| /* |
| * Kernel Probes (KProbes) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) IBM Corporation, 2002, 2006 |
| * |
| * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> |
| */ |
| |
| #include <linux/kprobes.h> |
| #include <linux/ptrace.h> |
| #include <linux/preempt.h> |
| #include <linux/stop_machine.h> |
| #include <linux/kdebug.h> |
| #include <asm/cacheflush.h> |
| #include <asm/sections.h> |
| #include <asm/uaccess.h> |
| #include <linux/module.h> |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; |
| |
| int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| { |
| /* Make sure the probe isn't going on a difficult instruction */ |
| if (is_prohibited_opcode((kprobe_opcode_t *) p->addr)) |
| return -EINVAL; |
| |
| if ((unsigned long)p->addr & 0x01) |
| return -EINVAL; |
| |
| /* Use the get_insn_slot() facility for correctness */ |
| if (!(p->ainsn.insn = get_insn_slot())) |
| return -ENOMEM; |
| |
| memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); |
| |
| get_instruction_type(&p->ainsn); |
| p->opcode = *p->addr; |
| return 0; |
| } |
| |
| int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction) |
| { |
| switch (*(__u8 *) instruction) { |
| case 0x0c: /* bassm */ |
| case 0x0b: /* bsm */ |
| case 0x83: /* diag */ |
| case 0x44: /* ex */ |
| return -EINVAL; |
| } |
| switch (*(__u16 *) instruction) { |
| case 0x0101: /* pr */ |
| case 0xb25a: /* bsa */ |
| case 0xb240: /* bakr */ |
| case 0xb258: /* bsg */ |
| case 0xb218: /* pc */ |
| case 0xb228: /* pt */ |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| void __kprobes get_instruction_type(struct arch_specific_insn *ainsn) |
| { |
| /* default fixup method */ |
| ainsn->fixup = FIXUP_PSW_NORMAL; |
| |
| /* save r1 operand */ |
| ainsn->reg = (*ainsn->insn & 0xf0) >> 4; |
| |
| /* save the instruction length (pop 5-5) in bytes */ |
| switch (*(__u8 *) (ainsn->insn) >> 6) { |
| case 0: |
| ainsn->ilen = 2; |
| break; |
| case 1: |
| case 2: |
| ainsn->ilen = 4; |
| break; |
| case 3: |
| ainsn->ilen = 6; |
| break; |
| } |
| |
| switch (*(__u8 *) ainsn->insn) { |
| case 0x05: /* balr */ |
| case 0x0d: /* basr */ |
| ainsn->fixup = FIXUP_RETURN_REGISTER; |
| /* if r2 = 0, no branch will be taken */ |
| if ((*ainsn->insn & 0x0f) == 0) |
| ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN; |
| break; |
| case 0x06: /* bctr */ |
| case 0x07: /* bcr */ |
| ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; |
| break; |
| case 0x45: /* bal */ |
| case 0x4d: /* bas */ |
| ainsn->fixup = FIXUP_RETURN_REGISTER; |
| break; |
| case 0x47: /* bc */ |
| case 0x46: /* bct */ |
| case 0x86: /* bxh */ |
| case 0x87: /* bxle */ |
| ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; |
| break; |
| case 0x82: /* lpsw */ |
| ainsn->fixup = FIXUP_NOT_REQUIRED; |
| break; |
| case 0xb2: /* lpswe */ |
| if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) { |
| ainsn->fixup = FIXUP_NOT_REQUIRED; |
| } |
| break; |
| case 0xa7: /* bras */ |
| if ((*ainsn->insn & 0x0f) == 0x05) { |
| ainsn->fixup |= FIXUP_RETURN_REGISTER; |
| } |
| break; |
| case 0xc0: |
| if ((*ainsn->insn & 0x0f) == 0x00 /* larl */ |
| || (*ainsn->insn & 0x0f) == 0x05) /* brasl */ |
| ainsn->fixup |= FIXUP_RETURN_REGISTER; |
| break; |
| case 0xeb: |
| if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */ |
| *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */ |
| ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; |
| } |
| break; |
| case 0xe3: /* bctg */ |
| if (*(((__u8 *) ainsn->insn) + 5) == 0x46) { |
| ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; |
| } |
| break; |
| } |
| } |
| |
| static int __kprobes swap_instruction(void *aref) |
| { |
| struct ins_replace_args *args = aref; |
| u32 *addr; |
| u32 instr; |
| int err = -EFAULT; |
| |
| /* |
| * Text segment is read-only, hence we use stura to bypass dynamic |
| * address translation to exchange the instruction. Since stura |
| * always operates on four bytes, but we only want to exchange two |
| * bytes do some calculations to get things right. In addition we |
| * shall not cross any page boundaries (vmalloc area!) when writing |
| * the new instruction. |
| */ |
| addr = (u32 *)((unsigned long)args->ptr & -4UL); |
| if ((unsigned long)args->ptr & 2) |
| instr = ((*addr) & 0xffff0000) | args->new; |
| else |
| instr = ((*addr) & 0x0000ffff) | args->new << 16; |
| |
| asm volatile( |
| " lra %1,0(%1)\n" |
| "0: stura %2,%1\n" |
