| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com> |
| * |
| * Derived from: |
| * https://github.com/yuq/sunxi-nfc-mtd |
| * Copyright (C) 2013 Qiang Yu <yuq825@gmail.com> |
| * |
| * https://github.com/hno/Allwinner-Info |
| * Copyright (C) 2013 Henrik Nordström <Henrik Nordström> |
| * |
| * Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com> |
| * Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org> |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/platform_device.h> |
| #include <linux/of.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/interrupt.h> |
| #include <linux/iopoll.h> |
| #include <linux/reset.h> |
| |
| #define NFC_REG_CTL 0x0000 |
| #define NFC_REG_ST 0x0004 |
| #define NFC_REG_INT 0x0008 |
| #define NFC_REG_TIMING_CTL 0x000C |
| #define NFC_REG_TIMING_CFG 0x0010 |
| #define NFC_REG_ADDR_LOW 0x0014 |
| #define NFC_REG_ADDR_HIGH 0x0018 |
| #define NFC_REG_SECTOR_NUM 0x001C |
| #define NFC_REG_CNT 0x0020 |
| #define NFC_REG_CMD 0x0024 |
| #define NFC_REG_RCMD_SET 0x0028 |
| #define NFC_REG_WCMD_SET 0x002C |
| #define NFC_REG_A10_IO_DATA 0x0030 |
| #define NFC_REG_A23_IO_DATA 0x0300 |
| #define NFC_REG_ECC_CTL 0x0034 |
| #define NFC_REG_ECC_ST 0x0038 |
| #define NFC_REG_DEBUG 0x003C |
| #define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3) |
| #define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4)) |
| #define NFC_REG_SPARE_AREA 0x00A0 |
| #define NFC_REG_PAT_ID 0x00A4 |
| #define NFC_REG_MDMA_ADDR 0x00C0 |
| #define NFC_REG_MDMA_CNT 0x00C4 |
| #define NFC_RAM0_BASE 0x0400 |
| #define NFC_RAM1_BASE 0x0800 |
| |
| /* define bit use in NFC_CTL */ |
| #define NFC_EN BIT(0) |
| #define NFC_RESET BIT(1) |
| #define NFC_BUS_WIDTH_MSK BIT(2) |
| #define NFC_BUS_WIDTH_8 (0 << 2) |
| #define NFC_BUS_WIDTH_16 (1 << 2) |
| #define NFC_RB_SEL_MSK BIT(3) |
| #define NFC_RB_SEL(x) ((x) << 3) |
| #define NFC_CE_SEL_MSK GENMASK(26, 24) |
| #define NFC_CE_SEL(x) ((x) << 24) |
| #define NFC_CE_CTL BIT(6) |
| #define NFC_PAGE_SHIFT_MSK GENMASK(11, 8) |
| #define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8) |
| #define NFC_SAM BIT(12) |
| #define NFC_RAM_METHOD BIT(14) |
| #define NFC_DMA_TYPE_NORMAL BIT(15) |
| #define NFC_DEBUG_CTL BIT(31) |
| |
| /* define bit use in NFC_ST */ |
| #define NFC_RB_B2R BIT(0) |
| #define NFC_CMD_INT_FLAG BIT(1) |
| #define NFC_DMA_INT_FLAG BIT(2) |
| #define NFC_CMD_FIFO_STATUS BIT(3) |
| #define NFC_STA BIT(4) |
| #define NFC_NATCH_INT_FLAG BIT(5) |
| #define NFC_RB_STATE(x) BIT(x + 8) |
| |
| /* define bit use in NFC_INT */ |
| #define NFC_B2R_INT_ENABLE BIT(0) |
| #define NFC_CMD_INT_ENABLE BIT(1) |
| #define NFC_DMA_INT_ENABLE BIT(2) |
| #define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \ |
| NFC_CMD_INT_ENABLE | \ |
| NFC_DMA_INT_ENABLE) |
| |
| /* define bit use in NFC_TIMING_CTL */ |
| #define NFC_TIMING_CTL_EDO BIT(8) |
| |
| /* define NFC_TIMING_CFG register layout */ |
| #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \ |
| (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \ |
| (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \ |
| (((tCAD) & 0x7) << 8)) |
| |
| /* define bit use in NFC_CMD */ |
| #define NFC_CMD_LOW_BYTE_MSK GENMASK(7, 0) |
| #define NFC_CMD_HIGH_BYTE_MSK GENMASK(15, 8) |
| #define NFC_CMD(x) (x) |
| #define NFC_ADR_NUM_MSK GENMASK(18, 16) |
| #define NFC_ADR_NUM(x) (((x) - 1) << 16) |
| #define NFC_SEND_ADR BIT(19) |
| #define NFC_ACCESS_DIR BIT(20) |
| #define NFC_DATA_TRANS BIT(21) |
| #define NFC_SEND_CMD1 BIT(22) |
| #define NFC_WAIT_FLAG BIT(23) |
| #define NFC_SEND_CMD2 BIT(24) |
| #define NFC_SEQ BIT(25) |
| #define NFC_DATA_SWAP_METHOD BIT(26) |
| #define NFC_ROW_AUTO_INC BIT(27) |
| #define NFC_SEND_CMD3 BIT(28) |
| #define NFC_SEND_CMD4 BIT(29) |
| #define NFC_CMD_TYPE_MSK GENMASK(31, 30) |
| #define NFC_NORMAL_OP (0 << 30) |
| #define NFC_ECC_OP (1 << 30) |
| #define NFC_PAGE_OP (2U << 30) |
| |
| /* define bit use in NFC_RCMD_SET */ |
| #define NFC_READ_CMD_MSK GENMASK(7, 0) |
| #define NFC_RND_READ_CMD0_MSK GENMASK(15, 8) |
| #define NFC_RND_READ_CMD1_MSK GENMASK(23, 16) |
| |
| /* define bit use in NFC_WCMD_SET */ |
| #define NFC_PROGRAM_CMD_MSK GENMASK(7, 0) |
| #define NFC_RND_WRITE_CMD_MSK GENMASK(15, 8) |
| #define NFC_READ_CMD0_MSK GENMASK(23, 16) |
| #define NFC_READ_CMD1_MSK GENMASK(31, 24) |
| |
| /* define bit use in NFC_ECC_CTL */ |
| #define NFC_ECC_EN BIT(0) |
| #define NFC_ECC_PIPELINE BIT(3) |
| #define NFC_ECC_EXCEPTION BIT(4) |
| #define NFC_ECC_BLOCK_SIZE_MSK BIT(5) |
| #define NFC_ECC_BLOCK_512 BIT(5) |
| #define NFC_RANDOM_EN BIT(9) |
| #define NFC_RANDOM_DIRECTION BIT(10) |
| #define NFC_ECC_MODE_MSK GENMASK(15, 12) |
| #define NFC_ECC_MODE(x) ((x) << 12) |
| #define NFC_RANDOM_SEED_MSK GENMASK(30, 16) |
| #define NFC_RANDOM_SEED(x) ((x) << 16) |
| |
| /* define bit use in NFC_ECC_ST */ |
| #define NFC_ECC_ERR(x) BIT(x) |
| #define NFC_ECC_ERR_MSK GENMASK(15, 0) |
| #define NFC_ECC_PAT_FOUND(x) BIT(x + 16) |
| #define NFC_ECC_ERR_CNT(b, x) (((x) >> (((b) % 4) * 8)) & 0xff) |
| |
| #define NFC_DEFAULT_TIMEOUT_MS 1000 |
| |
| #define NFC_SRAM_SIZE 1024 |
| |
| #define NFC_MAX_CS 7 |
| |
| /** |
| * struct sunxi_nand_chip_sel - stores information related to NAND Chip Select |
| * |
| * @cs: the NAND CS id used to communicate with a NAND Chip |
| * @rb: the Ready/Busy pin ID. -1 means no R/B pin connected to the NFC |
| */ |
| struct sunxi_nand_chip_sel { |
| u8 cs; |
| s8 rb; |
| }; |
| |
| /** |
| * struct sunxi_nand_hw_ecc - stores information related to HW ECC support |
| * |
| * @ecc_ctl: ECC_CTL register value for this NAND chip |
| */ |
| struct sunxi_nand_hw_ecc { |
| u32 ecc_ctl; |
| }; |
| |
| /** |
| * struct sunxi_nand_chip - stores NAND chip device related information |
| * |
| * @node: used to store NAND chips into a list |
| * @nand: base NAND chip structure |
| * @ecc: ECC controller structure |
| * @clk_rate: clk_rate required for this NAND chip |
| * @timing_cfg: TIMING_CFG register value for this NAND chip |
| * @timing_ctl: TIMING_CTL register value for this NAND chip |
| * @nsels: number of CS lines required by the NAND chip |
| * @sels: array of CS lines descriptions |
| */ |
| struct sunxi_nand_chip { |
| struct list_head node; |
| struct nand_chip nand; |
| struct sunxi_nand_hw_ecc ecc; |
| unsigned long clk_rate; |
| u32 timing_cfg; |
| u32 timing_ctl; |
| int nsels; |
| struct sunxi_nand_chip_sel sels[]; |
| }; |
| |
| static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand) |
| { |
| return container_of(nand, struct sunxi_nand_chip, nand); |
| } |
| |
| /* |
| * NAND Controller capabilities structure: stores NAND controller capabilities |
| * for distinction between compatible strings. |
| * |
| * @has_mdma: Use mbus dma mode, otherwise general dma |
| * through MBUS on A23/A33 needs extra configuration. |
| * @reg_io_data: I/O data register |
| * @dma_maxburst: DMA maxburst |
| */ |
| struct sunxi_nfc_caps { |
| bool has_mdma; |
| unsigned int reg_io_data; |
| unsigned int dma_maxburst; |
| }; |
| |
| /** |
| * struct sunxi_nfc - stores sunxi NAND controller information |
| * |
| * @controller: base controller structure |
| * @dev: parent device (used to print error messages) |
| * @regs: NAND controller registers |
| * @ahb_clk: NAND controller AHB clock |
| * @mod_clk: NAND controller mod clock |
| * @reset: NAND controller reset line |
| * @assigned_cs: bitmask describing already assigned CS lines |
| * @clk_rate: NAND controller current clock rate |
| * @chips: a list containing all the NAND chips attached to this NAND |
| * controller |
