| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2012 - 2014 Allwinner Tech |
| * Pan Nan <pannan@allwinnertech.com> |
| * |
| * Copyright (C) 2014 Maxime Ripard |
| * Maxime Ripard <maxime.ripard@free-electrons.com> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/reset.h> |
| #include <linux/dmaengine.h> |
| |
| #include <linux/spi/spi.h> |
| |
| #define SUN6I_AUTOSUSPEND_TIMEOUT 2000 |
| |
| #define SUN6I_FIFO_DEPTH 128 |
| #define SUN8I_FIFO_DEPTH 64 |
| |
| #define SUN6I_GBL_CTL_REG 0x04 |
| #define SUN6I_GBL_CTL_BUS_ENABLE BIT(0) |
| #define SUN6I_GBL_CTL_MASTER BIT(1) |
| #define SUN6I_GBL_CTL_TP BIT(7) |
| #define SUN6I_GBL_CTL_RST BIT(31) |
| |
| #define SUN6I_TFR_CTL_REG 0x08 |
| #define SUN6I_TFR_CTL_CPHA BIT(0) |
| #define SUN6I_TFR_CTL_CPOL BIT(1) |
| #define SUN6I_TFR_CTL_SPOL BIT(2) |
| #define SUN6I_TFR_CTL_CS_MASK 0x30 |
| #define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK) |
| #define SUN6I_TFR_CTL_CS_MANUAL BIT(6) |
| #define SUN6I_TFR_CTL_CS_LEVEL BIT(7) |
| #define SUN6I_TFR_CTL_DHB BIT(8) |
| #define SUN6I_TFR_CTL_SDC BIT(11) |
| #define SUN6I_TFR_CTL_FBS BIT(12) |
| #define SUN6I_TFR_CTL_SDM BIT(13) |
| #define SUN6I_TFR_CTL_XCH BIT(31) |
| |
| #define SUN6I_INT_CTL_REG 0x10 |
| #define SUN6I_INT_CTL_RF_RDY BIT(0) |
| #define SUN6I_INT_CTL_TF_ERQ BIT(4) |
| #define SUN6I_INT_CTL_RF_OVF BIT(8) |
| #define SUN6I_INT_CTL_TC BIT(12) |
| |
| #define SUN6I_INT_STA_REG 0x14 |
| |
| #define SUN6I_FIFO_CTL_REG 0x18 |
| #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK 0xff |
| #define SUN6I_FIFO_CTL_RF_DRQ_EN BIT(8) |
| #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS 0 |
| #define SUN6I_FIFO_CTL_RF_RST BIT(15) |
| #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK 0xff |
| #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS 16 |
| #define SUN6I_FIFO_CTL_TF_DRQ_EN BIT(24) |
| #define SUN6I_FIFO_CTL_TF_RST BIT(31) |
| |
| #define SUN6I_FIFO_STA_REG 0x1c |
| #define SUN6I_FIFO_STA_RF_CNT_MASK GENMASK(7, 0) |
| #define SUN6I_FIFO_STA_TF_CNT_MASK GENMASK(23, 16) |
| |
| #define SUN6I_CLK_CTL_REG 0x24 |
| #define SUN6I_CLK_CTL_CDR2_MASK 0xff |
| #define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0) |
| #define SUN6I_CLK_CTL_CDR1_MASK 0xf |
| #define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8) |
| #define SUN6I_CLK_CTL_DRS BIT(12) |
| |
| #define SUN6I_MAX_XFER_SIZE 0xffffff |
| |
| #define SUN6I_BURST_CNT_REG 0x30 |
| |
| #define SUN6I_XMIT_CNT_REG 0x34 |
| |
| #define SUN6I_BURST_CTL_CNT_REG 0x38 |
| #define SUN6I_BURST_CTL_CNT_STC_MASK GENMASK(23, 0) |
| #define SUN6I_BURST_CTL_CNT_DRM BIT(28) |
| #define SUN6I_BURST_CTL_CNT_QUAD_EN BIT(29) |
| |
| #define SUN6I_TXDATA_REG 0x200 |
| #define SUN6I_RXDATA_REG 0x300 |
| |
| struct sun6i_spi_cfg { |
| unsigned long fifo_depth; |
| bool has_clk_ctl; |
| u32 mode_bits; |
| }; |
| |
| struct sun6i_spi { |
| struct spi_master *master; |
| void __iomem *base_addr; |
| dma_addr_t dma_addr_rx; |
| dma_addr_t dma_addr_tx; |
| struct clk *hclk; |
| struct clk *mclk; |
| struct reset_control *rstc; |
| |
| struct completion done; |
| struct completion dma_rx_done; |
| |
| const u8 *tx_buf; |
| u8 *rx_buf; |
| int len; |
| const struct sun6i_spi_cfg *cfg; |
| }; |
| |
| static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg) |
| { |
