| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * |
| * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. |
| * |
| * on-disk ntfs structs |
| */ |
| |
| // clang-format off |
| #ifndef _LINUX_NTFS3_NTFS_H |
| #define _LINUX_NTFS3_NTFS_H |
| |
| #include <linux/blkdev.h> |
| #include <linux/build_bug.h> |
| #include <linux/kernel.h> |
| #include <linux/stddef.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| |
| #include "debug.h" |
| |
| /* TODO: Check 4K MFT record and 512 bytes cluster. */ |
| |
| /* Check each run for marked clusters. */ |
| #define NTFS3_CHECK_FREE_CLST |
| |
| #define NTFS_NAME_LEN 255 |
| |
| /* |
| * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff. |
| * xfstest generic/041 creates 3003 hardlinks. |
| */ |
| #define NTFS_LINK_MAX 4000 |
| |
| /* |
| * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys. |
| * Logical and virtual cluster number if needed, may be |
| * redefined to use 64 bit value. |
| */ |
| //#define CONFIG_NTFS3_64BIT_CLUSTER |
| |
| #define NTFS_LZNT_MAX_CLUSTER 4096 |
| #define NTFS_LZNT_CUNIT 4 |
| #define NTFS_LZNT_CLUSTERS (1u<<NTFS_LZNT_CUNIT) |
| |
| struct GUID { |
| __le32 Data1; |
| __le16 Data2; |
| __le16 Data3; |
| u8 Data4[8]; |
| }; |
| |
| /* |
| * This struct repeats layout of ATTR_FILE_NAME |
| * at offset 0x40. |
| * It used to store global constants NAME_MFT/NAME_MIRROR... |
| * most constant names are shorter than 10. |
| */ |
| struct cpu_str { |
| u8 len; |
| u8 unused; |
| u16 name[10]; |
| }; |
| |
| struct le_str { |
| u8 len; |
| u8 unused; |
| __le16 name[]; |
| }; |
| |
| static_assert(SECTOR_SHIFT == 9); |
| |
| #ifdef CONFIG_NTFS3_64BIT_CLUSTER |
| typedef u64 CLST; |
| static_assert(sizeof(size_t) == 8); |
| #else |
| typedef u32 CLST; |
| #endif |
| |
| #define SPARSE_LCN64 ((u64)-1) |
| #define SPARSE_LCN ((CLST)-1) |
| #define RESIDENT_LCN ((CLST)-2) |
| #define COMPRESSED_LCN ((CLST)-3) |
| |
| #define COMPRESSION_UNIT 4 |
| #define COMPRESS_MAX_CLUSTER 0x1000 |
| |
| enum RECORD_NUM { |
| MFT_REC_MFT = 0, |
| MFT_REC_MIRR = 1, |
| MFT_REC_LOG = 2, |
| MFT_REC_VOL = 3, |
| MFT_REC_ATTR = 4, |
| MFT_REC_ROOT = 5, |
| MFT_REC_BITMAP = 6, |
| MFT_REC_BOOT = 7, |
| MFT_REC_BADCLUST = 8, |
| MFT_REC_SECURE = 9, |
| MFT_REC_UPCASE = 10, |
| MFT_REC_EXTEND = 11, |
| MFT_REC_RESERVED = 12, |
| MFT_REC_FREE = 16, |
| MFT_REC_USER = 24, |
| }; |
| |
| enum ATTR_TYPE { |
| ATTR_ZERO = cpu_to_le32(0x00), |
| ATTR_STD = cpu_to_le32(0x10), |
| ATTR_LIST = cpu_to_le32(0x20), |
| ATTR_NAME = cpu_to_le32(0x30), |
| ATTR_ID = cpu_to_le32(0x40), |
| ATTR_SECURE = cpu_to_le32(0x50), |
| ATTR_LABEL = cpu_to_le32(0x60), |
| ATTR_VOL_INFO = cpu_to_le32(0x70), |
| ATTR_DATA = cpu_to_le32(0x80), |
| ATTR_ROOT = cpu_to_le32(0x90), |
| ATTR_ALLOC = cpu_to_le32(0xA0), |
| ATTR_BITMAP = cpu_to_le32(0xB0), |
| ATTR_REPARSE = cpu_to_le32(0xC0), |
| ATTR_EA_INFO = cpu_to_le32(0xD0), |
| ATTR_EA = cpu_to_le32(0xE0), |
| ATTR_PROPERTYSET = cpu_to_le32(0xF0), |
| ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100), |
| ATTR_END = cpu_to_le32(0xFFFFFFFF) |
| }; |
| |
| static_assert(sizeof(enum ATTR_TYPE) == 4); |
| |
| enum FILE_ATTRIBUTE { |
| FILE_ATTRIBUTE_READONLY = cpu_to_le32(0x00000001), |
| FILE_ATTRIBUTE_HIDDEN = cpu_to_le32(0x00000002), |
| FILE_ATTRIBUTE_SYSTEM = cpu_to_le32(0x00000004), |
| FILE_ATTRIBUTE_ARCHIVE = cpu_to_le32(0x00000020), |
| FILE_ATTRIBUTE_DEVICE = cpu_to_le32(0x00000040), |
| FILE_ATTRIBUTE_TEMPORARY = cpu_to_le32(0x00000100), |
| FILE_ATTRIBUTE_SPARSE_FILE = cpu_to_le32(0x00000200), |
| FILE_ATTRIBUTE_REPARSE_POINT = cpu_to_le32(0x00000400), |
| FILE_ATTRIBUTE_COMPRESSED = cpu_to_le32(0x00000800), |
| FILE_ATTRIBUTE_OFFLINE = cpu_to_le32(0x00001000), |
| FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000), |
| FILE_ATTRIBUTE_ENCRYPTED = cpu_to_le32(0x00004000), |
| FILE_ATTRIBUTE_VALID_FLAGS = cpu_to_le32(0x00007fb7), |
| FILE_ATTRIBUTE_DIRECTORY = cpu_to_le32(0x10000000), |
| FILE_ATTRIBUTE_INDEX = cpu_to_le32(0x20000000) |
| }; |
| |
| static_assert(sizeof(enum FILE_ATTRIBUTE) == 4); |
| |
| extern const struct cpu_str NAME_MFT; |
| extern const struct cpu_str NAME_MIRROR; |
| extern const struct cpu_str NAME_LOGFILE; |
| extern const struct cpu_str NAME_VOLUME; |
| extern const struct cpu_str NAME_ATTRDEF; |
| extern const struct cpu_str NAME_ROOT; |
| extern const struct cpu_str NAME_BITMAP; |
| extern const struct cpu_str NAME_BOOT; |
| extern const struct cpu_str NAME_BADCLUS; |
| extern const struct cpu_str NAME_QUOTA; |
| extern const struct cpu_str NAME_SECURE; |
| extern const struct cpu_str NAME_UPCASE; |
| extern const struct cpu_str NAME_EXTEND; |
| extern const struct cpu_str NAME_OBJID; |
| extern const struct cpu_str NAME_REPARSE; |
| extern const struct cpu_str NAME_USNJRNL; |
| |
| extern const __le16 I30_NAME[4]; |
| extern const __le16 SII_NAME[4]; |
| extern const __le16 SDH_NAME[4]; |
| extern const __le16 SO_NAME[2]; |
| extern const __le16 SQ_NAME[2]; |
| extern const __le16 SR_NAME[2]; |
| |
| extern const __le16 BAD_NAME[4]; |
| extern const __le16 SDS_NAME[4]; |
