| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Common code for Intel Running Average Power Limit (RAPL) support. |
| * Copyright (c) 2019, Intel Corporation. |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/list.h> |
| #include <linux/types.h> |
| #include <linux/device.h> |
| #include <linux/slab.h> |
| #include <linux/log2.h> |
| #include <linux/bitmap.h> |
| #include <linux/delay.h> |
| #include <linux/sysfs.h> |
| #include <linux/cpu.h> |
| #include <linux/powercap.h> |
| #include <linux/suspend.h> |
| #include <linux/intel_rapl.h> |
| #include <linux/processor.h> |
| #include <linux/platform_device.h> |
| |
| #include <asm/iosf_mbi.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/intel-family.h> |
| |
| /* bitmasks for RAPL MSRs, used by primitive access functions */ |
| #define ENERGY_STATUS_MASK 0xffffffff |
| |
| #define POWER_LIMIT1_MASK 0x7FFF |
| #define POWER_LIMIT1_ENABLE BIT(15) |
| #define POWER_LIMIT1_CLAMP BIT(16) |
| |
| #define POWER_LIMIT2_MASK (0x7FFFULL<<32) |
| #define POWER_LIMIT2_ENABLE BIT_ULL(47) |
| #define POWER_LIMIT2_CLAMP BIT_ULL(48) |
| #define POWER_HIGH_LOCK BIT_ULL(63) |
| #define POWER_LOW_LOCK BIT(31) |
| |
| #define POWER_LIMIT4_MASK 0x1FFF |
| |
| #define TIME_WINDOW1_MASK (0x7FULL<<17) |
| #define TIME_WINDOW2_MASK (0x7FULL<<49) |
| |
| #define POWER_UNIT_OFFSET 0 |
| #define POWER_UNIT_MASK 0x0F |
| |
| #define ENERGY_UNIT_OFFSET 0x08 |
| #define ENERGY_UNIT_MASK 0x1F00 |
| |
| #define TIME_UNIT_OFFSET 0x10 |
| #define TIME_UNIT_MASK 0xF0000 |
| |
| #define POWER_INFO_MAX_MASK (0x7fffULL<<32) |
| #define POWER_INFO_MIN_MASK (0x7fffULL<<16) |
| #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48) |
| #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff |
| |
| #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff |
| #define PP_POLICY_MASK 0x1F |
| |
| /* |
| * SPR has different layout for Psys Domain PowerLimit registers. |
| * There are 17 bits of PL1 and PL2 instead of 15 bits. |
| * The Enable bits and TimeWindow bits are also shifted as a result. |
| */ |
| #define PSYS_POWER_LIMIT1_MASK 0x1FFFF |
| #define PSYS_POWER_LIMIT1_ENABLE BIT(17) |
| |
| #define PSYS_POWER_LIMIT2_MASK (0x1FFFFULL<<32) |
| #define PSYS_POWER_LIMIT2_ENABLE BIT_ULL(49) |
| |
| #define PSYS_TIME_WINDOW1_MASK (0x7FULL<<19) |
| #define PSYS_TIME_WINDOW2_MASK (0x7FULL<<51) |
| |
| /* bitmasks for RAPL TPMI, used by primitive access functions */ |
| #define TPMI_POWER_LIMIT_MASK 0x3FFFF |
| #define TPMI_POWER_LIMIT_ENABLE BIT_ULL(62) |
| #define TPMI_TIME_WINDOW_MASK (0x7FULL<<18) |
| #define TPMI_INFO_SPEC_MASK 0x3FFFF |
| #define TPMI_INFO_MIN_MASK (0x3FFFFULL << 18) |
| #define TPMI_INFO_MAX_MASK (0x3FFFFULL << 36) |
| #define TPMI_INFO_MAX_TIME_WIN_MASK (0x7FULL << 54) |
| |
| /* Non HW constants */ |
| #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */ |
| #define RAPL_PRIMITIVE_DUMMY BIT(2) |
| |
| #define TIME_WINDOW_MAX_MSEC 40000 |
| #define TIME_WINDOW_MIN_MSEC 250 |
| #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */ |
| enum unit_type { |
| ARBITRARY_UNIT, /* no translation */ |
| POWER_UNIT, |
| ENERGY_UNIT, |
| TIME_UNIT, |
| }; |
| |
| /* per domain data, some are optional */ |
| #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2) |
| |
| #define DOMAIN_STATE_INACTIVE BIT(0) |
| #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1) |
| |
| static const char *pl_names[NR_POWER_LIMITS] = { |
| [POWER_LIMIT1] = "long_term", |
| [POWER_LIMIT2] = "short_term", |
| [POWER_LIMIT4] = "peak_power", |
| }; |
| |
| enum pl_prims { |
| PL_ENABLE, |
| PL_CLAMP, |
| PL_LIMIT, |
| PL_TIME_WINDOW, |
| PL_MAX_POWER, |
| PL_LOCK, |
| }; |
| |
| static bool is_pl_valid(struct rapl_domain *rd, int pl) |
| { |
| if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4) |
| return false; |
| return rd->rpl[pl].name ? true : false; |
| } |
| |
| static int get_pl_lock_prim(struct rapl_domain *rd, int pl) |
| { |
| if (rd->rp->priv->type == RAPL_IF_TPMI) { |
| if (pl == POWER_LIMIT1) |
| return PL1_LOCK; |
| if (pl == POWER_LIMIT2) |
| return PL2_LOCK; |
| if (pl == POWER_LIMIT4) |
| return PL4_LOCK; |
| } |
| |
| /* MSR/MMIO Interface doesn't have Lock bit for PL4 */ |
| if (pl == POWER_LIMIT4) |
| return -EINVAL; |
| |
| /* |
| * Power Limit register that supports two power limits has a different |
| * bit position for the Lock bit. |
| */ |
| if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2)) |
| return FW_HIGH_LOCK; |
| return FW_LOCK; |
| } |
| |
| static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim) |
| { |
| switch (pl) { |
| case POWER_LIMIT1: |
| if (prim == PL_ENABLE) |
| return PL1_ENABLE; |
| if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI) |
| return PL1_CLAMP; |
| if (prim == PL_LIMIT) |
| return POWER_LIMIT1; |
| if (prim == PL_TIME_WINDOW) |
| return TIME_WINDOW1; |
| if (prim == PL_MAX_POWER) |
| return THERMAL_SPEC_POWER; |
| if (prim == PL_LOCK) |
| return get_pl_lock_prim(rd, pl); |
| return -EINVAL; |
| case POWER_LIMIT2: |
| if (prim == PL_ENABLE) |
| return PL2_ENABLE; |
| if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI) |
| return PL2_CLAMP; |
| if (prim == PL_LIMIT) |
| return POWER_LIMIT2; |
| if (prim == PL_TIME_WINDOW) |
| return TIME_WINDOW2; |
| if (prim == PL_MAX_POWER) |
| return MAX_POWER; |
| if (prim == PL_LOCK) |
| return get_pl_lock_prim(rd, pl); |
| return -EINVAL; |
| case POWER_LIMIT4: |
| if (prim == PL_LIMIT) |
| return POWER_LIMIT4; |
| if (prim == PL_ENABLE) |
| return PL4_ENABLE; |
| /* PL4 would be around two times PL2, use same prim as PL2. */ |
| if (prim == PL_MAX_POWER) |
| return MAX_POWER; |
| if (prim == PL_LOCK) |
| return get_pl_lock_prim(rd, pl); |
| return -EINVAL; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| #define power_zone_to_rapl_domain(_zone) \ |
| container_of(_zone, struct rapl_domain, power_zone) |
| |
| struct rapl_defaults { |
| u8 floor_freq_reg_addr; |
| int (*check_unit)(struct rapl_domain *rd); |
| void (*set_floor_freq)(struct rapl_domain *rd, bool mode); |
| u64 (*compute_time_window)(struct rapl_domain *rd, u64 val, |
| bool to_raw); |
| unsigned int dram_domain_energy_unit; |
| unsigned int psys_domain_energy_unit; |
| bool spr_psys_bits; |
| }; |
| static struct rapl_defaults *defaults_msr; |
| static const struct rapl_defaults defaults_tpmi; |
| |
