| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * fscrypt_private.h |
| * |
| * Copyright (C) 2015, Google, Inc. |
| * |
| * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. |
| * Heavily modified since then. |
| */ |
| |
| #ifndef _FSCRYPT_PRIVATE_H |
| #define _FSCRYPT_PRIVATE_H |
| |
| #include <linux/fscrypt.h> |
| #include <linux/siphash.h> |
| #include <crypto/hash.h> |
| #include <linux/blk-crypto.h> |
| |
| #define CONST_STRLEN(str) (sizeof(str) - 1) |
| |
| #define FSCRYPT_FILE_NONCE_SIZE 16 |
| |
| /* |
| * Minimum size of an fscrypt master key. Note: a longer key will be required |
| * if ciphers with a 256-bit security strength are used. This is just the |
| * absolute minimum, which applies when only 128-bit encryption is used. |
| */ |
| #define FSCRYPT_MIN_KEY_SIZE 16 |
| |
| /* Maximum size of a standard fscrypt master key */ |
| #define FSCRYPT_MAX_STANDARD_KEY_SIZE 64 |
| |
| /* Maximum size of a hardware-wrapped fscrypt master key */ |
| #define FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE |
| |
| /* |
| * Maximum size of an fscrypt master key across both key types. |
| * This should just use max(), but max() doesn't work in a struct definition. |
| */ |
| #define FSCRYPT_MAX_ANY_KEY_SIZE \ |
| (FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE > FSCRYPT_MAX_STANDARD_KEY_SIZE ? \ |
| FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE : FSCRYPT_MAX_STANDARD_KEY_SIZE) |
| |
| /* |
| * FSCRYPT_MAX_KEY_SIZE is defined in the UAPI header, but the addition of |
| * hardware-wrapped keys has made it misleading as it's only for standard keys. |
| * Don't use it in kernel code; use one of the above constants instead. |
| */ |
| #undef FSCRYPT_MAX_KEY_SIZE |
| |
| #define FSCRYPT_CONTEXT_V1 1 |
| #define FSCRYPT_CONTEXT_V2 2 |
| |
| /* Keep this in sync with include/uapi/linux/fscrypt.h */ |
| #define FSCRYPT_MODE_MAX FSCRYPT_MODE_AES_256_HCTR2 |
| |
| struct fscrypt_context_v1 { |
| u8 version; /* FSCRYPT_CONTEXT_V1 */ |
| u8 contents_encryption_mode; |
| u8 filenames_encryption_mode; |
| u8 flags; |
| u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE]; |
| u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; |
| }; |
| |
| struct fscrypt_context_v2 { |
| u8 version; /* FSCRYPT_CONTEXT_V2 */ |
| u8 contents_encryption_mode; |
| u8 filenames_encryption_mode; |
| u8 flags; |
| u8 __reserved[4]; |
| u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]; |
| u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; |
| }; |
| |
| /* |
| * fscrypt_context - the encryption context of an inode |
| * |
| * This is the on-disk equivalent of an fscrypt_policy, stored alongside each |
| * encrypted file usually in a hidden extended attribute. It contains the |
| * fields from the fscrypt_policy, in order to identify the encryption algorithm |
| * and key with which the file is encrypted. It also contains a nonce that was |
| * randomly generated by fscrypt itself; this is used as KDF input or as a tweak |
| * to cause different files to be encrypted differently. |
| */ |
| union fscrypt_context { |
| u8 version; |
| struct fscrypt_context_v1 v1; |
| struct fscrypt_context_v2 v2; |
| }; |
| |
| /* |
| * Return the size expected for the given fscrypt_context based on its version |
| * number, or 0 if the context version is unrecognized. |
| */ |
| static inline int fscrypt_context_size(const union fscrypt_context *ctx) |
| { |
| switch (ctx->version) { |
| case FSCRYPT_CONTEXT_V1: |
| BUILD_BUG_ON(sizeof(ctx->v1) != 28); |
| return sizeof(ctx->v1); |
| case FSCRYPT_CONTEXT_V2: |
| BUILD_BUG_ON(sizeof(ctx->v2) != 40); |
| return sizeof(ctx->v2); |
| } |
| return 0; |
| } |
| |
| /* Check whether an fscrypt_context has a recognized version number and size */ |
| static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx, |
| int ctx_size) |
| { |
| return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx); |
| } |
| |
| /* Retrieve the context's nonce, assuming the context was already validated */ |
| static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx) |