| extern const __le16 WOF_NAME[17]; /* WofCompressedData */ |
| |
| /* MFT record number structure. */ |
| struct MFT_REF { |
| __le32 low; // The low part of the number. |
| __le16 high; // The high part of the number. |
| __le16 seq; // The sequence number of MFT record. |
| }; |
| |
| static_assert(sizeof(__le64) == sizeof(struct MFT_REF)); |
| |
| static inline CLST ino_get(const struct MFT_REF *ref) |
| { |
| #ifdef CONFIG_NTFS3_64BIT_CLUSTER |
| return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32); |
| #else |
| return le32_to_cpu(ref->low); |
| #endif |
| } |
| |
| struct NTFS_BOOT { |
| u8 jump_code[3]; // 0x00: Jump to boot code. |
| u8 system_id[8]; // 0x03: System ID, equals "NTFS " |
| |
| // NOTE: This member is not aligned(!) |
| // bytes_per_sector[0] must be 0. |
| // bytes_per_sector[1] must be multiplied by 256. |
| u8 bytes_per_sector[2]; // 0x0B: Bytes per sector. |
| |
| u8 sectors_per_clusters;// 0x0D: Sectors per cluster. |
| u8 unused1[7]; |
| u8 media_type; // 0x15: Media type (0xF8 - harddisk) |
| u8 unused2[2]; |
| __le16 sct_per_track; // 0x18: number of sectors per track. |
| __le16 heads; // 0x1A: number of heads per cylinder. |
| __le32 hidden_sectors; // 0x1C: number of 'hidden' sectors. |
| u8 unused3[4]; |
| u8 bios_drive_num; // 0x24: BIOS drive number =0x80. |
| u8 unused4; |
| u8 signature_ex; // 0x26: Extended BOOT signature =0x80. |
| u8 unused5; |
| __le64 sectors_per_volume;// 0x28: Size of volume in sectors. |
| __le64 mft_clst; // 0x30: First cluster of $MFT |
| __le64 mft2_clst; // 0x38: First cluster of $MFTMirr |
| s8 record_size; // 0x40: Size of MFT record in clusters(sectors). |
| u8 unused6[3]; |
| s8 index_size; // 0x44: Size of INDX record in clusters(sectors). |
| u8 unused7[3]; |
| __le64 serial_num; // 0x48: Volume serial number |
| __le32 check_sum; // 0x50: Simple additive checksum of all |
| // of the u32's which precede the 'check_sum'. |
| |
| u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54: |
| u8 boot_magic[2]; // 0x1FE: Boot signature =0x55 + 0xAA |
| }; |
| |
| static_assert(sizeof(struct NTFS_BOOT) == 0x200); |
| |
| enum NTFS_SIGNATURE { |
| NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE' |
| NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX' |
| NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD' |
| NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR' |
| NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD' |
| NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD' |
| NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE' |
| NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff), |
| }; |
| |
| static_assert(sizeof(enum NTFS_SIGNATURE) == 4); |
| |
| /* MFT Record header structure. */ |
| struct NTFS_RECORD_HEADER { |
| /* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */ |
| enum NTFS_SIGNATURE sign; // 0x00: |
| __le16 fix_off; // 0x04: |
| __le16 fix_num; // 0x06: |
| __le64 lsn; // 0x08: Log file sequence number, |
| }; |
| |
| static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10); |
| |
| static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr) |
| { |
| return hdr->sign == NTFS_BAAD_SIGNATURE; |
| } |
| |
| /* Possible bits in struct MFT_REC.flags. */ |
| enum RECORD_FLAG { |
| RECORD_FLAG_IN_USE = cpu_to_le16(0x0001), |
| RECORD_FLAG_DIR = cpu_to_le16(0x0002), |
| RECORD_FLAG_SYSTEM = cpu_to_le16(0x0004), |
| RECORD_FLAG_INDEX = cpu_to_le16(0x0008), |
| }; |
| |
| /* MFT Record structure. */ |
| struct MFT_REC { |
| struct NTFS_RECORD_HEADER rhdr; // 'FILE' |
| |
| __le16 seq; // 0x10: Sequence number for this record. |
| __le16 hard_links; // 0x12: The number of hard links to record. |
| __le16 attr_off; // 0x14: Offset to attributes. |
| __le16 flags; // 0x16: See RECORD_FLAG. |
| __le32 used; // 0x18: The size of used part. |
| __le32 total; // 0x1C: Total record size. |
| |
| struct MFT_REF parent_ref; // 0x20: Parent MFT record. |
| __le16 next_attr_id; // 0x28: The next attribute Id. |
| |
| __le16 res; // 0x2A: High part of MFT record? |
| __le32 mft_record; // 0x2C: Current MFT record number. |
| __le16 fixups[]; // 0x30: |
| }; |
| |
| #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res) |
| #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups) |
| /* |
| * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_3 (0x30) |
| * to format new mft records with bigger header (as current ntfs.sys does) |
| * |
| * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_1 (0x2A) |
| * to format new mft records with smaller header (as old ntfs.sys did) |
| * Both variants are valid. |
| */ |
| #define MFTRECORD_FIXUP_OFFSET MFTRECORD_FIXUP_OFFSET_1 |
| |
| static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A); |
| static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30); |
| |
| static inline bool is_rec_base(const struct MFT_REC *rec) |
| { |
| const struct MFT_REF *r = &rec->parent_ref; |
| |
| return !r->low && !r->high && !r->seq; |
| } |
| |
| static inline bool is_mft_rec5(const struct MFT_REC *rec) |
| { |
