| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * v4l2-dv-timings - dv-timings helper functions |
| * |
| * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/rational.h> |
| #include <linux/videodev2.h> |
| #include <linux/v4l2-dv-timings.h> |
| #include <media/v4l2-dv-timings.h> |
| #include <linux/math64.h> |
| #include <linux/hdmi.h> |
| #include <media/cec.h> |
| |
| MODULE_AUTHOR("Hans Verkuil"); |
| MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions"); |
| MODULE_LICENSE("GPL"); |
| |
| const struct v4l2_dv_timings v4l2_dv_timings_presets[] = { |
| V4L2_DV_BT_CEA_640X480P59_94, |
| V4L2_DV_BT_CEA_720X480I59_94, |
| V4L2_DV_BT_CEA_720X480P59_94, |
| V4L2_DV_BT_CEA_720X576I50, |
| V4L2_DV_BT_CEA_720X576P50, |
| V4L2_DV_BT_CEA_1280X720P24, |
| V4L2_DV_BT_CEA_1280X720P25, |
| V4L2_DV_BT_CEA_1280X720P30, |
| V4L2_DV_BT_CEA_1280X720P50, |
| V4L2_DV_BT_CEA_1280X720P60, |
| V4L2_DV_BT_CEA_1920X1080P24, |
| V4L2_DV_BT_CEA_1920X1080P25, |
| V4L2_DV_BT_CEA_1920X1080P30, |
| V4L2_DV_BT_CEA_1920X1080I50, |
| V4L2_DV_BT_CEA_1920X1080P50, |
| V4L2_DV_BT_CEA_1920X1080I60, |
| V4L2_DV_BT_CEA_1920X1080P60, |
| V4L2_DV_BT_DMT_640X350P85, |
| V4L2_DV_BT_DMT_640X400P85, |
| V4L2_DV_BT_DMT_720X400P85, |
| V4L2_DV_BT_DMT_640X480P72, |
| V4L2_DV_BT_DMT_640X480P75, |
| V4L2_DV_BT_DMT_640X480P85, |
| V4L2_DV_BT_DMT_800X600P56, |
| V4L2_DV_BT_DMT_800X600P60, |
| V4L2_DV_BT_DMT_800X600P72, |
| V4L2_DV_BT_DMT_800X600P75, |
| V4L2_DV_BT_DMT_800X600P85, |
| V4L2_DV_BT_DMT_800X600P120_RB, |
| V4L2_DV_BT_DMT_848X480P60, |
| V4L2_DV_BT_DMT_1024X768I43, |
| V4L2_DV_BT_DMT_1024X768P60, |
| V4L2_DV_BT_DMT_1024X768P70, |
| V4L2_DV_BT_DMT_1024X768P75, |
| V4L2_DV_BT_DMT_1024X768P85, |
| V4L2_DV_BT_DMT_1024X768P120_RB, |
| V4L2_DV_BT_DMT_1152X864P75, |
| V4L2_DV_BT_DMT_1280X768P60_RB, |
| V4L2_DV_BT_DMT_1280X768P60, |
| V4L2_DV_BT_DMT_1280X768P75, |
| V4L2_DV_BT_DMT_1280X768P85, |
| V4L2_DV_BT_DMT_1280X768P120_RB, |
| V4L2_DV_BT_DMT_1280X800P60_RB, |
| V4L2_DV_BT_DMT_1280X800P60, |
| V4L2_DV_BT_DMT_1280X800P75, |
| V4L2_DV_BT_DMT_1280X800P85, |
| V4L2_DV_BT_DMT_1280X800P120_RB, |
| V4L2_DV_BT_DMT_1280X960P60, |
| V4L2_DV_BT_DMT_1280X960P85, |
| V4L2_DV_BT_DMT_1280X960P120_RB, |
| V4L2_DV_BT_DMT_1280X1024P60, |
| V4L2_DV_BT_DMT_1280X1024P75, |
| V4L2_DV_BT_DMT_1280X1024P85, |
| V4L2_DV_BT_DMT_1280X1024P120_RB, |
| V4L2_DV_BT_DMT_1360X768P60, |
| V4L2_DV_BT_DMT_1360X768P120_RB, |
| V4L2_DV_BT_DMT_1366X768P60, |
| V4L2_DV_BT_DMT_1366X768P60_RB, |
| V4L2_DV_BT_DMT_1400X1050P60_RB, |
| V4L2_DV_BT_DMT_1400X1050P60, |
| V4L2_DV_BT_DMT_1400X1050P75, |
| V4L2_DV_BT_DMT_1400X1050P85, |
| V4L2_DV_BT_DMT_1400X1050P120_RB, |
| V4L2_DV_BT_DMT_1440X900P60_RB, |
| V4L2_DV_BT_DMT_1440X900P60, |
| V4L2_DV_BT_DMT_1440X900P75, |
| V4L2_DV_BT_DMT_1440X900P85, |
| V4L2_DV_BT_DMT_1440X900P120_RB, |
| V4L2_DV_BT_DMT_1600X900P60_RB, |
| V4L2_DV_BT_DMT_1600X1200P60, |
| V4L2_DV_BT_DMT_1600X1200P65, |
| V4L2_DV_BT_DMT_1600X1200P70, |
| V4L2_DV_BT_DMT_1600X1200P75, |
| V4L2_DV_BT_DMT_1600X1200P85, |
| V4L2_DV_BT_DMT_1600X1200P120_RB, |
| V4L2_DV_BT_DMT_1680X1050P60_RB, |
| V4L2_DV_BT_DMT_1680X1050P60, |
| V4L2_DV_BT_DMT_1680X1050P75, |
| V4L2_DV_BT_DMT_1680X1050P85, |
| V4L2_DV_BT_DMT_1680X1050P120_RB, |
| V4L2_DV_BT_DMT_1792X1344P60, |
| V4L2_DV_BT_DMT_1792X1344P75, |
| V4L2_DV_BT_DMT_1792X1344P120_RB, |
| V4L2_DV_BT_DMT_1856X1392P60, |
| V4L2_DV_BT_DMT_1856X1392P75, |
| V4L2_DV_BT_DMT_1856X1392P120_RB, |
| V4L2_DV_BT_DMT_1920X1200P60_RB, |
| V4L2_DV_BT_DMT_1920X1200P60, |
| V4L2_DV_BT_DMT_1920X1200P75, |
| V4L2_DV_BT_DMT_1920X1200P85, |
| V4L2_DV_BT_DMT_1920X1200P120_RB, |
| V4L2_DV_BT_DMT_1920X1440P60, |
| V4L2_DV_BT_DMT_1920X1440P75, |
| V4L2_DV_BT_DMT_1920X1440P120_RB, |
| V4L2_DV_BT_DMT_2048X1152P60_RB, |
| V4L2_DV_BT_DMT_2560X1600P60_RB, |
| V4L2_DV_BT_DMT_2560X1600P60, |
| V4L2_DV_BT_DMT_2560X1600P75, |
| V4L2_DV_BT_DMT_2560X1600P85, |
| V4L2_DV_BT_DMT_2560X1600P120_RB, |
| V4L2_DV_BT_CEA_3840X2160P24, |
| V4L2_DV_BT_CEA_3840X2160P25, |
| V4L2_DV_BT_CEA_3840X2160P30, |
| V4L2_DV_BT_CEA_3840X2160P50, |
| V4L2_DV_BT_CEA_3840X2160P60, |
| V4L2_DV_BT_CEA_4096X2160P24, |
| V4L2_DV_BT_CEA_4096X2160P25, |
| V4L2_DV_BT_CEA_4096X2160P30, |
| V4L2_DV_BT_CEA_4096X2160P50, |
| V4L2_DV_BT_DMT_4096X2160P59_94_RB, |
| V4L2_DV_BT_CEA_4096X2160P60, |
| { } |
| }; |
| EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets); |
| |
| bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t, |
| const struct v4l2_dv_timings_cap *dvcap, |
| v4l2_check_dv_timings_fnc fnc, |
| void *fnc_handle) |
| { |
| const struct v4l2_bt_timings *bt = &t->bt; |