| static struct rapl_defaults *get_defaults(struct rapl_package *rp) |
| { |
| return rp->priv->defaults; |
| } |
| |
| /* Sideband MBI registers */ |
| #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2) |
| #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf) |
| |
| #define PACKAGE_PLN_INT_SAVED BIT(0) |
| #define MAX_PRIM_NAME (32) |
| |
| /* per domain data. used to describe individual knobs such that access function |
| * can be consolidated into one instead of many inline functions. |
| */ |
| struct rapl_primitive_info { |
| const char *name; |
| u64 mask; |
| int shift; |
| enum rapl_domain_reg_id id; |
| enum unit_type unit; |
| u32 flag; |
| }; |
| |
| #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \ |
| .name = #p, \ |
| .mask = m, \ |
| .shift = s, \ |
| .id = i, \ |
| .unit = u, \ |
| .flag = f \ |
| } |
| |
| static void rapl_init_domains(struct rapl_package *rp); |
| static int rapl_read_data_raw(struct rapl_domain *rd, |
| enum rapl_primitives prim, |
| bool xlate, u64 *data); |
| static int rapl_write_data_raw(struct rapl_domain *rd, |
| enum rapl_primitives prim, |
| unsigned long long value); |
| static int rapl_read_pl_data(struct rapl_domain *rd, int pl, |
| enum pl_prims pl_prim, |
| bool xlate, u64 *data); |
| static int rapl_write_pl_data(struct rapl_domain *rd, int pl, |
| enum pl_prims pl_prim, |
| unsigned long long value); |
| static u64 rapl_unit_xlate(struct rapl_domain *rd, |
| enum unit_type type, u64 value, int to_raw); |
| static void package_power_limit_irq_save(struct rapl_package *rp); |
| |
| static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */ |
| |
| static const char *const rapl_domain_names[] = { |
| "package", |
| "core", |
| "uncore", |
| "dram", |
| "psys", |
| }; |
| |
| static int get_energy_counter(struct powercap_zone *power_zone, |
| u64 *energy_raw) |
| { |
| struct rapl_domain *rd; |
| u64 energy_now; |
| |
| /* prevent CPU hotplug, make sure the RAPL domain does not go |
| * away while reading the counter. |
| */ |
| cpus_read_lock(); |
| rd = power_zone_to_rapl_domain(power_zone); |
| |
| if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) { |
| *energy_raw = energy_now; |
| cpus_read_unlock(); |
| |
| return 0; |
| } |
| cpus_read_unlock(); |
| |
| return -EIO; |
| } |
| |
| static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy) |
| { |
| struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev); |
| |
| *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0); |
| return 0; |
| } |
| |
| static int release_zone(struct powercap_zone *power_zone) |
| { |
| struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone); |
| struct rapl_package *rp = rd->rp; |
| |
| /* package zone is the last zone of a package, we can free |
| * memory here since all children has been unregistered. |
| */ |
| if (rd->id == RAPL_DOMAIN_PACKAGE) { |
| kfree(rd); |
| rp->domains = NULL; |
| } |
| |
| return 0; |
| |
| } |
| |
| static int find_nr_power_limit(struct rapl_domain *rd) |
| { |
| int i, nr_pl = 0; |
| |
| for (i = 0; i < NR_POWER_LIMITS; i++) { |
| if (is_pl_valid(rd, i)) |
| nr_pl++; |
| } |
| |
| return nr_pl; |
| } |
| |
| static int set_domain_enable(struct powercap_zone *power_zone, bool mode) |
| { |
| struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone); |
| struct rapl_defaults *defaults = get_defaults(rd->rp); |
| int ret; |
| |
| cpus_read_lock(); |
| ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode); |
| if (!ret && defaults->set_floor_freq) |
| defaults->set_floor_freq(rd, mode); |
| cpus_read_unlock(); |
| |
| return ret; |
| } |
| |
| static int get_domain_enable(struct powercap_zone *power_zone, bool *mode) |
| { |
| struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone); |
| u64 val; |
| int ret; |
| |
| if (rd->rpl[POWER_LIMIT1].locked) { |
| *mode = false; |
| return 0; |
| } |
| cpus_read_lock(); |
| ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val); |
| if (!ret) |
| *mode = val; |
| cpus_read_unlock(); |
| |
| return ret; |
| } |
| |
| /* per RAPL domain ops, in the order of rapl_domain_type */ |
| static const struct powercap_zone_ops zone_ops[] = { |
| /* RAPL_DOMAIN_PACKAGE */ |
| { |
| .get_energy_uj = get_energy_counter, |
| .get_max_energy_range_uj = get_max_energy_counter, |
| .release = release_zone, |
| .set_enable = set_domain_enable, |
| .get_enable = get_domain_enable, |
| }, |
| /* RAPL_DOMAIN_PP0 */ |
| { |
| .get_energy_uj = get_energy_counter, |
| .get_max_energy_range_uj = get_max_energy_counter, |
| .release = release_zone, |
| .set_enable = set_domain_enable, |
| .get_enable = get_domain_enable, |
| }, |
| /* RAPL_DOMAIN_PP1 */ |
| { |
| .get_energy_uj = get_energy_counter, |
| .get_max_energy_range_uj = get_max_energy_counter, |
| .release = release_zone, |
| .set_enable = set_domain_enable, |
| .get_enable = get_domain_enable, |
| }, |
| /* RAPL_DOMAIN_DRAM */ |
| { |
| .get_energy_uj = get_energy_counter, |
| .get_max_energy_range_uj = get_max_energy_counter, |
| .release = release_zone, |
| .set_enable = set_domain_enable, |
| .get_enable = get_domain_enable, |
| }, |
| /* RAPL_DOMAIN_PLATFORM */ |
| { |
| .get_energy_uj = get_energy_counter, |
| .get_max_energy_range_uj = get_max_energy_counter, |
| .release = release_zone, |
| .set_enable = set_domain_enable, |
| .get_enable = get_domain_enable, |
| }, |
| }; |
| |
| /* |
| * Constraint index used by powercap can be different than power limit (PL) |
| * index in that some PLs maybe missing due to non-existent MSRs. So we |
| * need to convert here by finding the valid PLs only (name populated). |
| */ |
| static int contraint_to_pl(struct rapl_domain *rd, int cid) |
| { |
| int i, j; |
| |
| for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) { |
| if (is_pl_valid(rd, i) && j++ == cid) { |
| pr_debug("%s: index %d\n", __func__, i); |
| return i; |
| } |
| } |
| pr_err("Cannot find matching power limit for constraint %d\n", cid); |
| |
| return -EINVAL; |
| } |
| |
| static int set_power_limit(struct powercap_zone *power_zone, int cid, |
| u64 power_limit) |
| { |
| struct rapl_domain *rd; |
| struct rapl_package *rp; |
| int ret = 0; |
| int id; |
| |
| cpus_read_lock(); |
| rd = power_zone_to_rapl_domain(power_zone); |
| id = contraint_to_pl(rd, cid); |
| rp = rd->rp; |
| |
| ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit); |
| if (!ret) |
| package_power_limit_irq_save(rp); |
