rdy_delay_ns = instr->delay_ns; |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| offset = nand_subop_get_addr_start_off(subop, op_id); |
| naddrs = nand_subop_get_num_addr_cyc(subop, op_id); |
| addrs = &instr->ctx.addr.addrs[offset]; |
| |
| for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) |
| q_op->addr1_reg |= addrs[i] << (i * 8); |
| |
| if (naddrs > 4) |
| q_op->addr2_reg |= addrs[4]; |
| |
| q_op->rdy_delay_ns = instr->delay_ns; |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| q_op->data_instr = instr; |
| q_op->data_instr_idx = op_id; |
| q_op->rdy_delay_ns = instr->delay_ns; |
| fallthrough; |
| case NAND_OP_DATA_OUT_INSTR: |
| q_op->rdy_delay_ns = instr->delay_ns; |
| break; |
| |
| case NAND_OP_WAITRDY_INSTR: |
| q_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; |
| q_op->rdy_delay_ns = instr->delay_ns; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void qcom_delay_ns(unsigned int ns) |
| { |
| if (!ns) |
| return; |
| |
| if (ns < 10000) |
| ndelay(ns); |
| else |
| udelay(DIV_ROUND_UP(ns, 1000)); |
| } |
| |
| static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| unsigned long start = jiffies + msecs_to_jiffies(time_ms); |
| u32 flash; |
| |
| nandc_read_buffer_sync(nandc, true); |
| |
| do { |
| flash = le32_to_cpu(nandc->reg_read_buf[0]); |
| if (flash & FS_READY_BSY_N) |
| return 0; |
| cpu_relax(); |
| } while (time_after(start, jiffies)); |
| |
| dev_err(nandc->dev, "Timeout waiting for device to be ready:0x%08x\n", flash); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int qcom_read_status_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| struct qcom_op q_op = {}; |
| const struct nand_op_instr *instr = NULL; |
| unsigned int op_id = 0; |
| unsigned int len = 0; |
| int ret, num_cw, i; |
| u32 flash_status; |
| |
| host->status = NAND_STATUS_READY | NAND_STATUS_WP; |
| |
| ret = qcom_parse_instructions(chip, subop, &q_op); |
| if (ret) |
| return ret; |
| |
| num_cw = nandc->exec_opwrite ? ecc->steps : 1; |
| nandc->exec_opwrite = false; |
| |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| host->use_ecc = false; |
| |
| clear_read_regs(nandc); |
| clear_bam_transaction(nandc); |
| |
| nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); |
| nandc_set_reg(chip, NAND_EXEC_CMD, 1); |
| |
| write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); |
| write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); |
| read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); |
| |
| ret = submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure in submitting status descriptor\n"); |
| goto err_out; |
| } |
| |
| nandc_read_buffer_sync(nandc, true); |
| |
| for (i = 0; i < num_cw; i++) { |
| flash_status = le32_to_cpu(nandc->reg_read_buf[i]); |
| |
| if (flash_status & FS_MPU_ERR) |
| host->status &= ~NAND_STATUS_WP; |
| |
| if (flash_status & FS_OP_ERR || |
| (i == (num_cw - 1) && (flash_status & FS_DEVICE_STS_ERR))) |
| host->status |= NAND_STATUS_FAIL; |
| } |
| |
| flash_status = host->status; |
| instr = q_op.data_instr; |
| op_id = q_op.data_instr_idx; |
| len = nand_subop_get_data_len(subop, op_id); |
| memcpy(instr->ctx.data.buf.in, &flash_status, len); |
| |
| err_out: |
| return ret; |
| } |
| |
| static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_op q_op = {}; |
| const struct nand_op_instr *instr = NULL; |
| unsigned int op_id = 0; |
| unsigned int len = 0; |
| int ret; |
| |
| ret = qcom_parse_instructions(chip, subop, &q_op); |
| if (ret) |
| return ret; |
| |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| host->use_ecc = false; |