| const struct v4l2_bt_timings_cap *cap = &dvcap->bt; |
| u32 caps = cap->capabilities; |
| |
| if (t->type != V4L2_DV_BT_656_1120) |
| return false; |
| if (t->type != dvcap->type || |
| bt->height < cap->min_height || |
| bt->height > cap->max_height || |
| bt->width < cap->min_width || |
| bt->width > cap->max_width || |
| bt->pixelclock < cap->min_pixelclock || |
| bt->pixelclock > cap->max_pixelclock || |
| (!(caps & V4L2_DV_BT_CAP_CUSTOM) && |
| cap->standards && bt->standards && |
| !(bt->standards & cap->standards)) || |
| (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) || |
| (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE))) |
| return false; |
| return fnc == NULL || fnc(t, fnc_handle); |
| } |
| EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings); |
| |
| int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t, |
| const struct v4l2_dv_timings_cap *cap, |
| v4l2_check_dv_timings_fnc fnc, |
| void *fnc_handle) |
| { |
| u32 i, idx; |
| |
| memset(t->reserved, 0, sizeof(t->reserved)); |
| for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) { |
| if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap, |
| fnc, fnc_handle) && |
| idx++ == t->index) { |
| t->timings = v4l2_dv_timings_presets[i]; |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap); |
| |
| bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t, |
| const struct v4l2_dv_timings_cap *cap, |
| unsigned pclock_delta, |
| v4l2_check_dv_timings_fnc fnc, |
| void *fnc_handle) |
| { |
| int i; |
| |
| if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle)) |
| return false; |
| |
| for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) { |
| if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap, |
| fnc, fnc_handle) && |
| v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i, |
| pclock_delta, false)) { |
| u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS; |
| |
| *t = v4l2_dv_timings_presets[i]; |
| if (can_reduce_fps(&t->bt)) |
| t->bt.flags |= flags; |
| |
| return true; |
| } |
| } |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap); |
| |
| bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) { |
| const struct v4l2_bt_timings *bt = |
| &v4l2_dv_timings_presets[i].bt; |
| |
| if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) && |
| bt->cea861_vic == vic) { |
| *t = v4l2_dv_timings_presets[i]; |
| return true; |
| } |
| } |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic); |
| |
| /** |
| * v4l2_match_dv_timings - check if two timings match |
| * @t1: compare this v4l2_dv_timings struct... |
| * @t2: with this struct. |
| * @pclock_delta: the allowed pixelclock deviation. |
| * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not |
| * match. |
| * |
| * Compare t1 with t2 with a given margin of error for the pixelclock. |
| */ |
| bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1, |
| const struct v4l2_dv_timings *t2, |
| unsigned pclock_delta, bool match_reduced_fps) |
| { |
| if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120) |
| return false; |
| if (t1->bt.width == t2->bt.width && |
| t1->bt.height == t2->bt.height && |
| t1->bt.interlaced == t2->bt.interlaced && |
| t1->bt.polarities == t2->bt.polarities && |
| t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta && |
| t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta && |
| t1->bt.hfrontporch == t2->bt.hfrontporch && |
| t1->bt.hsync == t2->bt.hsync && |
| t1->bt.hbackporch == t2->bt.hbackporch && |
| t1->bt.vfrontporch == t2->bt.vfrontporch && |
| t1->bt.vsync == t2->bt.vsync && |
| t1->bt.vbackporch == t2->bt.vbackporch && |
| (!match_reduced_fps || |
| (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) == |
| (t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) && |
| (!t1->bt.interlaced || |
| (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch && |
| t1->bt.il_vsync == t2->bt.il_vsync && |
| t1->bt.il_vbackporch == t2->bt.il_vbackporch))) |
| return true; |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_match_dv_timings); |
| |
| void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix, |
| const struct v4l2_dv_timings *t, bool detailed) |
| { |
| const struct v4l2_bt_timings *bt = &t->bt; |
| u32 htot, vtot; |
| u32 fps; |
| |
| if (t->type != V4L2_DV_BT_656_1120) |
| return; |
| |
| htot = V4L2_DV_BT_FRAME_WIDTH(bt); |
| vtot = V4L2_DV_BT_FRAME_HEIGHT(bt); |
| if (bt->interlaced) |
| vtot /= 2; |
| |
| fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock), |
| (htot * vtot)) : 0; |
