| // SPDX-License-Identifier: GPL-2.0+ |
| // |
| // Copyright 2013 Freescale Semiconductor, Inc. |
| // Copyright 2020 NXP |
| // |
| // Freescale DSPI driver |
| // This file contains a driver for the Freescale DSPI |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pinctrl/consumer.h> |
| #include <linux/regmap.h> |
| #include <linux/spi/spi.h> |
| #include <linux/spi/spi-fsl-dspi.h> |
| |
| #define DRIVER_NAME "fsl-dspi" |
| |
| #define SPI_MCR 0x00 |
| #define SPI_MCR_HOST BIT(31) |
| #define SPI_MCR_PCSIS(x) ((x) << 16) |
| #define SPI_MCR_CLR_TXF BIT(11) |
| #define SPI_MCR_CLR_RXF BIT(10) |
| #define SPI_MCR_XSPI BIT(3) |
| #define SPI_MCR_DIS_TXF BIT(13) |
| #define SPI_MCR_DIS_RXF BIT(12) |
| #define SPI_MCR_HALT BIT(0) |
| |
| #define SPI_TCR 0x08 |
| #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16) |
| |
| #define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4)) |
| #define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27)) |
| #define SPI_CTAR_CPOL BIT(26) |
| #define SPI_CTAR_CPHA BIT(25) |
| #define SPI_CTAR_LSBFE BIT(24) |
| #define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22)) |
| #define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20)) |
| #define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18)) |
| #define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16)) |
| #define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12)) |
| #define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8)) |
| #define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4)) |
| #define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0)) |
| #define SPI_CTAR_SCALE_BITS 0xf |
| |
| #define SPI_CTAR0_SLAVE 0x0c |
| |
| #define SPI_SR 0x2c |
| #define SPI_SR_TCFQF BIT(31) |
| #define SPI_SR_TFUF BIT(27) |
| #define SPI_SR_TFFF BIT(25) |
| #define SPI_SR_CMDTCF BIT(23) |
| #define SPI_SR_SPEF BIT(21) |
| #define SPI_SR_RFOF BIT(19) |
| #define SPI_SR_TFIWF BIT(18) |
| #define SPI_SR_RFDF BIT(17) |
| #define SPI_SR_CMDFFF BIT(16) |
| #define SPI_SR_CLEAR (SPI_SR_TCFQF | \ |
| SPI_SR_TFUF | SPI_SR_TFFF | \ |
| SPI_SR_CMDTCF | SPI_SR_SPEF | \ |
| SPI_SR_RFOF | SPI_SR_TFIWF | \ |
| SPI_SR_RFDF | SPI_SR_CMDFFF) |
| |
| #define SPI_RSER_TFFFE BIT(25) |
| #define SPI_RSER_TFFFD BIT(24) |
| #define SPI_RSER_RFDFE BIT(17) |
| #define SPI_RSER_RFDFD BIT(16) |
| |
| #define SPI_RSER 0x30 |
| #define SPI_RSER_TCFQE BIT(31) |
| #define SPI_RSER_CMDTCFE BIT(23) |
| |
| #define SPI_PUSHR 0x34 |
| #define SPI_PUSHR_CMD_CONT BIT(15) |
| #define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12))) |
| #define SPI_PUSHR_CMD_EOQ BIT(11) |
| #define SPI_PUSHR_CMD_CTCNT BIT(10) |
| #define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0)) |
| |
| #define SPI_PUSHR_SLAVE 0x34 |
| |
| #define SPI_POPR 0x38 |
| |
| #define SPI_TXFR0 0x3c |
| #define SPI_TXFR1 0x40 |
| #define SPI_TXFR2 0x44 |
| #define SPI_TXFR3 0x48 |
| #define SPI_RXFR0 0x7c |
| #define SPI_RXFR1 0x80 |
| #define SPI_RXFR2 0x84 |
| #define SPI_RXFR3 0x88 |
| |
| #define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4)) |
| #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16) |
| #define SPI_CTARE_DTCP(x) ((x) & 0x7ff) |
| |
| #define SPI_SREX 0x13c |
| |
| #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1) |
| #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4) |
| |
| #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000) |
| |
| struct chip_data { |
| u32 ctar_val; |
| }; |
| |
| enum dspi_trans_mode { |
| DSPI_XSPI_MODE, |
| DSPI_DMA_MODE, |
| }; |
| |
| struct fsl_dspi_devtype_data { |
| enum dspi_trans_mode trans_mode; |
| u8 max_clock_factor; |
| int fifo_size; |
| }; |
| |
| enum { |
| LS1021A, |
| LS1012A, |
| LS1028A, |
| LS1043A, |
| LS1046A, |
| LS2080A, |
| LS2085A, |
| LX2160A, |
| MCF5441X, |
| VF610, |
| }; |
| |
| static const struct fsl_dspi_devtype_data devtype_data[] = { |
| [VF610] = { |
| .trans_mode = DSPI_DMA_MODE, |
| .max_clock_factor = 2, |
| .fifo_size = 4, |
| }, |
| [LS1021A] = { |
| /* Has A-011218 DMA erratum */ |
| .trans_mode = DSPI_XSPI_MODE, |
| .max_clock_factor = 8, |
| .fifo_size = 4, |
| }, |
| [LS1012A] = { |
| /* Has A-011218 DMA erratum */ |
| .trans_mode = DSPI_XSPI_MODE, |
| .max_clock_factor = 8, |
| .fifo_size = 16, |
| }, |
| [LS1028A] = { |
| .trans_mode = DSPI_XSPI_MODE, |
| .max_clock_factor = 8, |
| .fifo_size = 4, |
| }, |
| [LS1043A] = { |
| /* Has A-011218 DMA erratum */ |
| .trans_mode = DSPI_XSPI_MODE, |
| .max_clock_factor = 8, |
| .fifo_size = 16, |
| }, |
| [LS1046A] = { |
| /* Has A-011218 DMA erratum */ |
| .trans_mode = DSPI_XSPI_MODE, |
| .max_clock_factor = 8, |
| .fifo_size = 16, |
| }, |
| [LS2080A] = { |
| .trans_mode = DSPI_XSPI_MODE, |
| .max_clock_factor = 8, |
| .fifo_size = 4, |
| }, |
| [LS2085A] = { |
| .trans_mode = DSPI_XSPI_MODE, |
| .max_clock_factor = 8, |
| .fifo_size = 4, |
| }, |
| [LX2160A] = { |
| .trans_mode = DSPI_XSPI_MODE, |
| .max_clock_factor = 8, |
| .fifo_size = 4, |
| }, |
| [MCF5441X] = { |
| .trans_mode = DSPI_DMA_MODE, |
| .max_clock_factor = 8, |