| |
| clear_read_regs(nandc); |
| clear_bam_transaction(nandc); |
| |
| nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); |
| nandc_set_reg(chip, NAND_ADDR0, q_op.addr1_reg); |
| nandc_set_reg(chip, NAND_ADDR1, q_op.addr2_reg); |
| nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT, |
| nandc->props->is_bam ? 0 : DM_EN); |
| |
| nandc_set_reg(chip, NAND_EXEC_CMD, 1); |
| |
| write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); |
| write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); |
| |
| read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); |
| |
| ret = submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure in submitting read id descriptor\n"); |
| goto err_out; |
| } |
| |
| instr = q_op.data_instr; |
| op_id = q_op.data_instr_idx; |
| len = nand_subop_get_data_len(subop, op_id); |
| |
| nandc_read_buffer_sync(nandc, true); |
| memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len); |
| |
| err_out: |
| return ret; |
| } |
| |
| static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_op q_op = {}; |
| int ret; |
| int instrs = 1; |
| |
| ret = qcom_parse_instructions(chip, subop, &q_op); |
| if (ret) |
| return ret; |
| |
| if (q_op.flag == OP_PROGRAM_PAGE) { |
| goto wait_rdy; |
| } else if (q_op.cmd_reg == OP_BLOCK_ERASE) { |
| q_op.cmd_reg |= PAGE_ACC | LAST_PAGE; |
| nandc_set_reg(chip, NAND_ADDR0, q_op.addr1_reg); |
| nandc_set_reg(chip, NAND_ADDR1, q_op.addr2_reg); |
| nandc_set_reg(chip, NAND_DEV0_CFG0, |
| host->cfg0_raw & ~(7 << CW_PER_PAGE)); |
| nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw); |
| instrs = 3; |
| } else { |
| return 0; |
| } |
| |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| host->use_ecc = false; |
| |
| clear_read_regs(nandc); |
| clear_bam_transaction(nandc); |
| |
| nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); |
| nandc_set_reg(chip, NAND_EXEC_CMD, 1); |
| |
| write_reg_dma(nandc, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL); |
| (q_op.cmd_reg == OP_BLOCK_ERASE) ? write_reg_dma(nandc, NAND_DEV0_CFG0, |
| 2, NAND_BAM_NEXT_SGL) : read_reg_dma(nandc, |
| NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); |
| |
| write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); |
| read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); |
| |
| ret = submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure in submitting misc descriptor\n"); |
| goto err_out; |
| } |
| |
| wait_rdy: |
| qcom_delay_ns(q_op.rdy_delay_ns); |
| ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms); |
| |
| err_out: |
| return ret; |
| } |
| |
| static int qcom_param_page_type_exec(struct nand_chip *chip, const struct nand_subop *subop) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct qcom_op q_op = {}; |
| const struct nand_op_instr *instr = NULL; |
| unsigned int op_id = 0; |
| unsigned int len = 0; |
| int ret; |
| |
| ret = qcom_parse_instructions(chip, subop, &q_op); |
| if (ret) |
| return ret; |
| |
| q_op.cmd_reg |= PAGE_ACC | LAST_PAGE; |
| |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| host->use_ecc = false; |
| clear_read_regs(nandc); |
| clear_bam_transaction(nandc); |
| |
| nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); |
| |
| nandc_set_reg(chip, NAND_ADDR0, 0); |
| nandc_set_reg(chip, NAND_ADDR1, 0); |
| nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE |
| | 512 << UD_SIZE_BYTES |
| | 5 << NUM_ADDR_CYCLES |
| | 0 << SPARE_SIZE_BYTES); |
| nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES |
| | 0 << CS_ACTIVE_BSY |
| | 17 << BAD_BLOCK_BYTE_NUM |
| | 1 << BAD_BLOCK_IN_SPARE_AREA |