| { |
| switch (ctx->version) { |
| case FSCRYPT_CONTEXT_V1: |
| return ctx->v1.nonce; |
| case FSCRYPT_CONTEXT_V2: |
| return ctx->v2.nonce; |
| } |
| WARN_ON_ONCE(1); |
| return NULL; |
| } |
| |
| union fscrypt_policy { |
| u8 version; |
| struct fscrypt_policy_v1 v1; |
| struct fscrypt_policy_v2 v2; |
| }; |
| |
| /* |
| * Return the size expected for the given fscrypt_policy based on its version |
| * number, or 0 if the policy version is unrecognized. |
| */ |
| static inline int fscrypt_policy_size(const union fscrypt_policy *policy) |
| { |
| switch (policy->version) { |
| case FSCRYPT_POLICY_V1: |
| return sizeof(policy->v1); |
| case FSCRYPT_POLICY_V2: |
| return sizeof(policy->v2); |
| } |
| return 0; |
| } |
| |
| /* Return the contents encryption mode of a valid encryption policy */ |
| static inline u8 |
| fscrypt_policy_contents_mode(const union fscrypt_policy *policy) |
| { |
| switch (policy->version) { |
| case FSCRYPT_POLICY_V1: |
| return policy->v1.contents_encryption_mode; |
| case FSCRYPT_POLICY_V2: |
| return policy->v2.contents_encryption_mode; |
| } |
| BUG(); |
| } |
| |
| /* Return the filenames encryption mode of a valid encryption policy */ |
| static inline u8 |
| fscrypt_policy_fnames_mode(const union fscrypt_policy *policy) |
| { |
| switch (policy->version) { |
| case FSCRYPT_POLICY_V1: |
| return policy->v1.filenames_encryption_mode; |
| case FSCRYPT_POLICY_V2: |
| return policy->v2.filenames_encryption_mode; |
| } |
| BUG(); |
| } |
| |
| /* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */ |
| static inline u8 |
| fscrypt_policy_flags(const union fscrypt_policy *policy) |
| { |
| switch (policy->version) { |
| case FSCRYPT_POLICY_V1: |
| return policy->v1.flags; |
| case FSCRYPT_POLICY_V2: |
| return policy->v2.flags; |
| } |
| BUG(); |
| } |
| |
| /* |
| * For encrypted symlinks, the ciphertext length is stored at the beginning |
| * of the string in little-endian format. |
| */ |
| struct fscrypt_symlink_data { |
| __le16 len; |
| char encrypted_path[]; |
| } __packed; |
| |
| /** |
| * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption |
| * @tfm: crypto API transform object |
| * @blk_key: key for blk-crypto |
| * |
| * Normally only one of the fields will be non-NULL. |
| */ |
| struct fscrypt_prepared_key { |
| struct crypto_skcipher *tfm; |
| #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT |
| struct blk_crypto_key *blk_key; |
| #endif |
| }; |
| |
| /* |
| * fscrypt_info - the "encryption key" for an inode |
| * |
| * When an encrypted file's key is made available, an instance of this struct is |
| * allocated and stored in ->i_crypt_info. Once created, it remains until the |
| * inode is evicted. |
| */ |
| struct fscrypt_info { |
| |
| /* The key in a form prepared for actual encryption/decryption */ |
| struct fscrypt_prepared_key ci_enc_key; |
| |
| /* True if ci_enc_key should be freed when this fscrypt_info is freed */ |
| bool ci_owns_key; |
| |
| #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT |
| /* |
| * True if this inode will use inline encryption (blk-crypto) instead of |
| * the traditional filesystem-layer encryption. |
| */ |
| bool ci_inlinecrypt; |
| #endif |
| |
| /* |
| * Encryption mode used for this inode. It corresponds to either the |
| * contents or filenames encryption mode, depending on the inode type. |
| */ |
| struct fscrypt_mode *ci_mode; |
| |
| /* Back-pointer to the inode */ |
| struct inode *ci_inode; |
| |
| /* |
| * The master key with which this inode was unlocked (decrypted). This |
| * will be NULL if the master key was found in a process-subscribed |
| * keyring rather than in the filesystem-level keyring. |
| */ |
| struct fscrypt_master_key *ci_master_key; |
| |
| /* |
| * Link in list of inodes that were unlocked with the master key. |
| * Only used when ->ci_master_key is set. |
| */ |
| struct list_head ci_master_key_link; |
| |
| /* |
| * If non-NULL, then encryption is done using the master key directly |
| * and ci_enc_key will equal ci_direct_key->dk_key. |
| */ |