| return readl(sspi->base_addr + reg); |
| } |
| |
| static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value) |
| { |
| writel(value, sspi->base_addr + reg); |
| } |
| |
| static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi) |
| { |
| u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG); |
| |
| return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg); |
| } |
| |
| static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi) |
| { |
| u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG); |
| |
| return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg); |
| } |
| |
| static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask) |
| { |
| u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG); |
| |
| reg &= ~mask; |
| sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg); |
| } |
| |
| static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi) |
| { |
| u32 len; |
| u8 byte; |
| |
| /* See how much data is available */ |
| len = sun6i_spi_get_rx_fifo_count(sspi); |
| |
| while (len--) { |
| byte = readb(sspi->base_addr + SUN6I_RXDATA_REG); |
| if (sspi->rx_buf) |
| *sspi->rx_buf++ = byte; |
| } |
| } |
| |
| static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi) |
| { |
| u32 cnt; |
| int len; |
| u8 byte; |
| |
| /* See how much data we can fit */ |
| cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi); |
| |
| len = min((int)cnt, sspi->len); |
| |
| while (len--) { |
| byte = sspi->tx_buf ? *sspi->tx_buf++ : 0; |
| writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG); |
| sspi->len--; |
| } |
| } |
| |
| static void sun6i_spi_set_cs(struct spi_device *spi, bool enable) |
| { |
| struct sun6i_spi *sspi = spi_master_get_devdata(spi->master); |
| u32 reg; |
| |
| reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); |
| reg &= ~SUN6I_TFR_CTL_CS_MASK; |
| reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0)); |
| |
| if (enable) |
| reg |= SUN6I_TFR_CTL_CS_LEVEL; |
| else |
| reg &= ~SUN6I_TFR_CTL_CS_LEVEL; |
| |
| sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); |
| } |
| |
| static size_t sun6i_spi_max_transfer_size(struct spi_device *spi) |
| { |
| return SUN6I_MAX_XFER_SIZE - 1; |
| } |
| |
| static void sun6i_spi_dma_rx_cb(void *param) |
| { |
| struct sun6i_spi *sspi = param; |
| |
| complete(&sspi->dma_rx_done); |
| } |
| |
| static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi, |
| struct spi_transfer *tfr) |
| { |
| struct dma_async_tx_descriptor *rxdesc, *txdesc; |
| struct spi_master *master = sspi->master; |
| |
| rxdesc = NULL; |
| if (tfr->rx_buf) { |
| struct dma_slave_config rxconf = { |
| .direction = DMA_DEV_TO_MEM, |
| .src_addr = sspi->dma_addr_rx, |
| .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, |
| .src_maxburst = 8, |
| }; |
| |
| dmaengine_slave_config(master->dma_rx, &rxconf); |
| |
| rxdesc = dmaengine_prep_slave_sg(master->dma_rx, |
| tfr->rx_sg.sgl, |
| tfr->rx_sg.nents, |
| DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT); |
| if (!rxdesc) |
| return -EINVAL; |
| rxdesc->callback_param = sspi; |
| rxdesc->callback = sun6i_spi_dma_rx_cb; |
| } |
| |
| txdesc = NULL; |
| if (tfr->tx_buf) { |
| struct dma_slave_config txconf = { |
| .direction = DMA_MEM_TO_DEV, |
| .dst_addr = sspi->dma_addr_tx, |
| .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, |