| * @complete: a completion object used to wait for NAND controller events |
| * @dmac: the DMA channel attached to the NAND controller |
| * @caps: NAND Controller capabilities |
| */ |
| struct sunxi_nfc { |
| struct nand_controller controller; |
| struct device *dev; |
| void __iomem *regs; |
| struct clk *ahb_clk; |
| struct clk *mod_clk; |
| struct reset_control *reset; |
| unsigned long assigned_cs; |
| unsigned long clk_rate; |
| struct list_head chips; |
| struct completion complete; |
| struct dma_chan *dmac; |
| const struct sunxi_nfc_caps *caps; |
| }; |
| |
| static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_controller *ctrl) |
| { |
| return container_of(ctrl, struct sunxi_nfc, controller); |
| } |
| |
| static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id) |
| { |
| struct sunxi_nfc *nfc = dev_id; |
| u32 st = readl(nfc->regs + NFC_REG_ST); |
| u32 ien = readl(nfc->regs + NFC_REG_INT); |
| |
| if (!(ien & st)) |
| return IRQ_NONE; |
| |
| if ((ien & st) == ien) |
| complete(&nfc->complete); |
| |
| writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST); |
| writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events, |
| bool use_polling, unsigned int timeout_ms) |
| { |
| int ret; |
| |
| if (events & ~NFC_INT_MASK) |
| return -EINVAL; |
| |
| if (!timeout_ms) |
| timeout_ms = NFC_DEFAULT_TIMEOUT_MS; |
| |
| if (!use_polling) { |
| init_completion(&nfc->complete); |
| |
| writel(events, nfc->regs + NFC_REG_INT); |
| |
| ret = wait_for_completion_timeout(&nfc->complete, |
| msecs_to_jiffies(timeout_ms)); |
| if (!ret) |
| ret = -ETIMEDOUT; |
| else |
| ret = 0; |
| |
| writel(0, nfc->regs + NFC_REG_INT); |
| } else { |
| u32 status; |
| |
| ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, |
| (status & events) == events, 1, |
| timeout_ms * 1000); |
| } |
| |
| writel(events & NFC_INT_MASK, nfc->regs + NFC_REG_ST); |
| |
| if (ret) |
| dev_err(nfc->dev, "wait interrupt timedout\n"); |
| |
| return ret; |
| } |
| |
| static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc) |
| { |
| u32 status; |
| int ret; |
| |
| ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, |
| !(status & NFC_CMD_FIFO_STATUS), 1, |
| NFC_DEFAULT_TIMEOUT_MS * 1000); |
| if (ret) |
| dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n"); |
| |
| return ret; |
| } |
| |
| static int sunxi_nfc_rst(struct sunxi_nfc *nfc) |
| { |
| u32 ctl; |
| int ret; |
| |
| writel(0, nfc->regs + NFC_REG_ECC_CTL); |
| writel(NFC_RESET, nfc->regs + NFC_REG_CTL); |
| |
| ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl, |
| !(ctl & NFC_RESET), 1, |
| NFC_DEFAULT_TIMEOUT_MS * 1000); |
| if (ret) |
| dev_err(nfc->dev, "wait for NAND controller reset timedout\n"); |
| |
| return ret; |
| } |
| |
| static int sunxi_nfc_dma_op_prepare(struct sunxi_nfc *nfc, const void *buf, |
| int chunksize, int nchunks, |
| enum dma_data_direction ddir, |
| struct scatterlist *sg) |
| { |
| struct dma_async_tx_descriptor *dmad; |
| enum dma_transfer_direction tdir; |
| dma_cookie_t dmat; |
| int ret; |
| |
| if (ddir == DMA_FROM_DEVICE) |
| tdir = DMA_DEV_TO_MEM; |
| else |
| tdir = DMA_MEM_TO_DEV; |
| |
| sg_init_one(sg, buf, nchunks * chunksize); |
| ret = dma_map_sg(nfc->dev, sg, 1, ddir); |
| if (!ret) |
| return -ENOMEM; |
| |
| if (!nfc->caps->has_mdma) { |
| dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK); |
| if (!dmad) { |
| ret = -EINVAL; |
| goto err_unmap_buf; |
| } |
| } |
| |
| writel(readl(nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD, |
| nfc->regs + NFC_REG_CTL); |
| writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM); |
| writel(chunksize, nfc->regs + NFC_REG_CNT); |
| |
| if (nfc->caps->has_mdma) { |
| writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_DMA_TYPE_NORMAL, |
| nfc->regs + NFC_REG_CTL); |
| writel(chunksize * nchunks, nfc->regs + NFC_REG_MDMA_CNT); |
| writel(sg_dma_address(sg), nfc->regs + NFC_REG_MDMA_ADDR); |
| } else { |
| dmat = dmaengine_submit(dmad); |
| |
| ret = dma_submit_error(dmat); |
| if (ret) |
| goto err_clr_dma_flag; |
| } |
| |
| return 0; |
| |
| err_clr_dma_flag: |
| writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, |
| nfc->regs + NFC_REG_CTL); |
| |
| err_unmap_buf: |
| dma_unmap_sg(nfc->dev, sg, 1, ddir); |
| return ret; |
| } |
| |
| static void sunxi_nfc_dma_op_cleanup(struct sunxi_nfc *nfc, |
| enum dma_data_direction ddir, |
| struct scatterlist *sg) |
| { |
| dma_unmap_sg(nfc->dev, sg, 1, ddir); |
| writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, |
| nfc->regs + NFC_REG_CTL); |
| } |
| |
| static void sunxi_nfc_select_chip(struct nand_chip *nand, unsigned int cs) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| struct sunxi_nand_chip_sel *sel; |
| u32 ctl; |
| |
| if (cs >= sunxi_nand->nsels) |
| return; |
| |
| ctl = readl(nfc->regs + NFC_REG_CTL) & |
| ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN); |
| |
| sel = &sunxi_nand->sels[cs]; |
| ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | NFC_PAGE_SHIFT(nand->page_shift); |
| if (sel->rb >= 0) |
| ctl |= NFC_RB_SEL(sel->rb); |
| |
| writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA); |
| |
| if (nfc->clk_rate != sunxi_nand->clk_rate) { |
| clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate); |
| nfc->clk_rate = sunxi_nand->clk_rate; |
| } |
| |
| writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL); |
| writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG); |
| writel(ctl, nfc->regs + NFC_REG_CTL); |
| } |
| |
| static void sunxi_nfc_read_buf(struct nand_chip *nand, uint8_t *buf, int len) |
| { |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| int ret; |
| int cnt; |
| int offs = 0; |
| u32 tmp; |
| |
| while (len > offs) { |
| bool poll = false; |
| |
| cnt = min(len - offs, NFC_SRAM_SIZE); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| break; |
| |
| writel(cnt, nfc->regs + NFC_REG_CNT); |
| tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; |
| writel(tmp, nfc->regs + NFC_REG_CMD); |
| |
| /* Arbitrary limit for polling mode */ |
| if (cnt < 64) |
| poll = true; |
| |
| ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0); |
| if (ret) |
| break; |
| |
| if (buf) |
| memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE, |
| cnt); |
| offs += cnt; |
| } |
| } |
| |
| static void sunxi_nfc_write_buf(struct nand_chip *nand, const uint8_t *buf, |
| int len) |
| { |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| int ret; |
| int cnt; |
| int offs = 0; |
| u32 tmp; |
| |
| while (len > offs) { |
| bool poll = false; |
| |
| cnt = min(len - offs, NFC_SRAM_SIZE); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| break; |
| |
| writel(cnt, nfc->regs + NFC_REG_CNT); |
| memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt); |
| tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | |
| NFC_ACCESS_DIR; |
| writel(tmp, nfc->regs + NFC_REG_CMD); |
| |
| /* Arbitrary limit for polling mode */ |
| if (cnt < 64) |
| poll = true; |
| |
| ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0); |
| if (ret) |
| break; |
| |
| offs += cnt; |
| } |
| } |
| |
| /* These seed values have been extracted from Allwinner's BSP */ |
| static const u16 sunxi_nfc_randomizer_page_seeds[] = { |
| 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, |
| 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, |
| 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, |
| 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, |
| 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, |
| 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, |