| | 2 << WR_RD_BSY_GAP |
| | 0 << WIDE_FLASH |
| | 1 << DEV0_CFG1_ECC_DISABLE); |
| if (!nandc->props->qpic_v2) |
| nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE); |
| |
| /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */ |
| if (!nandc->props->qpic_v2) { |
| nandc_set_reg(chip, NAND_DEV_CMD_VLD, |
| (nandc->vld & ~READ_START_VLD)); |
| nandc_set_reg(chip, NAND_DEV_CMD1, |
| (nandc->cmd1 & ~(0xFF << READ_ADDR)) |
| | NAND_CMD_PARAM << READ_ADDR); |
| } |
| |
| nandc_set_reg(chip, NAND_EXEC_CMD, 1); |
| |
| if (!nandc->props->qpic_v2) { |
| nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1); |
| nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld); |
| } |
| |
| instr = q_op.data_instr; |
| op_id = q_op.data_instr_idx; |
| len = nand_subop_get_data_len(subop, op_id); |
| |
| nandc_set_read_loc(chip, 0, 0, 0, len, 1); |
| |
| if (!nandc->props->qpic_v2) { |
| write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0); |
| write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); |
| } |
| |
| nandc->buf_count = len; |
| memset(nandc->data_buffer, 0xff, nandc->buf_count); |
| |
| config_nand_single_cw_page_read(chip, false, 0); |
| |
| read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, |
| nandc->buf_count, 0); |
| |
| /* restore CMD1 and VLD regs */ |
| if (!nandc->props->qpic_v2) { |
| write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0); |
| write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL); |
| } |
| |
| ret = submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure in submitting param page descriptor\n"); |
| goto err_out; |
| } |
| |
| ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms); |
| if (ret) |
| goto err_out; |
| |
| memcpy(instr->ctx.data.buf.in, nandc->data_buffer, len); |
| |
| err_out: |
| return ret; |
| } |
| |
| static const struct nand_op_parser qcom_op_parser = NAND_OP_PARSER( |
| NAND_OP_PARSER_PATTERN( |
| qcom_read_id_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), |
| NAND_OP_PARSER_PATTERN( |
| qcom_read_status_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), |
| NAND_OP_PARSER_PATTERN( |
| qcom_param_page_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 512)), |
| NAND_OP_PARSER_PATTERN( |
| qcom_misc_cmd_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYCLE), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| ); |
| |
| static int qcom_check_op(struct nand_chip *chip, |
| const struct nand_operation *op) |
| { |
| const struct nand_op_instr *instr; |
| int op_id; |
| |
| for (op_id = 0; op_id < op->ninstrs; op_id++) { |
| instr = &op->instrs[op_id]; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| if (instr->ctx.cmd.opcode != NAND_CMD_RESET && |
| instr->ctx.cmd.opcode != NAND_CMD_READID && |
| instr->ctx.cmd.opcode != NAND_CMD_PARAM && |
| instr->ctx.cmd.opcode != NAND_CMD_ERASE1 && |
| instr->ctx.cmd.opcode != NAND_CMD_ERASE2 && |
| instr->ctx.cmd.opcode != NAND_CMD_STATUS && |
| instr->ctx.cmd.opcode != NAND_CMD_PAGEPROG && |
| instr->ctx.cmd.opcode != NAND_CMD_READ0 && |
| instr->ctx.cmd.opcode != NAND_CMD_READSTART) |
| return -EOPNOTSUPP; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int qcom_nand_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, bool check_only) |
| { |
| if (check_only) |
| return qcom_check_op(chip, op); |
| |
| return nand_op_parser_exec_op(chip, &qcom_op_parser, op, check_only); |
| } |
| |
| static const struct nand_controller_ops qcom_nandc_ops = { |
| .attach_chip = qcom_nand_attach_chip, |
| .exec_op = qcom_nand_exec_op, |
| }; |
| |
| static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) |