| return le16_to_cpu(rec->rhdr.fix_off) >= |
| offsetof(struct MFT_REC, fixups); |
| } |
| |
| static inline bool is_rec_inuse(const struct MFT_REC *rec) |
| { |
| return rec->flags & RECORD_FLAG_IN_USE; |
| } |
| |
| static inline bool clear_rec_inuse(struct MFT_REC *rec) |
| { |
| return rec->flags &= ~RECORD_FLAG_IN_USE; |
| } |
| |
| /* Possible values of ATTR_RESIDENT.flags */ |
| #define RESIDENT_FLAG_INDEXED 0x01 |
| |
| struct ATTR_RESIDENT { |
| __le32 data_size; // 0x10: The size of data. |
| __le16 data_off; // 0x14: Offset to data. |
| u8 flags; // 0x16: Resident flags ( 1 - indexed ). |
| u8 res; // 0x17: |
| }; // sizeof() = 0x18 |
| |
| struct ATTR_NONRESIDENT { |
| __le64 svcn; // 0x10: Starting VCN of this segment. |
| __le64 evcn; // 0x18: End VCN of this segment. |
| __le16 run_off; // 0x20: Offset to packed runs. |
| // Unit of Compression size for this stream, expressed |
| // as a log of the cluster size. |
| // |
| // 0 means file is not compressed |
| // 1, 2, 3, and 4 are potentially legal values if the |
| // stream is compressed, however the implementation |
| // may only choose to use 4, or possibly 3. |
| // Note that 4 means cluster size time 16. |
| // If convenient the implementation may wish to accept a |
| // reasonable range of legal values here (1-5?), |
| // even if the implementation only generates |
| // a smaller set of values itself. |
| u8 c_unit; // 0x22: |
| u8 res1[5]; // 0x23: |
| __le64 alloc_size; // 0x28: The allocated size of attribute in bytes. |
| // (multiple of cluster size) |
| __le64 data_size; // 0x30: The size of attribute in bytes <= alloc_size. |
| __le64 valid_size; // 0x38: The size of valid part in bytes <= data_size. |
| __le64 total_size; // 0x40: The sum of the allocated clusters for a file. |
| // (present only for the first segment (0 == vcn) |
| // of compressed attribute) |
| |
| }; // sizeof()=0x40 or 0x48 (if compressed) |
| |
| /* Possible values of ATTRIB.flags: */ |
| #define ATTR_FLAG_COMPRESSED cpu_to_le16(0x0001) |
| #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF) |
| #define ATTR_FLAG_ENCRYPTED cpu_to_le16(0x4000) |
| #define ATTR_FLAG_SPARSED cpu_to_le16(0x8000) |
| |
| struct ATTRIB { |
| enum ATTR_TYPE type; // 0x00: The type of this attribute. |
| __le32 size; // 0x04: The size of this attribute. |
| u8 non_res; // 0x08: Is this attribute non-resident? |
| u8 name_len; // 0x09: This attribute name length. |
| __le16 name_off; // 0x0A: Offset to the attribute name. |
| __le16 flags; // 0x0C: See ATTR_FLAG_XXX. |
| __le16 id; // 0x0E: Unique id (per record). |
| |
| union { |
| struct ATTR_RESIDENT res; // 0x10 |
| struct ATTR_NONRESIDENT nres; // 0x10 |
| }; |
| }; |
| |
| /* Define attribute sizes. */ |
| #define SIZEOF_RESIDENT 0x18 |
| #define SIZEOF_NONRESIDENT_EX 0x48 |
| #define SIZEOF_NONRESIDENT 0x40 |
| |
| #define SIZEOF_RESIDENT_LE cpu_to_le16(0x18) |
| #define SIZEOF_NONRESIDENT_EX_LE cpu_to_le16(0x48) |
| #define SIZEOF_NONRESIDENT_LE cpu_to_le16(0x40) |
| |
| static inline u64 attr_ondisk_size(const struct ATTRIB *attr) |
| { |
| return attr->non_res ? ((attr->flags & |
| (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ? |
| le64_to_cpu(attr->nres.total_size) : |
| le64_to_cpu(attr->nres.alloc_size)) |
| : ALIGN(le32_to_cpu(attr->res.data_size), 8); |
| } |
| |
| static inline u64 attr_size(const struct ATTRIB *attr) |
| { |
| return attr->non_res ? le64_to_cpu(attr->nres.data_size) : |
| le32_to_cpu(attr->res.data_size); |
| } |
| |
| static inline bool is_attr_encrypted(const struct ATTRIB *attr) |
| { |
| return attr->flags & ATTR_FLAG_ENCRYPTED; |
| } |
| |
| static inline bool is_attr_sparsed(const struct ATTRIB *attr) |
| { |
| return attr->flags & ATTR_FLAG_SPARSED; |
| } |
| |
| static inline bool is_attr_compressed(const struct ATTRIB *attr) |
| { |
| return attr->flags & ATTR_FLAG_COMPRESSED; |
| } |
| |
| static inline bool is_attr_ext(const struct ATTRIB *attr) |
| { |
| return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED); |
| } |
| |
| static inline bool is_attr_indexed(const struct ATTRIB *attr) |
| { |
| return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED); |
| } |
| |
| static inline __le16 const *attr_name(const struct ATTRIB *attr) |
| { |
| return Add2Ptr(attr, le16_to_cpu(attr->name_off)); |
| } |
| |
| static inline u64 attr_svcn(const struct ATTRIB *attr) |
| { |
| return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0; |
| } |
| |
| static_assert(sizeof(struct ATTRIB) == 0x48); |
| static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08); |
| static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38); |
| |
| static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize) |
| { |
| u32 asize, rsize; |
| u16 off; |
| |
| if (attr->non_res) |
| return NULL; |
| |
| asize = le32_to_cpu(attr->size); |
| off = le16_to_cpu(attr->res.data_off); |
| |
| if (asize < datasize + off) |
| return NULL; |
| |
| rsize = le32_to_cpu(attr->res.data_size); |
| if (rsize < datasize) |
| return NULL; |
| |
| return Add2Ptr(attr, off); |
| } |
| |
