blob: f6a669a9af414392cc0735c554edc7569ad2fe64 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* PCIe driver for Renesas R-Car SoCs
* Copyright (C) 2014 Renesas Electronics Europe Ltd
*
* Based on:
* arch/sh/drivers/pci/pcie-sh7786.c
* arch/sh/drivers/pci/ops-sh7786.c
* Copyright (C) 2009 - 2011 Paul Mundt
*
* Author: Phil Edworthy <phil.edworthy@renesas.com>
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/msi.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_pci.h>
#include <linux/of_platform.h>
#include <linux/pci.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include "../pci.h"
#define PCIECAR 0x000010
#define PCIECCTLR 0x000018
#define CONFIG_SEND_ENABLE BIT(31)
#define TYPE0 (0 << 8)
#define TYPE1 BIT(8)
#define PCIECDR 0x000020
#define PCIEMSR 0x000028
#define PCIEINTXR 0x000400
#define PCIEPHYSR 0x0007f0
#define PHYRDY BIT(0)
#define PCIEMSITXR 0x000840
/* Transfer control */
#define PCIETCTLR 0x02000
#define DL_DOWN BIT(3)
#define CFINIT BIT(0)
#define PCIETSTR 0x02004
#define DATA_LINK_ACTIVE BIT(0)
#define PCIEERRFR 0x02020
#define UNSUPPORTED_REQUEST BIT(4)
#define PCIEMSIFR 0x02044
#define PCIEMSIALR 0x02048
#define MSIFE BIT(0)
#define PCIEMSIAUR 0x0204c
#define PCIEMSIIER 0x02050
/* root port address */
#define PCIEPRAR(x) (0x02080 + ((x) * 0x4))
/* local address reg & mask */
#define PCIELAR(x) (0x02200 + ((x) * 0x20))
#define PCIELAMR(x) (0x02208 + ((x) * 0x20))
#define LAM_PREFETCH BIT(3)
#define LAM_64BIT BIT(2)
#define LAR_ENABLE BIT(1)
/* PCIe address reg & mask */
#define PCIEPALR(x) (0x03400 + ((x) * 0x20))
#define PCIEPAUR(x) (0x03404 + ((x) * 0x20))
#define PCIEPAMR(x) (0x03408 + ((x) * 0x20))
#define PCIEPTCTLR(x) (0x0340c + ((x) * 0x20))
#define PAR_ENABLE BIT(31)
#define IO_SPACE BIT(8)
/* Configuration */
#define PCICONF(x) (0x010000 + ((x) * 0x4))
#define PMCAP(x) (0x010040 + ((x) * 0x4))
#define EXPCAP(x) (0x010070 + ((x) * 0x4))
#define VCCAP(x) (0x010100 + ((x) * 0x4))
/* link layer */
#define IDSETR1 0x011004
#define TLCTLR 0x011048
#define MACSR 0x011054
#define SPCHGFIN BIT(4)
#define SPCHGFAIL BIT(6)
#define SPCHGSUC BIT(7)
#define LINK_SPEED (0xf << 16)
#define LINK_SPEED_2_5GTS (1 << 16)
#define LINK_SPEED_5_0GTS (2 << 16)
#define MACCTLR 0x011058
#define SPEED_CHANGE BIT(24)
#define SCRAMBLE_DISABLE BIT(27)
#define PMSR 0x01105c
#define MACS2R 0x011078
#define MACCGSPSETR 0x011084
#define SPCNGRSN BIT(31)
/* R-Car H1 PHY */
#define H1_PCIEPHYADRR 0x04000c
#define WRITE_CMD BIT(16)
#define PHY_ACK BIT(24)
#define RATE_POS 12
#define LANE_POS 8
#define ADR_POS 0
#define H1_PCIEPHYDOUTR 0x040014
/* R-Car Gen2 PHY */
#define GEN2_PCIEPHYADDR 0x780
#define GEN2_PCIEPHYDATA 0x784
#define GEN2_PCIEPHYCTRL 0x78c
#define INT_PCI_MSI_NR 32
#define RCONF(x) (PCICONF(0) + (x))
#define RPMCAP(x) (PMCAP(0) + (x))
#define REXPCAP(x) (EXPCAP(0) + (x))
#define RVCCAP(x) (VCCAP(0) + (x))
#define PCIE_CONF_BUS(b) (((b) & 0xff) << 24)