| { |
| if (nandc->props->is_bam) { |
| if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma)) |
| dma_unmap_single(nandc->dev, nandc->reg_read_dma, |
| MAX_REG_RD * |
| sizeof(*nandc->reg_read_buf), |
| DMA_FROM_DEVICE); |
| |
| if (nandc->tx_chan) |
| dma_release_channel(nandc->tx_chan); |
| |
| if (nandc->rx_chan) |
| dma_release_channel(nandc->rx_chan); |
| |
| if (nandc->cmd_chan) |
| dma_release_channel(nandc->cmd_chan); |
| } else { |
| if (nandc->chan) |
| dma_release_channel(nandc->chan); |
| } |
| } |
| |
| static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) |
| { |
| int ret; |
| |
| ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); |
| if (ret) { |
| dev_err(nandc->dev, "failed to set DMA mask\n"); |
| return ret; |
| } |
| |
| /* |
| * we use the internal buffer for reading ONFI params, reading small |
| * data like ID and status, and preforming read-copy-write operations |
| * when writing to a codeword partially. 532 is the maximum possible |
| * size of a codeword for our nand controller |
| */ |
| nandc->buf_size = 532; |
| |
| nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL); |
| if (!nandc->data_buffer) |
| return -ENOMEM; |
| |
| nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL); |
| if (!nandc->regs) |
| return -ENOMEM; |
| |
| nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD, |
| sizeof(*nandc->reg_read_buf), |
| GFP_KERNEL); |
| if (!nandc->reg_read_buf) |
| return -ENOMEM; |
| |
| if (nandc->props->is_bam) { |
| nandc->reg_read_dma = |
| dma_map_single(nandc->dev, nandc->reg_read_buf, |
| MAX_REG_RD * |
| sizeof(*nandc->reg_read_buf), |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) { |
| dev_err(nandc->dev, "failed to DMA MAP reg buffer\n"); |
| return -EIO; |
| } |
| |
| nandc->tx_chan = dma_request_chan(nandc->dev, "tx"); |
| if (IS_ERR(nandc->tx_chan)) { |
| ret = PTR_ERR(nandc->tx_chan); |
| nandc->tx_chan = NULL; |
| dev_err_probe(nandc->dev, ret, |
| "tx DMA channel request failed\n"); |
| goto unalloc; |
| } |
| |
| nandc->rx_chan = dma_request_chan(nandc->dev, "rx"); |
| if (IS_ERR(nandc->rx_chan)) { |
| ret = PTR_ERR(nandc->rx_chan); |
| nandc->rx_chan = NULL; |
| dev_err_probe(nandc->dev, ret, |
| "rx DMA channel request failed\n"); |
| goto unalloc; |
| } |
| |
| nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd"); |
| if (IS_ERR(nandc->cmd_chan)) { |
| ret = PTR_ERR(nandc->cmd_chan); |
| nandc->cmd_chan = NULL; |
| dev_err_probe(nandc->dev, ret, |
| "cmd DMA channel request failed\n"); |
| goto unalloc; |
| } |
| |
| /* |
| * Initially allocate BAM transaction to read ONFI param page. |
| * After detecting all the devices, this BAM transaction will |
| * be freed and the next BAM transaction will be allocated with |
| * maximum codeword size |
| */ |
| nandc->max_cwperpage = 1; |
| nandc->bam_txn = alloc_bam_transaction(nandc); |
| if (!nandc->bam_txn) { |
| dev_err(nandc->dev, |
| "failed to allocate bam transaction\n"); |
| ret = -ENOMEM; |
| goto unalloc; |
| } |
| } else { |
| nandc->chan = dma_request_chan(nandc->dev, "rxtx"); |
| if (IS_ERR(nandc->chan)) { |
| ret = PTR_ERR(nandc->chan); |
| nandc->chan = NULL; |
| dev_err_probe(nandc->dev, ret, |
| "rxtx DMA channel request failed\n"); |
| return ret; |
| } |
| } |
| |
| INIT_LIST_HEAD(&nandc->desc_list); |
| INIT_LIST_HEAD(&nandc->host_list); |
| |
| nand_controller_init(&nandc->controller); |
| nandc->controller.ops = &qcom_nandc_ops; |
| |
| return 0; |
| unalloc: |
| qcom_nandc_unalloc(nandc); |
| return ret; |
| } |
| |
| /* one time setup of a few nand controller registers */ |
