| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2009-2015 Freescale Semiconductor, Inc. and others |
| * |
| * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver. |
| * Jason ported to M54418TWR and MVFA5 (VF610). |
| * Authors: Stefan Agner <stefan.agner@toradex.com> |
| * Bill Pringlemeir <bpringlemeir@nbsps.com> |
| * Shaohui Xie <b21989@freescale.com> |
| * Jason Jin <Jason.jin@freescale.com> |
| * |
| * Based on original driver mpc5121_nfc.c. |
| * |
| * Limitations: |
| * - Untested on MPC5125 and M54418. |
| * - DMA and pipelining not used. |
| * - 2K pages or less. |
| * - HW ECC: Only 2K page with 64+ OOB. |
| * - HW ECC: Only 24 and 32-bit error correction implemented. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/bitops.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/swab.h> |
| |
| #define DRV_NAME "vf610_nfc" |
| |
| /* Register Offsets */ |
| #define NFC_FLASH_CMD1 0x3F00 |
| #define NFC_FLASH_CMD2 0x3F04 |
| #define NFC_COL_ADDR 0x3F08 |
| #define NFC_ROW_ADDR 0x3F0c |
| #define NFC_ROW_ADDR_INC 0x3F14 |
| #define NFC_FLASH_STATUS1 0x3F18 |
| #define NFC_FLASH_STATUS2 0x3F1c |
| #define NFC_CACHE_SWAP 0x3F28 |
| #define NFC_SECTOR_SIZE 0x3F2c |
| #define NFC_FLASH_CONFIG 0x3F30 |
| #define NFC_IRQ_STATUS 0x3F38 |
| |
| /* Addresses for NFC MAIN RAM BUFFER areas */ |
| #define NFC_MAIN_AREA(n) ((n) * 0x1000) |
| |
| #define PAGE_2K 0x0800 |
| #define OOB_64 0x0040 |
| #define OOB_MAX 0x0100 |
| |
| /* NFC_CMD2[CODE] controller cycle bit masks */ |
| #define COMMAND_CMD_BYTE1 BIT(14) |
| #define COMMAND_CAR_BYTE1 BIT(13) |
| #define COMMAND_CAR_BYTE2 BIT(12) |
| #define COMMAND_RAR_BYTE1 BIT(11) |
| #define COMMAND_RAR_BYTE2 BIT(10) |
| #define COMMAND_RAR_BYTE3 BIT(9) |
| #define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1) |
| #define COMMAND_WRITE_DATA BIT(8) |
| #define COMMAND_CMD_BYTE2 BIT(7) |
| #define COMMAND_RB_HANDSHAKE BIT(6) |
| #define COMMAND_READ_DATA BIT(5) |
| #define COMMAND_CMD_BYTE3 BIT(4) |
| #define COMMAND_READ_STATUS BIT(3) |
| #define COMMAND_READ_ID BIT(2) |
| |
| /* NFC ECC mode define */ |
| #define ECC_BYPASS 0 |
| #define ECC_45_BYTE 6 |
| #define ECC_60_BYTE 7 |
| |
| /*** Register Mask and bit definitions */ |
| |
| /* NFC_FLASH_CMD1 Field */ |
| #define CMD_BYTE2_MASK 0xFF000000 |
| #define CMD_BYTE2_SHIFT 24 |
| |
| /* NFC_FLASH_CM2 Field */ |
| #define CMD_BYTE1_MASK 0xFF000000 |
| #define CMD_BYTE1_SHIFT 24 |
| #define CMD_CODE_MASK 0x00FFFF00 |
| #define CMD_CODE_SHIFT 8 |
| #define BUFNO_MASK 0x00000006 |
| #define BUFNO_SHIFT 1 |
| #define START_BIT BIT(0) |
| |
| /* NFC_COL_ADDR Field */ |
| #define COL_ADDR_MASK 0x0000FFFF |
| #define COL_ADDR_SHIFT 0 |
| #define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) |
| |
| /* NFC_ROW_ADDR Field */ |
| #define ROW_ADDR_MASK 0x00FFFFFF |
| #define ROW_ADDR_SHIFT 0 |
| #define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) |
| |
| #define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000 |
| #define ROW_ADDR_CHIP_SEL_RB_SHIFT 28 |
| #define ROW_ADDR_CHIP_SEL_MASK 0x0F000000 |
| #define ROW_ADDR_CHIP_SEL_SHIFT 24 |
| |
| /* NFC_FLASH_STATUS2 Field */ |
| #define STATUS_BYTE1_MASK 0x000000FF |
| |
| /* NFC_FLASH_CONFIG Field */ |
| #define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000 |
| #define CONFIG_ECC_SRAM_ADDR_SHIFT 22 |
| #define CONFIG_ECC_SRAM_REQ_BIT BIT(21) |
| #define CONFIG_DMA_REQ_BIT BIT(20) |
| #define CONFIG_ECC_MODE_MASK 0x000E0000 |
| #define CONFIG_ECC_MODE_SHIFT 17 |
| #define CONFIG_FAST_FLASH_BIT BIT(16) |
| #define CONFIG_16BIT BIT(7) |
| #define CONFIG_BOOT_MODE_BIT BIT(6) |
| #define CONFIG_ADDR_AUTO_INCR_BIT BIT(5) |
| #define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4) |
| #define CONFIG_PAGE_CNT_MASK 0xF |
| #define CONFIG_PAGE_CNT_SHIFT 0 |
| |
| /* NFC_IRQ_STATUS Field */ |
| #define IDLE_IRQ_BIT BIT(29) |