| .dst_maxburst = 8, |
| }; |
| |
| dmaengine_slave_config(master->dma_tx, &txconf); |
| |
| txdesc = dmaengine_prep_slave_sg(master->dma_tx, |
| tfr->tx_sg.sgl, |
| tfr->tx_sg.nents, |
| DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT); |
| if (!txdesc) { |
| if (rxdesc) |
| dmaengine_terminate_sync(master->dma_rx); |
| return -EINVAL; |
| } |
| } |
| |
| if (tfr->rx_buf) { |
| dmaengine_submit(rxdesc); |
| dma_async_issue_pending(master->dma_rx); |
| } |
| |
| if (tfr->tx_buf) { |
| dmaengine_submit(txdesc); |
| dma_async_issue_pending(master->dma_tx); |
| } |
| |
| return 0; |
| } |
| |
| static int sun6i_spi_transfer_one(struct spi_master *master, |
| struct spi_device *spi, |
| struct spi_transfer *tfr) |
| { |
| struct sun6i_spi *sspi = spi_master_get_devdata(master); |
| unsigned int div, div_cdr1, div_cdr2, timeout; |
| unsigned int start, end, tx_time; |
| unsigned int trig_level; |
| unsigned int tx_len = 0, rx_len = 0, nbits = 0; |
| bool use_dma; |
| int ret = 0; |
| u32 reg; |
| |
| if (tfr->len > SUN6I_MAX_XFER_SIZE) |
| return -EINVAL; |
| |
| reinit_completion(&sspi->done); |
| reinit_completion(&sspi->dma_rx_done); |
| sspi->tx_buf = tfr->tx_buf; |
| sspi->rx_buf = tfr->rx_buf; |
| sspi->len = tfr->len; |
| use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false; |
| |
| /* Clear pending interrupts */ |
| sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0); |
| |
| /* Reset FIFO */ |
| sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, |
| SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST); |
| |
| reg = 0; |
| |
| if (!use_dma) { |
| /* |
| * Setup FIFO interrupt trigger level |
| * Here we choose 3/4 of the full fifo depth, as it's |
| * the hardcoded value used in old generation of Allwinner |
| * SPI controller. (See spi-sun4i.c) |
| */ |
| trig_level = sspi->cfg->fifo_depth / 4 * 3; |
| } else { |
| /* |
| * Setup FIFO DMA request trigger level |
| * We choose 1/2 of the full fifo depth, that value will |
| * be used as DMA burst length. |
| */ |
| trig_level = sspi->cfg->fifo_depth / 2; |
| |
| if (tfr->tx_buf) |
| reg |= SUN6I_FIFO_CTL_TF_DRQ_EN; |
| if (tfr->rx_buf) |
| reg |= SUN6I_FIFO_CTL_RF_DRQ_EN; |
| } |
| |
| reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) | |
| (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS); |
| |
| sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg); |
| |
| /* |
| * Setup the transfer control register: Chip Select, |
| * polarities, etc. |
| */ |
| reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); |
| |
| if (spi->mode & SPI_CPOL) |
| reg |= SUN6I_TFR_CTL_CPOL; |
| else |
| reg &= ~SUN6I_TFR_CTL_CPOL; |
| |
| if (spi->mode & SPI_CPHA) |
| reg |= SUN6I_TFR_CTL_CPHA; |
| else |
| reg &= ~SUN6I_TFR_CTL_CPHA; |
| |
| if (spi->mode & SPI_LSB_FIRST) |
| reg |= SUN6I_TFR_CTL_FBS; |
| else |
| reg &= ~SUN6I_TFR_CTL_FBS; |
| |
| /* |
| * If it's a TX only transfer, we don't want to fill the RX |
| * FIFO with bogus data |
| */ |
| if (sspi->rx_buf) { |
| reg &= ~SUN6I_TFR_CTL_DHB; |
| rx_len = tfr->len; |
| } else { |
| reg |= SUN6I_TFR_CTL_DHB; |
| } |
| |
| /* We want to control the chip select manually */ |
| reg |= SUN6I_TFR_CTL_CS_MANUAL; |
| |
| sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); |
| |
| if (sspi->cfg->has_clk_ctl) { |