| .fifo_size = 16, |
| }, |
| }; |
| |
| struct fsl_dspi_dma { |
| u32 *tx_dma_buf; |
| struct dma_chan *chan_tx; |
| dma_addr_t tx_dma_phys; |
| struct completion cmd_tx_complete; |
| struct dma_async_tx_descriptor *tx_desc; |
| |
| u32 *rx_dma_buf; |
| struct dma_chan *chan_rx; |
| dma_addr_t rx_dma_phys; |
| struct completion cmd_rx_complete; |
| struct dma_async_tx_descriptor *rx_desc; |
| }; |
| |
| struct fsl_dspi { |
| struct spi_controller *ctlr; |
| struct platform_device *pdev; |
| |
| struct regmap *regmap; |
| struct regmap *regmap_pushr; |
| int irq; |
| struct clk *clk; |
| |
| struct spi_transfer *cur_transfer; |
| struct spi_message *cur_msg; |
| struct chip_data *cur_chip; |
| size_t progress; |
| size_t len; |
| const void *tx; |
| void *rx; |
| u16 tx_cmd; |
| const struct fsl_dspi_devtype_data *devtype_data; |
| |
| struct completion xfer_done; |
| |
| struct fsl_dspi_dma *dma; |
| |
| int oper_word_size; |
| int oper_bits_per_word; |
| |
| int words_in_flight; |
| |
| /* |
| * Offsets for CMD and TXDATA within SPI_PUSHR when accessed |
| * individually (in XSPI mode) |
| */ |
| int pushr_cmd; |
| int pushr_tx; |
| |
| void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata); |
| void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata); |
| }; |
| |
| static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) |
| { |
| switch (dspi->oper_word_size) { |
| case 1: |
| *txdata = *(u8 *)dspi->tx; |
| break; |
| case 2: |
| *txdata = *(u16 *)dspi->tx; |
| break; |
| case 4: |
| *txdata = *(u32 *)dspi->tx; |
| break; |
| } |
| dspi->tx += dspi->oper_word_size; |
| } |
| |
| static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) |
| { |
| switch (dspi->oper_word_size) { |
| case 1: |
| *(u8 *)dspi->rx = rxdata; |
| break; |
| case 2: |
| *(u16 *)dspi->rx = rxdata; |
| break; |
| case 4: |
| *(u32 *)dspi->rx = rxdata; |
| break; |
| } |
| dspi->rx += dspi->oper_word_size; |
| } |
| |
| static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) |
| { |
| *txdata = cpu_to_be32(*(u32 *)dspi->tx); |
| dspi->tx += sizeof(u32); |
| } |
| |
| static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) |
| { |
| *(u32 *)dspi->rx = be32_to_cpu(rxdata); |
| dspi->rx += sizeof(u32); |
| } |
| |
| static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) |
| { |
| *txdata = cpu_to_be16(*(u16 *)dspi->tx); |
| dspi->tx += sizeof(u16); |
| } |
| |
| static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) |
| { |
| *(u16 *)dspi->rx = be16_to_cpu(rxdata); |
| dspi->rx += sizeof(u16); |
| } |
| |
| static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) |
| { |
| u16 hi = *(u16 *)dspi->tx; |
| u16 lo = *(u16 *)(dspi->tx + 2); |
| |
| *txdata = (u32)hi << 16 | lo; |
| dspi->tx += sizeof(u32); |
| } |
| |
| static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) |
| { |
| u16 hi = rxdata & 0xffff; |
| u16 lo = rxdata >> 16; |
| |
| *(u16 *)dspi->rx = lo; |
| *(u16 *)(dspi->rx + 2) = hi; |
| dspi->rx += sizeof(u32); |
| } |
| |
| /* |
| * Pop one word from the TX buffer for pushing into the |
| * PUSHR register (TX FIFO) |
| */ |
| static u32 dspi_pop_tx(struct fsl_dspi *dspi) |
| { |
| u32 txdata = 0; |
| |
| if (dspi->tx) |
| dspi->host_to_dev(dspi, &txdata); |
| dspi->len -= dspi->oper_word_size; |
| return txdata; |
| } |
| |
| /* Prepare one TX FIFO entry (txdata plus cmd) */ |
| static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi) |
| { |
| u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi); |
| |
| if (spi_controller_is_target(dspi->ctlr)) |
| return data; |
| |
| if (dspi->len > 0) |
| cmd |= SPI_PUSHR_CMD_CONT; |
| return cmd << 16 | data; |
| } |
| |
| /* Push one word to the RX buffer from the POPR register (RX FIFO) */ |
| static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata) |
| { |
| if (!dspi->rx) |
| return; |
| dspi->dev_to_host(dspi, rxdata); |
| } |
| |
| static void dspi_tx_dma_callback(void *arg) |
| { |
| struct fsl_dspi *dspi = arg; |
| struct fsl_dspi_dma *dma = dspi->dma; |
| |
| complete(&dma->cmd_tx_complete); |
| } |
| |
| static void dspi_rx_dma_callback(void *arg) |
| { |
| struct fsl_dspi *dspi = arg; |
| struct fsl_dspi_dma *dma = dspi->dma; |
| int i; |
| |
| if (dspi->rx) { |
| for (i = 0; i < dspi->words_in_flight; i++) |
| dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]); |
| } |
| |
| complete(&dma->cmd_rx_complete); |
| } |
| |
| static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi) |
| { |
| struct device *dev = &dspi->pdev->dev; |
| struct fsl_dspi_dma *dma = dspi->dma; |
| int time_left; |
| int i; |
| |
| for (i = 0; i < dspi->words_in_flight; i++) |
| dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi); |
| |
| dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx, |
| dma->tx_dma_phys, |
| dspi->words_in_flight * |
| DMA_SLAVE_BUSWIDTH_4_BYTES, |
| DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!dma->tx_desc) { |
| dev_err(dev, "Not able to get desc for DMA xfer\n"); |
| return -EIO; |
| } |
| |
| dma->tx_desc->callback = dspi_tx_dma_callback; |