| 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, |
| 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, |
| 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, |
| 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, |
| 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, |
| 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, |
| 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, |
| 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, |
| 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, |
| 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, |
| }; |
| |
| /* |
| * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds |
| * have been generated using |
| * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what |
| * the randomizer engine does internally before de/scrambling OOB data. |
| * |
| * Those tables are statically defined to avoid calculating randomizer state |
| * at runtime. |
| */ |
| static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = { |
| 0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64, |
| 0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409, |
| 0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617, |
| 0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d, |
| 0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91, |
| 0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d, |
| 0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab, |
| 0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8, |
| 0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8, |
| 0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b, |
| 0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5, |
| 0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a, |
| 0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891, |
| 0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36, |
| 0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd, |
| 0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0, |
| }; |
| |
| static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = { |
| 0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6, |
| 0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982, |
| 0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9, |
| 0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07, |
| 0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e, |
| 0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2, |
| 0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c, |
| 0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f, |
| 0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc, |
| 0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e, |
| 0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8, |
| 0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68, |
| 0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d, |
| 0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179, |
| 0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601, |
| 0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd, |
| }; |
| |
| static u16 sunxi_nfc_randomizer_step(u16 state, int count) |
| { |
| state &= 0x7fff; |
| |
| /* |
| * This loop is just a simple implementation of a Fibonacci LFSR using |
| * the x16 + x15 + 1 polynomial. |
| */ |
| while (count--) |
| state = ((state >> 1) | |
| (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff; |
| |
| return state; |
| } |
| |
| static u16 sunxi_nfc_randomizer_state(struct nand_chip *nand, int page, |
| bool ecc) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| const u16 *seeds = sunxi_nfc_randomizer_page_seeds; |
| int mod = mtd_div_by_ws(mtd->erasesize, mtd); |
| |
| if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds)) |
| mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds); |
| |
| if (ecc) { |
| if (mtd->ecc_step_size == 512) |
| seeds = sunxi_nfc_randomizer_ecc512_seeds; |
| else |
| seeds = sunxi_nfc_randomizer_ecc1024_seeds; |
| } |
| |
| return seeds[page % mod]; |
| } |
| |
| static void sunxi_nfc_randomizer_config(struct nand_chip *nand, int page, |
| bool ecc) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); |
| u16 state; |
| |
| if (!(nand->options & NAND_NEED_SCRAMBLING)) |
| return; |
| |
| ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); |
| state = sunxi_nfc_randomizer_state(nand, page, ecc); |
| ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK; |
| writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL); |
| } |
| |
| static void sunxi_nfc_randomizer_enable(struct nand_chip *nand) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| |
| if (!(nand->options & NAND_NEED_SCRAMBLING)) |
| return; |
| |
| writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN, |
| nfc->regs + NFC_REG_ECC_CTL); |
| } |
| |
| static void sunxi_nfc_randomizer_disable(struct nand_chip *nand) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| |
| if (!(nand->options & NAND_NEED_SCRAMBLING)) |
| return; |
| |
| writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN, |
| nfc->regs + NFC_REG_ECC_CTL); |
| } |
| |
| static void sunxi_nfc_randomize_bbm(struct nand_chip *nand, int page, u8 *bbm) |
| { |
| u16 state = sunxi_nfc_randomizer_state(nand, page, true); |
| |
| bbm[0] ^= state; |
| bbm[1] ^= sunxi_nfc_randomizer_step(state, 8); |
| } |
| |
| static void sunxi_nfc_randomizer_write_buf(struct nand_chip *nand, |
| const uint8_t *buf, int len, |
| bool ecc, int page) |
| { |
| sunxi_nfc_randomizer_config(nand, page, ecc); |
| sunxi_nfc_randomizer_enable(nand); |
| sunxi_nfc_write_buf(nand, buf, len); |
| sunxi_nfc_randomizer_disable(nand); |
| } |
| |
| static void sunxi_nfc_randomizer_read_buf(struct nand_chip *nand, uint8_t *buf, |
| int len, bool ecc, int page) |
| { |
| sunxi_nfc_randomizer_config(nand, page, ecc); |
| sunxi_nfc_randomizer_enable(nand); |
| sunxi_nfc_read_buf(nand, buf, len); |
| sunxi_nfc_randomizer_disable(nand); |
| } |
| |
| static void sunxi_nfc_hw_ecc_enable(struct nand_chip *nand) |
| { |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| |
| writel(sunxi_nand->ecc.ecc_ctl, nfc->regs + NFC_REG_ECC_CTL); |
| } |
| |
| static void sunxi_nfc_hw_ecc_disable(struct nand_chip *nand) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| |
| writel(0, nfc->regs + NFC_REG_ECC_CTL); |
| } |
| |
| static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf) |
| { |
| buf[0] = user_data; |
| buf[1] = user_data >> 8; |
| buf[2] = user_data >> 16; |
| buf[3] = user_data >> 24; |
| } |
| |
| static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf) |
| { |
| return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24); |
| } |
| |
| static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct nand_chip *nand, u8 *oob, |
| int step, bool bbm, int page) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| |
| sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)), |
| oob); |
| |
| /* De-randomize the Bad Block Marker. */ |
| if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) |
| sunxi_nfc_randomize_bbm(nand, page, oob); |
| } |
| |
| static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct nand_chip *nand, |
| const u8 *oob, int step, |
| bool bbm, int page) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| u8 user_data[4]; |
| |
| /* Randomize the Bad Block Marker. */ |
| if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) { |
| memcpy(user_data, oob, sizeof(user_data)); |
| sunxi_nfc_randomize_bbm(nand, page, user_data); |
| oob = user_data; |
| } |
| |
| writel(sunxi_nfc_buf_to_user_data(oob), |