| static int qcom_nandc_setup(struct qcom_nand_controller *nandc) |
| { |
| u32 nand_ctrl; |
| |
| /* kill onenand */ |
| if (!nandc->props->is_qpic) |
| nandc_write(nandc, SFLASHC_BURST_CFG, 0); |
| |
| if (!nandc->props->qpic_v2) |
| nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), |
| NAND_DEV_CMD_VLD_VAL); |
| |
| /* enable ADM or BAM DMA */ |
| if (nandc->props->is_bam) { |
| nand_ctrl = nandc_read(nandc, NAND_CTRL); |
| |
| /* |
| *NAND_CTRL is an operational registers, and CPU |
| * access to operational registers are read only |
| * in BAM mode. So update the NAND_CTRL register |
| * only if it is not in BAM mode. In most cases BAM |
| * mode will be enabled in bootloader |
| */ |
| if (!(nand_ctrl & BAM_MODE_EN)) |
| nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN); |
| } else { |
| nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); |
| } |
| |
| /* save the original values of these registers */ |
| if (!nandc->props->qpic_v2) { |
| nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); |
| nandc->vld = NAND_DEV_CMD_VLD_VAL; |
| } |
| |
| return 0; |
| } |
| |
| static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL }; |
| |
| static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc, |
| struct qcom_nand_host *host, |
| struct device_node *dn) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct qcom_nand_boot_partition *boot_partition; |
| struct device *dev = nandc->dev; |
| int partitions_count, i, j, ret; |
| |
| if (!of_property_present(dn, "qcom,boot-partitions")) |
| return 0; |
| |
| partitions_count = of_property_count_u32_elems(dn, "qcom,boot-partitions"); |
| if (partitions_count <= 0) { |
| dev_err(dev, "Error parsing boot partition\n"); |
| return partitions_count ? partitions_count : -EINVAL; |
| } |
| |
| host->nr_boot_partitions = partitions_count / 2; |
| host->boot_partitions = devm_kcalloc(dev, host->nr_boot_partitions, |
| sizeof(*host->boot_partitions), GFP_KERNEL); |
| if (!host->boot_partitions) { |
| host->nr_boot_partitions = 0; |
| return -ENOMEM; |
| } |
| |
| for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) { |
| boot_partition = &host->boot_partitions[i]; |
| |
| ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j, |
| &boot_partition->page_offset); |
| if (ret) { |
| dev_err(dev, "Error parsing boot partition offset at index %d\n", i); |
| host->nr_boot_partitions = 0; |
| return ret; |
| } |
| |
| if (boot_partition->page_offset % mtd->writesize) { |
| dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n", |
| i); |
| host->nr_boot_partitions = 0; |
| return -EINVAL; |
| } |
| /* Convert offset to nand pages */ |
| boot_partition->page_offset /= mtd->writesize; |
| |
| ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j + 1, |
| &boot_partition->page_size); |
| if (ret) { |
| dev_err(dev, "Error parsing boot partition size at index %d\n", i); |
| host->nr_boot_partitions = 0; |
| return ret; |
| } |
| |
| if (boot_partition->page_size % mtd->writesize) { |
| dev_err(dev, "Boot partition size not multiple of writesize at index %i\n", |
| i); |
| host->nr_boot_partitions = 0; |
| return -EINVAL; |
| } |
| /* Convert size to nand pages */ |
| boot_partition->page_size /= mtd->writesize; |
| } |
| |
| return 0; |
| } |
| |
| static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc, |
| struct qcom_nand_host *host, |
| struct device_node *dn) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct device *dev = nandc->dev; |
| int ret; |
| |
| ret = of_property_read_u32(dn, "reg", &host->cs); |
| if (ret) { |