| |
| if (prefix == NULL) |
| prefix = ""; |
| |
| pr_info("%s: %s%ux%u%s%u.%02u (%ux%u)\n", dev_prefix, prefix, |
| bt->width, bt->height, bt->interlaced ? "i" : "p", |
| fps / 100, fps % 100, htot, vtot); |
| |
| if (!detailed) |
| return; |
| |
| pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n", |
| dev_prefix, bt->hfrontporch, |
| (bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-", |
| bt->hsync, bt->hbackporch); |
| pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n", |
| dev_prefix, bt->vfrontporch, |
| (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-", |
| bt->vsync, bt->vbackporch); |
| if (bt->interlaced) |
| pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n", |
| dev_prefix, bt->il_vfrontporch, |
| (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-", |
| bt->il_vsync, bt->il_vbackporch); |
| pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock); |
| pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n", |
| dev_prefix, bt->flags, |
| (bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ? |
| " REDUCED_BLANKING" : "", |
| ((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) && |
| bt->vsync == 8) ? " (V2)" : "", |
| (bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ? |
| " CAN_REDUCE_FPS" : "", |
| (bt->flags & V4L2_DV_FL_REDUCED_FPS) ? |
| " REDUCED_FPS" : "", |
| (bt->flags & V4L2_DV_FL_HALF_LINE) ? |
| " HALF_LINE" : "", |
| (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ? |
| " CE_VIDEO" : "", |
| (bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ? |
| " FIRST_FIELD_EXTRA_LINE" : "", |
| (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ? |
| " HAS_PICTURE_ASPECT" : "", |
| (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ? |
| " HAS_CEA861_VIC" : "", |
| (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ? |
| " HAS_HDMI_VIC" : ""); |
| pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards, |
| (bt->standards & V4L2_DV_BT_STD_CEA861) ? " CEA" : "", |
| (bt->standards & V4L2_DV_BT_STD_DMT) ? " DMT" : "", |
| (bt->standards & V4L2_DV_BT_STD_CVT) ? " CVT" : "", |
| (bt->standards & V4L2_DV_BT_STD_GTF) ? " GTF" : "", |
| (bt->standards & V4L2_DV_BT_STD_SDI) ? " SDI" : ""); |
| if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) |
| pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix, |
| bt->picture_aspect.numerator, |
| bt->picture_aspect.denominator); |
| if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) |
| pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic); |
| if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) |
| pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic); |
| } |
| EXPORT_SYMBOL_GPL(v4l2_print_dv_timings); |
| |
| struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t) |
| { |
| struct v4l2_fract ratio = { 1, 1 }; |
| unsigned long n, d; |
| |
| if (t->type != V4L2_DV_BT_656_1120) |
| return ratio; |
| if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)) |
| return ratio; |
| |
| ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator; |
| ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator; |
| |
| rational_best_approximation(ratio.numerator, ratio.denominator, |
| ratio.numerator, ratio.denominator, &n, &d); |
| ratio.numerator = n; |
| ratio.denominator = d; |
| return ratio; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio); |
| |
| /** v4l2_calc_timeperframe - helper function to calculate timeperframe based |
| * v4l2_dv_timings fields. |
| * @t - Timings for the video mode. |
| * |
| * Calculates the expected timeperframe using the pixel clock value and |
| * horizontal/vertical measures. This means that v4l2_dv_timings structure |
| * must be correctly and fully filled. |
| */ |
| struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t) |
| { |
| const struct v4l2_bt_timings *bt = &t->bt; |
| struct v4l2_fract fps_fract = { 1, 1 }; |
| unsigned long n, d; |
| u32 htot, vtot, fps; |
| u64 pclk; |
| |
| if (t->type != V4L2_DV_BT_656_1120) |
| return fps_fract; |
| |
| htot = V4L2_DV_BT_FRAME_WIDTH(bt); |
| vtot = V4L2_DV_BT_FRAME_HEIGHT(bt); |
| pclk = bt->pixelclock; |
| |
| if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) && |
| (bt->flags & V4L2_DV_FL_REDUCED_FPS)) |
| pclk = div_u64(pclk * 1000ULL, 1001); |
| |
| fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0; |
| if (!fps) |
| return fps_fract; |
| |
| rational_best_approximation(fps, 100, fps, 100, &n, &d); |
| |
| fps_fract.numerator = d; |
| fps_fract.denominator = n; |
| return fps_fract; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe); |