| nfc->regs + NFC_REG_USER_DATA(step)); |
| } |
| |
| static void sunxi_nfc_hw_ecc_update_stats(struct nand_chip *nand, |
| unsigned int *max_bitflips, int ret) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| |
| if (ret < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += ret; |
| *max_bitflips = max_t(unsigned int, *max_bitflips, ret); |
| } |
| } |
| |
| static int sunxi_nfc_hw_ecc_correct(struct nand_chip *nand, u8 *data, u8 *oob, |
| int step, u32 status, bool *erased) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| u32 tmp; |
| |
| *erased = false; |
| |
| if (status & NFC_ECC_ERR(step)) |
| return -EBADMSG; |
| |
| if (status & NFC_ECC_PAT_FOUND(step)) { |
| u8 pattern; |
| |
| if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) { |
| pattern = 0x0; |
| } else { |
| pattern = 0xff; |
| *erased = true; |
| } |
| |
| if (data) |
| memset(data, pattern, ecc->size); |
| |
| if (oob) |
| memset(oob, pattern, ecc->bytes + 4); |
| |
| return 0; |
| } |
| |
| tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(step)); |
| |
| return NFC_ECC_ERR_CNT(step, tmp); |
| } |
| |
| static int sunxi_nfc_hw_ecc_read_chunk(struct nand_chip *nand, |
| u8 *data, int data_off, |
| u8 *oob, int oob_off, |
| int *cur_off, |
| unsigned int *max_bitflips, |
| bool bbm, bool oob_required, int page) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| int raw_mode = 0; |
| bool erased; |
| int ret; |
| |
| if (*cur_off != data_off) |
| nand_change_read_column_op(nand, data_off, NULL, 0, false); |
| |
| sunxi_nfc_randomizer_read_buf(nand, NULL, ecc->size, false, page); |
| |
| if (data_off + ecc->size != oob_off) |
| nand_change_read_column_op(nand, oob_off, NULL, 0, false); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| return ret; |
| |
| sunxi_nfc_randomizer_enable(nand); |
| writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP, |
| nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); |
| sunxi_nfc_randomizer_disable(nand); |
| if (ret) |
| return ret; |
| |
| *cur_off = oob_off + ecc->bytes + 4; |
| |
| ret = sunxi_nfc_hw_ecc_correct(nand, data, oob_required ? oob : NULL, 0, |
| readl(nfc->regs + NFC_REG_ECC_ST), |
| &erased); |
| if (erased) |
| return 1; |
| |
| if (ret < 0) { |
| /* |
| * Re-read the data with the randomizer disabled to identify |
| * bitflips in erased pages. |
| */ |
| if (nand->options & NAND_NEED_SCRAMBLING) |
| nand_change_read_column_op(nand, data_off, data, |
| ecc->size, false); |
| else |
| memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, |
| ecc->size); |
| |
| nand_change_read_column_op(nand, oob_off, oob, ecc->bytes + 4, |
| false); |
| |
| ret = nand_check_erased_ecc_chunk(data, ecc->size, |
| oob, ecc->bytes + 4, |
| NULL, 0, ecc->strength); |
| if (ret >= 0) |
| raw_mode = 1; |
| } else { |
| memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size); |
| |
| if (oob_required) { |
| nand_change_read_column_op(nand, oob_off, NULL, 0, |
| false); |
| sunxi_nfc_randomizer_read_buf(nand, oob, ecc->bytes + 4, |
| true, page); |
| |
| sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, 0, |
| bbm, page); |
| } |
| } |
| |
| sunxi_nfc_hw_ecc_update_stats(nand, max_bitflips, ret); |
| |
| return raw_mode; |
| } |
| |
| static void sunxi_nfc_hw_ecc_read_extra_oob(struct nand_chip *nand, |
| u8 *oob, int *cur_off, |
| bool randomize, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| int offset = ((ecc->bytes + 4) * ecc->steps); |
| int len = mtd->oobsize - offset; |
| |
| if (len <= 0) |
| return; |
| |
| if (!cur_off || *cur_off != offset) |
| nand_change_read_column_op(nand, mtd->writesize, NULL, 0, |
| false); |
| |
| if (!randomize) |
| sunxi_nfc_read_buf(nand, oob + offset, len); |
| else |
| sunxi_nfc_randomizer_read_buf(nand, oob + offset, len, |
| false, page); |
| |
| if (cur_off) |
| *cur_off = mtd->oobsize + mtd->writesize; |
| } |
| |
| static int sunxi_nfc_hw_ecc_read_chunks_dma(struct nand_chip *nand, uint8_t *buf, |
| int oob_required, int page, |
| int nchunks) |
| { |
| bool randomized = nand->options & NAND_NEED_SCRAMBLING; |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| unsigned int max_bitflips = 0; |
| int ret, i, raw_mode = 0; |
| struct scatterlist sg; |
| u32 status, wait; |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| return ret; |
| |
| ret = sunxi_nfc_dma_op_prepare(nfc, buf, ecc->size, nchunks, |
| DMA_FROM_DEVICE, &sg); |
| if (ret) |
| return ret; |
| |
| sunxi_nfc_hw_ecc_enable(nand); |
| sunxi_nfc_randomizer_config(nand, page, false); |
| sunxi_nfc_randomizer_enable(nand); |
| |
| writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) | |
| NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET); |
| |
| wait = NFC_CMD_INT_FLAG; |
| |
| if (nfc->caps->has_mdma) |
| wait |= NFC_DMA_INT_FLAG; |
| else |
| dma_async_issue_pending(nfc->dmac); |
| |
| writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS, |
| nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_events(nfc, wait, false, 0); |
| if (ret && !nfc->caps->has_mdma) |
| dmaengine_terminate_all(nfc->dmac); |
| |
| sunxi_nfc_randomizer_disable(nand); |
| sunxi_nfc_hw_ecc_disable(nand); |
| |
| sunxi_nfc_dma_op_cleanup(nfc, DMA_FROM_DEVICE, &sg); |
| |
| if (ret) |
| return ret; |
| |
| status = readl(nfc->regs + NFC_REG_ECC_ST); |
| |
| for (i = 0; i < nchunks; i++) { |
| int data_off = i * ecc->size; |
| int oob_off = i * (ecc->bytes + 4); |
| u8 *data = buf + data_off; |
| u8 *oob = nand->oob_poi + oob_off; |
| bool erased; |
| |
| ret = sunxi_nfc_hw_ecc_correct(nand, randomized ? data : NULL, |
| oob_required ? oob : NULL, |
| i, status, &erased); |
| |
| /* ECC errors are handled in the second loop. */ |
| if (ret < 0) |
| continue; |
| |
| if (oob_required && !erased) { |
| /* TODO: use DMA to retrieve OOB */ |
| nand_change_read_column_op(nand, |
| mtd->writesize + oob_off, |
| oob, ecc->bytes + 4, false); |
| |
| sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, i, |
| !i, page); |
| } |
| |
| if (erased) |
| raw_mode = 1; |
| |
| sunxi_nfc_hw_ecc_update_stats(nand, &max_bitflips, ret); |
| } |
| |
| if (status & NFC_ECC_ERR_MSK) { |
| for (i = 0; i < nchunks; i++) { |
| int data_off = i * ecc->size; |
| int oob_off = i * (ecc->bytes + 4); |
| u8 *data = buf + data_off; |
| u8 *oob = nand->oob_poi + oob_off; |
| |
| if (!(status & NFC_ECC_ERR(i))) |
| continue; |
| |
| /* |
| * Re-read the data with the randomizer disabled to |
| * identify bitflips in erased pages. |
| * TODO: use DMA to read page in raw mode |
| */ |
| if (randomized) |
| nand_change_read_column_op(nand, data_off, |
| data, ecc->size, |
| false); |
| |
| /* TODO: use DMA to retrieve OOB */ |
| nand_change_read_column_op(nand, |
| mtd->writesize + oob_off, |
| oob, ecc->bytes + 4, false); |
| |
| ret = nand_check_erased_ecc_chunk(data, ecc->size, |
| oob, ecc->bytes + 4, |
| NULL, 0, |
| ecc->strength); |
| if (ret >= 0) |
| raw_mode = 1; |
| |
| sunxi_nfc_hw_ecc_update_stats(nand, &max_bitflips, ret); |
| } |
| } |
| |
| if (oob_required) |
| sunxi_nfc_hw_ecc_read_extra_oob(nand, nand->oob_poi, |
| NULL, !raw_mode, |
| page); |
| |
| return max_bitflips; |
| } |
| |
| static int sunxi_nfc_hw_ecc_write_chunk(struct nand_chip *nand, |
| const u8 *data, int data_off, |
| const u8 *oob, int oob_off, |
| int *cur_off, bool bbm, |
| int page) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| int ret; |
| |
| if (data_off != *cur_off) |
| nand_change_write_column_op(nand, data_off, NULL, 0, false); |
| |
| sunxi_nfc_randomizer_write_buf(nand, data, ecc->size, false, page); |
| |
| if (data_off + ecc->size != oob_off) |