| cpus_read_unlock(); |
| return ret; |
| } |
| |
| static int get_current_power_limit(struct powercap_zone *power_zone, int cid, |
| u64 *data) |
| { |
| struct rapl_domain *rd; |
| u64 val; |
| int ret = 0; |
| int id; |
| |
| cpus_read_lock(); |
| rd = power_zone_to_rapl_domain(power_zone); |
| id = contraint_to_pl(rd, cid); |
| |
| ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val); |
| if (!ret) |
| *data = val; |
| |
| cpus_read_unlock(); |
| |
| return ret; |
| } |
| |
| static int set_time_window(struct powercap_zone *power_zone, int cid, |
| u64 window) |
| { |
| struct rapl_domain *rd; |
| int ret = 0; |
| int id; |
| |
| cpus_read_lock(); |
| rd = power_zone_to_rapl_domain(power_zone); |
| id = contraint_to_pl(rd, cid); |
| |
| ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window); |
| |
| cpus_read_unlock(); |
| return ret; |
| } |
| |
| static int get_time_window(struct powercap_zone *power_zone, int cid, |
| u64 *data) |
| { |
| struct rapl_domain *rd; |
| u64 val; |
| int ret = 0; |
| int id; |
| |
| cpus_read_lock(); |
| rd = power_zone_to_rapl_domain(power_zone); |
| id = contraint_to_pl(rd, cid); |
| |
| ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val); |
| if (!ret) |
| *data = val; |
| |
| cpus_read_unlock(); |
| |
| return ret; |
| } |
| |
| static const char *get_constraint_name(struct powercap_zone *power_zone, |
| int cid) |
| { |
| struct rapl_domain *rd; |
| int id; |
| |
| rd = power_zone_to_rapl_domain(power_zone); |
| id = contraint_to_pl(rd, cid); |
| if (id >= 0) |
| return rd->rpl[id].name; |
| |
| return NULL; |
| } |
| |
| static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data) |
| { |
| struct rapl_domain *rd; |
| u64 val; |
| int ret = 0; |
| int id; |
| |
| cpus_read_lock(); |
| rd = power_zone_to_rapl_domain(power_zone); |
| id = contraint_to_pl(rd, cid); |
| |
| ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val); |
| if (!ret) |
| *data = val; |
| |
| /* As a generalization rule, PL4 would be around two times PL2. */ |
| if (id == POWER_LIMIT4) |
| *data = *data * 2; |
| |
| cpus_read_unlock(); |
| |
| return ret; |
| } |
| |
| static const struct powercap_zone_constraint_ops constraint_ops = { |
| .set_power_limit_uw = set_power_limit, |
| .get_power_limit_uw = get_current_power_limit, |
| .set_time_window_us = set_time_window, |
| .get_time_window_us = get_time_window, |
| .get_max_power_uw = get_max_power, |
| .get_name = get_constraint_name, |
| }; |
| |
| /* Return the id used for read_raw/write_raw callback */ |
| static int get_rid(struct rapl_package *rp) |
| { |
| return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id; |
| } |
| |
| /* called after domain detection and package level data are set */ |
| static void rapl_init_domains(struct rapl_package *rp) |
| { |
| enum rapl_domain_type i; |
| enum rapl_domain_reg_id j; |
| struct rapl_domain *rd = rp->domains; |
| |
| for (i = 0; i < RAPL_DOMAIN_MAX; i++) { |
| unsigned int mask = rp->domain_map & (1 << i); |
| int t; |
| |
| if (!mask) |
| continue; |
| |
| rd->rp = rp; |
| |
| if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) { |
| snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d", |
| rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) : |
| rp->id); |
| } else { |
| snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s", |
| rapl_domain_names[i]); |
| } |
| |
| rd->id = i; |
| |
| /* PL1 is supported by default */ |
| rp->priv->limits[i] |= BIT(POWER_LIMIT1); |
| |
| for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) { |
| if (rp->priv->limits[i] & BIT(t)) |
| rd->rpl[t].name = pl_names[t]; |
| } |
| |
| for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++) |
| rd->regs[j] = rp->priv->regs[i][j]; |
| |
| rd++; |
| } |
| } |
| |
| static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type, |
| u64 value, int to_raw) |
| { |
| u64 units = 1; |
| struct rapl_defaults *defaults = get_defaults(rd->rp); |
| u64 scale = 1; |
| |
| switch (type) { |
| case POWER_UNIT: |
| units = rd->power_unit; |
| break; |
| case ENERGY_UNIT: |
| scale = ENERGY_UNIT_SCALE; |
| units = rd->energy_unit; |
| break; |
| case TIME_UNIT: |
| return defaults->compute_time_window(rd, value, to_raw); |
| case ARBITRARY_UNIT: |
| default: |
| return value; |
| } |
| |
| if (to_raw) |
| return div64_u64(value, units) * scale; |
| |
| value *= units; |
| |
| return div64_u64(value, scale); |
| } |
| |
| /* RAPL primitives for MSR and MMIO I/F */ |
| static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = { |
| /* name, mask, shift, msr index, unit divisor */ |
| [POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0, |
| RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), |
| [POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32, |
| RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), |
| [POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0, |
| RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0), |
| [ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0, |
| RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0), |
| [FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31, |
| RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), |
| [FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63, |
| RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), |
| [PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15, |
| RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), |
| [PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16, |
| RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), |
| [PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47, |
| RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), |
| [PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48, |
| RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), |
| [TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17, |
| RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), |
| [TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49, |
| RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), |
| [THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK, |
| 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), |
| [MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32, |
| RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), |