| dev_err(dev, "can't get chip-select\n"); |
| return -ENXIO; |
| } |
| |
| nand_set_flash_node(chip, dn); |
| mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); |
| if (!mtd->name) |
| return -ENOMEM; |
| |
| mtd->owner = THIS_MODULE; |
| mtd->dev.parent = dev; |
| |
| /* |
| * the bad block marker is readable only when we read the last codeword |
| * of a page with ECC disabled. currently, the nand_base and nand_bbt |
| * helpers don't allow us to read BB from a nand chip with ECC |
| * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad |
| * and block_markbad helpers until we permanently switch to using |
| * MTD_OPS_RAW for all drivers (with the help of badblockbits) |
| */ |
| chip->legacy.block_bad = qcom_nandc_block_bad; |
| chip->legacy.block_markbad = qcom_nandc_block_markbad; |
| |
| chip->controller = &nandc->controller; |
| chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | |
| NAND_SKIP_BBTSCAN; |
| |
| /* set up initial status value */ |
| host->status = NAND_STATUS_READY | NAND_STATUS_WP; |
| |
| ret = nand_scan(chip, 1); |
| if (ret) |
| return ret; |
| |
| ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0); |
| if (ret) |
| goto err; |
| |
| if (nandc->props->use_codeword_fixup) { |
| ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn); |
| if (ret) |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| nand_cleanup(chip); |
| return ret; |
| } |
| |
| static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) |
| { |
| struct device *dev = nandc->dev; |
| struct device_node *dn = dev->of_node, *child; |
| struct qcom_nand_host *host; |
| int ret = -ENODEV; |
| |
| for_each_available_child_of_node(dn, child) { |
| host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); |
| if (!host) { |
| of_node_put(child); |
| return -ENOMEM; |
| } |
| |
| ret = qcom_nand_host_init_and_register(nandc, host, child); |
| if (ret) { |
| devm_kfree(dev, host); |
| continue; |
| } |
| |
| list_add_tail(&host->node, &nandc->host_list); |
| } |
| |
| return ret; |
| } |
| |
| /* parse custom DT properties here */ |
| static int qcom_nandc_parse_dt(struct platform_device *pdev) |
| { |
| struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); |
| struct device_node *np = nandc->dev->of_node; |
| int ret; |
| |
| if (!nandc->props->is_bam) { |
| ret = of_property_read_u32(np, "qcom,cmd-crci", |
| &nandc->cmd_crci); |
| if (ret) { |
| dev_err(nandc->dev, "command CRCI unspecified\n"); |
| return ret; |
| } |
| |
| ret = of_property_read_u32(np, "qcom,data-crci", |
| &nandc->data_crci); |
| if (ret) { |
| dev_err(nandc->dev, "data CRCI unspecified\n"); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int qcom_nandc_probe(struct platform_device *pdev) |
| { |
| struct qcom_nand_controller *nandc; |
| const void *dev_data; |
| struct device *dev = &pdev->dev; |
| struct resource *res; |
| int ret; |
| |
| nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL); |
| if (!nandc) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, nandc); |
| nandc->dev = dev; |
| |
| dev_data = of_device_get_match_data(dev); |
| if (!dev_data) { |
| dev_err(&pdev->dev, "failed to get device data\n"); |
| return -ENODEV; |
| } |
| |
| nandc->props = dev_data; |
| |
| nandc->core_clk = devm_clk_get(dev, "core"); |
| if (IS_ERR(nandc->core_clk)) |
| return PTR_ERR(nandc->core_clk); |
| |
| nandc->aon_clk = devm_clk_get(dev, "aon"); |
| if (IS_ERR(nandc->aon_clk)) |
| return PTR_ERR(nandc->aon_clk); |
| |
| ret = qcom_nandc_parse_dt(pdev); |
| if (ret) |
| return ret; |
| |
| nandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); |