| static inline void *resident_data(const struct ATTRIB *attr) |
| { |
| return Add2Ptr(attr, le16_to_cpu(attr->res.data_off)); |
| } |
| |
| static inline void *attr_run(const struct ATTRIB *attr) |
| { |
| return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off)); |
| } |
| |
| /* Standard information attribute (0x10). */ |
| struct ATTR_STD_INFO { |
| __le64 cr_time; // 0x00: File creation file. |
| __le64 m_time; // 0x08: File modification time. |
| __le64 c_time; // 0x10: Last time any attribute was modified. |
| __le64 a_time; // 0x18: File last access time. |
| enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more. |
| __le32 max_ver_num; // 0x24: Maximum Number of Versions. |
| __le32 ver_num; // 0x28: Version Number. |
| __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index. |
| }; |
| |
| static_assert(sizeof(struct ATTR_STD_INFO) == 0x30); |
| |
| #define SECURITY_ID_INVALID 0x00000000 |
| #define SECURITY_ID_FIRST 0x00000100 |
| |
| struct ATTR_STD_INFO5 { |
| __le64 cr_time; // 0x00: File creation file. |
| __le64 m_time; // 0x08: File modification time. |
| __le64 c_time; // 0x10: Last time any attribute was modified. |
| __le64 a_time; // 0x18: File last access time. |
| enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more. |
| __le32 max_ver_num; // 0x24: Maximum Number of Versions. |
| __le32 ver_num; // 0x28: Version Number. |
| __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index. |
| |
| __le32 owner_id; // 0x30: Owner Id of the user owning the file. |
| __le32 security_id; // 0x34: The Security Id is a key in the $SII Index and $SDS. |
| __le64 quota_charge; // 0x38: |
| __le64 usn; // 0x40: Last Update Sequence Number of the file. This is a direct |
| // index into the file $UsnJrnl. If zero, the USN Journal is |
| // disabled. |
| }; |
| |
| static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48); |
| |
| /* Attribute list entry structure (0x20) */ |
| struct ATTR_LIST_ENTRY { |
| enum ATTR_TYPE type; // 0x00: The type of attribute. |
| __le16 size; // 0x04: The size of this record. |
| u8 name_len; // 0x06: The length of attribute name. |
| u8 name_off; // 0x07: The offset to attribute name. |
| __le64 vcn; // 0x08: Starting VCN of this attribute. |
| struct MFT_REF ref; // 0x10: MFT record number with attribute. |
| __le16 id; // 0x18: struct ATTRIB ID. |
| __le16 name[3]; // 0x1A: Just to align. To get real name can use bNameOffset. |
| |
| }; // sizeof(0x20) |
| |
| static_assert(sizeof(struct ATTR_LIST_ENTRY) == 0x20); |
| |
| static inline u32 le_size(u8 name_len) |
| { |
| return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) + |
| name_len * sizeof(short), 8); |
| } |
| |
| /* Returns 0 if 'attr' has the same type and name. */ |
| static inline int le_cmp(const struct ATTR_LIST_ENTRY *le, |
| const struct ATTRIB *attr) |
| { |
| return le->type != attr->type || le->name_len != attr->name_len || |
| (!le->name_len && |
| memcmp(Add2Ptr(le, le->name_off), |
| Add2Ptr(attr, le16_to_cpu(attr->name_off)), |
| le->name_len * sizeof(short))); |
| } |
| |
| static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le) |
| { |
| return Add2Ptr(le, le->name_off); |
| } |
| |
| /* File name types (the field type in struct ATTR_FILE_NAME). */ |
| #define FILE_NAME_POSIX 0 |
| #define FILE_NAME_UNICODE 1 |
| #define FILE_NAME_DOS 2 |
| #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE) |
| |
| /* Filename attribute structure (0x30). */ |
| struct NTFS_DUP_INFO { |
| __le64 cr_time; // 0x00: File creation file. |
| __le64 m_time; // 0x08: File modification time. |
| __le64 c_time; // 0x10: Last time any attribute was modified. |
| __le64 a_time; // 0x18: File last access time. |
| __le64 alloc_size; // 0x20: Data attribute allocated size, multiple of cluster size. |
| __le64 data_size; // 0x28: Data attribute size <= Dataalloc_size. |
| enum FILE_ATTRIBUTE fa; // 0x30: Standard DOS attributes & more. |
| __le16 ea_size; // 0x34: Packed EAs. |
| __le16 reparse; // 0x36: Used by Reparse. |
| |
| }; // 0x38 |
| |
| struct ATTR_FILE_NAME { |
| struct MFT_REF home; // 0x00: MFT record for directory. |
| struct NTFS_DUP_INFO dup;// 0x08: |
| u8 name_len; // 0x40: File name length in words. |
| u8 type; // 0x41: File name type. |
| __le16 name[]; // 0x42: File name. |
| }; |
| |
| static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38); |
| static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42); |
| #define SIZEOF_ATTRIBUTE_FILENAME 0x44 |
| #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2) |
| |
| static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname) |
| { |
| return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT); |
| } |
| |
| static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname) |
| { |
| /* Don't return struct_size(fname, name, fname->name_len); */ |
| return offsetof(struct ATTR_FILE_NAME, name) + |
| fname->name_len * sizeof(short); |
| } |
| |
| static inline u8 paired_name(u8 type) |
| { |
| if (type == FILE_NAME_UNICODE) |
| return FILE_NAME_DOS; |
| if (type == FILE_NAME_DOS) |