| [MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16, |
| RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), |
| [MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48, |
| RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0), |
| [THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0, |
| RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0), |
| [PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0, |
| RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0), |
| [PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0, |
| RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), |
| [PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32, |
| RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), |
| [PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17, |
| RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), |
| [PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49, |
| RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), |
| [PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19, |
| RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), |
| [PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51, |
| RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), |
| /* non-hardware */ |
| [AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT, |
| RAPL_PRIMITIVE_DERIVED), |
| }; |
| |
| /* RAPL primitives for TPMI I/F */ |
| static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = { |
| /* name, mask, shift, msr index, unit divisor */ |
| [POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0, |
| RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), |
| [POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0, |
| RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0), |
| [POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0, |
| RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0), |
| [ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0, |
| RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0), |
| [PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63, |
| RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), |
| [PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63, |
| RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0), |
| [PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63, |
| RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0), |
| [PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62, |
| RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), |
| [PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62, |
| RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0), |
| [PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62, |
| RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0), |
| [TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18, |
| RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), |
| [TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18, |
| RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0), |
| [THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0, |
| RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), |
| [MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36, |
| RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), |
| [MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18, |
| RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), |
| [MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54, |
| RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0), |
| [THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0, |
| RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0), |
| /* non-hardware */ |
| [AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, |
| POWER_UNIT, RAPL_PRIMITIVE_DERIVED), |
| }; |
| |
| static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim) |
| { |
| struct rapl_primitive_info *rpi = rp->priv->rpi; |
| |
| if (prim < 0 || prim > NR_RAPL_PRIMITIVES || !rpi) |
| return NULL; |
| |
| return &rpi[prim]; |
| } |
| |
| static int rapl_config(struct rapl_package *rp) |
| { |
| switch (rp->priv->type) { |
| /* MMIO I/F shares the same register layout as MSR registers */ |
| case RAPL_IF_MMIO: |
| case RAPL_IF_MSR: |
| rp->priv->defaults = (void *)defaults_msr; |
| rp->priv->rpi = (void *)rpi_msr; |
| break; |
| case RAPL_IF_TPMI: |
| rp->priv->defaults = (void *)&defaults_tpmi; |
| rp->priv->rpi = (void *)rpi_tpmi; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static enum rapl_primitives |
| prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim) |
| { |
| struct rapl_defaults *defaults = get_defaults(rd->rp); |
| |
| if (!defaults->spr_psys_bits) |
| return prim; |
| |
| if (rd->id != RAPL_DOMAIN_PLATFORM) |
| return prim; |
| |
| switch (prim) { |
| case POWER_LIMIT1: |
| return PSYS_POWER_LIMIT1; |
| case POWER_LIMIT2: |
| return PSYS_POWER_LIMIT2; |
| case PL1_ENABLE: |
| return PSYS_PL1_ENABLE; |
| case PL2_ENABLE: |
| return PSYS_PL2_ENABLE; |
| case TIME_WINDOW1: |
| return PSYS_TIME_WINDOW1; |
| case TIME_WINDOW2: |
| return PSYS_TIME_WINDOW2; |
| default: |
| return prim; |
| } |
| } |
| |
| /* Read primitive data based on its related struct rapl_primitive_info. |
| * if xlate flag is set, return translated data based on data units, i.e. |
| * time, energy, and power. |
| * RAPL MSRs are non-architectual and are laid out not consistently across |
| * domains. Here we use primitive info to allow writing consolidated access |
| * functions. |
| * For a given primitive, it is processed by MSR mask and shift. Unit conversion |
| * is pre-assigned based on RAPL unit MSRs read at init time. |
| * 63-------------------------- 31--------------------------- 0 |
| * | xxxxx (mask) | |
| * | |<- shift ----------------| |
| * 63-------------------------- 31--------------------------- 0 |
| */ |
| static int rapl_read_data_raw(struct rapl_domain *rd, |
| enum rapl_primitives prim, bool xlate, u64 *data) |
| { |
| u64 value; |
| enum rapl_primitives prim_fixed = prim_fixups(rd, prim); |
| struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed); |
| struct reg_action ra; |
| |
| if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY) |
| return -EINVAL; |
| |
| ra.reg = rd->regs[rpi->id]; |
| if (!ra.reg.val) |
| return -EINVAL; |
| |
| /* non-hardware data are collected by the polling thread */ |
| if (rpi->flag & RAPL_PRIMITIVE_DERIVED) { |