| unsigned int mclk_rate = clk_get_rate(sspi->mclk); |
| |
| /* Ensure that we have a parent clock fast enough */ |
| if (mclk_rate < (2 * tfr->speed_hz)) { |
| clk_set_rate(sspi->mclk, 2 * tfr->speed_hz); |
| mclk_rate = clk_get_rate(sspi->mclk); |
| } |
| |
| /* |
| * Setup clock divider. |
| * |
| * We have two choices there. Either we can use the clock |
| * divide rate 1, which is calculated thanks to this formula: |
| * SPI_CLK = MOD_CLK / (2 ^ cdr) |
| * Or we can use CDR2, which is calculated with the formula: |
| * SPI_CLK = MOD_CLK / (2 * (cdr + 1)) |
| * Wether we use the former or the latter is set through the |
| * DRS bit. |
| * |
| * First try CDR2, and if we can't reach the expected |
| * frequency, fall back to CDR1. |
| */ |
| div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz); |
| div_cdr2 = DIV_ROUND_UP(div_cdr1, 2); |
| if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) { |
| reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS; |
| tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2); |
| } else { |
| div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1)); |
| reg = SUN6I_CLK_CTL_CDR1(div); |
| tfr->effective_speed_hz = mclk_rate / (1 << div); |
| } |
| |
| sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg); |
| } else { |
| clk_set_rate(sspi->mclk, tfr->speed_hz); |
| tfr->effective_speed_hz = clk_get_rate(sspi->mclk); |
| |
| /* |
| * Configure work mode. |
| * |
| * There are three work modes depending on the controller clock |
| * frequency: |
| * - normal sample mode : CLK <= 24MHz SDM=1 SDC=0 |
| * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0 |
| * - delay one-cycle sample mode : CLK >= 80MHz SDM=0 SDC=1 |
| */ |
| reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); |
| reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC); |
| |
| if (tfr->effective_speed_hz <= 24000000) |
| reg |= SUN6I_TFR_CTL_SDM; |
| else if (tfr->effective_speed_hz >= 80000000) |
| reg |= SUN6I_TFR_CTL_SDC; |
| |
| sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); |
| } |
| |
| /* Finally enable the bus - doing so before might raise SCK to HIGH */ |
| reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG); |
| reg |= SUN6I_GBL_CTL_BUS_ENABLE; |
| sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg); |
| |
| /* Setup the transfer now... */ |
| if (sspi->tx_buf) { |
| tx_len = tfr->len; |
| nbits = tfr->tx_nbits; |
| } else if (tfr->rx_buf) { |
| nbits = tfr->rx_nbits; |
| } |
| |
| switch (nbits) { |
| case SPI_NBITS_DUAL: |
| reg = SUN6I_BURST_CTL_CNT_DRM; |
| break; |
| case SPI_NBITS_QUAD: |
| reg = SUN6I_BURST_CTL_CNT_QUAD_EN; |
| break; |
| case SPI_NBITS_SINGLE: |
| default: |
| reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len); |
| } |
| |
| /* Setup the counters */ |
| sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg); |
| sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len); |
| sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len); |
| |
| if (!use_dma) { |
| /* Fill the TX FIFO */ |
| sun6i_spi_fill_fifo(sspi); |
| } else { |
| ret = sun6i_spi_prepare_dma(sspi, tfr); |
| if (ret) { |
| dev_warn(&master->dev, |
| "%s: prepare DMA failed, ret=%d", |
| dev_name(&spi->dev), ret); |
| return ret; |
| } |
| } |
| |
| /* Enable the interrupts */ |
| reg = SUN6I_INT_CTL_TC; |