| return FILE_NAME_UNICODE; |
| return FILE_NAME_POSIX; |
| } |
| |
| /* Index entry defines ( the field flags in NtfsDirEntry ). */ |
| #define NTFS_IE_HAS_SUBNODES cpu_to_le16(1) |
| #define NTFS_IE_LAST cpu_to_le16(2) |
| |
| /* Directory entry structure. */ |
| struct NTFS_DE { |
| union { |
| struct MFT_REF ref; // 0x00: MFT record number with this file. |
| struct { |
| __le16 data_off; // 0x00: |
| __le16 data_size; // 0x02: |
| __le32 res; // 0x04: Must be 0. |
| } view; |
| }; |
| __le16 size; // 0x08: The size of this entry. |
| __le16 key_size; // 0x0A: The size of File name length in bytes + 0x42. |
| __le16 flags; // 0x0C: Entry flags: NTFS_IE_XXX. |
| __le16 res; // 0x0E: |
| |
| // Here any indexed attribute can be placed. |
| // One of them is: |
| // struct ATTR_FILE_NAME AttrFileName; |
| // |
| |
| // The last 8 bytes of this structure contains |
| // the VBN of subnode. |
| // !!! Note !!! |
| // This field is presented only if (flags & NTFS_IE_HAS_SUBNODES) |
| // __le64 vbn; |
| }; |
| |
| static_assert(sizeof(struct NTFS_DE) == 0x10); |
| |
| static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn) |
| { |
| __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64)); |
| |
| *v = vcn; |
| } |
| |
| static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn) |
| { |
| __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64)); |
| |
| *v = cpu_to_le64(vcn); |
| } |
| |
| static inline __le64 de_get_vbn_le(const struct NTFS_DE *e) |
| { |
| return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64)); |
| } |
| |
| static inline CLST de_get_vbn(const struct NTFS_DE *e) |
| { |
| __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64)); |
| |
| return le64_to_cpu(*v); |
| } |
| |
| static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e) |
| { |
| return Add2Ptr(e, le16_to_cpu(e->size)); |
| } |
| |
| static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e) |
| { |
| return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ? |
| Add2Ptr(e, sizeof(struct NTFS_DE)) : |
| NULL; |
| } |
| |
| static inline bool de_is_last(const struct NTFS_DE *e) |
| { |
| return e->flags & NTFS_IE_LAST; |
| } |
| |
| static inline bool de_has_vcn(const struct NTFS_DE *e) |
| { |
| return e->flags & NTFS_IE_HAS_SUBNODES; |
| } |
| |
| static inline bool de_has_vcn_ex(const struct NTFS_DE *e) |
| { |
| return (e->flags & NTFS_IE_HAS_SUBNODES) && |
| (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) - |
| sizeof(__le64))); |
| } |
| |
| #define MAX_BYTES_PER_NAME_ENTRY \ |
| ALIGN(sizeof(struct NTFS_DE) + \ |
| offsetof(struct ATTR_FILE_NAME, name) + \ |
| NTFS_NAME_LEN * sizeof(short), 8) |
| |
| struct INDEX_HDR { |
| __le32 de_off; // 0x00: The offset from the start of this structure |
| // to the first NTFS_DE. |
| __le32 used; // 0x04: The size of this structure plus all |
| // entries (quad-word aligned). |
| __le32 total; // 0x08: The allocated size of for this structure plus all entries. |
| u8 flags; // 0x0C: 0x00 = Small directory, 0x01 = Large directory. |
| u8 res[3]; |
| |
| // |
| // de_off + used <= total |
| // |
| }; |
| |
| static_assert(sizeof(struct INDEX_HDR) == 0x10); |
| |
| static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr) |
| { |
| u32 de_off = le32_to_cpu(hdr->de_off); |
| u32 used = le32_to_cpu(hdr->used); |
| struct NTFS_DE *e; |
| u16 esize; |
| |
| if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used ) |
| return NULL; |
| |
| e = Add2Ptr(hdr, de_off); |
| esize = le16_to_cpu(e->size); |
| if (esize < sizeof(struct NTFS_DE) || de_off + esize > used) |
| return NULL; |
| |
| return e; |
| } |
| |
| static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr, |
| const struct NTFS_DE *e) |
| { |
| size_t off = PtrOffset(hdr, e); |
| u32 used = le32_to_cpu(hdr->used); |
| u16 esize; |
| |
| if (off >= used) |
| return NULL; |
| |
| esize = le16_to_cpu(e->size); |
| |
| if (esize < sizeof(struct NTFS_DE) || |
| off + esize + sizeof(struct NTFS_DE) > used) |
| return NULL; |
| |
| return Add2Ptr(e, esize); |
| } |
| |
| static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr) |
| { |
| return hdr->flags & 1; |
| } |
| |
| struct INDEX_BUFFER { |
| struct NTFS_RECORD_HEADER rhdr; // 'INDX' |
| __le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster |
| struct INDEX_HDR ihdr; // 0x18: |
| }; |
| |
| static_assert(sizeof(struct INDEX_BUFFER) == 0x28); |
| |
| static inline bool ib_is_empty(const struct INDEX_BUFFER *ib) |
| { |
| const struct NTFS_DE *first = hdr_first_de(&ib->ihdr); |
| |
| return !first || de_is_last(first); |
| } |
| |
| static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib) |
| { |
| return !(ib->ihdr.flags & 1); |
| } |
| |
| /* Index root structure ( 0x90 ). */ |
| enum COLLATION_RULE { |
| NTFS_COLLATION_TYPE_BINARY = cpu_to_le32(0), |
| // $I30 |
| NTFS_COLLATION_TYPE_FILENAME = cpu_to_le32(0x01), |
| // $SII of $Secure and $Q of Quota |
| NTFS_COLLATION_TYPE_UINT = cpu_to_le32(0x10), |
| // $O of Quota |
| NTFS_COLLATION_TYPE_SID = cpu_to_le32(0x11), |
| // $SDH of $Secure |
| NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12), |
| // $O of ObjId and "$R" for Reparse |
| NTFS_COLLATION_TYPE_UINTS = cpu_to_le32(0x13) |
| }; |
| |
| static_assert(sizeof(enum COLLATION_RULE) == 4); |
| |
| // |
| struct INDEX_ROOT { |
| enum ATTR_TYPE type; // 0x00: The type of attribute to index on. |
| enum COLLATION_RULE rule; // 0x04: The rule. |
| __le32 index_block_size;// 0x08: The size of index record. |
| u8 index_block_clst; // 0x0C: The number of clusters or sectors per index. |
| u8 res[3]; |
| struct INDEX_HDR ihdr; // 0x10: |
| }; |
| |
| static_assert(sizeof(struct INDEX_ROOT) == 0x20); |
| static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10); |
| |
| #define VOLUME_FLAG_DIRTY cpu_to_le16(0x0001) |
| #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002) |
| |
| struct VOLUME_INFO { |
| __le64 res1; // 0x00 |
| u8 major_ver; // 0x08: NTFS major version number (before .) |
| u8 minor_ver; // 0x09: NTFS minor version number (after .) |
| __le16 flags; // 0x0A: Volume flags, see VOLUME_FLAG_XXX |
| |
| }; // sizeof=0xC |
| |
| #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc |
| |
| #define NTFS_LABEL_MAX_LENGTH (0x100 / sizeof(short)) |
| #define NTFS_ATTR_INDEXABLE cpu_to_le32(0x00000002) |
| #define NTFS_ATTR_DUPALLOWED cpu_to_le32(0x00000004) |
| #define NTFS_ATTR_MUST_BE_INDEXED cpu_to_le32(0x00000010) |
| #define NTFS_ATTR_MUST_BE_NAMED cpu_to_le32(0x00000020) |
| #define NTFS_ATTR_MUST_BE_RESIDENT cpu_to_le32(0x00000040) |
| #define NTFS_ATTR_LOG_ALWAYS cpu_to_le32(0x00000080) |
| |
| /* $AttrDef file entry. */ |
| struct ATTR_DEF_ENTRY { |
| __le16 name[0x40]; // 0x00: Attr name. |
| enum ATTR_TYPE type; // 0x80: struct ATTRIB type. |
| __le32 res; // 0x84: |
| enum COLLATION_RULE rule; // 0x88: |
| __le32 flags; // 0x8C: NTFS_ATTR_XXX (see above). |
| __le64 min_sz; // 0x90: Minimum attribute data size. |
| __le64 max_sz; // 0x98: Maximum attribute data size. |
| }; |
| |
| static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0); |
| |
| /* Object ID (0x40) */ |
| struct OBJECT_ID { |
| struct GUID ObjId; // 0x00: Unique Id assigned to file. |
| |
| // Birth Volume Id is the Object Id of the Volume on. |
| // which the Object Id was allocated. It never changes. |
| struct GUID BirthVolumeId; //0x10: |
| |
| // Birth Object Id is the first Object Id that was |
| // ever assigned to this MFT Record. I.e. If the Object Id |
| // is changed for some reason, this field will reflect the |
| // original value of the Object Id. |
| struct GUID BirthObjectId; // 0x20: |
| |
| // Domain Id is currently unused but it is intended to be |
| // used in a network environment where the local machine is |
| // part of a Windows 2000 Domain. This may be used in a Windows |
| // 2000 Advanced Server managed domain. |
| struct GUID DomainId; // 0x30: |
| }; |
| |
| static_assert(sizeof(struct OBJECT_ID) == 0x40); |
| |
| /* O Directory entry structure ( rule = 0x13 ) */ |
| struct NTFS_DE_O { |
| struct NTFS_DE de; |
| struct GUID ObjId; // 0x10: Unique Id assigned to file. |
| struct MFT_REF ref; // 0x20: MFT record number with this file. |
| |
| // Birth Volume Id is the Object Id of the Volume on |
| // which the Object Id was allocated. It never changes. |
| struct GUID BirthVolumeId; // 0x28: |
| |
| // Birth Object Id is the first Object Id that was |
| // ever assigned to this MFT Record. I.e. If the Object Id |
| // is changed for some reason, this field will reflect the |
| // original value of the Object Id. |
| // This field is valid if data_size == 0x48. |
| struct GUID BirthObjectId; // 0x38: |
| |
| // Domain Id is currently unused but it is intended |
| // to be used in a network environment where the local |
| // machine is part of a Windows 2000 Domain. This may be |
| // used in a Windows 2000 Advanced Server managed domain. |
| struct GUID BirthDomainId; // 0x48: |
| }; |
| |
| static_assert(sizeof(struct NTFS_DE_O) == 0x58); |
| |
| /* Q Directory entry structure ( rule = 0x11 ) */ |
| struct NTFS_DE_Q { |
| struct NTFS_DE de; |
| __le32 owner_id; // 0x10: Unique Id assigned to file |
| |
| /* here is 0x30 bytes of user quota. NOTE: 4 byte aligned! */ |
| __le32 Version; // 0x14: 0x02 |
| __le32 Flags; // 0x18: Quota flags, see above |
| __le64 BytesUsed; // 0x1C: |
| __le64 ChangeTime; // 0x24: |
| __le64 WarningLimit; // 0x28: |
| __le64 HardLimit; // 0x34: |
| __le64 ExceededTime; // 0x3C: |
| |
| // SID is placed here |
| }__packed; // sizeof() = 0x44 |
| |
| static_assert(sizeof(struct NTFS_DE_Q) == 0x44); |
| |
| #define SecurityDescriptorsBlockSize 0x40000 // 256K |
| #define SecurityDescriptorMaxSize 0x20000 // 128K |
| #define Log2OfSecurityDescriptorsBlockSize 18 |
| |
| struct SECURITY_KEY { |
| __le32 hash; // Hash value for descriptor |
| __le32 sec_id; // Security Id (guaranteed unique) |
| }; |
| |
| /* Security descriptors (the content of $Secure::SDS data stream) */ |
| struct SECURITY_HDR { |
| struct SECURITY_KEY key; // 0x00: Security Key. |
| __le64 off; // 0x08: Offset of this entry in the file. |