| "1: la %0,0\n" |
| "2:\n" |
| EX_TABLE(0b,2b) |
| : "+d" (err) |
| : "a" (addr), "d" (instr) |
| : "memory", "cc"); |
| |
| return err; |
| } |
| |
| void __kprobes arch_arm_kprobe(struct kprobe *p) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| unsigned long status = kcb->kprobe_status; |
| struct ins_replace_args args; |
| |
| args.ptr = p->addr; |
| args.old = p->opcode; |
| args.new = BREAKPOINT_INSTRUCTION; |
| |
| kcb->kprobe_status = KPROBE_SWAP_INST; |
| stop_machine(swap_instruction, &args, NULL); |
| kcb->kprobe_status = status; |
| } |
| |
| void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| unsigned long status = kcb->kprobe_status; |
| struct ins_replace_args args; |
| |
| args.ptr = p->addr; |
| args.old = BREAKPOINT_INSTRUCTION; |
| args.new = p->opcode; |
| |
| kcb->kprobe_status = KPROBE_SWAP_INST; |
| stop_machine(swap_instruction, &args, NULL); |
| kcb->kprobe_status = status; |
| } |
| |
| void __kprobes arch_remove_kprobe(struct kprobe *p) |
| { |
| if (p->ainsn.insn) { |
| free_insn_slot(p->ainsn.insn, 0); |
| p->ainsn.insn = NULL; |
| } |
| } |
| |
| static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) |
| { |
| per_cr_bits kprobe_per_regs[1]; |
| |
| memset(kprobe_per_regs, 0, sizeof(per_cr_bits)); |
| regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE; |
| |
| /* Set up the per control reg info, will pass to lctl */ |
| kprobe_per_regs[0].em_instruction_fetch = 1; |
| kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn; |
| kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1; |
| |
| /* Set the PER control regs, turns on single step for this address */ |
| __ctl_load(kprobe_per_regs, 9, 11); |
| regs->psw.mask |= PSW_MASK_PER; |
| regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK); |
| } |
| |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask; |
| memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl, |
| sizeof(kcb->kprobe_saved_ctl)); |
| } |
| |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask; |
| memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl, |
| sizeof(kcb->kprobe_saved_ctl)); |
| } |
| |
| static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| __get_cpu_var(current_kprobe) = p; |
| /* Save the interrupt and per flags */ |
| kcb->kprobe_saved_imask = regs->psw.mask & |
| (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK); |
| /* Save the control regs that govern PER */ |
| __ctl_store(kcb->kprobe_saved_ctl, 9, 11); |
| } |
| |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| struct pt_regs *regs) |
| { |
| ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; |
| |
| /* Replace the return addr with trampoline addr */ |
| regs->gprs[14] = (unsigned long)&kretprobe_trampoline; |
| } |
| |
| static int __kprobes kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *p; |
| int ret = 0; |
| unsigned long *addr = (unsigned long *) |
| ((regs->psw.addr & PSW_ADDR_INSN) - 2); |
| struct kprobe_ctlblk *kcb; |
| |
| /* |
| * We don't want to be preempted for the entire |
| * duration of kprobe processing |
| */ |
| preempt_disable(); |
| kcb = get_kprobe_ctlblk(); |
| |
| /* Check we're not actually recursing */ |
| if (kprobe_running()) { |
| p = get_kprobe(addr); |
| if (p) { |
| if (kcb->kprobe_status == KPROBE_HIT_SS && |
| *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { |
| regs->psw.mask &= ~PSW_MASK_PER; |
| regs->psw.mask |= kcb->kprobe_saved_imask; |
| goto no_kprobe; |
| } |
| /* We have reentered the kprobe_handler(), since |
| * another probe was hit while within the handler. |
| * We here save the original kprobes variables and |
| * just single step on the instruction of the new probe |
| * without calling any user handlers. |
| */ |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p, regs, kcb); |
| kprobes_inc_nmissed_count(p); |
| prepare_singlestep(p, regs); |
| kcb->kprobe_status = KPROBE_REENTER; |
| return 1; |
| } else { |
| p = __get_cpu_var(current_kprobe); |
| if (p->break_handler && p->break_handler(p, regs)) { |
| goto ss_probe; |
| } |
| } |
| goto no_kprobe; |
| } |
| |
| p = get_kprobe(addr); |
| if (!p) |
| /* |
| * No kprobe at this address. The fault has not been |
| * caused by a kprobe breakpoint. The race of breakpoint |
| * vs. kprobe remove does not exist because on s390 we |
| * use stop_machine to arm/disarm the breakpoints. |
| */ |
| goto no_kprobe; |