| nand_change_write_column_op(nand, oob_off, NULL, 0, false); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| return ret; |
| |
| sunxi_nfc_randomizer_enable(nand); |
| sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, 0, bbm, page); |
| |
| writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | |
| NFC_ACCESS_DIR | NFC_ECC_OP, |
| nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); |
| sunxi_nfc_randomizer_disable(nand); |
| if (ret) |
| return ret; |
| |
| *cur_off = oob_off + ecc->bytes + 4; |
| |
| return 0; |
| } |
| |
| static void sunxi_nfc_hw_ecc_write_extra_oob(struct nand_chip *nand, |
| u8 *oob, int *cur_off, |
| int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| int offset = ((ecc->bytes + 4) * ecc->steps); |
| int len = mtd->oobsize - offset; |
| |
| if (len <= 0) |
| return; |
| |
| if (!cur_off || *cur_off != offset) |
| nand_change_write_column_op(nand, offset + mtd->writesize, |
| NULL, 0, false); |
| |
| sunxi_nfc_randomizer_write_buf(nand, oob + offset, len, false, page); |
| |
| if (cur_off) |
| *cur_off = mtd->oobsize + mtd->writesize; |
| } |
| |
| static int sunxi_nfc_hw_ecc_read_page(struct nand_chip *nand, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| unsigned int max_bitflips = 0; |
| int ret, i, cur_off = 0; |
| bool raw_mode = false; |
| |
| sunxi_nfc_select_chip(nand, nand->cur_cs); |
| |
| nand_read_page_op(nand, page, 0, NULL, 0); |
| |
| sunxi_nfc_hw_ecc_enable(nand); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| int data_off = i * ecc->size; |
| int oob_off = i * (ecc->bytes + 4); |
| u8 *data = buf + data_off; |
| u8 *oob = nand->oob_poi + oob_off; |
| |
| ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off, oob, |
| oob_off + mtd->writesize, |
| &cur_off, &max_bitflips, |
| !i, oob_required, page); |
| if (ret < 0) |
| return ret; |
| else if (ret) |
| raw_mode = true; |
| } |
| |
| if (oob_required) |
| sunxi_nfc_hw_ecc_read_extra_oob(nand, nand->oob_poi, &cur_off, |
| !raw_mode, page); |
| |
| sunxi_nfc_hw_ecc_disable(nand); |
| |
| return max_bitflips; |
| } |
| |
| static int sunxi_nfc_hw_ecc_read_page_dma(struct nand_chip *nand, u8 *buf, |
| int oob_required, int page) |
| { |
| int ret; |
| |
| sunxi_nfc_select_chip(nand, nand->cur_cs); |
| |
| nand_read_page_op(nand, page, 0, NULL, 0); |
| |
| ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, oob_required, page, |
| nand->ecc.steps); |
| if (ret >= 0) |
| return ret; |
| |
| /* Fallback to PIO mode */ |
| return sunxi_nfc_hw_ecc_read_page(nand, buf, oob_required, page); |
| } |
| |
| static int sunxi_nfc_hw_ecc_read_subpage(struct nand_chip *nand, |
| u32 data_offs, u32 readlen, |
| u8 *bufpoi, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| int ret, i, cur_off = 0; |
| unsigned int max_bitflips = 0; |
| |
| sunxi_nfc_select_chip(nand, nand->cur_cs); |
| |
| nand_read_page_op(nand, page, 0, NULL, 0); |
| |
| sunxi_nfc_hw_ecc_enable(nand); |
| |
| for (i = data_offs / ecc->size; |
| i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) { |
| int data_off = i * ecc->size; |
| int oob_off = i * (ecc->bytes + 4); |
| u8 *data = bufpoi + data_off; |
| u8 *oob = nand->oob_poi + oob_off; |
| |
| ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off, |
| oob, |
| oob_off + mtd->writesize, |
| &cur_off, &max_bitflips, !i, |
| false, page); |
| if (ret < 0) |
| return ret; |
| } |
| |
| sunxi_nfc_hw_ecc_disable(nand); |
| |
| return max_bitflips; |
| } |
| |
| static int sunxi_nfc_hw_ecc_read_subpage_dma(struct nand_chip *nand, |
| u32 data_offs, u32 readlen, |
| u8 *buf, int page) |
| { |
| int nchunks = DIV_ROUND_UP(data_offs + readlen, nand->ecc.size); |
| int ret; |
| |
| sunxi_nfc_select_chip(nand, nand->cur_cs); |
| |
| nand_read_page_op(nand, page, 0, NULL, 0); |
| |
| ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, false, page, nchunks); |
| if (ret >= 0) |
| return ret; |
| |
| /* Fallback to PIO mode */ |
| return sunxi_nfc_hw_ecc_read_subpage(nand, data_offs, readlen, |
| buf, page); |
| } |
| |
| static int sunxi_nfc_hw_ecc_write_page(struct nand_chip *nand, |
| const uint8_t *buf, int oob_required, |
| int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| int ret, i, cur_off = 0; |
| |
| sunxi_nfc_select_chip(nand, nand->cur_cs); |
| |
| nand_prog_page_begin_op(nand, page, 0, NULL, 0); |
| |
| sunxi_nfc_hw_ecc_enable(nand); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| int data_off = i * ecc->size; |
| int oob_off = i * (ecc->bytes + 4); |
| const u8 *data = buf + data_off; |
| const u8 *oob = nand->oob_poi + oob_off; |
| |
| ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob, |
| oob_off + mtd->writesize, |
| &cur_off, !i, page); |
| if (ret) |
| return ret; |
| } |
| |
| if (oob_required || (nand->options & NAND_NEED_SCRAMBLING)) |
| sunxi_nfc_hw_ecc_write_extra_oob(nand, nand->oob_poi, |
| &cur_off, page); |
| |
| sunxi_nfc_hw_ecc_disable(nand); |
| |
| return nand_prog_page_end_op(nand); |
| } |
| |
| static int sunxi_nfc_hw_ecc_write_subpage(struct nand_chip *nand, |
| u32 data_offs, u32 data_len, |
| const u8 *buf, int oob_required, |
| int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| int ret, i, cur_off = 0; |
| |
| sunxi_nfc_select_chip(nand, nand->cur_cs); |
| |
| nand_prog_page_begin_op(nand, page, 0, NULL, 0); |
| |
| sunxi_nfc_hw_ecc_enable(nand); |
| |
| for (i = data_offs / ecc->size; |
| i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) { |
| int data_off = i * ecc->size; |
| int oob_off = i * (ecc->bytes + 4); |
| const u8 *data = buf + data_off; |
| const u8 *oob = nand->oob_poi + oob_off; |
| |
| ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob, |
| oob_off + mtd->writesize, |
| &cur_off, !i, page); |
| if (ret) |
| return ret; |
| } |
| |
| sunxi_nfc_hw_ecc_disable(nand); |
| |
| return nand_prog_page_end_op(nand); |
| } |
| |
| static int sunxi_nfc_hw_ecc_write_page_dma(struct nand_chip *nand, |
| const u8 *buf, |
| int oob_required, |
| int page) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| struct scatterlist sg; |
| u32 wait; |
| int ret, i; |
| |
| sunxi_nfc_select_chip(nand, nand->cur_cs); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| return ret; |
| |
| ret = sunxi_nfc_dma_op_prepare(nfc, buf, ecc->size, ecc->steps, |
| DMA_TO_DEVICE, &sg); |
| if (ret) |
| goto pio_fallback; |
| |
| for (i = 0; i < ecc->steps; i++) { |
| const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4)); |
| |
| sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, i, !i, page); |
| } |
| |
| nand_prog_page_begin_op(nand, page, 0, NULL, 0); |
| |
| sunxi_nfc_hw_ecc_enable(nand); |
| sunxi_nfc_randomizer_config(nand, page, false); |
| sunxi_nfc_randomizer_enable(nand); |
| |
| writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG, |
| nfc->regs + NFC_REG_WCMD_SET); |
| |
| wait = NFC_CMD_INT_FLAG; |
| |
| if (nfc->caps->has_mdma) |
| wait |= NFC_DMA_INT_FLAG; |
| else |
| dma_async_issue_pending(nfc->dmac); |
| |
| writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | |
| NFC_DATA_TRANS | NFC_ACCESS_DIR, |
| nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_events(nfc, wait, false, 0); |
| if (ret && !nfc->caps->has_mdma) |
| dmaengine_terminate_all(nfc->dmac); |
| |
| sunxi_nfc_randomizer_disable(nand); |
| sunxi_nfc_hw_ecc_disable(nand); |
| |
| sunxi_nfc_dma_op_cleanup(nfc, DMA_TO_DEVICE, &sg); |
| |
| if (ret) |
| return ret; |
| |
| if (oob_required || (nand->options & NAND_NEED_SCRAMBLING)) |
| /* TODO: use DMA to transfer extra OOB bytes ? */ |
| sunxi_nfc_hw_ecc_write_extra_oob(nand, nand->oob_poi, |