| |
| if (!use_dma) { |
| if (rx_len > sspi->cfg->fifo_depth) |
| reg |= SUN6I_INT_CTL_RF_RDY; |
| if (tx_len > sspi->cfg->fifo_depth) |
| reg |= SUN6I_INT_CTL_TF_ERQ; |
| } |
| |
| sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg); |
| |
| /* Start the transfer */ |
| reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); |
| sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH); |
| |
| tx_time = spi_controller_xfer_timeout(master, tfr); |
| start = jiffies; |
| timeout = wait_for_completion_timeout(&sspi->done, |
| msecs_to_jiffies(tx_time)); |
| |
| if (!use_dma) { |
| sun6i_spi_drain_fifo(sspi); |
| } else { |
| if (timeout && rx_len) { |
| /* |
| * Even though RX on the peripheral side has finished |
| * RX DMA might still be in flight |
| */ |
| timeout = wait_for_completion_timeout(&sspi->dma_rx_done, |
| timeout); |
| if (!timeout) |
| dev_warn(&master->dev, "RX DMA timeout\n"); |
| } |
| } |
| |
| end = jiffies; |
| if (!timeout) { |
| dev_warn(&master->dev, |
| "%s: timeout transferring %u bytes@%iHz for %i(%i)ms", |
| dev_name(&spi->dev), tfr->len, tfr->speed_hz, |
| jiffies_to_msecs(end - start), tx_time); |
| ret = -ETIMEDOUT; |
| } |
| |
| sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0); |
| |
| if (ret && use_dma) { |
| dmaengine_terminate_sync(master->dma_rx); |
| dmaengine_terminate_sync(master->dma_tx); |
| } |
| |
| return ret; |
| } |
| |
| static irqreturn_t sun6i_spi_handler(int irq, void *dev_id) |
| { |
| struct sun6i_spi *sspi = dev_id; |
| u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG); |
| |
| /* Transfer complete */ |
| if (status & SUN6I_INT_CTL_TC) { |
| sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC); |
| complete(&sspi->done); |
| return IRQ_HANDLED; |
| } |
| |
| /* Receive FIFO 3/4 full */ |
| if (status & SUN6I_INT_CTL_RF_RDY) { |
| sun6i_spi_drain_fifo(sspi); |
| /* Only clear the interrupt _after_ draining the FIFO */ |
| sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY); |
| return IRQ_HANDLED; |
| } |
| |
| /* Transmit FIFO 3/4 empty */ |
| if (status & SUN6I_INT_CTL_TF_ERQ) { |
| sun6i_spi_fill_fifo(sspi); |
| |
| if (!sspi->len) |
| /* nothing left to transmit */ |
| sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ); |
| |
| /* Only clear the interrupt _after_ re-seeding the FIFO */ |
| sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ); |
| |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| static int sun6i_spi_runtime_resume(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct sun6i_spi *sspi = spi_master_get_devdata(master); |
| int ret; |
| |
| ret = clk_prepare_enable(sspi->hclk); |
| if (ret) { |
| dev_err(dev, "Couldn't enable AHB clock\n"); |
| goto out; |
| } |
| |
| ret = clk_prepare_enable(sspi->mclk); |
| if (ret) { |
| dev_err(dev, "Couldn't enable module clock\n"); |
| goto err; |
| } |
| |
| ret = reset_control_deassert(sspi->rstc); |
| if (ret) { |
| dev_err(dev, "Couldn't deassert the device from reset\n"); |
| goto err2; |
| } |
| |
| sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, |
| SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP); |
| |
| return 0; |
| |
| err2: |
| clk_disable_unprepare(sspi->mclk); |
| err: |
| clk_disable_unprepare(sspi->hclk); |
| out: |
| return ret; |
| } |
| |