| |
| /* |
| * CVT defines |
| * Based on Coordinated Video Timings Standard |
| * version 1.1 September 10, 2003 |
| */ |
| |
| #define CVT_PXL_CLK_GRAN 250000 /* pixel clock granularity */ |
| #define CVT_PXL_CLK_GRAN_RB_V2 1000 /* granularity for reduced blanking v2*/ |
| |
| /* Normal blanking */ |
| #define CVT_MIN_V_BPORCH 7 /* lines */ |
| #define CVT_MIN_V_PORCH_RND 3 /* lines */ |
| #define CVT_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */ |
| #define CVT_HSYNC_PERCENT 8 /* nominal hsync as percentage of line */ |
| |
| /* Normal blanking for CVT uses GTF to calculate horizontal blanking */ |
| #define CVT_CELL_GRAN 8 /* character cell granularity */ |
| #define CVT_M 600 /* blanking formula gradient */ |
| #define CVT_C 40 /* blanking formula offset */ |
| #define CVT_K 128 /* blanking formula scaling factor */ |
| #define CVT_J 20 /* blanking formula scaling factor */ |
| #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J) |
| #define CVT_M_PRIME (CVT_K * CVT_M / 256) |
| |
| /* Reduced Blanking */ |
| #define CVT_RB_MIN_V_BPORCH 7 /* lines */ |
| #define CVT_RB_V_FPORCH 3 /* lines */ |
| #define CVT_RB_MIN_V_BLANK 460 /* us */ |
| #define CVT_RB_H_SYNC 32 /* pixels */ |
| #define CVT_RB_H_BLANK 160 /* pixels */ |
| /* Reduce blanking Version 2 */ |
| #define CVT_RB_V2_H_BLANK 80 /* pixels */ |
| #define CVT_RB_MIN_V_FPORCH 3 /* lines */ |
| #define CVT_RB_V2_MIN_V_FPORCH 1 /* lines */ |
| #define CVT_RB_V_BPORCH 6 /* lines */ |
| |
| /** v4l2_detect_cvt - detect if the given timings follow the CVT standard |
| * @frame_height - the total height of the frame (including blanking) in lines. |
| * @hfreq - the horizontal frequency in Hz. |
| * @vsync - the height of the vertical sync in lines. |
| * @active_width - active width of image (does not include blanking). This |
| * information is needed only in case of version 2 of reduced blanking. |
| * In other cases, this parameter does not have any effect on timings. |
| * @polarities - the horizontal and vertical polarities (same as struct |
| * v4l2_bt_timings polarities). |
| * @interlaced - if this flag is true, it indicates interlaced format |
| * @fmt - the resulting timings. |
| * |
| * This function will attempt to detect if the given values correspond to a |
| * valid CVT format. If so, then it will return true, and fmt will be filled |
| * in with the found CVT timings. |
| */ |
| bool v4l2_detect_cvt(unsigned frame_height, |
| unsigned hfreq, |
| unsigned vsync, |
| unsigned active_width, |
| u32 polarities, |
| bool interlaced, |
| struct v4l2_dv_timings *fmt) |
| { |
| int v_fp, v_bp, h_fp, h_bp, hsync; |
| int frame_width, image_height, image_width; |
| bool reduced_blanking; |
| bool rb_v2 = false; |
| unsigned pix_clk; |
| |
| if (vsync < 4 || vsync > 8) |
| return false; |
| |
| if (polarities == V4L2_DV_VSYNC_POS_POL) |
| reduced_blanking = false; |
| else if (polarities == V4L2_DV_HSYNC_POS_POL) |
| reduced_blanking = true; |
| else |
| return false; |
| |
| if (reduced_blanking && vsync == 8) |
| rb_v2 = true; |
| |
| if (rb_v2 && active_width == 0) |
| return false; |
| |
| if (!rb_v2 && vsync > 7) |
| return false; |
| |
| if (hfreq == 0) |
| return false; |
| |
| /* Vertical */ |
| if (reduced_blanking) { |
| if (rb_v2) { |
| v_bp = CVT_RB_V_BPORCH; |
| v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1; |
| v_fp -= vsync + v_bp; |
| |
| if (v_fp < CVT_RB_V2_MIN_V_FPORCH) |
| v_fp = CVT_RB_V2_MIN_V_FPORCH; |
| } else { |
| v_fp = CVT_RB_V_FPORCH; |
| v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1; |
| v_bp -= vsync + v_fp; |
| |
| if (v_bp < CVT_RB_MIN_V_BPORCH) |
| v_bp = CVT_RB_MIN_V_BPORCH; |
| } |
| } else { |
| v_fp = CVT_MIN_V_PORCH_RND; |
| v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync; |
| |
| if (v_bp < CVT_MIN_V_BPORCH) |
| v_bp = CVT_MIN_V_BPORCH; |
| } |
| |
| if (interlaced) |
| image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1; |
| else |
| image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1; |
| |
| if (image_height < 0) |
| return false; |
| |
| /* Aspect ratio based on vsync */ |
| switch (vsync) { |
| case 4: |
| image_width = (image_height * 4) / 3; |
| break; |
| case 5: |
| image_width = (image_height * 16) / 9; |
| break; |
| case 6: |
| image_width = (image_height * 16) / 10; |
| break; |
| case 7: |
| /* special case */ |
| if (image_height == 1024) |
| image_width = (image_height * 5) / 4; |
| else if (image_height == 768) |
| image_width = (image_height * 15) / 9; |