| |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| set_current_kprobe(p, regs, kcb); |
| if (p->pre_handler && p->pre_handler(p, regs)) |
| /* handler has already set things up, so skip ss setup */ |
| return 1; |
| |
| ss_probe: |
| prepare_singlestep(p, regs); |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| return 1; |
| |
| no_kprobe: |
| preempt_enable_no_resched(); |
| return ret; |
| } |
| |
| /* |
| * Function return probe trampoline: |
| * - init_kprobes() establishes a probepoint here |
| * - When the probed function returns, this probe |
| * causes the handlers to fire |
| */ |
| static void __used kretprobe_trampoline_holder(void) |
| { |
| asm volatile(".global kretprobe_trampoline\n" |
| "kretprobe_trampoline: bcr 0,0\n"); |
| } |
| |
| /* |
| * Called when the probe at kretprobe trampoline is hit |
| */ |
| static int __kprobes trampoline_probe_handler(struct kprobe *p, |
| struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri = NULL; |
| struct hlist_head *head, empty_rp; |
| struct hlist_node *node, *tmp; |
| unsigned long flags, orig_ret_address = 0; |
| unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; |
| |
| INIT_HLIST_HEAD(&empty_rp); |
| kretprobe_hash_lock(current, &head, &flags); |
| |
| /* |
| * It is possible to have multiple instances associated with a given |
| * task either because an multiple functions in the call path |
| * have a return probe installed on them, and/or more then one return |
| * return probe was registered for a target function. |
| * |
| * We can handle this because: |
| * - instances are always inserted at the head of the list |
| * - when multiple return probes are registered for the same |
| * function, the first instance's ret_addr will point to the |
| * real return address, and all the rest will point to |
| * kretprobe_trampoline |
| */ |
| hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { |
| if (ri->task != current) |
| /* another task is sharing our hash bucket */ |
| continue; |
| |
| if (ri->rp && ri->rp->handler) |
| ri->rp->handler(ri, regs); |
| |
| orig_ret_address = (unsigned long)ri->ret_addr; |
| recycle_rp_inst(ri, &empty_rp); |
| |
| if (orig_ret_address != trampoline_address) { |
| /* |
| * This is the real return address. Any other |
| * instances associated with this task are for |
| * other calls deeper on the call stack |
| */ |
| break; |
| } |
| } |
| kretprobe_assert(ri, orig_ret_address, trampoline_address); |
| regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE; |
| |
| reset_current_kprobe(); |
| kretprobe_hash_unlock(current, &flags); |
| preempt_enable_no_resched(); |
| |
| hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { |
| hlist_del(&ri->hlist); |
| kfree(ri); |
| } |
| /* |
| * By returning a non-zero value, we are telling |
| * kprobe_handler() that we don't want the post_handler |
| * to run (and have re-enabled preemption) |
| */ |
| return 1; |
| } |
| |
| /* |
| * Called after single-stepping. p->addr is the address of the |
| * instruction whose first byte has been replaced by the "breakpoint" |
| * instruction. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. The address of this |
| * copy is p->ainsn.insn. |
| */ |
| static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| regs->psw.addr &= PSW_ADDR_INSN; |
| |
| if (p->ainsn.fixup & FIXUP_PSW_NORMAL) |
| regs->psw.addr = (unsigned long)p->addr + |
| ((unsigned long)regs->psw.addr - |
| (unsigned long)p->ainsn.insn); |
| |
| if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN) |
| if ((unsigned long)regs->psw.addr - |
| (unsigned long)p->ainsn.insn == p->ainsn.ilen) |
| regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen; |
| |
| if (p->ainsn.fixup & FIXUP_RETURN_REGISTER) |
| regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr + |
| (regs->gprs[p->ainsn.reg] - |
| (unsigned long)p->ainsn.insn)) |
| | PSW_ADDR_AMODE; |
| |
| regs->psw.addr |= PSW_ADDR_AMODE; |
| /* turn off PER mode */ |
| regs->psw.mask &= ~PSW_MASK_PER; |
| /* Restore the original per control regs */ |
| __ctl_load(kcb->kprobe_saved_ctl, 9, 11); |
| regs->psw.mask |= kcb->kprobe_saved_imask; |
| } |
| |
| static int __kprobes post_kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| if (!cur) |
| return 0; |
| |
| if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| cur->post_handler(cur, regs, 0); |
| } |
| |
| resume_execution(cur, regs); |
| |