| struct fscrypt_direct_key *ci_direct_key; |
| |
| /* |
| * This inode's hash key for filenames. This is a 128-bit SipHash-2-4 |
| * key. This is only set for directories that use a keyed dirhash over |
| * the plaintext filenames -- currently just casefolded directories. |
| */ |
| siphash_key_t ci_dirhash_key; |
| bool ci_dirhash_key_initialized; |
| |
| /* The encryption policy used by this inode */ |
| union fscrypt_policy ci_policy; |
| |
| /* This inode's nonce, copied from the fscrypt_context */ |
| u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE]; |
| |
| /* Hashed inode number. Only set for IV_INO_LBLK_32 */ |
| u32 ci_hashed_ino; |
| }; |
| |
| typedef enum { |
| FS_DECRYPT = 0, |
| FS_ENCRYPT, |
| } fscrypt_direction_t; |
| |
| /* crypto.c */ |
| extern struct kmem_cache *fscrypt_info_cachep; |
| int fscrypt_initialize(struct super_block *sb); |
| int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw, |
| u64 lblk_num, struct page *src_page, |
| struct page *dest_page, unsigned int len, |
| unsigned int offs, gfp_t gfp_flags); |
| struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags); |
| |
| void __printf(3, 4) __cold |
| fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...); |
| |
| #define fscrypt_warn(inode, fmt, ...) \ |
| fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__) |
| #define fscrypt_err(inode, fmt, ...) \ |
| fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__) |
| |
| #define FSCRYPT_MAX_IV_SIZE 32 |
| |
| union fscrypt_iv { |
| struct { |
| /* logical block number within the file */ |
| __le64 lblk_num; |
| |
| /* per-file nonce; only set in DIRECT_KEY mode */ |
| u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; |
| }; |
| u8 raw[FSCRYPT_MAX_IV_SIZE]; |
| __le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)]; |
| }; |
| |
| void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num, |
| const struct fscrypt_info *ci); |
| |
| /* fname.c */ |
| bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy, |
| u32 orig_len, u32 max_len, |
| u32 *encrypted_len_ret); |
| |
| /* hkdf.c */ |
| struct fscrypt_hkdf { |
| struct crypto_shash *hmac_tfm; |
| }; |
| |
| int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key, |
| unsigned int master_key_size); |
| |
| /* |
| * The list of contexts in which fscrypt uses HKDF. These values are used as |
| * the first byte of the HKDF application-specific info string to guarantee that |
| * info strings are never repeated between contexts. This ensures that all HKDF |
| * outputs are unique and cryptographically isolated, i.e. knowledge of one |
| * output doesn't reveal another. |
| */ |
| #define HKDF_CONTEXT_KEY_IDENTIFIER 1 /* info=<empty> */ |
| #define HKDF_CONTEXT_PER_FILE_ENC_KEY 2 /* info=file_nonce */ |
| #define HKDF_CONTEXT_DIRECT_KEY 3 /* info=mode_num */ |
| #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4 /* info=mode_num||fs_uuid */ |
| #define HKDF_CONTEXT_DIRHASH_KEY 5 /* info=file_nonce */ |
| #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY 6 /* info=mode_num||fs_uuid */ |
| #define HKDF_CONTEXT_INODE_HASH_KEY 7 /* info=<empty> */ |
| |
| int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context, |
| const u8 *info, unsigned int infolen, |
| u8 *okm, unsigned int okmlen); |
| |
| void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf); |
| |
| /* inline_crypt.c */ |
| #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT |
| int fscrypt_select_encryption_impl(struct fscrypt_info *ci, |
| bool is_hw_wrapped_key); |
| |
| static inline bool |
| fscrypt_using_inline_encryption(const struct fscrypt_info *ci) |
| { |
| return ci->ci_inlinecrypt; |
| } |
| |
| int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, |
| const u8 *raw_key, size_t raw_key_size, |
| bool is_hw_wrapped, |
| const struct fscrypt_info *ci); |
| |
| void fscrypt_destroy_inline_crypt_key(struct super_block *sb, |
| struct fscrypt_prepared_key *prep_key); |
| |
| int fscrypt_derive_sw_secret(struct super_block *sb, |
| const u8 *wrapped_key, size_t wrapped_key_size, |