| *data = rd->rdd.primitives[prim]; |
| return 0; |
| } |
| |
| ra.mask = rpi->mask; |
| |
| if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) { |
| pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name); |
| return -EIO; |
| } |
| |
| value = ra.value >> rpi->shift; |
| |
| if (xlate) |
| *data = rapl_unit_xlate(rd, rpi->unit, value, 0); |
| else |
| *data = value; |
| |
| return 0; |
| } |
| |
| /* Similar use of primitive info in the read counterpart */ |
| static int rapl_write_data_raw(struct rapl_domain *rd, |
| enum rapl_primitives prim, |
| unsigned long long value) |
| { |
| enum rapl_primitives prim_fixed = prim_fixups(rd, prim); |
| struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed); |
| u64 bits; |
| struct reg_action ra; |
| int ret; |
| |
| if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY) |
| return -EINVAL; |
| |
| bits = rapl_unit_xlate(rd, rpi->unit, value, 1); |
| bits <<= rpi->shift; |
| bits &= rpi->mask; |
| |
| memset(&ra, 0, sizeof(ra)); |
| |
| ra.reg = rd->regs[rpi->id]; |
| ra.mask = rpi->mask; |
| ra.value = bits; |
| |
| ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra); |
| |
| return ret; |
| } |
| |
| static int rapl_read_pl_data(struct rapl_domain *rd, int pl, |
| enum pl_prims pl_prim, bool xlate, u64 *data) |
| { |
| enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim); |
| |
| if (!is_pl_valid(rd, pl)) |
| return -EINVAL; |
| |
| return rapl_read_data_raw(rd, prim, xlate, data); |
| } |
| |
| static int rapl_write_pl_data(struct rapl_domain *rd, int pl, |
| enum pl_prims pl_prim, |
| unsigned long long value) |
| { |
| enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim); |
| |
| if (!is_pl_valid(rd, pl)) |
| return -EINVAL; |
| |
| if (rd->rpl[pl].locked) { |
| pr_warn("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]); |
| return -EACCES; |
| } |
| |
| return rapl_write_data_raw(rd, prim, value); |
| } |
| /* |
| * Raw RAPL data stored in MSRs are in certain scales. We need to |
| * convert them into standard units based on the units reported in |
| * the RAPL unit MSRs. This is specific to CPUs as the method to |
| * calculate units differ on different CPUs. |
| * We convert the units to below format based on CPUs. |
| * i.e. |
| * energy unit: picoJoules : Represented in picoJoules by default |
| * power unit : microWatts : Represented in milliWatts by default |
| * time unit : microseconds: Represented in seconds by default |
| */ |
| static int rapl_check_unit_core(struct rapl_domain *rd) |
| { |
| struct reg_action ra; |
| u32 value; |
| |
| ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT]; |
| ra.mask = ~0; |
| if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) { |
| pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n", |
| ra.reg.val, rd->rp->name, rd->name); |
| return -ENODEV; |
| } |
| |
| value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET; |
| rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value); |
| |
| value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET; |
| rd->power_unit = 1000000 / (1 << value); |
| |
| value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET; |
| rd->time_unit = 1000000 / (1 << value); |
| |
| pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n", |
| rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit); |
| |
| return 0; |
| } |
| |
| static int rapl_check_unit_atom(struct rapl_domain *rd) |
| { |
| struct reg_action ra; |
| u32 value; |
| |
| ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT]; |
| ra.mask = ~0; |
| if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) { |
| pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n", |
| ra.reg.val, rd->rp->name, rd->name); |
| return -ENODEV; |
| } |
| |
| value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET; |
| rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value; |
| |
| value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET; |
| rd->power_unit = (1 << value) * 1000; |
| |
| value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET; |
| rd->time_unit = 1000000 / (1 << value); |
| |
| pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n", |
| rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit); |
| |
| return 0; |
| } |
| |
| static void power_limit_irq_save_cpu(void *info) |
| { |
| u32 l, h = 0; |
| struct rapl_package *rp = (struct rapl_package *)info; |
| |
| /* save the state of PLN irq mask bit before disabling it */ |
| rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h); |
| if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) { |
| rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE; |
| rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED; |
| } |
| l &= ~PACKAGE_THERM_INT_PLN_ENABLE; |
| wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); |
| } |
| |
| /* REVISIT: |
| * When package power limit is set artificially low by RAPL, LVT |
| * thermal interrupt for package power limit should be ignored |
| * since we are not really exceeding the real limit. The intention |
| * is to avoid excessive interrupts while we are trying to save power. |
| * A useful feature might be routing the package_power_limit interrupt |
| * to userspace via eventfd. once we have a usecase, this is simple |
| * to do by adding an atomic notifier. |
| */ |
| |
| static void package_power_limit_irq_save(struct rapl_package *rp) |
| { |
| if (rp->lead_cpu < 0) |
| return; |
| |
| if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN)) |
| return; |
| |
| smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1); |
| } |
| |
| /* |
| * Restore per package power limit interrupt enable state. Called from cpu |
| * hotplug code on package removal. |
| */ |
| static void package_power_limit_irq_restore(struct rapl_package *rp) |
| { |
| u32 l, h; |
| |
| if (rp->lead_cpu < 0) |
| return; |
| |
| if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN)) |
| return; |
| |
| /* irq enable state not saved, nothing to restore */ |
| if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) |
| return; |
| |
| rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h); |
| |
| if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE) |
| l |= PACKAGE_THERM_INT_PLN_ENABLE; |
| else |
| l &= ~PACKAGE_THERM_INT_PLN_ENABLE; |
| |
| wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); |
| } |
| |