| #define IDLE_EN_BIT BIT(20) |
| #define CMD_DONE_CLEAR_BIT BIT(18) |
| #define IDLE_CLEAR_BIT BIT(17) |
| |
| /* |
| * ECC status - seems to consume 8 bytes (double word). The documented |
| * status byte is located in the lowest byte of the second word (which is |
| * the 4th or 7th byte depending on endianness). |
| * Calculate an offset to store the ECC status at the end of the buffer. |
| */ |
| #define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8) |
| |
| #define ECC_STATUS 0x4 |
| #define ECC_STATUS_MASK 0x80 |
| #define ECC_STATUS_ERR_COUNT 0x3F |
| |
| enum vf610_nfc_variant { |
| NFC_VFC610 = 1, |
| }; |
| |
| struct vf610_nfc { |
| struct nand_controller base; |
| struct nand_chip chip; |
| struct device *dev; |
| void __iomem *regs; |
| struct completion cmd_done; |
| /* Status and ID are in alternate locations. */ |
| enum vf610_nfc_variant variant; |
| struct clk *clk; |
| /* |
| * Indicate that user data is accessed (full page/oob). This is |
| * useful to indicate the driver whether to swap byte endianness. |
| * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram. |
| */ |
| bool data_access; |
| u32 ecc_mode; |
| }; |
| |
| static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip) |
| { |
| return container_of(chip, struct vf610_nfc, chip); |
| } |
| |
| static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg) |
| { |
| return readl(nfc->regs + reg); |
| } |
| |
| static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val) |
| { |
| writel(val, nfc->regs + reg); |
| } |
| |
| static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits) |
| { |
| vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits); |
| } |
| |
| static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits) |
| { |
| vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits); |
| } |
| |
| static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg, |
| u32 mask, u32 shift, u32 val) |
| { |
| vf610_nfc_write(nfc, reg, |
| (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift); |
| } |
| |
| static inline bool vf610_nfc_kernel_is_little_endian(void) |
| { |
| #ifdef __LITTLE_ENDIAN |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| /* |
| * Read accessor for internal SRAM buffer |
| * @dst: destination address in regular memory |
| * @src: source address in SRAM buffer |
| * @len: bytes to copy |
| * @fix_endian: Fix endianness if required |
| * |
| * Use this accessor for the internal SRAM buffers. On the ARM |
| * Freescale Vybrid SoC it's known that the driver can treat |
| * the SRAM buffer as if it's memory. Other platform might need |
| * to treat the buffers differently. |
| * |
| * The controller stores bytes from the NAND chip internally in big |
| * endianness. On little endian platforms such as Vybrid this leads |
| * to reversed byte order. |
| * For performance reason (and earlier probably due to unawareness) |
| * the driver avoids correcting endianness where it has control over |
| * write and read side (e.g. page wise data access). |
| */ |
| static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src, |
| size_t len, bool fix_endian) |
| { |
| if (vf610_nfc_kernel_is_little_endian() && fix_endian) { |
| unsigned int i; |
| |
| for (i = 0; i < len; i += 4) { |
| u32 val = swab32(__raw_readl(src + i)); |
| |
| memcpy(dst + i, &val, min(sizeof(val), len - i)); |
| } |
| } else { |
| memcpy_fromio(dst, src, len); |
| } |
| } |
| |
| /* |
| * Write accessor for internal SRAM buffer |
| * @dst: destination address in SRAM buffer |
| * @src: source address in regular memory |
| * @len: bytes to copy |
| * @fix_endian: Fix endianness if required |
| * |
| * Use this accessor for the internal SRAM buffers. On the ARM |
| * Freescale Vybrid SoC it's known that the driver can treat |
| * the SRAM buffer as if it's memory. Other platform might need |