| /*Restore back the original saved kprobes variables and continue. */ |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| goto out; |
| } |
| reset_current_kprobe(); |
| out: |
| preempt_enable_no_resched(); |
| |
| /* |
| * if somebody else is singlestepping across a probe point, psw mask |
| * will have PER set, in which case, continue the remaining processing |
| * of do_single_step, as if this is not a probe hit. |
| */ |
| if (regs->psw.mask & PSW_MASK_PER) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| const struct exception_table_entry *entry; |
| |
| switch(kcb->kprobe_status) { |
| case KPROBE_SWAP_INST: |
| /* We are here because the instruction replacement failed */ |
| return 0; |
| case KPROBE_HIT_SS: |
| case KPROBE_REENTER: |
| /* |
| * We are here because the instruction being single |
| * stepped caused a page fault. We reset the current |
| * kprobe and the nip points back to the probe address |
| * and allow the page fault handler to continue as a |
| * normal page fault. |
| */ |
| regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE; |
| regs->psw.mask &= ~PSW_MASK_PER; |
| regs->psw.mask |= kcb->kprobe_saved_imask; |
| if (kcb->kprobe_status == KPROBE_REENTER) |
| restore_previous_kprobe(kcb); |
| else |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| break; |
| case KPROBE_HIT_ACTIVE: |
| case KPROBE_HIT_SSDONE: |
| /* |
| * We increment the nmissed count for accounting, |
| * we can also use npre/npostfault count for accouting |
| * these specific fault cases. |
| */ |
| kprobes_inc_nmissed_count(cur); |
| |
| /* |
| * We come here because instructions in the pre/post |
| * handler caused the page_fault, this could happen |
| * if handler tries to access user space by |
| * copy_from_user(), get_user() etc. Let the |
| * user-specified handler try to fix it first. |
| */ |
| if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) |
| return 1; |
| |
| /* |
| * In case the user-specified fault handler returned |
| * zero, try to fix up. |
| */ |
| entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN); |
| if (entry) { |
| regs->psw.addr = entry->fixup | PSW_ADDR_AMODE; |
| return 1; |
| } |
| |
| /* |
| * fixup_exception() could not handle it, |
| * Let do_page_fault() fix it. |
| */ |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Wrapper routine to for handling exceptions. |
| */ |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| struct die_args *args = (struct die_args *)data; |
| int ret = NOTIFY_DONE; |
| |
| switch (val) { |
| case DIE_BPT: |
| if (kprobe_handler(args->regs)) |
| ret = NOTIFY_STOP; |
| break; |
| case DIE_SSTEP: |
| if (post_kprobe_handler(args->regs)) |
| ret = NOTIFY_STOP; |
| break; |
| case DIE_TRAP: |
| /* kprobe_running() needs smp_processor_id() */ |
| preempt_disable(); |
| if (kprobe_running() && |
| kprobe_fault_handler(args->regs, args->trapnr)) |
| ret = NOTIFY_STOP; |
| preempt_enable(); |
| break; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| unsigned long addr; |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); |
| |
| /* setup return addr to the jprobe handler routine */ |
| regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE; |
| |
| /* r14 is the function return address */ |
| kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14]; |
| /* r15 is the stack pointer */ |
| kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15]; |
| addr = (unsigned long)kcb->jprobe_saved_r15; |
| |
| memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr, |
| MIN_STACK_SIZE(addr)); |
| return 1; |
| } |
| |
| void __kprobes jprobe_return(void) |
| { |
| asm volatile(".word 0x0002"); |
| } |
| |
| void __kprobes jprobe_return_end(void) |
| { |
| asm volatile("bcr 0,0"); |
| } |
| |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15); |
| |
| /* Put the regs back */ |
| memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); |
| /* put the stack back */ |
| memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, |
| MIN_STACK_SIZE(stack_addr)); |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| |
| static struct kprobe trampoline_p = { |
| .addr = (kprobe_opcode_t *) & kretprobe_trampoline, |
| .pre_handler = trampoline_probe_handler |
| }; |
| |
| int __init arch_init_kprobes(void) |
| { |
| return register_kprobe(&trampoline_p); |
| } |
| |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p) |
| { |
| if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline) |
| return 1; |
| return 0; |
| } |