| static int sun6i_spi_runtime_suspend(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct sun6i_spi *sspi = spi_master_get_devdata(master); |
| |
| reset_control_assert(sspi->rstc); |
| clk_disable_unprepare(sspi->mclk); |
| clk_disable_unprepare(sspi->hclk); |
| |
| return 0; |
| } |
| |
| static bool sun6i_spi_can_dma(struct spi_master *master, |
| struct spi_device *spi, |
| struct spi_transfer *xfer) |
| { |
| struct sun6i_spi *sspi = spi_master_get_devdata(master); |
| |
| /* |
| * If the number of spi words to transfer is less or equal than |
| * the fifo length we can just fill the fifo and wait for a single |
| * irq, so don't bother setting up dma |
| */ |
| return xfer->len > sspi->cfg->fifo_depth; |
| } |
| |
| static int sun6i_spi_probe(struct platform_device *pdev) |
| { |
| struct spi_master *master; |
| struct sun6i_spi *sspi; |
| struct resource *mem; |
| int ret = 0, irq; |
| |
| master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi)); |
| if (!master) { |
| dev_err(&pdev->dev, "Unable to allocate SPI Master\n"); |
| return -ENOMEM; |
| } |
| |
| platform_set_drvdata(pdev, master); |
| sspi = spi_master_get_devdata(master); |
| |
| sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem); |
| if (IS_ERR(sspi->base_addr)) { |
| ret = PTR_ERR(sspi->base_addr); |
| goto err_free_master; |
| } |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| ret = -ENXIO; |
| goto err_free_master; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler, |
| 0, "sun6i-spi", sspi); |
| if (ret) { |
| dev_err(&pdev->dev, "Cannot request IRQ\n"); |
| goto err_free_master; |
| } |
| |
| sspi->master = master; |
| sspi->cfg = of_device_get_match_data(&pdev->dev); |
| |
| master->max_speed_hz = 100 * 1000 * 1000; |
| master->min_speed_hz = 3 * 1000; |
| master->use_gpio_descriptors = true; |
| master->set_cs = sun6i_spi_set_cs; |
| master->transfer_one = sun6i_spi_transfer_one; |
| master->num_chipselect = 4; |
| master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST | |
| sspi->cfg->mode_bits; |
| master->bits_per_word_mask = SPI_BPW_MASK(8); |
| master->dev.of_node = pdev->dev.of_node; |
| master->auto_runtime_pm = true; |
| master->max_transfer_size = sun6i_spi_max_transfer_size; |
| |
| sspi->hclk = devm_clk_get(&pdev->dev, "ahb"); |
| if (IS_ERR(sspi->hclk)) { |
| dev_err(&pdev->dev, "Unable to acquire AHB clock\n"); |
| ret = PTR_ERR(sspi->hclk); |
| goto err_free_master; |
| } |
| |
| sspi->mclk = devm_clk_get(&pdev->dev, "mod"); |
| if (IS_ERR(sspi->mclk)) { |
| dev_err(&pdev->dev, "Unable to acquire module clock\n"); |
| ret = PTR_ERR(sspi->mclk); |
| goto err_free_master; |
| } |
| |
| init_completion(&sspi->done); |
| init_completion(&sspi->dma_rx_done); |
| |
| sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL); |
| if (IS_ERR(sspi->rstc)) { |
| dev_err(&pdev->dev, "Couldn't get reset controller\n"); |
| ret = PTR_ERR(sspi->rstc); |
| goto err_free_master; |
| } |
| |
| master->dma_tx = dma_request_chan(&pdev->dev, "tx"); |
| if (IS_ERR(master->dma_tx)) { |
| /* Check tx to see if we need defer probing driver */ |
| if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) { |
| ret = -EPROBE_DEFER; |
| goto err_free_master; |
| } |
| dev_warn(&pdev->dev, "Failed to request TX DMA channel\n"); |
| master->dma_tx = NULL; |
| } |
| |