| * to treat the buffers differently. |
| * |
| * The controller stores bytes from the NAND chip internally in big |
| * endianness. On little endian platforms such as Vybrid this leads |
| * to reversed byte order. |
| * For performance reason (and earlier probably due to unawareness) |
| * the driver avoids correcting endianness where it has control over |
| * write and read side (e.g. page wise data access). |
| */ |
| static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src, |
| size_t len, bool fix_endian) |
| { |
| if (vf610_nfc_kernel_is_little_endian() && fix_endian) { |
| unsigned int i; |
| |
| for (i = 0; i < len; i += 4) { |
| u32 val; |
| |
| memcpy(&val, src + i, min(sizeof(val), len - i)); |
| __raw_writel(swab32(val), dst + i); |
| } |
| } else { |
| memcpy_toio(dst, src, len); |
| } |
| } |
| |
| /* Clear flags for upcoming command */ |
| static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc) |
| { |
| u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS); |
| |
| tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT; |
| vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp); |
| } |
| |
| static void vf610_nfc_done(struct vf610_nfc *nfc) |
| { |
| unsigned long timeout = msecs_to_jiffies(100); |
| |
| /* |
| * Barrier is needed after this write. This write need |
| * to be done before reading the next register the first |
| * time. |
| * vf610_nfc_set implicates such a barrier by using writel |
| * to write to the register. |
| */ |
| vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); |
| vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT); |
| |
| if (!wait_for_completion_timeout(&nfc->cmd_done, timeout)) |
| dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n"); |
| |
| vf610_nfc_clear_status(nfc); |
| } |
| |
| static irqreturn_t vf610_nfc_irq(int irq, void *data) |
| { |
| struct vf610_nfc *nfc = data; |
| |
| vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); |
| complete(&nfc->cmd_done); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode) |
| { |
| vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, |
| CONFIG_ECC_MODE_MASK, |
| CONFIG_ECC_MODE_SHIFT, ecc_mode); |
| } |
| |
| static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row, |
| u32 cmd1, u32 cmd2, u32 trfr_sz) |
| { |
| vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK, |
| COL_ADDR_SHIFT, col); |
| |
| vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK, |
| ROW_ADDR_SHIFT, row); |
| |
| vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz); |
| vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1); |
| vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2); |
| |
| dev_dbg(nfc->dev, |
| "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n", |
| col, row, cmd1, cmd2, trfr_sz); |
| |
| vf610_nfc_done(nfc); |
| } |
| |
| static inline const struct nand_op_instr * |
| vf610_get_next_instr(const struct nand_subop *subop, int *op_id) |
| { |
| if (*op_id + 1 >= subop->ninstrs) |
| return NULL; |
| |
| (*op_id)++; |
| |
| return &subop->instrs[*op_id]; |
| } |
| |
| static int vf610_nfc_cmd(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| const struct nand_op_instr *instr; |
| struct vf610_nfc *nfc = chip_to_nfc(chip); |
| int op_id = -1, trfr_sz = 0, offset = 0; |
| u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0; |
| bool force8bit = false; |
| |
| /* |
| * Some ops are optional, but the hardware requires the operations |
| * to be in this exact order. |
| * The op parser enforces the order and makes sure that there isn't |
| * a read and write element in a single operation. |
| */ |
| instr = vf610_get_next_instr(subop, &op_id); |
| if (!instr) |
| return -EINVAL; |
| |
| if (instr && instr->type == NAND_OP_CMD_INSTR) { |
| cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT; |
| code |= COMMAND_CMD_BYTE1; |
| |
| instr = vf610_get_next_instr(subop, &op_id); |