| NULL, page); |
| |
| return nand_prog_page_end_op(nand); |
| |
| pio_fallback: |
| return sunxi_nfc_hw_ecc_write_page(nand, buf, oob_required, page); |
| } |
| |
| static int sunxi_nfc_hw_ecc_read_oob(struct nand_chip *nand, int page) |
| { |
| u8 *buf = nand_get_data_buf(nand); |
| |
| return nand->ecc.read_page(nand, buf, 1, page); |
| } |
| |
| static int sunxi_nfc_hw_ecc_write_oob(struct nand_chip *nand, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| u8 *buf = nand_get_data_buf(nand); |
| int ret; |
| |
| memset(buf, 0xff, mtd->writesize); |
| ret = nand->ecc.write_page(nand, buf, 1, page); |
| if (ret) |
| return ret; |
| |
| /* Send command to program the OOB data */ |
| return nand_prog_page_end_op(nand); |
| } |
| |
| static const s32 tWB_lut[] = {6, 12, 16, 20}; |
| static const s32 tRHW_lut[] = {4, 8, 12, 20}; |
| |
| static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration, |
| u32 clk_period) |
| { |
| u32 clk_cycles = DIV_ROUND_UP(duration, clk_period); |
| int i; |
| |
| for (i = 0; i < lut_size; i++) { |
| if (clk_cycles <= lut[i]) |
| return i; |
| } |
| |
| /* Doesn't fit */ |
| return -EINVAL; |
| } |
| |
| #define sunxi_nand_lookup_timing(l, p, c) \ |
| _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c) |
| |
| static int sunxi_nfc_setup_interface(struct nand_chip *nand, int csline, |
| const struct nand_interface_config *conf) |
| { |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| const struct nand_sdr_timings *timings; |
| u32 min_clk_period = 0; |
| s32 tWB, tADL, tWHR, tRHW, tCAD; |
| long real_clk_rate; |
| |
| timings = nand_get_sdr_timings(conf); |
| if (IS_ERR(timings)) |
| return -ENOTSUPP; |
| |
| /* T1 <=> tCLS */ |
| if (timings->tCLS_min > min_clk_period) |
| min_clk_period = timings->tCLS_min; |
| |
| /* T2 <=> tCLH */ |
| if (timings->tCLH_min > min_clk_period) |
| min_clk_period = timings->tCLH_min; |
| |
| /* T3 <=> tCS */ |
| if (timings->tCS_min > min_clk_period) |
| min_clk_period = timings->tCS_min; |
| |
| /* T4 <=> tCH */ |
| if (timings->tCH_min > min_clk_period) |
| min_clk_period = timings->tCH_min; |
| |
| /* T5 <=> tWP */ |
| if (timings->tWP_min > min_clk_period) |
| min_clk_period = timings->tWP_min; |
| |
| /* T6 <=> tWH */ |
| if (timings->tWH_min > min_clk_period) |
| min_clk_period = timings->tWH_min; |
| |
| /* T7 <=> tALS */ |
| if (timings->tALS_min > min_clk_period) |
| min_clk_period = timings->tALS_min; |
| |
| /* T8 <=> tDS */ |
| if (timings->tDS_min > min_clk_period) |
| min_clk_period = timings->tDS_min; |
| |
| /* T9 <=> tDH */ |
| if (timings->tDH_min > min_clk_period) |
| min_clk_period = timings->tDH_min; |
| |
| /* T10 <=> tRR */ |
| if (timings->tRR_min > (min_clk_period * 3)) |
| min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3); |
| |
| /* T11 <=> tALH */ |
| if (timings->tALH_min > min_clk_period) |
| min_clk_period = timings->tALH_min; |
| |
| /* T12 <=> tRP */ |
| if (timings->tRP_min > min_clk_period) |
| min_clk_period = timings->tRP_min; |
| |
| /* T13 <=> tREH */ |
| if (timings->tREH_min > min_clk_period) |
| min_clk_period = timings->tREH_min; |
| |
| /* T14 <=> tRC */ |
| if (timings->tRC_min > (min_clk_period * 2)) |
| min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2); |
| |
| /* T15 <=> tWC */ |
| if (timings->tWC_min > (min_clk_period * 2)) |
| min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2); |
| |
| /* T16 - T19 + tCAD */ |
| if (timings->tWB_max > (min_clk_period * 20)) |
| min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20); |
| |
| if (timings->tADL_min > (min_clk_period * 32)) |
| min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32); |
| |
| if (timings->tWHR_min > (min_clk_period * 32)) |
| min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32); |
| |
| if (timings->tRHW_min > (min_clk_period * 20)) |
| min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20); |
| |
| /* |
| * In non-EDO, tREA should be less than tRP to guarantee that the |
| * controller does not sample the IO lines too early. Unfortunately, |
| * the sunxi NAND controller does not allow us to have different |
| * values for tRP and tREH (tRP = tREH = tRW / 2). |
| * |
| * We have 2 options to overcome this limitation: |
| * |
| * 1/ Extend tRC to fulfil the tREA <= tRC / 2 constraint |
| * 2/ Use EDO mode (only works if timings->tRLOH > 0) |
| */ |
| if (timings->tREA_max > min_clk_period && !timings->tRLOH_min) |
| min_clk_period = timings->tREA_max; |
| |
| tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max, |
| min_clk_period); |
| if (tWB < 0) { |
| dev_err(nfc->dev, "unsupported tWB\n"); |
| return tWB; |
| } |
| |
| tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3; |
| if (tADL > 3) { |
| dev_err(nfc->dev, "unsupported tADL\n"); |
| return -EINVAL; |
| } |
| |
| tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3; |
| if (tWHR > 3) { |
| dev_err(nfc->dev, "unsupported tWHR\n"); |
| return -EINVAL; |
| } |
| |
| tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min, |
| min_clk_period); |
| if (tRHW < 0) { |
| dev_err(nfc->dev, "unsupported tRHW\n"); |
| return tRHW; |
| } |
| |
| if (csline == NAND_DATA_IFACE_CHECK_ONLY) |
| return 0; |
| |
| /* |
| * TODO: according to ONFI specs this value only applies for DDR NAND, |
| * but Allwinner seems to set this to 0x7. Mimic them for now. |
| */ |
| tCAD = 0x7; |
| |
| /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */ |
| sunxi_nand->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD); |
| |
| /* Convert min_clk_period from picoseconds to nanoseconds */ |
| min_clk_period = DIV_ROUND_UP(min_clk_period, 1000); |
| |
| /* |
| * Unlike what is stated in Allwinner datasheet, the clk_rate should |
| * be set to (1 / min_clk_period), and not (2 / min_clk_period). |
| * This new formula was verified with a scope and validated by |
| * Allwinner engineers. |
| */ |
| sunxi_nand->clk_rate = NSEC_PER_SEC / min_clk_period; |
| real_clk_rate = clk_round_rate(nfc->mod_clk, sunxi_nand->clk_rate); |
| if (real_clk_rate <= 0) { |
| dev_err(nfc->dev, "Unable to round clk %lu\n", |
| sunxi_nand->clk_rate); |
| return -EINVAL; |
| } |
| |
| sunxi_nand->timing_ctl = 0; |
| |
| /* |
| * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data |
| * output cycle timings shall be used if the host drives tRC less than |
| * 30 ns. We should also use EDO mode if tREA is bigger than tRP. |
| */ |
| min_clk_period = NSEC_PER_SEC / real_clk_rate; |
| if (min_clk_period * 2 < 30 || min_clk_period * 1000 < timings->tREA_max) |
| sunxi_nand->timing_ctl = NFC_TIMING_CTL_EDO; |
| |
| return 0; |
| } |
| |
| static int sunxi_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| |
| if (section >= ecc->steps) |
| return -ERANGE; |
| |
| oobregion->offset = section * (ecc->bytes + 4) + 4; |
| oobregion->length = ecc->bytes; |
| |
| return 0; |
| } |
| |
| static int sunxi_nand_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| |
| if (section > ecc->steps) |
| return -ERANGE; |
| |
| /* |
| * The first 2 bytes are used for BB markers, hence we |
| * only have 2 bytes available in the first user data |
| * section. |
| */ |
| if (!section && ecc->engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { |
| oobregion->offset = 2; |
| oobregion->length = 2; |
| |
| return 0; |
| } |
| |
| /* |
| * The controller does not provide access to OOB bytes |
| * past the end of the ECC data. |
| */ |
| if (section == ecc->steps && ecc->engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) |
| return -ERANGE; |
| |
| oobregion->offset = section * (ecc->bytes + 4); |