| else |
| return false; |
| break; |
| case 8: |
| image_width = active_width; |
| break; |
| default: |
| return false; |
| } |
| |
| if (!rb_v2) |
| image_width = image_width & ~7; |
| |
| /* Horizontal */ |
| if (reduced_blanking) { |
| int h_blank; |
| int clk_gran; |
| |
| h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK; |
| clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN; |
| |
| pix_clk = (image_width + h_blank) * hfreq; |
| pix_clk = (pix_clk / clk_gran) * clk_gran; |
| |
| h_bp = h_blank / 2; |
| hsync = CVT_RB_H_SYNC; |
| h_fp = h_blank - h_bp - hsync; |
| |
| frame_width = image_width + h_blank; |
| } else { |
| unsigned ideal_duty_cycle_per_myriad = |
| 100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq; |
| int h_blank; |
| |
| if (ideal_duty_cycle_per_myriad < 2000) |
| ideal_duty_cycle_per_myriad = 2000; |
| |
| h_blank = image_width * ideal_duty_cycle_per_myriad / |
| (10000 - ideal_duty_cycle_per_myriad); |
| h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN; |
| |
| pix_clk = (image_width + h_blank) * hfreq; |
| pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN; |
| |
| h_bp = h_blank / 2; |
| frame_width = image_width + h_blank; |
| |
| hsync = frame_width * CVT_HSYNC_PERCENT / 100; |
| hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN; |
| h_fp = h_blank - hsync - h_bp; |
| } |
| |
| fmt->type = V4L2_DV_BT_656_1120; |
| fmt->bt.polarities = polarities; |
| fmt->bt.width = image_width; |
| fmt->bt.height = image_height; |
| fmt->bt.hfrontporch = h_fp; |
| fmt->bt.vfrontporch = v_fp; |
| fmt->bt.hsync = hsync; |
| fmt->bt.vsync = vsync; |
| fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync; |
| |
| if (!interlaced) { |
| fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync; |
| fmt->bt.interlaced = V4L2_DV_PROGRESSIVE; |
| } else { |
| fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp - |
| 2 * vsync) / 2; |
| fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp - |
| 2 * vsync - fmt->bt.vbackporch; |
| fmt->bt.il_vfrontporch = v_fp; |
| fmt->bt.il_vsync = vsync; |
| fmt->bt.flags |= V4L2_DV_FL_HALF_LINE; |
| fmt->bt.interlaced = V4L2_DV_INTERLACED; |
| } |
| |
| fmt->bt.pixelclock = pix_clk; |
| fmt->bt.standards = V4L2_DV_BT_STD_CVT; |
| |
| if (reduced_blanking) |
| fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING; |
| |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_detect_cvt); |
| |
| /* |
| * GTF defines |
| * Based on Generalized Timing Formula Standard |
| * Version 1.1 September 2, 1999 |
| */ |
| |
| #define GTF_PXL_CLK_GRAN 250000 /* pixel clock granularity */ |
| |
| #define GTF_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */ |
| #define GTF_V_FP 1 /* vertical front porch (lines) */ |
| #define GTF_CELL_GRAN 8 /* character cell granularity */ |
| |
| /* Default */ |
| #define GTF_D_M 600 /* blanking formula gradient */ |
| #define GTF_D_C 40 /* blanking formula offset */ |
| #define GTF_D_K 128 /* blanking formula scaling factor */ |
| #define GTF_D_J 20 /* blanking formula scaling factor */ |
| #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J) |
| #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256) |
| |
| /* Secondary */ |
| #define GTF_S_M 3600 /* blanking formula gradient */ |
| #define GTF_S_C 40 /* blanking formula offset */ |
| #define GTF_S_K 128 /* blanking formula scaling factor */ |
| #define GTF_S_J 35 /* blanking formula scaling factor */ |
| #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J) |
| #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256) |
| |
| /** v4l2_detect_gtf - detect if the given timings follow the GTF standard |
| * @frame_height - the total height of the frame (including blanking) in lines. |
| * @hfreq - the horizontal frequency in Hz. |
| * @vsync - the height of the vertical sync in lines. |
| * @polarities - the horizontal and vertical polarities (same as struct |
| * v4l2_bt_timings polarities). |
| * @interlaced - if this flag is true, it indicates interlaced format |
| * @aspect - preferred aspect ratio. GTF has no method of determining the |
| * aspect ratio in order to derive the image width from the |
| * image height, so it has to be passed explicitly. Usually |
| * the native screen aspect ratio is used for this. If it |
| * is not filled in correctly, then 16:9 will be assumed. |
| * @fmt - the resulting timings. |
| * |
| * This function will attempt to detect if the given values correspond to a |
| * valid GTF format. If so, then it will return true, and fmt will be filled |