| } |
| |
| if (instr && instr->type == NAND_OP_ADDR_INSTR) { |
| int naddrs = nand_subop_get_num_addr_cyc(subop, op_id); |
| int i = nand_subop_get_addr_start_off(subop, op_id); |
| |
| for (; i < naddrs; i++) { |
| u8 val = instr->ctx.addr.addrs[i]; |
| |
| if (i < 2) |
| col |= COL_ADDR(i, val); |
| else |
| row |= ROW_ADDR(i - 2, val); |
| } |
| code |= COMMAND_NADDR_BYTES(naddrs); |
| |
| instr = vf610_get_next_instr(subop, &op_id); |
| } |
| |
| if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) { |
| trfr_sz = nand_subop_get_data_len(subop, op_id); |
| offset = nand_subop_get_data_start_off(subop, op_id); |
| force8bit = instr->ctx.data.force_8bit; |
| |
| /* |
| * Don't fix endianness on page access for historical reasons. |
| * See comment in vf610_nfc_wr_to_sram |
| */ |
| vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset, |
| instr->ctx.data.buf.out + offset, |
| trfr_sz, !nfc->data_access); |
| code |= COMMAND_WRITE_DATA; |
| |
| instr = vf610_get_next_instr(subop, &op_id); |
| } |
| |
| if (instr && instr->type == NAND_OP_CMD_INSTR) { |
| cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT; |
| code |= COMMAND_CMD_BYTE2; |
| |
| instr = vf610_get_next_instr(subop, &op_id); |
| } |
| |
| if (instr && instr->type == NAND_OP_WAITRDY_INSTR) { |
| code |= COMMAND_RB_HANDSHAKE; |
| |
| instr = vf610_get_next_instr(subop, &op_id); |
| } |
| |
| if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { |
| trfr_sz = nand_subop_get_data_len(subop, op_id); |
| offset = nand_subop_get_data_start_off(subop, op_id); |
| force8bit = instr->ctx.data.force_8bit; |
| |
| code |= COMMAND_READ_DATA; |
| } |
| |
| if (force8bit && (chip->options & NAND_BUSWIDTH_16)) |
| vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); |
| |
| cmd2 |= code << CMD_CODE_SHIFT; |
| |
| vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz); |
| |
| if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { |
| /* |
| * Don't fix endianness on page access for historical reasons. |
| * See comment in vf610_nfc_rd_from_sram |
| */ |
| vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset, |
| nfc->regs + NFC_MAIN_AREA(0) + offset, |
| trfr_sz, !nfc->data_access); |
| } |
| |
| if (force8bit && (chip->options & NAND_BUSWIDTH_16)) |
| vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); |
| |
| return 0; |
| } |
| |
| static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER( |
| NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), |
| NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), |
| NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)), |
| ); |
| |
| /* |
| * This function supports Vybrid only (MPC5125 would have full RB and four CS) |
| */ |
| static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs) |
| { |
| struct vf610_nfc *nfc = chip_to_nfc(chip); |
| u32 tmp; |
| |
| /* Vybrid only (MPC5125 would have full RB and four CS) */ |
| if (nfc->variant != NFC_VFC610) |
| return; |
| |
| tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR); |
| tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK); |
| tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT; |
| tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT; |
| |
| vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp); |
| } |
| |
| static int vf610_nfc_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, |
| bool check_only) |
| { |
| if (!check_only) |
| vf610_nfc_select_target(chip, op->cs); |
| |
| return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op, |
| check_only); |
| } |
| |
| static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat, |
| uint8_t *oob, int page) |
| { |
| struct vf610_nfc *nfc = chip_to_nfc(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS; |
| u8 ecc_status; |
| u8 ecc_count; |
| int flips_threshold = nfc->chip.ecc.strength / 2; |
| |
| ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff; |
| ecc_count = ecc_status & ECC_STATUS_ERR_COUNT; |
| |
| if (!(ecc_status & ECC_STATUS_MASK)) |
| return ecc_count; |
| |
| nfc->data_access = true; |
| nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize); |
| nfc->data_access = false; |
| |
| /* |
| * On an erased page, bit count (including OOB) should be zero or |
| * at least less then half of the ECC strength. |
| */ |
| return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob, |
| mtd->oobsize, NULL, 0, |
| flips_threshold); |
| } |
| |
| static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code, |
| u32 *row) |
| { |
| *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8); |
| *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2; |
| |
| if (chip->options & NAND_ROW_ADDR_3) { |
| *row |= ROW_ADDR(2, page >> 16); |
| *code |= COMMAND_RAR_BYTE3; |
| } |
| } |
| |
| static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct vf610_nfc *nfc = chip_to_nfc(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int trfr_sz = mtd->writesize + mtd->oobsize; |
| u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; |
| int stat; |
| |
| vf610_nfc_select_target(chip, chip->cur_cs); |
| |
| cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT; |
| code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; |
| |
| vf610_nfc_fill_row(chip, page, &code, &row); |
| |
| cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT; |
| code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA; |
| |
| cmd2 |= code << CMD_CODE_SHIFT; |
| |
| vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); |
| vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); |
| vf610_nfc_ecc_mode(nfc, ECC_BYPASS); |
| |
| /* |
| * Don't fix endianness on page access for historical reasons. |
| * See comment in vf610_nfc_rd_from_sram |
| */ |
| vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0), |
| mtd->writesize, false); |
| if (oob_required) |
| vf610_nfc_rd_from_sram(chip->oob_poi, |
| nfc->regs + NFC_MAIN_AREA(0) + |
| mtd->writesize, |
| mtd->oobsize, false); |
| |
| stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page); |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| return 0; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| return stat; |
| } |
| } |
| |
| static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct vf610_nfc *nfc = chip_to_nfc(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int trfr_sz = mtd->writesize + mtd->oobsize; |
| u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; |
| u8 status; |
| int ret; |
| |
| vf610_nfc_select_target(chip, chip->cur_cs); |
| |
| cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT; |
| code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; |
| |
| vf610_nfc_fill_row(chip, page, &code, &row); |
| |
| cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT; |
| code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA; |
| |
| /* |
| * Don't fix endianness on page access for historical reasons. |
| * See comment in vf610_nfc_wr_to_sram |
| */ |
| vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf, |
| mtd->writesize, false); |
| |
| code |= COMMAND_RB_HANDSHAKE; |
| cmd2 |= code << CMD_CODE_SHIFT; |
| |
| vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); |
| vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); |
| vf610_nfc_ecc_mode(nfc, ECC_BYPASS); |
| |
| ret = nand_status_op(chip, &status); |
| if (ret) |
| return ret; |
| |
| if (status & NAND_STATUS_FAIL) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct vf610_nfc *nfc = chip_to_nfc(chip); |
| int ret; |
| |
| nfc->data_access = true; |
| ret = nand_read_page_raw(chip, buf, oob_required, page); |
| nfc->data_access = false; |
| |
| return ret; |
| } |
| |