| __le32 size; // 0x10: Size of this entry, 8 byte aligned. |
| /* |
| * Security descriptor itself is placed here. |
| * Total size is 16 byte aligned. |
| */ |
| } __packed; |
| |
| static_assert(sizeof(struct SECURITY_HDR) == 0x14); |
| |
| /* SII Directory entry structure */ |
| struct NTFS_DE_SII { |
| struct NTFS_DE de; |
| __le32 sec_id; // 0x10: Key: sizeof(security_id) = wKeySize |
| struct SECURITY_HDR sec_hdr; // 0x14: |
| } __packed; |
| |
| static_assert(offsetof(struct NTFS_DE_SII, sec_hdr) == 0x14); |
| static_assert(sizeof(struct NTFS_DE_SII) == 0x28); |
| |
| /* SDH Directory entry structure */ |
| struct NTFS_DE_SDH { |
| struct NTFS_DE de; |
| struct SECURITY_KEY key; // 0x10: Key |
| struct SECURITY_HDR sec_hdr; // 0x18: Data |
| __le16 magic[2]; // 0x2C: 0x00490049 "I I" |
| }; |
| |
| #define SIZEOF_SDH_DIRENTRY 0x30 |
| |
| struct REPARSE_KEY { |
| __le32 ReparseTag; // 0x00: Reparse Tag |
| struct MFT_REF ref; // 0x04: MFT record number with this file |
| }; // sizeof() = 0x0C |
| |
| static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04); |
| #define SIZEOF_REPARSE_KEY 0x0C |
| |
| /* Reparse Directory entry structure */ |
| struct NTFS_DE_R { |
| struct NTFS_DE de; |
| struct REPARSE_KEY key; // 0x10: Reparse Key. |
| u32 zero; // 0x1c: |
| }; // sizeof() = 0x20 |
| |
| static_assert(sizeof(struct NTFS_DE_R) == 0x20); |
| |
| /* CompressReparseBuffer.WofVersion */ |
| #define WOF_CURRENT_VERSION cpu_to_le32(1) |
| /* CompressReparseBuffer.WofProvider */ |
| #define WOF_PROVIDER_WIM cpu_to_le32(1) |
| /* CompressReparseBuffer.WofProvider */ |
| #define WOF_PROVIDER_SYSTEM cpu_to_le32(2) |
| /* CompressReparseBuffer.ProviderVer */ |
| #define WOF_PROVIDER_CURRENT_VERSION cpu_to_le32(1) |
| |
| #define WOF_COMPRESSION_XPRESS4K cpu_to_le32(0) // 4k |
| #define WOF_COMPRESSION_LZX32K cpu_to_le32(1) // 32k |
| #define WOF_COMPRESSION_XPRESS8K cpu_to_le32(2) // 8k |
| #define WOF_COMPRESSION_XPRESS16K cpu_to_le32(3) // 16k |
| |
| /* |
| * ATTR_REPARSE (0xC0) |
| * |
| * The reparse struct GUID structure is used by all 3rd party layered drivers to |
| * store data in a reparse point. For non-Microsoft tags, The struct GUID field |
| * cannot be GUID_NULL. |
| * The constraints on reparse tags are defined below. |
| * Microsoft tags can also be used with this format of the reparse point buffer. |
| */ |
| struct REPARSE_POINT { |
| __le32 ReparseTag; // 0x00: |
| __le16 ReparseDataLength;// 0x04: |
| __le16 Reserved; |
| |
| struct GUID Guid; // 0x08: |
| |
| // |
| // Here GenericReparseBuffer is placed |
| // |
| }; |
| |
| static_assert(sizeof(struct REPARSE_POINT) == 0x18); |
| |
| /* Maximum allowed size of the reparse data. */ |
| #define MAXIMUM_REPARSE_DATA_BUFFER_SIZE (16 * 1024) |
| |
| /* |
| * The value of the following constant needs to satisfy the following |
| * conditions: |
| * (1) Be at least as large as the largest of the reserved tags. |
| * (2) Be strictly smaller than all the tags in use. |
| */ |
| #define IO_REPARSE_TAG_RESERVED_RANGE 1 |
| |
| /* |
| * The reparse tags are a ULONG. The 32 bits are laid out as follows: |
| * |
| * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 |
| * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 |
| * +-+-+-+-+-----------------------+-------------------------------+ |
| * |M|R|N|R| Reserved bits | Reparse Tag Value | |
| * +-+-+-+-+-----------------------+-------------------------------+ |
| * |
| * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft. |
| * All ISVs must use a tag with a 0 in this position. |
| * Note: If a Microsoft tag is used by non-Microsoft software, the |
| * behavior is not defined. |
| * |
| * R is reserved. Must be zero for non-Microsoft tags. |
| * |
| * N is name surrogate. When set to 1, the file represents another named |
| * entity in the system. |
| * |
| * The M and N bits are OR-able. |
| * The following macros check for the M and N bit values: |
| */ |
| |
| /* |
| * Macro to determine whether a reparse point tag corresponds to a tag |
| * owned by Microsoft. |
| */ |
| #define IsReparseTagMicrosoft(_tag) (((_tag)&IO_REPARSE_TAG_MICROSOFT)) |
| |
| /* Macro to determine whether a reparse point tag is a name surrogate. */ |
| #define IsReparseTagNameSurrogate(_tag) (((_tag)&IO_REPARSE_TAG_NAME_SURROGATE)) |
| |
| /* |
| * The following constant represents the bits that are valid to use in |
| * reparse tags. |
| */ |
| #define IO_REPARSE_TAG_VALID_VALUES 0xF000FFFF |
| |
| /* |
| * Macro to determine whether a reparse tag is a valid tag. |
| */ |
| #define IsReparseTagValid(_tag) \ |
| (!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) && \ |
| ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE)) |
| |
| /* Microsoft tags for reparse points. */ |
| |
| enum IO_REPARSE_TAG { |
| IO_REPARSE_TAG_SYMBOLIC_LINK = cpu_to_le32(0), |
| IO_REPARSE_TAG_NAME_SURROGATE = cpu_to_le32(0x20000000), |
| IO_REPARSE_TAG_MICROSOFT = cpu_to_le32(0x80000000), |
| IO_REPARSE_TAG_MOUNT_POINT = cpu_to_le32(0xA0000003), |
| IO_REPARSE_TAG_SYMLINK = cpu_to_le32(0xA000000C), |
| IO_REPARSE_TAG_HSM = cpu_to_le32(0xC0000004), |