#define PCIE_CONF_DEV(d) (((d) & 0x1f) << 19)
#define PCIE_CONF_FUNC(f) (((f) & 0x7) << 16)
#define RCAR_PCI_MAX_RESOURCES 4
#define MAX_NR_INBOUND_MAPS 6
struct rcar_msi {
DECLARE_BITMAP(used, INT_PCI_MSI_NR);
struct irq_domain *domain;
struct msi_controller chip;
unsigned long pages;
struct mutex lock;
int irq1;
int irq2;
};
static inline struct rcar_msi *to_rcar_msi(struct msi_controller *chip)
{
return container_of(chip, struct rcar_msi, chip);
}
/* Structure representing the PCIe interface */
struct rcar_pcie {
struct device *dev;
struct phy *phy;
void __iomem *base;
struct list_head resources;
int root_bus_nr;
struct clk *bus_clk;
struct rcar_msi msi;
};
static void rcar_pci_write_reg(struct rcar_pcie *pcie, u32 val,
unsigned int reg)
{
writel(val, pcie->base + reg);
}
static u32 rcar_pci_read_reg(struct rcar_pcie *pcie, unsigned int reg)
{
return readl(pcie->base + reg);
}
enum {
RCAR_PCI_ACCESS_READ,
RCAR_PCI_ACCESS_WRITE,
};
static void rcar_rmw32(struct rcar_pcie *pcie, int where, u32 mask, u32 data)
{
unsigned int shift = BITS_PER_BYTE * (where & 3);
u32 val = rcar_pci_read_reg(pcie, where & ~3);
val &= ~(mask << shift);
val |= data << shift;
rcar_pci_write_reg(pcie, val, where & ~3);
}
static u32 rcar_read_conf(struct rcar_pcie *pcie, int where)
{
unsigned int shift = BITS_PER_BYTE * (where & 3);
u32 val = rcar_pci_read_reg(pcie, where & ~3);
return val >> shift;
}
/* Serialization is provided by 'pci_lock' in drivers/pci/access.c */
static int rcar_pcie_config_access(struct rcar_pcie *pcie,
unsigned char access_type, struct pci_bus *bus,
unsigned int devfn, int where, u32 *data)
{
unsigned int dev, func, reg, index;
dev = PCI_SLOT(devfn);
func = PCI_FUNC(devfn);
reg = where & ~3;
index = reg / 4;
/*
* While each channel has its own memory-mapped extended config
* space, it's generally only accessible when in endpoint mode.
* When in root complex mode, the controller is unable to target
* itself with either type 0 or type 1 accesses, and indeed, any
* controller initiated target transfer to its own config space
* result in a completer abort.
*
* Each channel effectively only supports a single device, but as
* the same channel <-> device access works for any PCI_SLOT()
* value, we cheat a bit here and bind the controller's config
* space to devfn 0 in order to enable self-enumeration. In this
* case the regular ECAR/ECDR path is sidelined and the mangled
* config access itself is initiated as an internal bus transaction.
*/
if (pci_is_root_bus(bus)) {
if (dev != 0)
return PCIBIOS_DEVICE_NOT_FOUND;
if (access_type == RCAR_PCI_ACCESS_READ) {
*data = rcar_pci_read_reg(pcie, PCICONF(index));
} else {
/* Keep an eye out for changes to the root bus number */
if (pci_is_root_bus(bus) && (reg == PCI_PRIMARY_BUS))
pcie->root_bus_nr = *data & 0xff;
rcar_pci_write_reg(pcie, *data, PCICONF(index));
}
return PCIBIOS_SUCCESSFUL;
}
if (pcie->root_bus_nr < 0)