| static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| struct vf610_nfc *nfc = chip_to_nfc(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| nfc->data_access = true; |
| ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); |
| if (!ret && oob_required) |
| ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, |
| false); |
| nfc->data_access = false; |
| |
| if (ret) |
| return ret; |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static int vf610_nfc_read_oob(struct nand_chip *chip, int page) |
| { |
| struct vf610_nfc *nfc = chip_to_nfc(chip); |
| int ret; |
| |
| nfc->data_access = true; |
| ret = nand_read_oob_std(chip, page); |
| nfc->data_access = false; |
| |
| return ret; |
| } |
| |
| static int vf610_nfc_write_oob(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct vf610_nfc *nfc = chip_to_nfc(chip); |
| int ret; |
| |
| nfc->data_access = true; |
| ret = nand_prog_page_begin_op(chip, page, mtd->writesize, |
| chip->oob_poi, mtd->oobsize); |
| nfc->data_access = false; |
| |
| if (ret) |
| return ret; |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static const struct of_device_id vf610_nfc_dt_ids[] = { |
| { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids); |
| |
| static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc) |
| { |
| vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); |
| vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT); |
| vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT); |
| vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT); |
| vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT); |
| vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT); |
| vf610_nfc_ecc_mode(nfc, ECC_BYPASS); |
| |
| /* Disable virtual pages, only one elementary transfer unit */ |
| vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK, |
| CONFIG_PAGE_CNT_SHIFT, 1); |
| } |
| |
| static void vf610_nfc_init_controller(struct vf610_nfc *nfc) |
| { |
| if (nfc->chip.options & NAND_BUSWIDTH_16) |
| vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); |
| else |
| vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); |
| |
| if (nfc->chip.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { |
| /* Set ECC status offset in SRAM */ |
| vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, |
| CONFIG_ECC_SRAM_ADDR_MASK, |
| CONFIG_ECC_SRAM_ADDR_SHIFT, |
| ECC_SRAM_ADDR >> 3); |
| |
| /* Enable ECC status in SRAM */ |
| vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT); |
| } |
| } |
| |
| static int vf610_nfc_attach_chip(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct vf610_nfc *nfc = chip_to_nfc(chip); |
| |
| vf610_nfc_init_controller(nfc); |
| |
| /* Bad block options. */ |
| if (chip->bbt_options & NAND_BBT_USE_FLASH) |
| chip->bbt_options |= NAND_BBT_NO_OOB; |
| |
| /* Single buffer only, max 256 OOB minus ECC status */ |
| if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) { |
| dev_err(nfc->dev, "Unsupported flash page size\n"); |
| return -ENXIO; |
| } |
| |
| if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) |
| return 0; |
| |
| if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) { |
| dev_err(nfc->dev, "Unsupported flash with hwecc\n"); |
| return -ENXIO; |
| } |
| |
| if (chip->ecc.size != mtd->writesize) { |
| dev_err(nfc->dev, "Step size needs to be page size\n"); |
| return -ENXIO; |
| } |
| |
| /* Only 64 byte ECC layouts known */ |
| if (mtd->oobsize > 64) |
| mtd->oobsize = 64; |
| |
| /* Use default large page ECC layout defined in NAND core */ |
| mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); |
| if (chip->ecc.strength == 32) { |
| nfc->ecc_mode = ECC_60_BYTE; |
| chip->ecc.bytes = 60; |
| } else if (chip->ecc.strength == 24) { |
| nfc->ecc_mode = ECC_45_BYTE; |
| chip->ecc.bytes = 45; |
| } else { |
| dev_err(nfc->dev, "Unsupported ECC strength\n"); |
| return -ENXIO; |
| } |
| |
| chip->ecc.read_page = vf610_nfc_read_page; |