| dma->tx_desc->callback_param = dspi; |
| if (dma_submit_error(dmaengine_submit(dma->tx_desc))) { |
| dev_err(dev, "DMA submit failed\n"); |
| return -EINVAL; |
| } |
| |
| dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx, |
| dma->rx_dma_phys, |
| dspi->words_in_flight * |
| DMA_SLAVE_BUSWIDTH_4_BYTES, |
| DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!dma->rx_desc) { |
| dev_err(dev, "Not able to get desc for DMA xfer\n"); |
| return -EIO; |
| } |
| |
| dma->rx_desc->callback = dspi_rx_dma_callback; |
| dma->rx_desc->callback_param = dspi; |
| if (dma_submit_error(dmaengine_submit(dma->rx_desc))) { |
| dev_err(dev, "DMA submit failed\n"); |
| return -EINVAL; |
| } |
| |
| reinit_completion(&dspi->dma->cmd_rx_complete); |
| reinit_completion(&dspi->dma->cmd_tx_complete); |
| |
| dma_async_issue_pending(dma->chan_rx); |
| dma_async_issue_pending(dma->chan_tx); |
| |
| if (spi_controller_is_target(dspi->ctlr)) { |
| wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete); |
| return 0; |
| } |
| |
| time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete, |
| DMA_COMPLETION_TIMEOUT); |
| if (time_left == 0) { |
| dev_err(dev, "DMA tx timeout\n"); |
| dmaengine_terminate_all(dma->chan_tx); |
| dmaengine_terminate_all(dma->chan_rx); |
| return -ETIMEDOUT; |
| } |
| |
| time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete, |
| DMA_COMPLETION_TIMEOUT); |
| if (time_left == 0) { |
| dev_err(dev, "DMA rx timeout\n"); |
| dmaengine_terminate_all(dma->chan_tx); |
| dmaengine_terminate_all(dma->chan_rx); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static void dspi_setup_accel(struct fsl_dspi *dspi); |
| |
| static int dspi_dma_xfer(struct fsl_dspi *dspi) |
| { |
| struct spi_message *message = dspi->cur_msg; |
| struct device *dev = &dspi->pdev->dev; |
| int ret = 0; |
| |
| /* |
| * dspi->len gets decremented by dspi_pop_tx_pushr in |
| * dspi_next_xfer_dma_submit |
| */ |
| while (dspi->len) { |
| /* Figure out operational bits-per-word for this chunk */ |
| dspi_setup_accel(dspi); |
| |
| dspi->words_in_flight = dspi->len / dspi->oper_word_size; |
| if (dspi->words_in_flight > dspi->devtype_data->fifo_size) |
| dspi->words_in_flight = dspi->devtype_data->fifo_size; |
| |
| message->actual_length += dspi->words_in_flight * |
| dspi->oper_word_size; |
| |
| ret = dspi_next_xfer_dma_submit(dspi); |
| if (ret) { |
| dev_err(dev, "DMA transfer failed\n"); |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr) |
| { |
| int dma_bufsize = dspi->devtype_data->fifo_size * 2; |
| struct device *dev = &dspi->pdev->dev; |
| struct dma_slave_config cfg; |
| struct fsl_dspi_dma *dma; |
| int ret; |
| |
| dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL); |
| if (!dma) |
| return -ENOMEM; |
| |
| dma->chan_rx = dma_request_chan(dev, "rx"); |
| if (IS_ERR(dma->chan_rx)) { |
| return dev_err_probe(dev, PTR_ERR(dma->chan_rx), |
| "rx dma channel not available\n"); |
| } |
| |
| dma->chan_tx = dma_request_chan(dev, "tx"); |
| if (IS_ERR(dma->chan_tx)) { |
| ret = PTR_ERR(dma->chan_tx); |
| dev_err_probe(dev, ret, "tx dma channel not available\n"); |
| goto err_tx_channel; |
| } |
| |
| dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev, |
| dma_bufsize, &dma->tx_dma_phys, |
| GFP_KERNEL); |
| if (!dma->tx_dma_buf) { |
| ret = -ENOMEM; |
| goto err_tx_dma_buf; |
| } |
| |
| dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev, |
| dma_bufsize, &dma->rx_dma_phys, |
| GFP_KERNEL); |
| if (!dma->rx_dma_buf) { |
| ret = -ENOMEM; |
| goto err_rx_dma_buf; |
| } |
| |
| memset(&cfg, 0, sizeof(cfg)); |
| cfg.src_addr = phy_addr + SPI_POPR; |
| cfg.dst_addr = phy_addr + SPI_PUSHR; |
| cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| cfg.src_maxburst = 1; |
| cfg.dst_maxburst = 1; |
| |
| cfg.direction = DMA_DEV_TO_MEM; |
| ret = dmaengine_slave_config(dma->chan_rx, &cfg); |
| if (ret) { |
| dev_err(dev, "can't configure rx dma channel\n"); |
| ret = -EINVAL; |
| goto err_slave_config; |
| } |
| |
| cfg.direction = DMA_MEM_TO_DEV; |
| ret = dmaengine_slave_config(dma->chan_tx, &cfg); |
| if (ret) { |
| dev_err(dev, "can't configure tx dma channel\n"); |
| ret = -EINVAL; |
| goto err_slave_config; |
| } |
| |
| dspi->dma = dma; |
| init_completion(&dma->cmd_tx_complete); |
| init_completion(&dma->cmd_rx_complete); |
| |
| return 0; |
| |
| err_slave_config: |
| dma_free_coherent(dma->chan_rx->device->dev, |
| dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys); |
| err_rx_dma_buf: |
| dma_free_coherent(dma->chan_tx->device->dev, |
| dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys); |
| err_tx_dma_buf: |
| dma_release_channel(dma->chan_tx); |
| err_tx_channel: |
| dma_release_channel(dma->chan_rx); |
| |
| devm_kfree(dev, dma); |
| dspi->dma = NULL; |
| |
| return ret; |
| } |
| |
| static void dspi_release_dma(struct fsl_dspi *dspi) |
| { |
| int dma_bufsize = dspi->devtype_data->fifo_size * 2; |
| struct fsl_dspi_dma *dma = dspi->dma; |
| |
| if (!dma) |
| return; |
| |
| if (dma->chan_tx) { |
| dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize, |
| dma->tx_dma_buf, dma->tx_dma_phys); |
| dma_release_channel(dma->chan_tx); |
| } |
| |
| if (dma->chan_rx) { |
| dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize, |
| dma->rx_dma_buf, dma->rx_dma_phys); |
| dma_release_channel(dma->chan_rx); |
| } |
| } |
| |
| static void hz_to_spi_baud(char *pbr, char *br, int speed_hz, |
| unsigned long clkrate) |
| { |
| /* Valid baud rate pre-scaler values */ |
| int pbr_tbl[4] = {2, 3, 5, 7}; |
| int brs[16] = { 2, 4, 6, 8, |
| 16, 32, 64, 128, |
| 256, 512, 1024, 2048, |
| 4096, 8192, 16384, 32768 }; |
| int scale_needed, scale, minscale = INT_MAX; |
| int i, j; |
| |
| scale_needed = clkrate / speed_hz; |
| if (clkrate % speed_hz) |
| scale_needed++; |
| |
| for (i = 0; i < ARRAY_SIZE(brs); i++) |
| for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) { |
| scale = brs[i] * pbr_tbl[j]; |
| if (scale >= scale_needed) { |
| if (scale < minscale) { |
| minscale = scale; |
| *br = i; |
| *pbr = j; |
| } |
| break; |
| } |
| } |
| |
| if (minscale == INT_MAX) { |
| pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n", |
| speed_hz, clkrate); |
| *pbr = ARRAY_SIZE(pbr_tbl) - 1; |
| *br = ARRAY_SIZE(brs) - 1; |
| } |
| } |
| |
| static void ns_delay_scale(char *psc, char *sc, int delay_ns, |
| unsigned long clkrate) |
| { |
| int scale_needed, scale, minscale = INT_MAX; |
| int pscale_tbl[4] = {1, 3, 5, 7}; |
| u32 remainder; |
| int i, j; |
| |
| scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC, |
| &remainder); |
| if (remainder) |
| scale_needed++; |
| |
| for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++) |
| for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) { |
| scale = pscale_tbl[i] * (2 << j); |
| if (scale >= scale_needed) { |
| if (scale < minscale) { |
| minscale = scale; |
| *psc = i; |
| *sc = j; |
| } |
| break; |
| } |
| } |
| |
| if (minscale == INT_MAX) { |
| pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value", |
| delay_ns, clkrate); |
| *psc = ARRAY_SIZE(pscale_tbl) - 1; |
| *sc = SPI_CTAR_SCALE_BITS; |
| } |
| } |
| |
| static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd) |
| { |
| /* |
| * The only time when the PCS doesn't need continuation after this word |
| * is when it's last. We need to look ahead, because we actually call |
| * dspi_pop_tx (the function that decrements dspi->len) _after_ |
| * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One |
| * word is enough. If there's more to transmit than that, |
| * dspi_xspi_write will know to split the FIFO writes in 2, and |
| * generate a new PUSHR command with the final word that will have PCS |
| * deasserted (not continued) here. |
| */ |
| if (dspi->len > dspi->oper_word_size) |
| cmd |= SPI_PUSHR_CMD_CONT; |
| regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd); |
| } |
| |
| static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata) |
| { |
| regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata); |
| } |
| |
| static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words) |
| { |
| int num_bytes = num_words * dspi->oper_word_size; |
| u16 tx_cmd = dspi->tx_cmd; |
| |
| /* |
| * If the PCS needs to de-assert (i.e. we're at the end of the buffer |
| * and cs_change does not want the PCS to stay on), then we need a new |
| * PUSHR command, since this one (for the body of the buffer) |
| * necessarily has the CONT bit set. |
| * So send one word less during this go, to force a split and a command |
| * with a single word next time, when CONT will be unset. |
| */ |
| if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len) |
| tx_cmd |= SPI_PUSHR_CMD_EOQ; |
| |
| /* Update CTARE */ |
| regmap_write(dspi->regmap, SPI_CTARE(0), |
| SPI_FRAME_EBITS(dspi->oper_bits_per_word) | |
| SPI_CTARE_DTCP(num_words)); |
| |
| /* |
| * Write the CMD FIFO entry first, and then the two |
| * corresponding TX FIFO entries (or one...). |
| */ |
| dspi_pushr_cmd_write(dspi, tx_cmd); |
| |
| /* Fill TX FIFO with as many transfers as possible */ |
| while (num_words--) { |
| u32 data = dspi_pop_tx(dspi); |
| |
| dspi_pushr_txdata_write(dspi, data & 0xFFFF); |
| if (dspi->oper_bits_per_word > 16) |
| dspi_pushr_txdata_write(dspi, data >> 16); |
| } |
| } |
| |
| static u32 dspi_popr_read(struct fsl_dspi *dspi) |
| { |
| u32 rxdata = 0; |
| |
| regmap_read(dspi->regmap, SPI_POPR, &rxdata); |
| return rxdata; |
| } |
| |
| static void dspi_fifo_read(struct fsl_dspi *dspi) |
| { |
| int num_fifo_entries = dspi->words_in_flight; |
| |
| /* Read one FIFO entry and push to rx buffer */ |
| while (num_fifo_entries--) |
| dspi_push_rx(dspi, dspi_popr_read(dspi)); |
| } |
| |
| static void dspi_setup_accel(struct fsl_dspi *dspi) |
| { |
| struct spi_transfer *xfer = dspi->cur_transfer; |
| bool odd = !!(dspi->len & 1); |
| |
| /* No accel for frames not multiple of 8 bits at the moment */ |
| if (xfer->bits_per_word % 8) |
| goto no_accel; |
| |
| if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) { |
| dspi->oper_bits_per_word = 16; |