return PCIBIOS_DEVICE_NOT_FOUND;
/* Clear errors */
rcar_pci_write_reg(pcie, rcar_pci_read_reg(pcie, PCIEERRFR), PCIEERRFR);
/* Set the PIO address */
rcar_pci_write_reg(pcie, PCIE_CONF_BUS(bus->number) |
PCIE_CONF_DEV(dev) | PCIE_CONF_FUNC(func) | reg, PCIECAR);
/* Enable the configuration access */
if (bus->parent->number == pcie->root_bus_nr)
rcar_pci_write_reg(pcie, CONFIG_SEND_ENABLE | TYPE0, PCIECCTLR);
else
rcar_pci_write_reg(pcie, CONFIG_SEND_ENABLE | TYPE1, PCIECCTLR);
/* Check for errors */
if (rcar_pci_read_reg(pcie, PCIEERRFR) & UNSUPPORTED_REQUEST)
return PCIBIOS_DEVICE_NOT_FOUND;
/* Check for master and target aborts */
if (rcar_read_conf(pcie, RCONF(PCI_STATUS)) &
(PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT))
return PCIBIOS_DEVICE_NOT_FOUND;
if (access_type == RCAR_PCI_ACCESS_READ)
*data = rcar_pci_read_reg(pcie, PCIECDR);
else
rcar_pci_write_reg(pcie, *data, PCIECDR);
/* Disable the configuration access */
rcar_pci_write_reg(pcie, 0, PCIECCTLR);
return PCIBIOS_SUCCESSFUL;
}
static int rcar_pcie_read_conf(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *val)
{
struct rcar_pcie *pcie = bus->sysdata;
int ret;
ret = rcar_pcie_config_access(pcie, RCAR_PCI_ACCESS_READ,
bus, devfn, where, val);
if (ret != PCIBIOS_SUCCESSFUL) {
*val = 0xffffffff;
return ret;
}
if (size == 1)
*val = (*val >> (BITS_PER_BYTE * (where & 3))) & 0xff;
else if (size == 2)
*val = (*val >> (BITS_PER_BYTE * (where & 2))) & 0xffff;
dev_dbg(&bus->dev, "pcie-config-read: bus=%3d devfn=0x%04x where=0x%04x size=%d val=0x%08x\n",
bus->number, devfn, where, size, *val);
return ret;
}
/* Serialization is provided by 'pci_lock' in drivers/pci/access.c */
static int rcar_pcie_write_conf(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 val)
{
struct rcar_pcie *pcie = bus->sysdata;
unsigned int shift;
u32 data;
int ret;
ret = rcar_pcie_config_access(pcie, RCAR_PCI_ACCESS_READ,
bus, devfn, where, &data);
if (ret != PCIBIOS_SUCCESSFUL)
return ret;
dev_dbg(&bus->dev, "pcie-config-write: bus=%3d devfn=0x%04x where=0x%04x size=%d val=0x%08x\n",
bus->number, devfn, where, size, val);
if (size == 1) {
shift = BITS_PER_BYTE * (where & 3);
data &= ~(0xff << shift);
data |= ((val & 0xff) << shift);
} else if (size == 2) {
shift = BITS_PER_BYTE * (where & 2);
data &= ~(0xffff << shift);
data |= ((val & 0xffff) << shift);
} else
data = val;
ret = rcar_pcie_config_access(pcie, RCAR_PCI_ACCESS_WRITE,
bus, devfn, where, &data);
return ret;
}
static struct pci_ops rcar_pcie_ops = {
.read = rcar_pcie_read_conf,
.write = rcar_pcie_write_conf,
};
static void rcar_pcie_setup_window(int win, struct rcar_pcie *pcie,
struct resource *res)
{
/* Setup PCIe address space mappings for each resource */
resource_size_t size;
resource_size_t res_start;
u32 mask;
rcar_pci_write_reg(pcie, 0x00000000, PCIEPTCTLR(win));
/*
* The PAMR mask is calculated in units of 128Bytes, which
* keeps things pretty simple.