| * in with the found GTF timings. |
| */ |
| bool v4l2_detect_gtf(unsigned frame_height, |
| unsigned hfreq, |
| unsigned vsync, |
| u32 polarities, |
| bool interlaced, |
| struct v4l2_fract aspect, |
| struct v4l2_dv_timings *fmt) |
| { |
| int pix_clk; |
| int v_fp, v_bp, h_fp, hsync; |
| int frame_width, image_height, image_width; |
| bool default_gtf; |
| int h_blank; |
| |
| if (vsync != 3) |
| return false; |
| |
| if (polarities == V4L2_DV_VSYNC_POS_POL) |
| default_gtf = true; |
| else if (polarities == V4L2_DV_HSYNC_POS_POL) |
| default_gtf = false; |
| else |
| return false; |
| |
| if (hfreq == 0) |
| return false; |
| |
| /* Vertical */ |
| v_fp = GTF_V_FP; |
| v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync; |
| if (interlaced) |
| image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1; |
| else |
| image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1; |
| |
| if (image_height < 0) |
| return false; |
| |
| if (aspect.numerator == 0 || aspect.denominator == 0) { |
| aspect.numerator = 16; |
| aspect.denominator = 9; |
| } |
| image_width = ((image_height * aspect.numerator) / aspect.denominator); |
| image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1); |
| |
| /* Horizontal */ |
| if (default_gtf) { |
| u64 num; |
| u32 den; |
| |
| num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) - |
| ((u64)image_width * GTF_D_M_PRIME * 1000)); |
| den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) * |
| (2 * GTF_CELL_GRAN); |
| h_blank = div_u64((num + (den >> 1)), den); |
| h_blank *= (2 * GTF_CELL_GRAN); |
| } else { |
| u64 num; |
| u32 den; |
| |
| num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) - |
| ((u64)image_width * GTF_S_M_PRIME * 1000)); |
| den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) * |
| (2 * GTF_CELL_GRAN); |
| h_blank = div_u64((num + (den >> 1)), den); |
| h_blank *= (2 * GTF_CELL_GRAN); |
| } |
| |
| frame_width = image_width + h_blank; |
| |
| pix_clk = (image_width + h_blank) * hfreq; |
| pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN; |
| |
| hsync = (frame_width * 8 + 50) / 100; |
| hsync = DIV_ROUND_CLOSEST(hsync, GTF_CELL_GRAN) * GTF_CELL_GRAN; |
| |
| h_fp = h_blank / 2 - hsync; |
| |
| fmt->type = V4L2_DV_BT_656_1120; |
| fmt->bt.polarities = polarities; |
| fmt->bt.width = image_width; |
| fmt->bt.height = image_height; |
| fmt->bt.hfrontporch = h_fp; |
| fmt->bt.vfrontporch = v_fp; |
| fmt->bt.hsync = hsync; |
| fmt->bt.vsync = vsync; |
| fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync; |
| |
| if (!interlaced) { |
| fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync; |
| fmt->bt.interlaced = V4L2_DV_PROGRESSIVE; |
| } else { |
| fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp - |
| 2 * vsync) / 2; |
| fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp - |
| 2 * vsync - fmt->bt.vbackporch; |
| fmt->bt.il_vfrontporch = v_fp; |
| fmt->bt.il_vsync = vsync; |
| fmt->bt.flags |= V4L2_DV_FL_HALF_LINE; |
| fmt->bt.interlaced = V4L2_DV_INTERLACED; |
| } |
| |
| fmt->bt.pixelclock = pix_clk; |
| fmt->bt.standards = V4L2_DV_BT_STD_GTF; |
| |
| if (!default_gtf) |
| fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING; |
| |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_detect_gtf); |
| |
| /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes |
| * 0x15 and 0x16 from the EDID. |
| * @hor_landscape - byte 0x15 from the EDID. |
| * @vert_portrait - byte 0x16 from the EDID. |
| * |
| * Determines the aspect ratio from the EDID. |
| * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2: |
| * "Horizontal and Vertical Screen Size or Aspect Ratio" |
| */ |
| struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait) |
| { |
| struct v4l2_fract aspect = { 16, 9 }; |
| u8 ratio; |
| |
| /* Nothing filled in, fallback to 16:9 */ |
| if (!hor_landscape && !vert_portrait) |
| return aspect; |
| /* Both filled in, so they are interpreted as the screen size in cm */ |
| if (hor_landscape && vert_portrait) { |
| aspect.numerator = hor_landscape; |
| aspect.denominator = vert_portrait; |
| return aspect; |
| } |
| /* Only one is filled in, so interpret them as a ratio: |
| (val + 99) / 100 */ |
| ratio = hor_landscape | vert_portrait; |
| /* Change some rounded values into the exact aspect ratio */ |
| if (ratio == 79) { |
| aspect.numerator = 16; |
| aspect.denominator = 9; |
| } else if (ratio == 34) { |
| aspect.numerator = 4; |
| aspect.denominator = 3; |
| } else if (ratio == 68) { |
| aspect.numerator = 15; |
| aspect.denominator = 9; |