| } else if (odd && dspi->len <= dspi->devtype_data->fifo_size) { |
| dspi->oper_bits_per_word = 8; |
| } else { |
| /* Start off with maximum supported by hardware */ |
| if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) |
| dspi->oper_bits_per_word = 32; |
| else |
| dspi->oper_bits_per_word = 16; |
| |
| /* |
| * And go down only if the buffer can't be sent with |
| * words this big |
| */ |
| do { |
| if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8)) |
| break; |
| |
| dspi->oper_bits_per_word /= 2; |
| } while (dspi->oper_bits_per_word > 8); |
| } |
| |
| if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) { |
| dspi->dev_to_host = dspi_8on32_dev_to_host; |
| dspi->host_to_dev = dspi_8on32_host_to_dev; |
| } else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) { |
| dspi->dev_to_host = dspi_8on16_dev_to_host; |
| dspi->host_to_dev = dspi_8on16_host_to_dev; |
| } else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) { |
| dspi->dev_to_host = dspi_16on32_dev_to_host; |
| dspi->host_to_dev = dspi_16on32_host_to_dev; |
| } else { |
| no_accel: |
| dspi->dev_to_host = dspi_native_dev_to_host; |
| dspi->host_to_dev = dspi_native_host_to_dev; |
| dspi->oper_bits_per_word = xfer->bits_per_word; |
| } |
| |
| dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8); |
| |
| /* |
| * Update CTAR here (code is common for XSPI and DMA modes). |
| * We will update CTARE in the portion specific to XSPI, when we |
| * also know the preload value (DTCP). |
| */ |
| regmap_write(dspi->regmap, SPI_CTAR(0), |
| dspi->cur_chip->ctar_val | |
| SPI_FRAME_BITS(dspi->oper_bits_per_word)); |
| } |
| |
| static void dspi_fifo_write(struct fsl_dspi *dspi) |
| { |
| int num_fifo_entries = dspi->devtype_data->fifo_size; |
| struct spi_transfer *xfer = dspi->cur_transfer; |
| struct spi_message *msg = dspi->cur_msg; |
| int num_words, num_bytes; |
| |
| dspi_setup_accel(dspi); |
| |
| /* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */ |
| if (dspi->oper_word_size == 4) |
| num_fifo_entries /= 2; |
| |
| /* |
| * Integer division intentionally trims off odd (or non-multiple of 4) |
| * numbers of bytes at the end of the buffer, which will be sent next |
| * time using a smaller oper_word_size. |
| */ |
| num_words = dspi->len / dspi->oper_word_size; |
| if (num_words > num_fifo_entries) |
| num_words = num_fifo_entries; |
| |
| /* Update total number of bytes that were transferred */ |
| num_bytes = num_words * dspi->oper_word_size; |
| msg->actual_length += num_bytes; |
| dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8); |
| |
| /* |
| * Update shared variable for use in the next interrupt (both in |
| * dspi_fifo_read and in dspi_fifo_write). |
| */ |
| dspi->words_in_flight = num_words; |
| |
| spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq); |
| |
| dspi_xspi_fifo_write(dspi, num_words); |
| /* |
| * Everything after this point is in a potential race with the next |
| * interrupt, so we must never use dspi->words_in_flight again since it |
| * might already be modified by the next dspi_fifo_write. |
| */ |
| |
| spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer, |
| dspi->progress, !dspi->irq); |
| } |
| |
| static int dspi_rxtx(struct fsl_dspi *dspi) |
| { |
| dspi_fifo_read(dspi); |
| |
| if (!dspi->len) |
| /* Success! */ |
| return 0; |
| |
| dspi_fifo_write(dspi); |
| |
| return -EINPROGRESS; |
| } |
| |
| static int dspi_poll(struct fsl_dspi *dspi) |
| { |
| int tries = 1000; |
| u32 spi_sr; |
| |
| do { |
| regmap_read(dspi->regmap, SPI_SR, &spi_sr); |
| regmap_write(dspi->regmap, SPI_SR, spi_sr); |
| |
| if (spi_sr & SPI_SR_CMDTCF) |
| break; |
| } while (--tries); |
| |
| if (!tries) |
| return -ETIMEDOUT; |
| |
| return dspi_rxtx(dspi); |
| } |
| |
| static irqreturn_t dspi_interrupt(int irq, void *dev_id) |
| { |
| struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id; |
| u32 spi_sr; |
| |
| regmap_read(dspi->regmap, SPI_SR, &spi_sr); |
| regmap_write(dspi->regmap, SPI_SR, spi_sr); |
| |
| if (!(spi_sr & SPI_SR_CMDTCF)) |
| return IRQ_NONE; |
| |
| if (dspi_rxtx(dspi) == 0) |
| complete(&dspi->xfer_done); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void dspi_assert_cs(struct spi_device *spi, bool *cs) |
| { |
| if (!spi_get_csgpiod(spi, 0) || *cs) |
| return; |
| |
| gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true); |
| *cs = true; |
| } |
| |
| static void dspi_deassert_cs(struct spi_device *spi, bool *cs) |
| { |
| if (!spi_get_csgpiod(spi, 0) || !*cs) |
| return; |
| |
| gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false); |
| *cs = false; |
| } |
| |
| static int dspi_transfer_one_message(struct spi_controller *ctlr, |
| struct spi_message *message) |
| { |
| struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr); |
| struct spi_device *spi = message->spi; |
| struct spi_transfer *transfer; |
| bool cs = false; |
| int status = 0; |
| |
| message->actual_length = 0; |
| |
| list_for_each_entry(transfer, &message->transfers, transfer_list) { |
| dspi->cur_transfer = transfer; |
| dspi->cur_msg = message; |