| u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]); |
| |
| /* |
| * Check whether the crypto transform or blk-crypto key has been allocated in |
| * @prep_key, depending on which encryption implementation the file will use. |
| */ |
| static inline bool |
| fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key, |
| const struct fscrypt_info *ci) |
| { |
| /* |
| * The two smp_load_acquire()'s here pair with the smp_store_release()'s |
| * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key(). |
| * I.e., in some cases (namely, if this prep_key is a per-mode |
| * encryption key) another task can publish blk_key or tfm concurrently, |
| * executing a RELEASE barrier. We need to use smp_load_acquire() here |
| * to safely ACQUIRE the memory the other task published. |
| */ |
| if (fscrypt_using_inline_encryption(ci)) |
| return smp_load_acquire(&prep_key->blk_key) != NULL; |
| return smp_load_acquire(&prep_key->tfm) != NULL; |
| } |
| |
| #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ |
| |
| static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci, |
| bool is_hw_wrapped_key) |
| { |
| return 0; |
| } |
| |
| static inline bool |
| fscrypt_using_inline_encryption(const struct fscrypt_info *ci) |
| { |
| return false; |
| } |
| |
| static inline int |
| fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, |
| const u8 *raw_key, size_t raw_key_size, |
| bool is_hw_wrapped, |
| const struct fscrypt_info *ci) |
| { |
| WARN_ON_ONCE(1); |
| return -EOPNOTSUPP; |
| } |
| |
| static inline void |
| fscrypt_destroy_inline_crypt_key(struct super_block *sb, |
| struct fscrypt_prepared_key *prep_key) |
| { |
| } |
| |
| static inline int |
| fscrypt_derive_sw_secret(struct super_block *sb, |
| const u8 *wrapped_key, size_t wrapped_key_size, |
| u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]) |
| { |
| fscrypt_warn(NULL, "kernel doesn't support hardware-wrapped keys"); |
| return -EOPNOTSUPP; |
| } |
| |
| static inline bool |
| fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key, |
| const struct fscrypt_info *ci) |
| { |
| return smp_load_acquire(&prep_key->tfm) != NULL; |
| } |
| #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ |
| |
| /* keyring.c */ |
| |
| /* |
| * fscrypt_master_key_secret - secret key material of an in-use master key |
| */ |
| struct fscrypt_master_key_secret { |
| |
| /* |
| * The KDF with which subkeys of this key can be derived. |
| * |
| * For v1 policy keys, this isn't applicable and won't be set. |
| * Otherwise, this KDF will be keyed by this master key if |
| * ->is_hw_wrapped=false, or by the "software secret" that hardware |
| * derived from this master key if ->is_hw_wrapped=true. |
| */ |
| struct fscrypt_hkdf hkdf; |
| |
| /* |
| * True if this key is a hardware-wrapped key; false if this key is a |
| * standard key (i.e. a "software key"). For v1 policy keys this will |
| * always be false, as v1 policy support is a legacy feature which |
| * doesn't support newer functionality such as hardware-wrapped keys. |
| */ |
| bool is_hw_wrapped; |
| |
| /* |
| * Size of the raw key in bytes. This remains set even if ->raw was |
| * zeroized due to no longer being needed. I.e. we still remember the |
| * size of the key even if we don't need to remember the key itself. |
| */ |
| u32 size; |
| |
| /* |
| * The raw key which userspace provided, when still needed. This can be |
| * either a standard key or a hardware-wrapped key, as indicated by |
| * ->is_hw_wrapped. In the case of a standard, v2 policy key, there is |
| * no need to remember the raw key separately from ->hkdf so this field |
| * will be zeroized as soon as ->hkdf is initialized. |
| */ |
| u8 raw[FSCRYPT_MAX_ANY_KEY_SIZE]; |
| |
| } __randomize_layout; |
| |
| /* |
| * fscrypt_master_key - an in-use master key |
| * |
| * This represents a master encryption key which has been added to the |
| * filesystem and can be used to "unlock" the encrypted files which were |
| * encrypted with it. |
| */ |
| struct fscrypt_master_key { |
| |
| /* |
| * Link in ->s_master_keys->key_hashtable. |