| static void set_floor_freq_default(struct rapl_domain *rd, bool mode) |
| { |
| int i; |
| |
| /* always enable clamp such that p-state can go below OS requested |
| * range. power capping priority over guranteed frequency. |
| */ |
| rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode); |
| |
| for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) { |
| rapl_write_pl_data(rd, i, PL_ENABLE, mode); |
| rapl_write_pl_data(rd, i, PL_CLAMP, mode); |
| } |
| } |
| |
| static void set_floor_freq_atom(struct rapl_domain *rd, bool enable) |
| { |
| static u32 power_ctrl_orig_val; |
| struct rapl_defaults *defaults = get_defaults(rd->rp); |
| u32 mdata; |
| |
| if (!defaults->floor_freq_reg_addr) { |
| pr_err("Invalid floor frequency config register\n"); |
| return; |
| } |
| |
| if (!power_ctrl_orig_val) |
| iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ, |
| defaults->floor_freq_reg_addr, |
| &power_ctrl_orig_val); |
| mdata = power_ctrl_orig_val; |
| if (enable) { |
| mdata &= ~(0x7f << 8); |
| mdata |= 1 << 8; |
| } |
| iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE, |
| defaults->floor_freq_reg_addr, mdata); |
| } |
| |
| static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value, |
| bool to_raw) |
| { |
| u64 f, y; /* fraction and exp. used for time unit */ |
| |
| /* |
| * Special processing based on 2^Y*(1+F/4), refer |
| * to Intel Software Developer's manual Vol.3B: CH 14.9.3. |
| */ |
| if (!to_raw) { |
| f = (value & 0x60) >> 5; |
| y = value & 0x1f; |
| value = (1 << y) * (4 + f) * rd->time_unit / 4; |
| } else { |
| if (value < rd->time_unit) |
| return 0; |
| |
| do_div(value, rd->time_unit); |
| y = ilog2(value); |
| |
| /* |
| * The target hardware field is 7 bits wide, so return all ones |
| * if the exponent is too large. |
| */ |
| if (y > 0x1f) |
| return 0x7f; |
| |
| f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y); |
| value = (y & 0x1f) | ((f & 0x3) << 5); |
| } |
| return value; |
| } |
| |
| static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value, |
| bool to_raw) |
| { |
| /* |
| * Atom time unit encoding is straight forward val * time_unit, |
| * where time_unit is default to 1 sec. Never 0. |
| */ |
| if (!to_raw) |
| return (value) ? value * rd->time_unit : rd->time_unit; |
| |
| value = div64_u64(value, rd->time_unit); |
| |
| return value; |
| } |
| |
| /* TPMI Unit register has different layout */ |
| #define TPMI_POWER_UNIT_OFFSET POWER_UNIT_OFFSET |
| #define TPMI_POWER_UNIT_MASK POWER_UNIT_MASK |
| #define TPMI_ENERGY_UNIT_OFFSET 0x06 |
| #define TPMI_ENERGY_UNIT_MASK 0x7C0 |
| #define TPMI_TIME_UNIT_OFFSET 0x0C |
| #define TPMI_TIME_UNIT_MASK 0xF000 |
| |
| static int rapl_check_unit_tpmi(struct rapl_domain *rd) |
| { |
| struct reg_action ra; |
| u32 value; |
| |
| ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT]; |
| ra.mask = ~0; |
| if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) { |
| pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n", |
| ra.reg.val, rd->rp->name, rd->name); |
| return -ENODEV; |
| } |
| |
| value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET; |
| rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value); |
| |
| value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET; |
| rd->power_unit = 1000000 / (1 << value); |
| |
| value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET; |
| rd->time_unit = 1000000 / (1 << value); |
| |
| pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n", |
| rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit); |
| |
| return 0; |
| } |
| |
| static const struct rapl_defaults defaults_tpmi = { |
| .check_unit = rapl_check_unit_tpmi, |
| /* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */ |
| .set_floor_freq = set_floor_freq_default, |
| .compute_time_window = rapl_compute_time_window_core, |
| }; |
| |
| static const struct rapl_defaults rapl_defaults_core = { |
| .floor_freq_reg_addr = 0, |
| .check_unit = rapl_check_unit_core, |
| .set_floor_freq = set_floor_freq_default, |
| .compute_time_window = rapl_compute_time_window_core, |
| }; |
| |
| static const struct rapl_defaults rapl_defaults_hsw_server = { |
| .check_unit = rapl_check_unit_core, |
| .set_floor_freq = set_floor_freq_default, |
| .compute_time_window = rapl_compute_time_window_core, |
| .dram_domain_energy_unit = 15300, |
| }; |
| |
| static const struct rapl_defaults rapl_defaults_spr_server = { |
| .check_unit = rapl_check_unit_core, |
| .set_floor_freq = set_floor_freq_default, |
| .compute_time_window = rapl_compute_time_window_core, |
| .psys_domain_energy_unit = 1000000000, |
| .spr_psys_bits = true, |
| }; |
| |
| static const struct rapl_defaults rapl_defaults_byt = { |
| .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT, |
| .check_unit = rapl_check_unit_atom, |
| .set_floor_freq = set_floor_freq_atom, |
| .compute_time_window = rapl_compute_time_window_atom, |
| }; |
| |
| static const struct rapl_defaults rapl_defaults_tng = { |
| .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG, |
| .check_unit = rapl_check_unit_atom, |
| .set_floor_freq = set_floor_freq_atom, |
| .compute_time_window = rapl_compute_time_window_atom, |
| }; |
| |
| static const struct rapl_defaults rapl_defaults_ann = { |
| .floor_freq_reg_addr = 0, |
| .check_unit = rapl_check_unit_atom, |
| .set_floor_freq = NULL, |
| .compute_time_window = rapl_compute_time_window_atom, |
| }; |
| |
| static const struct rapl_defaults rapl_defaults_cht = { |
| .floor_freq_reg_addr = 0, |
| .check_unit = rapl_check_unit_atom, |
| .set_floor_freq = NULL, |
| .compute_time_window = rapl_compute_time_window_atom, |
| }; |
| |
| static const struct rapl_defaults rapl_defaults_amd = { |
| .check_unit = rapl_check_unit_core, |
| }; |
| |
| static const struct x86_cpu_id rapl_ids[] __initconst = { |
| X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &rapl_defaults_core), |
| |
| X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &rapl_defaults_core), |
| |
| X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &rapl_defaults_hsw_server), |
| |
| X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &rapl_defaults_hsw_server), |
| |
| X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &rapl_defaults_hsw_server), |
| X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &rapl_defaults_hsw_server), |