| if (IS_ERR(nandc->base)) |
| return PTR_ERR(nandc->base); |
| |
| nandc->base_phys = res->start; |
| nandc->base_dma = dma_map_resource(dev, res->start, |
| resource_size(res), |
| DMA_BIDIRECTIONAL, 0); |
| if (dma_mapping_error(dev, nandc->base_dma)) |
| return -ENXIO; |
| |
| ret = clk_prepare_enable(nandc->core_clk); |
| if (ret) |
| goto err_core_clk; |
| |
| ret = clk_prepare_enable(nandc->aon_clk); |
| if (ret) |
| goto err_aon_clk; |
| |
| ret = qcom_nandc_alloc(nandc); |
| if (ret) |
| goto err_nandc_alloc; |
| |
| ret = qcom_nandc_setup(nandc); |
| if (ret) |
| goto err_setup; |
| |
| ret = qcom_probe_nand_devices(nandc); |
| if (ret) |
| goto err_setup; |
| |
| return 0; |
| |
| err_setup: |
| qcom_nandc_unalloc(nandc); |
| err_nandc_alloc: |
| clk_disable_unprepare(nandc->aon_clk); |
| err_aon_clk: |
| clk_disable_unprepare(nandc->core_clk); |
| err_core_clk: |
| dma_unmap_resource(dev, nandc->base_dma, resource_size(res), |
| DMA_BIDIRECTIONAL, 0); |
| return ret; |
| } |
| |
| static void qcom_nandc_remove(struct platform_device *pdev) |
| { |
| struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); |
| struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| struct qcom_nand_host *host; |
| struct nand_chip *chip; |
| int ret; |
| |
| list_for_each_entry(host, &nandc->host_list, node) { |
| chip = &host->chip; |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| } |
| |
| qcom_nandc_unalloc(nandc); |
| |
| clk_disable_unprepare(nandc->aon_clk); |
| clk_disable_unprepare(nandc->core_clk); |
| |
| dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res), |
| DMA_BIDIRECTIONAL, 0); |
| } |
| |
| static const struct qcom_nandc_props ipq806x_nandc_props = { |
| .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), |
| .is_bam = false, |
| .use_codeword_fixup = true, |
| .dev_cmd_reg_start = 0x0, |
| }; |
| |
| static const struct qcom_nandc_props ipq4019_nandc_props = { |
| .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), |
| .is_bam = true, |
| .is_qpic = true, |
| .dev_cmd_reg_start = 0x0, |
| }; |
| |
| static const struct qcom_nandc_props ipq8074_nandc_props = { |
| .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), |
| .is_bam = true, |
| .is_qpic = true, |
| .dev_cmd_reg_start = 0x7000, |
| }; |
| |
| static const struct qcom_nandc_props sdx55_nandc_props = { |
| .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), |
| .is_bam = true, |
| .is_qpic = true, |
| .qpic_v2 = true, |
| .dev_cmd_reg_start = 0x7000, |
| }; |
| |
| /* |
| * data will hold a struct pointer containing more differences once we support |
| * more controller variants |
| */ |
| static const struct of_device_id qcom_nandc_of_match[] = { |
| { |
| .compatible = "qcom,ipq806x-nand", |
| .data = &ipq806x_nandc_props, |
| }, |
| { |
| .compatible = "qcom,ipq4019-nand", |
| .data = &ipq4019_nandc_props, |
| }, |
| { |
| .compatible = "qcom,ipq6018-nand", |
| .data = &ipq8074_nandc_props, |
| }, |
| { |
| .compatible = "qcom,ipq8074-nand", |
| .data = &ipq8074_nandc_props, |
| }, |
| { |
| .compatible = "qcom,sdx55-nand", |
| .data = &sdx55_nandc_props, |
| }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); |
| |
| static struct platform_driver qcom_nandc_driver = { |
| .driver = { |
| .name = "qcom-nandc", |
| .of_match_table = qcom_nandc_of_match, |
| }, |
| .probe = qcom_nandc_probe, |
| .remove_new = qcom_nandc_remove, |
| }; |
| module_platform_driver(qcom_nandc_driver); |
| |
| MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>"); |
| MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); |
| MODULE_LICENSE("GPL v2"); |