| |
| if (section < ecc->steps) |
| oobregion->length = 4; |
| else |
| oobregion->length = mtd->oobsize - oobregion->offset; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = { |
| .ecc = sunxi_nand_ooblayout_ecc, |
| .free = sunxi_nand_ooblayout_free, |
| }; |
| |
| static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand, |
| struct nand_ecc_ctrl *ecc, |
| struct device_node *np) |
| { |
| static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| struct nand_device *nanddev = mtd_to_nanddev(mtd); |
| int nsectors; |
| int i; |
| |
| if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) { |
| int bytes; |
| |
| ecc->size = 1024; |
| nsectors = mtd->writesize / ecc->size; |
| |
| /* Reserve 2 bytes for the BBM */ |
| bytes = (mtd->oobsize - 2) / nsectors; |
| |
| /* 4 non-ECC bytes are added before each ECC bytes section */ |
| bytes -= 4; |
| |
| /* and bytes has to be even. */ |
| if (bytes % 2) |
| bytes--; |
| |
| ecc->strength = bytes * 8 / fls(8 * ecc->size); |
| |
| for (i = 0; i < ARRAY_SIZE(strengths); i++) { |
| if (strengths[i] > ecc->strength) |
| break; |
| } |
| |
| if (!i) |
| ecc->strength = 0; |
| else |
| ecc->strength = strengths[i - 1]; |
| } |
| |
| if (ecc->size != 512 && ecc->size != 1024) |
| return -EINVAL; |
| |
| /* Prefer 1k ECC chunk over 512 ones */ |
| if (ecc->size == 512 && mtd->writesize > 512) { |
| ecc->size = 1024; |
| ecc->strength *= 2; |
| } |
| |
| /* Add ECC info retrieval from DT */ |
| for (i = 0; i < ARRAY_SIZE(strengths); i++) { |
| if (ecc->strength <= strengths[i]) { |
| /* |
| * Update ecc->strength value with the actual strength |
| * that will be used by the ECC engine. |
| */ |
| ecc->strength = strengths[i]; |
| break; |
| } |
| } |
| |
| if (i >= ARRAY_SIZE(strengths)) { |
| dev_err(nfc->dev, "unsupported strength\n"); |
| return -ENOTSUPP; |
| } |
| |
| /* HW ECC always request ECC bytes for 1024 bytes blocks */ |
| ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); |
| |
| /* HW ECC always work with even numbers of ECC bytes */ |
| ecc->bytes = ALIGN(ecc->bytes, 2); |
| |
| nsectors = mtd->writesize / ecc->size; |
| |
| if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) |
| return -EINVAL; |
| |
| ecc->read_oob = sunxi_nfc_hw_ecc_read_oob; |
| ecc->write_oob = sunxi_nfc_hw_ecc_write_oob; |
| mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops); |
| |
| if (nfc->dmac || nfc->caps->has_mdma) { |
| ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma; |
| ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma; |
| ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma; |
| nand->options |= NAND_USES_DMA; |
| } else { |
| ecc->read_page = sunxi_nfc_hw_ecc_read_page; |
| ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage; |
| ecc->write_page = sunxi_nfc_hw_ecc_write_page; |
| } |
| |
| /* TODO: support DMA for raw accesses and subpage write */ |
| ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage; |
| ecc->read_oob_raw = nand_read_oob_std; |
| ecc->write_oob_raw = nand_write_oob_std; |
| |
| sunxi_nand->ecc.ecc_ctl = NFC_ECC_MODE(i) | NFC_ECC_EXCEPTION | |
| NFC_ECC_PIPELINE | NFC_ECC_EN; |
| |
| if (ecc->size == 512) |
| sunxi_nand->ecc.ecc_ctl |= NFC_ECC_BLOCK_512; |
| |
| return 0; |
| } |
| |
| static int sunxi_nand_attach_chip(struct nand_chip *nand) |
| { |
| const struct nand_ecc_props *requirements = |
| nanddev_get_ecc_requirements(&nand->base); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| struct device_node *np = nand_get_flash_node(nand); |
| int ret; |
| |
| if (nand->bbt_options & NAND_BBT_USE_FLASH) |
| nand->bbt_options |= NAND_BBT_NO_OOB; |
| |
| if (nand->options & NAND_NEED_SCRAMBLING) |
| nand->options |= NAND_NO_SUBPAGE_WRITE; |
| |
| nand->options |= NAND_SUBPAGE_READ; |
| |
| if (!ecc->size) { |
| ecc->size = requirements->step_size; |
| ecc->strength = requirements->strength; |
| } |
| |
| if (!ecc->size || !ecc->strength) |
| return -EINVAL; |
| |
| switch (ecc->engine_type) { |
| case NAND_ECC_ENGINE_TYPE_ON_HOST: |
| ret = sunxi_nand_hw_ecc_ctrl_init(nand, ecc, np); |
| if (ret) |
| return ret; |
| break; |
| case NAND_ECC_ENGINE_TYPE_NONE: |
| case NAND_ECC_ENGINE_TYPE_SOFT: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int sunxi_nfc_exec_subop(struct nand_chip *nand, |
| const struct nand_subop *subop) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| u32 cmd = 0, extcmd = 0, cnt = 0, addrs[2] = { }; |
| unsigned int i, j, remaining, start; |
| void *inbuf = NULL; |
| int ret; |
| |
| for (i = 0; i < subop->ninstrs; i++) { |
| const struct nand_op_instr *instr = &subop->instrs[i]; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| if (cmd & NFC_SEND_CMD1) { |
| if (WARN_ON(cmd & NFC_SEND_CMD2)) |
| return -EINVAL; |
| |
| cmd |= NFC_SEND_CMD2; |
| extcmd |= instr->ctx.cmd.opcode; |
| } else { |
| cmd |= NFC_SEND_CMD1 | |
| NFC_CMD(instr->ctx.cmd.opcode); |
| } |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| remaining = nand_subop_get_num_addr_cyc(subop, i); |
| start = nand_subop_get_addr_start_off(subop, i); |
| for (j = 0; j < 8 && j + start < remaining; j++) { |
| u32 addr = instr->ctx.addr.addrs[j + start]; |
| |
| addrs[j / 4] |= addr << (j % 4) * 8; |
| } |
| |
| if (j) |
| cmd |= NFC_SEND_ADR | NFC_ADR_NUM(j); |
| |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| case NAND_OP_DATA_OUT_INSTR: |
| start = nand_subop_get_data_start_off(subop, i); |
| remaining = nand_subop_get_data_len(subop, i); |
| cnt = min_t(u32, remaining, NFC_SRAM_SIZE); |
| cmd |= NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; |
| |
| if (instr->type == NAND_OP_DATA_OUT_INSTR) { |
| cmd |= NFC_ACCESS_DIR; |
| memcpy_toio(nfc->regs + NFC_RAM0_BASE, |
| instr->ctx.data.buf.out + start, |
| cnt); |
| } else { |
| inbuf = instr->ctx.data.buf.in + start; |
| } |
| |
| break; |
| |
| case NAND_OP_WAITRDY_INSTR: |
| cmd |= NFC_WAIT_FLAG; |
| break; |
| } |
| } |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| return ret; |
| |
| if (cmd & NFC_SEND_ADR) { |
| writel(addrs[0], nfc->regs + NFC_REG_ADDR_LOW); |
| writel(addrs[1], nfc->regs + NFC_REG_ADDR_HIGH); |
| } |
| |
| if (cmd & NFC_SEND_CMD2) |
| writel(extcmd, |
| nfc->regs + |
| (cmd & NFC_ACCESS_DIR ? |
| NFC_REG_WCMD_SET : NFC_REG_RCMD_SET)); |
| |
| if (cmd & NFC_DATA_TRANS) |
| writel(cnt, nfc->regs + NFC_REG_CNT); |
| |
| writel(cmd, nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, |
| !(cmd & NFC_WAIT_FLAG) && cnt < 64, |
| 0); |
| if (ret) |
| return ret; |
| |
| if (inbuf) |
| memcpy_fromio(inbuf, nfc->regs + NFC_RAM0_BASE, cnt); |
| |
| return 0; |
| } |
| |
| static int sunxi_nfc_soft_waitrdy(struct nand_chip *nand, |
| const struct nand_subop *subop) |
| { |
| return nand_soft_waitrdy(nand, |
| subop->instrs[0].ctx.waitrdy.timeout_ms); |
| } |
| |
| static const struct nand_op_parser sunxi_nfc_op_parser = NAND_OP_PARSER( |
| NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)), |
| NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), |
| NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), |
| ); |
| |
| static const struct nand_op_parser sunxi_nfc_norb_op_parser = NAND_OP_PARSER( |
| NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)), |
| NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), |
| NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true)), |
| NAND_OP_PARSER_PATTERN(sunxi_nfc_soft_waitrdy, |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| ); |
| |
| static int sunxi_nfc_exec_op(struct nand_chip *nand, |
| const struct nand_operation *op, bool check_only) |