| } else { |
| aspect.numerator = hor_landscape + 99; |
| aspect.denominator = 100; |
| } |
| if (hor_landscape) |
| return aspect; |
| /* The aspect ratio is for portrait, so swap numerator and denominator */ |
| swap(aspect.denominator, aspect.numerator); |
| return aspect; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio); |
| |
| /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information |
| * based on various InfoFrames. |
| * @avi: the AVI InfoFrame |
| * @hdmi: the HDMI Vendor InfoFrame, may be NULL |
| * @height: the frame height |
| * |
| * Determines the HDMI colorimetry information, i.e. how the HDMI |
| * pixel color data should be interpreted. |
| * |
| * Note that some of the newer features (DCI-P3, HDR) are not yet |
| * implemented: the hdmi.h header needs to be updated to the HDMI 2.0 |
| * and CTA-861-G standards. |
| */ |
| struct v4l2_hdmi_colorimetry |
| v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi, |
| const struct hdmi_vendor_infoframe *hdmi, |
| unsigned int height) |
| { |
| struct v4l2_hdmi_colorimetry c = { |
| V4L2_COLORSPACE_SRGB, |
| V4L2_YCBCR_ENC_DEFAULT, |
| V4L2_QUANTIZATION_FULL_RANGE, |
| V4L2_XFER_FUNC_SRGB |
| }; |
| bool is_ce = avi->video_code || (hdmi && hdmi->vic); |
| bool is_sdtv = height <= 576; |
| bool default_is_lim_range_rgb = avi->video_code > 1; |
| |
| switch (avi->colorspace) { |
| case HDMI_COLORSPACE_RGB: |
| /* RGB pixel encoding */ |
| switch (avi->colorimetry) { |
| case HDMI_COLORIMETRY_EXTENDED: |
| switch (avi->extended_colorimetry) { |
| case HDMI_EXTENDED_COLORIMETRY_OPRGB: |
| c.colorspace = V4L2_COLORSPACE_OPRGB; |
| c.xfer_func = V4L2_XFER_FUNC_OPRGB; |
| break; |
| case HDMI_EXTENDED_COLORIMETRY_BT2020: |
| c.colorspace = V4L2_COLORSPACE_BT2020; |
| c.xfer_func = V4L2_XFER_FUNC_709; |
| break; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| switch (avi->quantization_range) { |
| case HDMI_QUANTIZATION_RANGE_LIMITED: |
| c.quantization = V4L2_QUANTIZATION_LIM_RANGE; |
| break; |
| case HDMI_QUANTIZATION_RANGE_FULL: |
| break; |
| default: |
| if (default_is_lim_range_rgb) |
| c.quantization = V4L2_QUANTIZATION_LIM_RANGE; |
| break; |
| } |
| break; |
| |
| default: |
| /* YCbCr pixel encoding */ |
| c.quantization = V4L2_QUANTIZATION_LIM_RANGE; |
| switch (avi->colorimetry) { |
| case HDMI_COLORIMETRY_NONE: |
| if (!is_ce) |
| break; |
| if (is_sdtv) { |
| c.colorspace = V4L2_COLORSPACE_SMPTE170M; |
| c.ycbcr_enc = V4L2_YCBCR_ENC_601; |
| } else { |
| c.colorspace = V4L2_COLORSPACE_REC709; |
| c.ycbcr_enc = V4L2_YCBCR_ENC_709; |
| } |
| c.xfer_func = V4L2_XFER_FUNC_709; |
| break; |
| case HDMI_COLORIMETRY_ITU_601: |
| c.colorspace = V4L2_COLORSPACE_SMPTE170M; |
| c.ycbcr_enc = V4L2_YCBCR_ENC_601; |
| c.xfer_func = V4L2_XFER_FUNC_709; |
| break; |
| case HDMI_COLORIMETRY_ITU_709: |
| c.colorspace = V4L2_COLORSPACE_REC709; |
| c.ycbcr_enc = V4L2_YCBCR_ENC_709; |
| c.xfer_func = V4L2_XFER_FUNC_709; |
| break; |
| case HDMI_COLORIMETRY_EXTENDED: |
| switch (avi->extended_colorimetry) { |
| case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601: |
| c.colorspace = V4L2_COLORSPACE_REC709; |
| c.ycbcr_enc = V4L2_YCBCR_ENC_XV709; |
| c.xfer_func = V4L2_XFER_FUNC_709; |
| break; |
| case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709: |
| c.colorspace = V4L2_COLORSPACE_REC709; |
| c.ycbcr_enc = V4L2_YCBCR_ENC_XV601; |
| c.xfer_func = V4L2_XFER_FUNC_709; |
| break; |
| case HDMI_EXTENDED_COLORIMETRY_S_YCC_601: |
| c.colorspace = V4L2_COLORSPACE_SRGB; |
| c.ycbcr_enc = V4L2_YCBCR_ENC_601; |
| c.xfer_func = V4L2_XFER_FUNC_SRGB; |
| break; |
| case HDMI_EXTENDED_COLORIMETRY_OPYCC_601: |
| c.colorspace = V4L2_COLORSPACE_OPRGB; |
| c.ycbcr_enc = V4L2_YCBCR_ENC_601; |
| c.xfer_func = V4L2_XFER_FUNC_OPRGB; |
| break; |
| case HDMI_EXTENDED_COLORIMETRY_BT2020: |
| c.colorspace = V4L2_COLORSPACE_BT2020; |
| c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020; |
| c.xfer_func = V4L2_XFER_FUNC_709; |
| break; |
| case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM: |
| c.colorspace = V4L2_COLORSPACE_BT2020; |
| c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM; |
| c.xfer_func = V4L2_XFER_FUNC_709; |
| break; |
| default: /* fall back to ITU_709 */ |
| c.colorspace = V4L2_COLORSPACE_REC709; |
| c.ycbcr_enc = V4L2_YCBCR_ENC_709; |
| c.xfer_func = V4L2_XFER_FUNC_709; |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| /* |
| * YCC Quantization Range signaling is more-or-less broken, |
| * let's just ignore this. |
| */ |
| break; |
| } |