| X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &rapl_defaults_hsw_server), |
| X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &rapl_defaults_spr_server), |
| X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &rapl_defaults_spr_server), |
| X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD, &rapl_defaults_core), |
| |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &rapl_defaults_byt), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &rapl_defaults_cht), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &rapl_defaults_ann), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &rapl_defaults_core), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, &rapl_defaults_core), |
| |
| X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &rapl_defaults_hsw_server), |
| X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &rapl_defaults_hsw_server), |
| |
| X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd), |
| X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd), |
| X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd), |
| {} |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, rapl_ids); |
| |
| /* Read once for all raw primitive data for domains */ |
| static void rapl_update_domain_data(struct rapl_package *rp) |
| { |
| int dmn, prim; |
| u64 val; |
| |
| for (dmn = 0; dmn < rp->nr_domains; dmn++) { |
| pr_debug("update %s domain %s data\n", rp->name, |
| rp->domains[dmn].name); |
| /* exclude non-raw primitives */ |
| for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) { |
| struct rapl_primitive_info *rpi = get_rpi(rp, prim); |
| |
| if (!rapl_read_data_raw(&rp->domains[dmn], prim, |
| rpi->unit, &val)) |
| rp->domains[dmn].rdd.primitives[prim] = val; |
| } |
| } |
| |
| } |
| |
| static int rapl_package_register_powercap(struct rapl_package *rp) |
| { |
| struct rapl_domain *rd; |
| struct powercap_zone *power_zone = NULL; |
| int nr_pl, ret; |
| |
| /* Update the domain data of the new package */ |
| rapl_update_domain_data(rp); |
| |
| /* first we register package domain as the parent zone */ |
| for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) { |
| if (rd->id == RAPL_DOMAIN_PACKAGE) { |
| nr_pl = find_nr_power_limit(rd); |
| pr_debug("register package domain %s\n", rp->name); |
| power_zone = powercap_register_zone(&rd->power_zone, |
| rp->priv->control_type, rp->name, |
| NULL, &zone_ops[rd->id], nr_pl, |
| &constraint_ops); |
| if (IS_ERR(power_zone)) { |
| pr_debug("failed to register power zone %s\n", |
| rp->name); |
| return PTR_ERR(power_zone); |
| } |
| /* track parent zone in per package/socket data */ |
| rp->power_zone = power_zone; |
| /* done, only one package domain per socket */ |
| break; |
| } |
| } |
| if (!power_zone) { |
| pr_err("no package domain found, unknown topology!\n"); |
| return -ENODEV; |
| } |
| /* now register domains as children of the socket/package */ |
| for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) { |
| struct powercap_zone *parent = rp->power_zone; |
| |
| if (rd->id == RAPL_DOMAIN_PACKAGE) |
| continue; |
| if (rd->id == RAPL_DOMAIN_PLATFORM) |
| parent = NULL; |
| /* number of power limits per domain varies */ |
| nr_pl = find_nr_power_limit(rd); |
| power_zone = powercap_register_zone(&rd->power_zone, |
| rp->priv->control_type, |
| rd->name, parent, |
| &zone_ops[rd->id], nr_pl, |
| &constraint_ops); |
| |
| if (IS_ERR(power_zone)) { |
| pr_debug("failed to register power_zone, %s:%s\n", |
| rp->name, rd->name); |
| ret = PTR_ERR(power_zone); |
| goto err_cleanup; |
| } |
| } |
| return 0; |
| |
| err_cleanup: |
| /* |
| * Clean up previously initialized domains within the package if we |
| * failed after the first domain setup. |
| */ |
| while (--rd >= rp->domains) { |
| pr_debug("unregister %s domain %s\n", rp->name, rd->name); |
| powercap_unregister_zone(rp->priv->control_type, |
| &rd->power_zone); |
| } |
| |
| return ret; |
| } |
| |
| static int rapl_check_domain(int domain, struct rapl_package *rp) |
| { |
| struct reg_action ra; |
| |
| switch (domain) { |
| case RAPL_DOMAIN_PACKAGE: |
| case RAPL_DOMAIN_PP0: |
| case RAPL_DOMAIN_PP1: |
| case RAPL_DOMAIN_DRAM: |
| case RAPL_DOMAIN_PLATFORM: |
| ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS]; |
| break; |
| default: |
| pr_err("invalid domain id %d\n", domain); |
| return -EINVAL; |
| } |
| /* make sure domain counters are available and contains non-zero |
| * values, otherwise skip it. |
| */ |
| |
| ra.mask = ENERGY_STATUS_MASK; |
| if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| /* |
| * Get per domain energy/power/time unit. |
| * RAPL Interfaces without per domain unit register will use the package |
| * scope unit register to set per domain units. |
| */ |
| static int rapl_get_domain_unit(struct rapl_domain *rd) |
| { |
| struct rapl_defaults *defaults = get_defaults(rd->rp); |
| int ret; |
| |
| if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) { |
| if (!rd->rp->priv->reg_unit.val) { |
| pr_err("No valid Unit register found\n"); |
| return -ENODEV; |
| } |
| rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit; |
| } |
| |
| if (!defaults->check_unit) { |
| pr_err("missing .check_unit() callback\n"); |
| return -ENODEV; |
| } |
| |
| ret = defaults->check_unit(rd); |
| if (ret) |
| return ret; |
| |
| if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit) |
| rd->energy_unit = defaults->dram_domain_energy_unit; |
| if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit) |
| rd->energy_unit = defaults->psys_domain_energy_unit; |
| return 0; |
| } |
| |
| /* |
| * Check if power limits are available. Two cases when they are not available: |
| * 1. Locked by BIOS, in this case we still provide read-only access so that |
| * users can see what limit is set by the BIOS. |
| * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not |
| * exist at all. In this case, we do not show the constraints in powercap. |
| * |
| * Called after domains are detected and initialized. |
| */ |
| static void rapl_detect_powerlimit(struct rapl_domain *rd) |
| { |
| u64 val64; |
| int i; |
| |
| for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) { |
| if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) { |
| if (val64) { |
| rd->rpl[i].locked = true; |
| pr_info("%s:%s:%s locked by BIOS\n", |
| rd->rp->name, rd->name, pl_names[i]); |
| } |
| } |
| |