| dspi->cur_chip = spi_get_ctldata(spi); |
| |
| dspi_assert_cs(spi, &cs); |
| |
| /* Prepare command word for CMD FIFO */ |
| dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0); |
| if (!spi_get_csgpiod(spi, 0)) |
| dspi->tx_cmd |= SPI_PUSHR_CMD_PCS(spi_get_chipselect(spi, 0)); |
| |
| if (list_is_last(&dspi->cur_transfer->transfer_list, |
| &dspi->cur_msg->transfers)) { |
| /* Leave PCS activated after last transfer when |
| * cs_change is set. |
| */ |
| if (transfer->cs_change) |
| dspi->tx_cmd |= SPI_PUSHR_CMD_CONT; |
| } else { |
| /* Keep PCS active between transfers in same message |
| * when cs_change is not set, and de-activate PCS |
| * between transfers in the same message when |
| * cs_change is set. |
| */ |
| if (!transfer->cs_change) |
| dspi->tx_cmd |= SPI_PUSHR_CMD_CONT; |
| } |
| |
| dspi->tx = transfer->tx_buf; |
| dspi->rx = transfer->rx_buf; |
| dspi->len = transfer->len; |
| dspi->progress = 0; |
| |
| regmap_update_bits(dspi->regmap, SPI_MCR, |
| SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF, |
| SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF); |
| |
| spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer, |
| dspi->progress, !dspi->irq); |
| |
| if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) { |
| status = dspi_dma_xfer(dspi); |
| } else { |
| dspi_fifo_write(dspi); |
| |
| if (dspi->irq) { |
| wait_for_completion(&dspi->xfer_done); |
| reinit_completion(&dspi->xfer_done); |
| } else { |
| do { |
| status = dspi_poll(dspi); |
| } while (status == -EINPROGRESS); |
| } |
| } |
| if (status) |
| break; |
| |
| spi_transfer_delay_exec(transfer); |
| |
| if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT)) |
| dspi_deassert_cs(spi, &cs); |
| } |
| |
| message->status = status; |
| spi_finalize_current_message(ctlr); |
| |
| return status; |
| } |
| |
| static int dspi_setup(struct spi_device *spi) |
| { |
| struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller); |
| u32 period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->max_speed_hz); |
| unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0; |
| u32 quarter_period_ns = DIV_ROUND_UP(period_ns, 4); |
| u32 cs_sck_delay = 0, sck_cs_delay = 0; |
| struct fsl_dspi_platform_data *pdata; |
| unsigned char pasc = 0, asc = 0; |
| struct chip_data *chip; |
| unsigned long clkrate; |
| bool cs = true; |
| |
| /* Only alloc on first setup */ |
| chip = spi_get_ctldata(spi); |
| if (chip == NULL) { |
| chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); |
| if (!chip) |
| return -ENOMEM; |
| } |
| |
| pdata = dev_get_platdata(&dspi->pdev->dev); |
| |
| if (!pdata) { |
| of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay", |
| &cs_sck_delay); |
| |
| of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay", |
| &sck_cs_delay); |
| } else { |
| cs_sck_delay = pdata->cs_sck_delay; |
| sck_cs_delay = pdata->sck_cs_delay; |
| } |
| |
| /* Since tCSC and tASC apply to continuous transfers too, avoid SCK |
| * glitches of half a cycle by never allowing tCSC + tASC to go below |
| * half a SCK period. |
| */ |
| if (cs_sck_delay < quarter_period_ns) |
| cs_sck_delay = quarter_period_ns; |
| if (sck_cs_delay < quarter_period_ns) |
| sck_cs_delay = quarter_period_ns; |
| |
| dev_dbg(&spi->dev, |
| "DSPI controller timing params: CS-to-SCK delay %u ns, SCK-to-CS delay %u ns\n", |
| cs_sck_delay, sck_cs_delay); |
| |
| clkrate = clk_get_rate(dspi->clk); |
| hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate); |
| |
| /* Set PCS to SCK delay scale values */ |
| ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate); |
| |
| /* Set After SCK delay scale values */ |
| ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate); |
| |
| chip->ctar_val = 0; |
| if (spi->mode & SPI_CPOL) |
| chip->ctar_val |= SPI_CTAR_CPOL; |
| if (spi->mode & SPI_CPHA) |
| chip->ctar_val |= SPI_CTAR_CPHA; |
| |
| if (!spi_controller_is_target(dspi->ctlr)) { |
| chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) | |
| SPI_CTAR_CSSCK(cssck) | |
| SPI_CTAR_PASC(pasc) | |
| SPI_CTAR_ASC(asc) | |
| SPI_CTAR_PBR(pbr) | |
| SPI_CTAR_BR(br); |
| |
| if (spi->mode & SPI_LSB_FIRST) |
| chip->ctar_val |= SPI_CTAR_LSBFE; |
| } |
| |
| gpiod_direction_output(spi_get_csgpiod(spi, 0), false); |
| dspi_deassert_cs(spi, &cs); |
| |
| spi_set_ctldata(spi, chip); |
| |
| return 0; |
| } |
| |
| static void dspi_cleanup(struct spi_device *spi) |
| { |
| struct chip_data *chip = spi_get_ctldata(spi); |
| |
| dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n", |
| spi->controller->bus_num, spi_get_chipselect(spi, 0)); |
| |
| kfree(chip); |
| } |
| |
| static const struct of_device_id fsl_dspi_dt_ids[] = { |
| { |
| .compatible = "fsl,vf610-dspi", |
| .data = &devtype_data[VF610], |
| }, { |
| .compatible = "fsl,ls1021a-v1.0-dspi", |
| .data = &devtype_data[LS1021A], |
| }, { |
| .compatible = "fsl,ls1012a-dspi", |
| .data = &devtype_data[LS1012A], |
| }, { |
| .compatible = "fsl,ls1028a-dspi", |
| .data = &devtype_data[LS1028A], |
| }, { |