| return c; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry); |
| |
| /** |
| * v4l2_get_edid_phys_addr() - find and return the physical address |
| * |
| * @edid: pointer to the EDID data |
| * @size: size in bytes of the EDID data |
| * @offset: If not %NULL then the location of the physical address |
| * bytes in the EDID will be returned here. This is set to 0 |
| * if there is no physical address found. |
| * |
| * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none. |
| */ |
| u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size, |
| unsigned int *offset) |
| { |
| unsigned int loc = cec_get_edid_spa_location(edid, size); |
| |
| if (offset) |
| *offset = loc; |
| if (loc == 0) |
| return CEC_PHYS_ADDR_INVALID; |
| return (edid[loc] << 8) | edid[loc + 1]; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr); |
| |
| /** |
| * v4l2_set_edid_phys_addr() - find and set the physical address |
| * |
| * @edid: pointer to the EDID data |
| * @size: size in bytes of the EDID data |
| * @phys_addr: the new physical address |
| * |
| * This function finds the location of the physical address in the EDID |
| * and fills in the given physical address and updates the checksum |
| * at the end of the EDID block. It does nothing if the EDID doesn't |
| * contain a physical address. |
| */ |
| void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr) |
| { |
| unsigned int loc = cec_get_edid_spa_location(edid, size); |
| u8 sum = 0; |
| unsigned int i; |
| |
| if (loc == 0) |
| return; |
| edid[loc] = phys_addr >> 8; |
| edid[loc + 1] = phys_addr & 0xff; |
| loc &= ~0x7f; |
| |
| /* update the checksum */ |
| for (i = loc; i < loc + 127; i++) |
| sum += edid[i]; |
| edid[i] = 256 - sum; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr); |
| |
| /** |
| * v4l2_phys_addr_for_input() - calculate the PA for an input |
| * |
| * @phys_addr: the physical address of the parent |
| * @input: the number of the input port, must be between 1 and 15 |
| * |
| * This function calculates a new physical address based on the input |
| * port number. For example: |
| * |
| * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0 |
| * |
| * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0 |
| * |
| * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5 |
| * |
| * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth. |
| * |
| * Return: the new physical address or CEC_PHYS_ADDR_INVALID. |
| */ |
| u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input) |
| { |
| /* Check if input is sane */ |
| if (WARN_ON(input == 0 || input > 0xf)) |
| return CEC_PHYS_ADDR_INVALID; |
| |
| if (phys_addr == 0) |
| return input << 12; |
| |
| if ((phys_addr & 0x0fff) == 0) |
| return phys_addr | (input << 8); |
| |
| if ((phys_addr & 0x00ff) == 0) |
| return phys_addr | (input << 4); |
| |
| if ((phys_addr & 0x000f) == 0) |
| return phys_addr | input; |
| |
| /* |
| * All nibbles are used so no valid physical addresses can be assigned |
| * to the input. |
| */ |
| return CEC_PHYS_ADDR_INVALID; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input); |
| |
| /** |
| * v4l2_phys_addr_validate() - validate a physical address from an EDID |
| * |
| * @phys_addr: the physical address to validate |
| * @parent: if not %NULL, then this is filled with the parents PA. |
| * @port: if not %NULL, then this is filled with the input port. |
| * |
| * This validates a physical address as read from an EDID. If the |
| * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end), |
| * then it will return -EINVAL. |
| * |
| * The parent PA is passed into %parent and the input port is passed into |
| * %port. For example: |
| * |
| * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0. |
| * |
| * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1. |
| * |
| * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2. |
| * |
| * PA = f.f.f.f: has parent f.f.f.f and input port 0. |
| * |
| * Return: 0 if the PA is valid, -EINVAL if not. |
| */ |
| int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port) |
| { |
| int i; |
| |
| if (parent) |
| *parent = phys_addr; |
| if (port) |
| *port = 0; |
| if (phys_addr == CEC_PHYS_ADDR_INVALID) |
| return 0; |
| for (i = 0; i < 16; i += 4) |
| if (phys_addr & (0xf << i)) |
| break; |
| if (i == 16) |
| return 0; |
| if (parent) |
| *parent = phys_addr & (0xfff0 << i); |
| if (port) |
| *port = (phys_addr >> i) & 0xf; |
| for (i += 4; i < 16; i += 4) |
| if ((phys_addr & (0xf << i)) == 0) |
| return -EINVAL; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate); |