| if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64)) |
| rd->rpl[i].name = NULL; |
| } |
| } |
| |
| /* Detect active and valid domains for the given CPU, caller must |
| * ensure the CPU belongs to the targeted package and CPU hotlug is disabled. |
| */ |
| static int rapl_detect_domains(struct rapl_package *rp) |
| { |
| struct rapl_domain *rd; |
| int i; |
| |
| for (i = 0; i < RAPL_DOMAIN_MAX; i++) { |
| /* use physical package id to read counters */ |
| if (!rapl_check_domain(i, rp)) { |
| rp->domain_map |= 1 << i; |
| pr_info("Found RAPL domain %s\n", rapl_domain_names[i]); |
| } |
| } |
| rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX); |
| if (!rp->nr_domains) { |
| pr_debug("no valid rapl domains found in %s\n", rp->name); |
| return -ENODEV; |
| } |
| pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name); |
| |
| rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain), |
| GFP_KERNEL); |
| if (!rp->domains) |
| return -ENOMEM; |
| |
| rapl_init_domains(rp); |
| |
| for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) { |
| rapl_get_domain_unit(rd); |
| rapl_detect_powerlimit(rd); |
| } |
| |
| return 0; |
| } |
| |
| /* called from CPU hotplug notifier, hotplug lock held */ |
| void rapl_remove_package(struct rapl_package *rp) |
| { |
| struct rapl_domain *rd, *rd_package = NULL; |
| |
| package_power_limit_irq_restore(rp); |
| |
| for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) { |
| int i; |
| |
| for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) { |
| rapl_write_pl_data(rd, i, PL_ENABLE, 0); |
| rapl_write_pl_data(rd, i, PL_CLAMP, 0); |
| } |
| |
| if (rd->id == RAPL_DOMAIN_PACKAGE) { |
| rd_package = rd; |
| continue; |
| } |
| pr_debug("remove package, undo power limit on %s: %s\n", |
| rp->name, rd->name); |
| powercap_unregister_zone(rp->priv->control_type, |
| &rd->power_zone); |
| } |
| /* do parent zone last */ |
| powercap_unregister_zone(rp->priv->control_type, |
| &rd_package->power_zone); |
| list_del(&rp->plist); |
| kfree(rp); |
| } |
| EXPORT_SYMBOL_GPL(rapl_remove_package); |
| |
| /* caller to ensure CPU hotplug lock is held */ |
| struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu) |
| { |
| struct rapl_package *rp; |
| int uid; |
| |
| if (id_is_cpu) |
| uid = topology_logical_die_id(id); |
| else |
| uid = id; |
| |
| list_for_each_entry(rp, &rapl_packages, plist) { |
| if (rp->id == uid |
| && rp->priv->control_type == priv->control_type) |
| return rp; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(rapl_find_package_domain); |
| |
| /* called from CPU hotplug notifier, hotplug lock held */ |
| struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu) |
| { |
| struct rapl_package *rp; |
| int ret; |
| |
| rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL); |
| if (!rp) |
| return ERR_PTR(-ENOMEM); |
| |
| if (id_is_cpu) { |
| rp->id = topology_logical_die_id(id); |
| rp->lead_cpu = id; |
| if (topology_max_die_per_package() > 1) |
| snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d", |
| topology_physical_package_id(id), topology_die_id(id)); |
| else |
| snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", |
| topology_physical_package_id(id)); |
| } else { |
| rp->id = id; |
| rp->lead_cpu = -1; |
| snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id); |
| } |
| |
| rp->priv = priv; |
| ret = rapl_config(rp); |
| if (ret) |
| goto err_free_package; |
| |
| /* check if the package contains valid domains */ |
| if (rapl_detect_domains(rp)) { |
| ret = -ENODEV; |
| goto err_free_package; |
| } |
| ret = rapl_package_register_powercap(rp); |
| if (!ret) { |
| INIT_LIST_HEAD(&rp->plist); |
| list_add(&rp->plist, &rapl_packages); |
| return rp; |
| } |
| |
| err_free_package: |
| kfree(rp->domains); |
| kfree(rp); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL_GPL(rapl_add_package); |
| |
| static void power_limit_state_save(void) |
| { |
| struct rapl_package *rp; |
| struct rapl_domain *rd; |
| int ret, i; |
| |
| cpus_read_lock(); |
| list_for_each_entry(rp, &rapl_packages, plist) { |
| if (!rp->power_zone) |
| continue; |
| rd = power_zone_to_rapl_domain(rp->power_zone); |
| for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) { |
| ret = rapl_read_pl_data(rd, i, PL_LIMIT, true, |
| &rd->rpl[i].last_power_limit); |
| if (ret) |
| rd->rpl[i].last_power_limit = 0; |
| } |
| } |
| cpus_read_unlock(); |
| } |
| |
| static void power_limit_state_restore(void) |
| { |
| struct rapl_package *rp; |
| struct rapl_domain *rd; |
| int i; |
| |
| cpus_read_lock(); |
| list_for_each_entry(rp, &rapl_packages, plist) { |
| if (!rp->power_zone) |
| continue; |
| rd = power_zone_to_rapl_domain(rp->power_zone); |
| for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) |
| if (rd->rpl[i].last_power_limit) |
| rapl_write_pl_data(rd, i, PL_LIMIT, |
| rd->rpl[i].last_power_limit); |
| } |
| cpus_read_unlock(); |
| } |
| |
| static int rapl_pm_callback(struct notifier_block *nb, |
| unsigned long mode, void *_unused) |
| { |
| switch (mode) { |
| case PM_SUSPEND_PREPARE: |
| power_limit_state_save(); |
| break; |
| case PM_POST_SUSPEND: |
| power_limit_state_restore(); |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block rapl_pm_notifier = { |
| .notifier_call = rapl_pm_callback, |
| }; |
| |
| static struct platform_device *rapl_msr_platdev; |
| |
| static int __init rapl_init(void) |
| { |
| const struct x86_cpu_id *id; |
| int ret; |
| |
| id = x86_match_cpu(rapl_ids); |
| if (id) { |
| defaults_msr = (struct rapl_defaults *)id->driver_data; |
| |
| rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0); |
| if (!rapl_msr_platdev) |
| return -ENOMEM; |
| |
| ret = platform_device_add(rapl_msr_platdev); |
| if (ret) { |
| platform_device_put(rapl_msr_platdev); |
| return ret; |
| } |
| } |
| |
| ret = register_pm_notifier(&rapl_pm_notifier); |
| if (ret && rapl_msr_platdev) { |
| platform_device_del(rapl_msr_platdev); |
| platform_device_put(rapl_msr_platdev); |
| } |
| |
| return ret; |
| } |
| |
| static void __exit rapl_exit(void) |
| { |
| platform_device_unregister(rapl_msr_platdev); |
| unregister_pm_notifier(&rapl_pm_notifier); |
| } |
| |
| fs_initcall(rapl_init); |
| module_exit(rapl_exit); |
| |
| MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code"); |
| MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>"); |
| MODULE_LICENSE("GPL v2"); |