| IO_REPARSE_TAG_SIS = cpu_to_le32(0x80000007), |
| IO_REPARSE_TAG_DEDUP = cpu_to_le32(0x80000013), |
| IO_REPARSE_TAG_COMPRESS = cpu_to_le32(0x80000017), |
| |
| /* |
| * The reparse tag 0x80000008 is reserved for Microsoft internal use. |
| * May be published in the future. |
| */ |
| |
| /* Microsoft reparse tag reserved for DFS */ |
| IO_REPARSE_TAG_DFS = cpu_to_le32(0x8000000A), |
| |
| /* Microsoft reparse tag reserved for the file system filter manager. */ |
| IO_REPARSE_TAG_FILTER_MANAGER = cpu_to_le32(0x8000000B), |
| |
| /* Non-Microsoft tags for reparse points */ |
| |
| /* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */ |
| IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009), |
| |
| /* Tag allocated to ARKIVIO. */ |
| IO_REPARSE_TAG_ARKIVIO = cpu_to_le32(0x0000000C), |
| |
| /* Tag allocated to SOLUTIONSOFT. */ |
| IO_REPARSE_TAG_SOLUTIONSOFT = cpu_to_le32(0x2000000D), |
| |
| /* Tag allocated to COMMVAULT. */ |
| IO_REPARSE_TAG_COMMVAULT = cpu_to_le32(0x0000000E), |
| |
| /* OneDrive?? */ |
| IO_REPARSE_TAG_CLOUD = cpu_to_le32(0x9000001A), |
| IO_REPARSE_TAG_CLOUD_1 = cpu_to_le32(0x9000101A), |
| IO_REPARSE_TAG_CLOUD_2 = cpu_to_le32(0x9000201A), |
| IO_REPARSE_TAG_CLOUD_3 = cpu_to_le32(0x9000301A), |
| IO_REPARSE_TAG_CLOUD_4 = cpu_to_le32(0x9000401A), |
| IO_REPARSE_TAG_CLOUD_5 = cpu_to_le32(0x9000501A), |
| IO_REPARSE_TAG_CLOUD_6 = cpu_to_le32(0x9000601A), |
| IO_REPARSE_TAG_CLOUD_7 = cpu_to_le32(0x9000701A), |
| IO_REPARSE_TAG_CLOUD_8 = cpu_to_le32(0x9000801A), |
| IO_REPARSE_TAG_CLOUD_9 = cpu_to_le32(0x9000901A), |
| IO_REPARSE_TAG_CLOUD_A = cpu_to_le32(0x9000A01A), |
| IO_REPARSE_TAG_CLOUD_B = cpu_to_le32(0x9000B01A), |
| IO_REPARSE_TAG_CLOUD_C = cpu_to_le32(0x9000C01A), |
| IO_REPARSE_TAG_CLOUD_D = cpu_to_le32(0x9000D01A), |
| IO_REPARSE_TAG_CLOUD_E = cpu_to_le32(0x9000E01A), |
| IO_REPARSE_TAG_CLOUD_F = cpu_to_le32(0x9000F01A), |
| |
| }; |
| |
| #define SYMLINK_FLAG_RELATIVE 1 |
| |
| /* Microsoft reparse buffer. (see DDK for details) */ |
| struct REPARSE_DATA_BUFFER { |
| __le32 ReparseTag; // 0x00: |
| __le16 ReparseDataLength; // 0x04: |
| __le16 Reserved; |
| |
| union { |
| /* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */ |
| struct { |
| __le16 SubstituteNameOffset; // 0x08 |
| __le16 SubstituteNameLength; // 0x0A |
| __le16 PrintNameOffset; // 0x0C |
| __le16 PrintNameLength; // 0x0E |
| __le16 PathBuffer[]; // 0x10 |
| } MountPointReparseBuffer; |
| |
| /* |
| * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK) |
| * https://msdn.microsoft.com/en-us/library/cc232006.aspx |
| */ |
| struct { |
| __le16 SubstituteNameOffset; // 0x08 |
| __le16 SubstituteNameLength; // 0x0A |
| __le16 PrintNameOffset; // 0x0C |
| __le16 PrintNameLength; // 0x0E |
| // 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE |
| __le32 Flags; // 0x10 |
| __le16 PathBuffer[]; // 0x14 |
| } SymbolicLinkReparseBuffer; |
| |
| /* If ReparseTag == 0x80000017U */ |
| struct { |
| __le32 WofVersion; // 0x08 == 1 |
| /* |
| * 1 - WIM backing provider ("WIMBoot"), |
| * 2 - System compressed file provider |
| */ |
| __le32 WofProvider; // 0x0C: |
| __le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1 |
| __le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX |
| } CompressReparseBuffer; |
| |
| struct { |
| u8 DataBuffer[1]; // 0x08: |
| } GenericReparseBuffer; |
| }; |
| }; |
| |
| /* ATTR_EA_INFO (0xD0) */ |
| |
| #define FILE_NEED_EA 0x80 // See ntifs.h |
| /* |
| * FILE_NEED_EA, indicates that the file to which the EA belongs cannot be |
| * interpreted without understanding the associated extended attributes. |
| */ |
| struct EA_INFO { |
| __le16 size_pack; // 0x00: Size of buffer to hold in packed form. |
| __le16 count; // 0x02: Count of EA's with FILE_NEED_EA bit set. |
| __le32 size; // 0x04: Size of buffer to hold in unpacked form. |
| }; |
| |
| static_assert(sizeof(struct EA_INFO) == 8); |
| |
| /* ATTR_EA (0xE0) */ |
| struct EA_FULL { |
| __le32 size; // 0x00: (not in packed) |
| u8 flags; // 0x04: |
| u8 name_len; // 0x05: |
| __le16 elength; // 0x06: |
| u8 name[]; // 0x08: |
| }; |
| |
| static_assert(offsetof(struct EA_FULL, name) == 8); |
| |
| #define ACL_REVISION 2 |
| #define ACL_REVISION_DS 4 |
| |
| #define SE_SELF_RELATIVE cpu_to_le16(0x8000) |
| |
| struct SECURITY_DESCRIPTOR_RELATIVE { |
| u8 Revision; |
| u8 Sbz1; |
| __le16 Control; |
| __le32 Owner; |
| __le32 Group; |
| __le32 Sacl; |
| __le32 Dacl; |
| }; |
| static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14); |
| |
| struct ACE_HEADER { |
| u8 AceType; |
| u8 AceFlags; |
| __le16 AceSize; |
| }; |
| static_assert(sizeof(struct ACE_HEADER) == 4); |
| |
| struct ACL { |
| u8 AclRevision; |
| u8 Sbz1; |
| __le16 AclSize; |
| __le16 AceCount; |
| __le16 Sbz2; |
| }; |
| static_assert(sizeof(struct ACL) == 8); |
| |
| struct SID { |
| u8 Revision; |
| u8 SubAuthorityCount; |
| u8 IdentifierAuthority[6]; |
| __le32 SubAuthority[]; |
| }; |
| static_assert(offsetof(struct SID, SubAuthority) == 8); |
| |
| #endif /* _LINUX_NTFS3_NTFS_H */ |
| // clang-format on |