| * Only valid if ->mk_active_refs > 0. |
| */ |
| struct hlist_node mk_node; |
| |
| /* Semaphore that protects ->mk_secret and ->mk_users */ |
| struct rw_semaphore mk_sem; |
| |
| /* |
| * Active and structural reference counts. An active ref guarantees |
| * that the struct continues to exist, continues to be in the keyring |
| * ->s_master_keys, and that any embedded subkeys (e.g. |
| * ->mk_direct_keys) that have been prepared continue to exist. |
| * A structural ref only guarantees that the struct continues to exist. |
| * |
| * There is one active ref associated with ->mk_secret being present, |
| * and one active ref for each inode in ->mk_decrypted_inodes. |
| * |
| * There is one structural ref associated with the active refcount being |
| * nonzero. Finding a key in the keyring also takes a structural ref, |
| * which is then held temporarily while the key is operated on. |
| */ |
| refcount_t mk_active_refs; |
| refcount_t mk_struct_refs; |
| |
| struct rcu_head mk_rcu_head; |
| |
| /* |
| * The secret key material. After FS_IOC_REMOVE_ENCRYPTION_KEY is |
| * executed, this is wiped and no new inodes can be unlocked with this |
| * key; however, there may still be inodes in ->mk_decrypted_inodes |
| * which could not be evicted. As long as some inodes still remain, |
| * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or |
| * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again. |
| * |
| * While ->mk_secret is present, one ref in ->mk_active_refs is held. |
| * |
| * Locking: protected by ->mk_sem. The manipulation of ->mk_active_refs |
| * associated with this field is protected by ->mk_sem as well. |
| */ |
| struct fscrypt_master_key_secret mk_secret; |
| |
| /* |
| * For v1 policy keys: an arbitrary key descriptor which was assigned by |
| * userspace (->descriptor). |
| * |
| * For v2 policy keys: a cryptographic hash of this key (->identifier). |
| */ |
| struct fscrypt_key_specifier mk_spec; |
| |
| /* |
| * Keyring which contains a key of type 'key_type_fscrypt_user' for each |
| * user who has added this key. Normally each key will be added by just |
| * one user, but it's possible that multiple users share a key, and in |
| * that case we need to keep track of those users so that one user can't |
| * remove the key before the others want it removed too. |
| * |
| * This is NULL for v1 policy keys; those can only be added by root. |
| * |
| * Locking: protected by ->mk_sem. (We don't just rely on the keyrings |
| * subsystem semaphore ->mk_users->sem, as we need support for atomic |
| * search+insert along with proper synchronization with ->mk_secret.) |
| */ |
| struct key *mk_users; |
| |
| /* |
| * List of inodes that were unlocked using this key. This allows the |
| * inodes to be evicted efficiently if the key is removed. |
| */ |
| struct list_head mk_decrypted_inodes; |
| spinlock_t mk_decrypted_inodes_lock; |
| |
| /* |
| * Per-mode encryption keys for the various types of encryption policies |
| * that use them. Allocated and derived on-demand. |
| */ |
| struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1]; |
| struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1]; |
| struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1]; |
| |
| /* Hash key for inode numbers. Initialized only when needed. */ |
| siphash_key_t mk_ino_hash_key; |
| bool mk_ino_hash_key_initialized; |
| |
| } __randomize_layout; |
| |
| static inline bool |
| is_master_key_secret_present(const struct fscrypt_master_key_secret *secret) |
| { |
| /* |
| * The READ_ONCE() is only necessary for fscrypt_drop_inode(). |
| * fscrypt_drop_inode() runs in atomic context, so it can't take the key |
| * semaphore and thus 'secret' can change concurrently which would be a |
| * data race. But fscrypt_drop_inode() only need to know whether the |
| * secret *was* present at the time of check, so READ_ONCE() suffices. |
| */ |
| return READ_ONCE(secret->size) != 0; |
| } |
| |
| static inline const char *master_key_spec_type( |
| const struct fscrypt_key_specifier *spec) |
| { |