*/
size = resource_size(res);
mask = (roundup_pow_of_two(size) / SZ_128) - 1;
rcar_pci_write_reg(pcie, mask << 7, PCIEPAMR(win));
if (res->flags & IORESOURCE_IO)
res_start = pci_pio_to_address(res->start);
else
res_start = res->start;
rcar_pci_write_reg(pcie, upper_32_bits(res_start), PCIEPAUR(win));
rcar_pci_write_reg(pcie, lower_32_bits(res_start) & ~0x7F,
PCIEPALR(win));
/* First resource is for IO */
mask = PAR_ENABLE;
if (res->flags & IORESOURCE_IO)
mask |= IO_SPACE;
rcar_pci_write_reg(pcie, mask, PCIEPTCTLR(win));
}
static int rcar_pcie_setup(struct list_head *resource, struct rcar_pcie *pci)
{
struct resource_entry *win;
int i = 0;
/* Setup PCI resources */
resource_list_for_each_entry(win, &pci->resources) {
struct resource *res = win->res;
if (!res->flags)
continue;
switch (resource_type(res)) {
case IORESOURCE_IO:
case IORESOURCE_MEM:
rcar_pcie_setup_window(i, pci, res);
i++;
break;
case IORESOURCE_BUS:
pci->root_bus_nr = res->start;
break;
default:
continue;
}
pci_add_resource(resource, res);
}
return 1;
}
static void rcar_pcie_force_speedup(struct rcar_pcie *pcie)
{
struct device *dev = pcie->dev;
unsigned int timeout = 1000;
u32 macsr;
if ((rcar_pci_read_reg(pcie, MACS2R) & LINK_SPEED) != LINK_SPEED_5_0GTS)
return;
if (rcar_pci_read_reg(pcie, MACCTLR) & SPEED_CHANGE) {
dev_err(dev, "Speed change already in progress\n");
return;
}
macsr = rcar_pci_read_reg(pcie, MACSR);
if ((macsr & LINK_SPEED) == LINK_SPEED_5_0GTS)
goto done;
/* Set target link speed to 5.0 GT/s */
rcar_rmw32(pcie, EXPCAP(12), PCI_EXP_LNKSTA_CLS,
PCI_EXP_LNKSTA_CLS_5_0GB);
/* Set speed change reason as intentional factor */
rcar_rmw32(pcie, MACCGSPSETR, SPCNGRSN, 0);
/* Clear SPCHGFIN, SPCHGSUC, and SPCHGFAIL */
if (macsr & (SPCHGFIN | SPCHGSUC | SPCHGFAIL))
rcar_pci_write_reg(pcie, macsr, MACSR);
/* Start link speed change */
rcar_rmw32(pcie, MACCTLR, SPEED_CHANGE, SPEED_CHANGE);
while (timeout--) {
macsr = rcar_pci_read_reg(pcie, MACSR);
if (macsr & SPCHGFIN) {
/* Clear the interrupt bits */
rcar_pci_write_reg(pcie, macsr, MACSR);
if (macsr & SPCHGFAIL)
dev_err(dev, "Speed change failed\n");
goto done;
}
msleep(1);
}
dev_err(dev, "Speed change timed out\n");
done:
dev_info(dev, "Current link speed is %s GT/s\n",
(macsr & LINK_SPEED) == LINK_SPEED_5_0GTS ? "5" : "2.5");
}
static int rcar_pcie_enable(struct rcar_pcie *pcie)
{
struct device *dev = pcie->dev;
struct pci_host_bridge *bridge = pci_host_bridge_from_priv(pcie);
struct pci_bus *bus, *child;
int ret;
/* Try setting 5 GT/s link speed */
rcar_pcie_force_speedup(pcie);
rcar_pcie_setup(&bridge->windows, pcie);
pci_add_flags(PCI_REASSIGN_ALL_BUS);
bridge->dev.parent = dev;
bridge->sysdata = pcie;
bridge->busnr = pcie->root_bus_nr;
bridge->ops = &rcar_pcie_ops;
bridge->map_irq = of_irq_parse_and_map_pci;
bridge->swizzle_irq = pci_common_swizzle;
if (IS_ENABLED(CONFIG_PCI_MSI))
bridge->msi = &pcie->msi.chip;
ret = pci_scan_root_bus_bridge(bridge);
if (ret < 0)
return ret;
bus = bridge->bus;
pci_bus_size_bridges(bus);
pci_bus_assign_resources(bus);
list_for_each_entry(child, &bus->children, node)
pcie_bus_configure_settings(child);
pci_bus_add_devices(bus);
return 0;
}
static int phy_wait_for_ack(struct rcar_pcie *pcie)
{
struct device *dev = pcie->dev;
unsigned int timeout = 100;
while (timeout--) {
if (rcar_pci_read_reg(pcie, H1_PCIEPHYADRR) & PHY_ACK)
return 0;
udelay(100);
}