| master->dma_rx = dma_request_chan(&pdev->dev, "rx"); |
| if (IS_ERR(master->dma_rx)) { |
| if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) { |
| ret = -EPROBE_DEFER; |
| goto err_free_dma_tx; |
| } |
| dev_warn(&pdev->dev, "Failed to request RX DMA channel\n"); |
| master->dma_rx = NULL; |
| } |
| |
| if (master->dma_tx && master->dma_rx) { |
| sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG; |
| sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG; |
| master->can_dma = sun6i_spi_can_dma; |
| } |
| |
| /* |
| * This wake-up/shutdown pattern is to be able to have the |
| * device woken up, even if runtime_pm is disabled |
| */ |
| ret = sun6i_spi_runtime_resume(&pdev->dev); |
| if (ret) { |
| dev_err(&pdev->dev, "Couldn't resume the device\n"); |
| goto err_free_dma_rx; |
| } |
| |
| pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT); |
| pm_runtime_use_autosuspend(&pdev->dev); |
| pm_runtime_set_active(&pdev->dev); |
| pm_runtime_enable(&pdev->dev); |
| |
| ret = devm_spi_register_master(&pdev->dev, master); |
| if (ret) { |
| dev_err(&pdev->dev, "cannot register SPI master\n"); |
| goto err_pm_disable; |
| } |
| |
| return 0; |
| |
| err_pm_disable: |
| pm_runtime_disable(&pdev->dev); |
| sun6i_spi_runtime_suspend(&pdev->dev); |
| err_free_dma_rx: |
| if (master->dma_rx) |
| dma_release_channel(master->dma_rx); |
| err_free_dma_tx: |
| if (master->dma_tx) |
| dma_release_channel(master->dma_tx); |
| err_free_master: |
| spi_master_put(master); |
| return ret; |
| } |
| |
| static void sun6i_spi_remove(struct platform_device *pdev) |
| { |
| struct spi_master *master = platform_get_drvdata(pdev); |
| |
| pm_runtime_force_suspend(&pdev->dev); |
| |
| if (master->dma_tx) |
| dma_release_channel(master->dma_tx); |
| if (master->dma_rx) |
| dma_release_channel(master->dma_rx); |
| } |
| |
| static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = { |
| .fifo_depth = SUN6I_FIFO_DEPTH, |
| .has_clk_ctl = true, |
| }; |
| |
| static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = { |
| .fifo_depth = SUN8I_FIFO_DEPTH, |
| .has_clk_ctl = true, |
| }; |
| |
| static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = { |
| .fifo_depth = SUN8I_FIFO_DEPTH, |
| .mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD, |
| }; |
| |
| static const struct of_device_id sun6i_spi_match[] = { |
| { .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg }, |
| { .compatible = "allwinner,sun8i-h3-spi", .data = &sun8i_h3_spi_cfg }, |
| { |
| .compatible = "allwinner,sun50i-r329-spi", |
| .data = &sun50i_r329_spi_cfg |
| }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, sun6i_spi_match); |
| |
| static const struct dev_pm_ops sun6i_spi_pm_ops = { |
| .runtime_resume = sun6i_spi_runtime_resume, |
| .runtime_suspend = sun6i_spi_runtime_suspend, |
| }; |
| |
| static struct platform_driver sun6i_spi_driver = { |
| .probe = sun6i_spi_probe, |
| .remove_new = sun6i_spi_remove, |
| .driver = { |
| .name = "sun6i-spi", |
| .of_match_table = sun6i_spi_match, |
| .pm = &sun6i_spi_pm_ops, |
| }, |
| }; |
| module_platform_driver(sun6i_spi_driver); |
| |
| MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>"); |
| MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); |
| MODULE_DESCRIPTION("Allwinner A31 SPI controller driver"); |
| MODULE_LICENSE("GPL"); |