| switch (spec->type) { |
| case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: |
| return "descriptor"; |
| case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: |
| return "identifier"; |
| } |
| return "[unknown]"; |
| } |
| |
| static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec) |
| { |
| switch (spec->type) { |
| case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: |
| return FSCRYPT_KEY_DESCRIPTOR_SIZE; |
| case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: |
| return FSCRYPT_KEY_IDENTIFIER_SIZE; |
| } |
| return 0; |
| } |
| |
| void fscrypt_put_master_key(struct fscrypt_master_key *mk); |
| |
| void fscrypt_put_master_key_activeref(struct super_block *sb, |
| struct fscrypt_master_key *mk); |
| |
| struct fscrypt_master_key * |
| fscrypt_find_master_key(struct super_block *sb, |
| const struct fscrypt_key_specifier *mk_spec); |
| |
| int fscrypt_get_test_dummy_key_identifier( |
| u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]); |
| |
| int fscrypt_add_test_dummy_key(struct super_block *sb, |
| struct fscrypt_key_specifier *key_spec); |
| |
| int fscrypt_verify_key_added(struct super_block *sb, |
| const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]); |
| |
| int __init fscrypt_init_keyring(void); |
| |
| /* keysetup.c */ |
| |
| struct fscrypt_mode { |
| const char *friendly_name; |
| const char *cipher_str; |
| int keysize; /* key size in bytes */ |
| int security_strength; /* security strength in bytes */ |
| int ivsize; /* IV size in bytes */ |
| int logged_cryptoapi_impl; |
| int logged_blk_crypto_native; |
| int logged_blk_crypto_fallback; |
| enum blk_crypto_mode_num blk_crypto_mode; |
| }; |
| |
| extern struct fscrypt_mode fscrypt_modes[]; |
| |
| int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, |
| const u8 *raw_key, const struct fscrypt_info *ci); |
| |
| void fscrypt_destroy_prepared_key(struct super_block *sb, |
| struct fscrypt_prepared_key *prep_key); |
| |
| int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key); |
| |
| int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, |
| const struct fscrypt_master_key *mk); |
| |
| void fscrypt_hash_inode_number(struct fscrypt_info *ci, |
| const struct fscrypt_master_key *mk); |
| |
| int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported); |
| |
| /** |
| * fscrypt_require_key() - require an inode's encryption key |
| * @inode: the inode we need the key for |
| * |
| * If the inode is encrypted, set up its encryption key if not already done. |
| * Then require that the key be present and return -ENOKEY otherwise. |
| * |
| * No locks are needed, and the key will live as long as the struct inode --- so |
| * it won't go away from under you. |
| * |
| * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code |
| * if a problem occurred while setting up the encryption key. |
| */ |
| static inline int fscrypt_require_key(struct inode *inode) |
| { |
| if (IS_ENCRYPTED(inode)) { |
| int err = fscrypt_get_encryption_info(inode, false); |
| |
| if (err) |
| return err; |
| if (!fscrypt_has_encryption_key(inode)) |
| return -ENOKEY; |
| } |
| return 0; |
| } |
| |
| /* keysetup_v1.c */ |
| |
| void fscrypt_put_direct_key(struct fscrypt_direct_key *dk); |
| |
| int fscrypt_setup_v1_file_key(struct fscrypt_info *ci, |
| const u8 *raw_master_key); |
| |
| int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci); |
| |
| /* policy.c */ |
| |
| bool fscrypt_policies_equal(const union fscrypt_policy *policy1, |
| const union fscrypt_policy *policy2); |
| int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy, |
| struct fscrypt_key_specifier *key_spec); |
| const union fscrypt_policy *fscrypt_get_dummy_policy(struct super_block *sb); |
| bool fscrypt_supported_policy(const union fscrypt_policy *policy_u, |
| const struct inode *inode); |
| int fscrypt_policy_from_context(union fscrypt_policy *policy_u, |
| const union fscrypt_context *ctx_u, |
| int ctx_size); |
| const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir); |
| |
| #endif /* _FSCRYPT_PRIVATE_H */ |