| chip->ecc.write_page = vf610_nfc_write_page; |
| chip->ecc.read_page_raw = vf610_nfc_read_page_raw; |
| chip->ecc.write_page_raw = vf610_nfc_write_page_raw; |
| chip->ecc.read_oob = vf610_nfc_read_oob; |
| chip->ecc.write_oob = vf610_nfc_write_oob; |
| |
| chip->ecc.size = PAGE_2K; |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops vf610_nfc_controller_ops = { |
| .attach_chip = vf610_nfc_attach_chip, |
| .exec_op = vf610_nfc_exec_op, |
| |
| }; |
| |
| static int vf610_nfc_probe(struct platform_device *pdev) |
| { |
| struct vf610_nfc *nfc; |
| struct mtd_info *mtd; |
| struct nand_chip *chip; |
| struct device_node *child; |
| const struct of_device_id *of_id; |
| int err; |
| int irq; |
| |
| nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); |
| if (!nfc) |
| return -ENOMEM; |
| |
| nfc->dev = &pdev->dev; |
| chip = &nfc->chip; |
| mtd = nand_to_mtd(chip); |
| |
| mtd->owner = THIS_MODULE; |
| mtd->dev.parent = nfc->dev; |
| mtd->name = DRV_NAME; |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| nfc->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(nfc->regs)) |
| return PTR_ERR(nfc->regs); |
| |
| nfc->clk = devm_clk_get_enabled(&pdev->dev, NULL); |
| if (IS_ERR(nfc->clk)) { |
| dev_err(nfc->dev, "Unable to get and enable clock!\n"); |
| return PTR_ERR(nfc->clk); |
| } |
| |
| of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev); |
| if (!of_id) |
| return -ENODEV; |
| |
| nfc->variant = (uintptr_t)of_id->data; |
| |
| for_each_available_child_of_node(nfc->dev->of_node, child) { |
| if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) { |
| |
| if (nand_get_flash_node(chip)) { |
| dev_err(nfc->dev, |
| "Only one NAND chip supported!\n"); |
| of_node_put(child); |
| return -EINVAL; |
| } |
| |
| nand_set_flash_node(chip, child); |
| } |
| } |
| |
| if (!nand_get_flash_node(chip)) { |
| dev_err(nfc->dev, "NAND chip sub-node missing!\n"); |
| return -ENODEV; |
| } |
| |
| chip->options |= NAND_NO_SUBPAGE_WRITE; |
| |
| init_completion(&nfc->cmd_done); |
| |
| err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc); |
| if (err) { |
| dev_err(nfc->dev, "Error requesting IRQ!\n"); |
| return err; |
| } |
| |
| vf610_nfc_preinit_controller(nfc); |
| |
| nand_controller_init(&nfc->base); |
| nfc->base.ops = &vf610_nfc_controller_ops; |
| chip->controller = &nfc->base; |
| |
| /* Scan the NAND chip */ |
| err = nand_scan(chip, 1); |
| if (err) |
| return err; |
| |
| platform_set_drvdata(pdev, nfc); |
| |
| /* Register device in MTD */ |
| err = mtd_device_register(mtd, NULL, 0); |
| if (err) |
| goto err_cleanup_nand; |
| return 0; |
| |
| err_cleanup_nand: |
| nand_cleanup(chip); |
| return err; |
| } |
| |
| static void vf610_nfc_remove(struct platform_device *pdev) |
| { |
| struct vf610_nfc *nfc = platform_get_drvdata(pdev); |
| struct nand_chip *chip = &nfc->chip; |
| int ret; |
| |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int vf610_nfc_suspend(struct device *dev) |
| { |
| struct vf610_nfc *nfc = dev_get_drvdata(dev); |
| |
| clk_disable_unprepare(nfc->clk); |
| return 0; |
| } |
| |
| static int vf610_nfc_resume(struct device *dev) |
| { |
| struct vf610_nfc *nfc = dev_get_drvdata(dev); |
| int err; |
| |
| err = clk_prepare_enable(nfc->clk); |
| if (err) |
| return err; |
| |
| vf610_nfc_preinit_controller(nfc); |
| vf610_nfc_init_controller(nfc); |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume); |
| |
| static struct platform_driver vf610_nfc_driver = { |
| .driver = { |
| .name = DRV_NAME, |
| .of_match_table = vf610_nfc_dt_ids, |
| .pm = &vf610_nfc_pm_ops, |
| }, |
| .probe = vf610_nfc_probe, |
| .remove_new = vf610_nfc_remove, |
| }; |
| |
| module_platform_driver(vf610_nfc_driver); |
| |
| MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>"); |
| MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver"); |
| MODULE_LICENSE("GPL"); |