| { |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| const struct nand_op_parser *parser; |
| |
| if (!check_only) |
| sunxi_nfc_select_chip(nand, op->cs); |
| |
| if (sunxi_nand->sels[op->cs].rb >= 0) |
| parser = &sunxi_nfc_op_parser; |
| else |
| parser = &sunxi_nfc_norb_op_parser; |
| |
| return nand_op_parser_exec_op(nand, parser, op, check_only); |
| } |
| |
| static const struct nand_controller_ops sunxi_nand_controller_ops = { |
| .attach_chip = sunxi_nand_attach_chip, |
| .setup_interface = sunxi_nfc_setup_interface, |
| .exec_op = sunxi_nfc_exec_op, |
| }; |
| |
| static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc) |
| { |
| struct sunxi_nand_chip *sunxi_nand; |
| struct nand_chip *chip; |
| int ret; |
| |
| while (!list_empty(&nfc->chips)) { |
| sunxi_nand = list_first_entry(&nfc->chips, |
| struct sunxi_nand_chip, |
| node); |
| chip = &sunxi_nand->nand; |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| list_del(&sunxi_nand->node); |
| } |
| } |
| |
| static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc, |
| struct device_node *np) |
| { |
| struct sunxi_nand_chip *sunxi_nand; |
| struct mtd_info *mtd; |
| struct nand_chip *nand; |
| int nsels; |
| int ret; |
| int i; |
| u32 tmp; |
| |
| if (!of_get_property(np, "reg", &nsels)) |
| return -EINVAL; |
| |
| nsels /= sizeof(u32); |
| if (!nsels) { |
| dev_err(dev, "invalid reg property size\n"); |
| return -EINVAL; |
| } |
| |
| sunxi_nand = devm_kzalloc(dev, struct_size(sunxi_nand, sels, nsels), |
| GFP_KERNEL); |
| if (!sunxi_nand) |
| return -ENOMEM; |
| |
| sunxi_nand->nsels = nsels; |
| |
| for (i = 0; i < nsels; i++) { |
| ret = of_property_read_u32_index(np, "reg", i, &tmp); |
| if (ret) { |
| dev_err(dev, "could not retrieve reg property: %d\n", |
| ret); |
| return ret; |
| } |
| |
| if (tmp > NFC_MAX_CS) { |
| dev_err(dev, |
| "invalid reg value: %u (max CS = 7)\n", |
| tmp); |
| return -EINVAL; |
| } |
| |
| if (test_and_set_bit(tmp, &nfc->assigned_cs)) { |
| dev_err(dev, "CS %d already assigned\n", tmp); |
| return -EINVAL; |
| } |
| |
| sunxi_nand->sels[i].cs = tmp; |
| |
| if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) && |
| tmp < 2) |
| sunxi_nand->sels[i].rb = tmp; |
| else |
| sunxi_nand->sels[i].rb = -1; |
| } |
| |
| nand = &sunxi_nand->nand; |
| /* Default tR value specified in the ONFI spec (chapter 4.15.1) */ |
| nand->controller = &nfc->controller; |
| nand->controller->ops = &sunxi_nand_controller_ops; |
| |
| /* |
| * Set the ECC mode to the default value in case nothing is specified |
| * in the DT. |
| */ |
| nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| nand_set_flash_node(nand, np); |
| |
| mtd = nand_to_mtd(nand); |
| mtd->dev.parent = dev; |
| |
| ret = nand_scan(nand, nsels); |
| if (ret) |
| return ret; |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) { |
| dev_err(dev, "failed to register mtd device: %d\n", ret); |
| nand_cleanup(nand); |
| return ret; |
| } |
| |
| list_add_tail(&sunxi_nand->node, &nfc->chips); |
| |
| return 0; |
| } |
| |
| static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc) |
| { |
| struct device_node *np = dev->of_node; |
| struct device_node *nand_np; |
| int ret; |
| |
| for_each_child_of_node(np, nand_np) { |
| ret = sunxi_nand_chip_init(dev, nfc, nand_np); |
| if (ret) { |
| of_node_put(nand_np); |
| sunxi_nand_chips_cleanup(nfc); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int sunxi_nfc_dma_init(struct sunxi_nfc *nfc, struct resource *r) |
| { |
| int ret; |
| |
| if (nfc->caps->has_mdma) |
| return 0; |
| |
| nfc->dmac = dma_request_chan(nfc->dev, "rxtx"); |
| if (IS_ERR(nfc->dmac)) { |
| ret = PTR_ERR(nfc->dmac); |
| if (ret == -EPROBE_DEFER) |
| return ret; |
| |
| /* Ignore errors to fall back to PIO mode */ |
| dev_warn(nfc->dev, "failed to request rxtx DMA channel: %d\n", ret); |
| nfc->dmac = NULL; |
| } else { |
| struct dma_slave_config dmac_cfg = { }; |
| |
| dmac_cfg.src_addr = r->start + nfc->caps->reg_io_data; |
| dmac_cfg.dst_addr = dmac_cfg.src_addr; |
| dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width; |
| dmac_cfg.src_maxburst = nfc->caps->dma_maxburst; |
| dmac_cfg.dst_maxburst = nfc->caps->dma_maxburst; |
| dmaengine_slave_config(nfc->dmac, &dmac_cfg); |
| } |
| return 0; |
| } |
| |
| static int sunxi_nfc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct resource *r; |
| struct sunxi_nfc *nfc; |
| int irq; |
| int ret; |
| |
| nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); |
| if (!nfc) |
| return -ENOMEM; |
| |
| nfc->dev = dev; |
| nand_controller_init(&nfc->controller); |
| INIT_LIST_HEAD(&nfc->chips); |
| |
| nfc->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &r); |
| if (IS_ERR(nfc->regs)) |
| return PTR_ERR(nfc->regs); |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| nfc->ahb_clk = devm_clk_get_enabled(dev, "ahb"); |
| if (IS_ERR(nfc->ahb_clk)) { |
| dev_err(dev, "failed to retrieve ahb clk\n"); |
| return PTR_ERR(nfc->ahb_clk); |
| } |
| |
| nfc->mod_clk = devm_clk_get_enabled(dev, "mod"); |
| if (IS_ERR(nfc->mod_clk)) { |
| dev_err(dev, "failed to retrieve mod clk\n"); |
| return PTR_ERR(nfc->mod_clk); |
| } |
| |
| nfc->reset = devm_reset_control_get_optional_exclusive(dev, "ahb"); |
| if (IS_ERR(nfc->reset)) |
| return PTR_ERR(nfc->reset); |
| |
| ret = reset_control_deassert(nfc->reset); |
| if (ret) { |
| dev_err(dev, "reset err %d\n", ret); |
| return ret; |
| } |
| |
| nfc->caps = of_device_get_match_data(&pdev->dev); |
| if (!nfc->caps) { |
| ret = -EINVAL; |
| goto out_ahb_reset_reassert; |
| } |
| |
| ret = sunxi_nfc_rst(nfc); |
| if (ret) |
| goto out_ahb_reset_reassert; |
| |
| writel(0, nfc->regs + NFC_REG_INT); |
| ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt, |
| 0, "sunxi-nand", nfc); |
| if (ret) |
| goto out_ahb_reset_reassert; |
| |
| ret = sunxi_nfc_dma_init(nfc, r); |
| |
| if (ret) |
| goto out_ahb_reset_reassert; |
| |
| platform_set_drvdata(pdev, nfc); |
| |
| ret = sunxi_nand_chips_init(dev, nfc); |
| if (ret) { |
| dev_err(dev, "failed to init nand chips\n"); |
| goto out_release_dmac; |
| } |
| |
| return 0; |
| |
| out_release_dmac: |
| if (nfc->dmac) |
| dma_release_channel(nfc->dmac); |
| out_ahb_reset_reassert: |
| reset_control_assert(nfc->reset); |
| |
| return ret; |
| } |
| |
| static void sunxi_nfc_remove(struct platform_device *pdev) |
| { |
| struct sunxi_nfc *nfc = platform_get_drvdata(pdev); |
| |
| sunxi_nand_chips_cleanup(nfc); |
| |
| reset_control_assert(nfc->reset); |
| |
| if (nfc->dmac) |
| dma_release_channel(nfc->dmac); |
| } |
| |
| static const struct sunxi_nfc_caps sunxi_nfc_a10_caps = { |
| .reg_io_data = NFC_REG_A10_IO_DATA, |
| .dma_maxburst = 4, |
| }; |
| |
| static const struct sunxi_nfc_caps sunxi_nfc_a23_caps = { |
| .has_mdma = true, |
| .reg_io_data = NFC_REG_A23_IO_DATA, |
| .dma_maxburst = 8, |
| }; |
| |
| static const struct of_device_id sunxi_nfc_ids[] = { |
| { |
| .compatible = "allwinner,sun4i-a10-nand", |
| .data = &sunxi_nfc_a10_caps, |
| }, |
| { |
| .compatible = "allwinner,sun8i-a23-nand-controller", |
| .data = &sunxi_nfc_a23_caps, |
| }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, sunxi_nfc_ids); |
| |
| static struct platform_driver sunxi_nfc_driver = { |
| .driver = { |
| .name = "sunxi_nand", |
| .of_match_table = sunxi_nfc_ids, |
| }, |
| .probe = sunxi_nfc_probe, |
| .remove_new = sunxi_nfc_remove, |
| }; |
| module_platform_driver(sunxi_nfc_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Boris BREZILLON"); |
| MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver"); |
| MODULE_ALIAS("platform:sunxi_nand"); |