| .compatible = "fsl,ls1043a-dspi", |
| .data = &devtype_data[LS1043A], |
| }, { |
| .compatible = "fsl,ls1046a-dspi", |
| .data = &devtype_data[LS1046A], |
| }, { |
| .compatible = "fsl,ls2080a-dspi", |
| .data = &devtype_data[LS2080A], |
| }, { |
| .compatible = "fsl,ls2085a-dspi", |
| .data = &devtype_data[LS2085A], |
| }, { |
| .compatible = "fsl,lx2160a-dspi", |
| .data = &devtype_data[LX2160A], |
| }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids); |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int dspi_suspend(struct device *dev) |
| { |
| struct fsl_dspi *dspi = dev_get_drvdata(dev); |
| |
| if (dspi->irq) |
| disable_irq(dspi->irq); |
| spi_controller_suspend(dspi->ctlr); |
| clk_disable_unprepare(dspi->clk); |
| |
| pinctrl_pm_select_sleep_state(dev); |
| |
| return 0; |
| } |
| |
| static int dspi_resume(struct device *dev) |
| { |
| struct fsl_dspi *dspi = dev_get_drvdata(dev); |
| int ret; |
| |
| pinctrl_pm_select_default_state(dev); |
| |
| ret = clk_prepare_enable(dspi->clk); |
| if (ret) |
| return ret; |
| spi_controller_resume(dspi->ctlr); |
| if (dspi->irq) |
| enable_irq(dspi->irq); |
| |
| return 0; |
| } |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume); |
| |
| static const struct regmap_range dspi_volatile_ranges[] = { |
| regmap_reg_range(SPI_MCR, SPI_TCR), |
| regmap_reg_range(SPI_SR, SPI_SR), |
| regmap_reg_range(SPI_PUSHR, SPI_RXFR3), |
| }; |
| |
| static const struct regmap_access_table dspi_volatile_table = { |
| .yes_ranges = dspi_volatile_ranges, |
| .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges), |
| }; |
| |
| static const struct regmap_config dspi_regmap_config = { |
| .reg_bits = 32, |
| .val_bits = 32, |
| .reg_stride = 4, |
| .max_register = 0x88, |
| .volatile_table = &dspi_volatile_table, |
| }; |
| |
| static const struct regmap_range dspi_xspi_volatile_ranges[] = { |
| regmap_reg_range(SPI_MCR, SPI_TCR), |
| regmap_reg_range(SPI_SR, SPI_SR), |
| regmap_reg_range(SPI_PUSHR, SPI_RXFR3), |
| regmap_reg_range(SPI_SREX, SPI_SREX), |
| }; |
| |
| static const struct regmap_access_table dspi_xspi_volatile_table = { |
| .yes_ranges = dspi_xspi_volatile_ranges, |
| .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges), |
| }; |
| |
| static const struct regmap_config dspi_xspi_regmap_config[] = { |
| { |
| .reg_bits = 32, |
| .val_bits = 32, |
| .reg_stride = 4, |
| .max_register = 0x13c, |
| .volatile_table = &dspi_xspi_volatile_table, |
| }, |
| { |
| .name = "pushr", |
| .reg_bits = 16, |
| .val_bits = 16, |
| .reg_stride = 2, |
| .max_register = 0x2, |
| }, |
| }; |
| |
| static int dspi_init(struct fsl_dspi *dspi) |
| { |
| unsigned int mcr; |
| |
| /* Set idle states for all chip select signals to high */ |
| mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0)); |
| |
| if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) |
| mcr |= SPI_MCR_XSPI; |
| if (!spi_controller_is_target(dspi->ctlr)) |
| mcr |= SPI_MCR_HOST; |
| |
| regmap_write(dspi->regmap, SPI_MCR, mcr); |
| regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR); |
| |
| switch (dspi->devtype_data->trans_mode) { |
| case DSPI_XSPI_MODE: |
| regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE); |
| break; |
| case DSPI_DMA_MODE: |
| regmap_write(dspi->regmap, SPI_RSER, |
| SPI_RSER_TFFFE | SPI_RSER_TFFFD | |
| SPI_RSER_RFDFE | SPI_RSER_RFDFD); |
| break; |
| default: |
| dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n", |
| dspi->devtype_data->trans_mode); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int dspi_target_abort(struct spi_controller *host) |
| { |
| struct fsl_dspi *dspi = spi_controller_get_devdata(host); |
| |
| /* |
| * Terminate all pending DMA transactions for the SPI working |
| * in TARGET mode. |
| */ |
| if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) { |
| dmaengine_terminate_sync(dspi->dma->chan_rx); |
| dmaengine_terminate_sync(dspi->dma->chan_tx); |
| } |
| |
| /* Clear the internal DSPI RX and TX FIFO buffers */ |
| regmap_update_bits(dspi->regmap, SPI_MCR, |
| SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF, |
| SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF); |
| |
| return 0; |
| } |
| |
| static int dspi_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| const struct regmap_config *regmap_config; |
| struct fsl_dspi_platform_data *pdata; |
| struct spi_controller *ctlr; |
| int ret, cs_num, bus_num = -1; |
| struct fsl_dspi *dspi; |
| struct resource *res; |
| void __iomem *base; |
| bool big_endian; |
| |
| dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL); |
| if (!dspi) |
| return -ENOMEM; |
| |
| ctlr = spi_alloc_host(&pdev->dev, 0); |
| if (!ctlr) |
| return -ENOMEM; |
| |
| spi_controller_set_devdata(ctlr, dspi); |
| platform_set_drvdata(pdev, dspi); |
| |
| dspi->pdev = pdev; |
| dspi->ctlr = ctlr; |
| |
| ctlr->setup = dspi_setup; |
| ctlr->transfer_one_message = dspi_transfer_one_message; |
| ctlr->dev.of_node = pdev->dev.of_node; |
| |
| ctlr->cleanup = dspi_cleanup; |
| ctlr->target_abort = dspi_target_abort; |
| ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; |
| ctlr->use_gpio_descriptors = true; |
| |
| pdata = dev_get_platdata(&pdev->dev); |
| if (pdata) { |
| ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num; |
| ctlr->bus_num = pdata->bus_num; |
| |
| /* Only Coldfire uses platform data */ |
| dspi->devtype_data = &devtype_data[MCF5441X]; |
| big_endian = true; |
| } else { |
| |
| ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "can't get spi-num-chipselects\n"); |
| goto out_ctlr_put; |
| } |
| ctlr->num_chipselect = ctlr->max_native_cs = cs_num; |
| |
| of_property_read_u32(np, "bus-num", &bus_num); |
| ctlr->bus_num = bus_num; |
| |
| if (of_property_read_bool(np, "spi-slave")) |
| ctlr->target = true; |
| |
| dspi->devtype_data = of_device_get_match_data(&pdev->dev); |
| if (!dspi->devtype_data) { |
| dev_err(&pdev->dev, "can't get devtype_data\n"); |
| ret = -EFAULT; |
| goto out_ctlr_put; |
| } |
| |
| big_endian = of_device_is_big_endian(np); |
| } |
| if (big_endian) { |
| dspi->pushr_cmd = 0; |
| dspi->pushr_tx = 2; |
| } else { |
| dspi->pushr_cmd = 2; |
| dspi->pushr_tx = 0; |
| } |
| |
| if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) |
| ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); |
| else |
| ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); |
| |
| base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); |
| if (IS_ERR(base)) { |
| ret = PTR_ERR(base); |
| goto out_ctlr_put; |
| } |
| |
| if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) |
| regmap_config = &dspi_xspi_regmap_config[0]; |
| else |
| regmap_config = &dspi_regmap_config; |
| dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config); |
| if (IS_ERR(dspi->regmap)) { |
| dev_err(&pdev->dev, "failed to init regmap: %ld\n", |
| PTR_ERR(dspi->regmap)); |
| ret = PTR_ERR(dspi->regmap); |
| goto out_ctlr_put; |
| } |
| |
| if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) { |
| dspi->regmap_pushr = devm_regmap_init_mmio( |
| &pdev->dev, base + SPI_PUSHR, |
| &dspi_xspi_regmap_config[1]); |
| if (IS_ERR(dspi->regmap_pushr)) { |
| dev_err(&pdev->dev, |
| "failed to init pushr regmap: %ld\n", |
| PTR_ERR(dspi->regmap_pushr)); |
| ret = PTR_ERR(dspi->regmap_pushr); |
| goto out_ctlr_put; |
| } |
| } |
| |
| dspi->clk = devm_clk_get(&pdev->dev, "dspi"); |
| if (IS_ERR(dspi->clk)) { |
| ret = PTR_ERR(dspi->clk); |
| dev_err(&pdev->dev, "unable to get clock\n"); |
| goto out_ctlr_put; |
| } |
| ret = clk_prepare_enable(dspi->clk); |
| if (ret) |
| goto out_ctlr_put; |
| |
| ret = dspi_init(dspi); |
| if (ret) |
| goto out_clk_put; |
| |
| dspi->irq = platform_get_irq(pdev, 0); |
| if (dspi->irq <= 0) { |
| dev_info(&pdev->dev, |
| "can't get platform irq, using poll mode\n"); |
| dspi->irq = 0; |
| goto poll_mode; |
| } |
| |
| init_completion(&dspi->xfer_done); |
| |
| ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL, |
| IRQF_SHARED, pdev->name, dspi); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n"); |
| goto out_clk_put; |
| } |
| |
| poll_mode: |
| |
| if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) { |
| ret = dspi_request_dma(dspi, res->start); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "can't get dma channels\n"); |
| goto out_free_irq; |
| } |
| } |
| |
| ctlr->max_speed_hz = |
| clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor; |
| |
| if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE) |
| ctlr->ptp_sts_supported = true; |
| |
| ret = spi_register_controller(ctlr); |
| if (ret != 0) { |
| dev_err(&pdev->dev, "Problem registering DSPI ctlr\n"); |
| goto out_release_dma; |
| } |
| |
| return ret; |
| |
| out_release_dma: |
| dspi_release_dma(dspi); |
| out_free_irq: |
| if (dspi->irq) |
| free_irq(dspi->irq, dspi); |
| out_clk_put: |
| clk_disable_unprepare(dspi->clk); |
| out_ctlr_put: |
| spi_controller_put(ctlr); |
| |
| return ret; |
| } |
| |
| static void dspi_remove(struct platform_device *pdev) |
| { |
| struct fsl_dspi *dspi = platform_get_drvdata(pdev); |
| |
| /* Disconnect from the SPI framework */ |
| spi_unregister_controller(dspi->ctlr); |
| |
| /* Disable RX and TX */ |
| regmap_update_bits(dspi->regmap, SPI_MCR, |
| SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF, |
| SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF); |
| |
| /* Stop Running */ |
| regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT); |
| |
| dspi_release_dma(dspi); |
| if (dspi->irq) |
| free_irq(dspi->irq, dspi); |
| clk_disable_unprepare(dspi->clk); |
| } |
| |
| static void dspi_shutdown(struct platform_device *pdev) |
| { |
| dspi_remove(pdev); |
| } |
| |
| static struct platform_driver fsl_dspi_driver = { |
| .driver.name = DRIVER_NAME, |
| .driver.of_match_table = fsl_dspi_dt_ids, |
| .driver.owner = THIS_MODULE, |
| .driver.pm = &dspi_pm, |
| .probe = dspi_probe, |
| .remove_new = dspi_remove, |
| .shutdown = dspi_shutdown, |
| }; |
| module_platform_driver(fsl_dspi_driver); |
| |
| MODULE_DESCRIPTION("Freescale DSPI Controller Driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:" DRIVER_NAME); |