dev_err(dev, "Access to PCIe phy timed out\n");
return -ETIMEDOUT;
}
static void phy_write_reg(struct rcar_pcie *pcie,
unsigned int rate, u32 addr,
unsigned int lane, u32 data)
{
u32 phyaddr;
phyaddr = WRITE_CMD |
((rate & 1) << RATE_POS) |
((lane & 0xf) << LANE_POS) |
((addr & 0xff) << ADR_POS);
/* Set write data */
rcar_pci_write_reg(pcie, data, H1_PCIEPHYDOUTR);
rcar_pci_write_reg(pcie, phyaddr, H1_PCIEPHYADRR);
/* Ignore errors as they will be dealt with if the data link is down */
phy_wait_for_ack(pcie);
/* Clear command */
rcar_pci_write_reg(pcie, 0, H1_PCIEPHYDOUTR);
rcar_pci_write_reg(pcie, 0, H1_PCIEPHYADRR);
/* Ignore errors as they will be dealt with if the data link is down */
phy_wait_for_ack(pcie);
}
static int rcar_pcie_wait_for_phyrdy(struct rcar_pcie *pcie)
{
unsigned int timeout = 10;
while (timeout--) {
if (rcar_pci_read_reg(pcie, PCIEPHYSR) & PHYRDY)
return 0;
msleep(5);
}
return -ETIMEDOUT;
}
static int rcar_pcie_wait_for_dl(struct rcar_pcie *pcie)
{
unsigned int timeout = 10000;
while (timeout--) {
if ((rcar_pci_read_reg(pcie, PCIETSTR) & DATA_LINK_ACTIVE))
return 0;
udelay(5);
cpu_relax();
}
return -ETIMEDOUT;
}
static int rcar_pcie_hw_init(struct rcar_pcie *pcie)
{
int err;
/* Begin initialization */
rcar_pci_write_reg(pcie, 0, PCIETCTLR);
/* Set mode */
rcar_pci_write_reg(pcie, 1, PCIEMSR);
err = rcar_pcie_wait_for_phyrdy(pcie);
if (err)
return err;
/*
* Initial header for port config space is type 1, set the device
* class to match. Hardware takes care of propagating the IDSETR
* settings, so there is no need to bother with a quirk.
*/
rcar_pci_write_reg(pcie, PCI_CLASS_BRIDGE_PCI << 16, IDSETR1);
/*
* Setup Secondary Bus Number & Subordinate Bus Number, even though
* they aren't used, to avoid bridge being detected as broken.
*/
rcar_rmw32(pcie, RCONF(PCI_SECONDARY_BUS), 0xff, 1);
rcar_rmw32(pcie, RCONF(PCI_SUBORDINATE_BUS), 0xff, 1);
/* Initialize default capabilities. */
rcar_rmw32(pcie, REXPCAP(0), 0xff, PCI_CAP_ID_EXP);
rcar_rmw32(pcie, REXPCAP(PCI_EXP_FLAGS),
PCI_EXP_FLAGS_TYPE, PCI_EXP_TYPE_ROOT_PORT << 4);
rcar_rmw32(pcie, RCONF(PCI_HEADER_TYPE), 0x7f,
PCI_HEADER_TYPE_BRIDGE);
/* Enable data link layer active state reporting */
rcar_rmw32(pcie, REXPCAP(PCI_EXP_LNKCAP), PCI_EXP_LNKCAP_DLLLARC,
PCI_EXP_LNKCAP_DLLLARC);
/* Write out the physical slot number = 0 */
rcar_rmw32(pcie, REXPCAP(PCI_EXP_SLTCAP), PCI_EXP_SLTCAP_PSN, 0);
/* Set the completion timer timeout to the maximum 50ms. */
rcar_rmw32(pcie, TLCTLR + 1, 0x3f, 50);
/* Terminate list of capabilities (Next Capability Offset=0) */
rcar_rmw32(pcie, RVCCAP(0), 0xfff00000, 0);
/* Enable MSI */
if (IS_ENABLED(CONFIG_PCI_MSI))
rcar_pci_write_reg(pcie, 0x801f0000, PCIEMSITXR);
/* Finish initialization - establish a PCI Express link */
rcar_pci_write_reg(pcie, CFINIT, PCIETCTLR);
/* This will timeout if we don't have a link. */
err = rcar_pcie_wait_for_dl(pcie);
if (err)
return err;
/* Enable INTx interrupts */
rcar_rmw32(pcie, PCIEINTXR, 0, 0xF << 8);
wmb();
return 0;
}
static int rcar_pcie_phy_init_h1(struct rcar_pcie *pcie)
{
/* Initialize the phy */
phy_write_reg(pcie, 0, 0x42, 0x1, 0x0EC34191);
phy_write_reg(pcie, 1, 0x42, 0x1, 0x0EC34180);
phy_write_reg(pcie, 0, 0x43, 0x1, 0x00210188);
phy_write_reg(pcie, 1, 0x43, 0x1, 0x00210188);
phy_write_reg(pcie, 0, 0x44, 0x1, 0x015C0014);
phy_write_reg(pcie, 1, 0x44, 0x1, 0x015C0014);
phy_write_reg(pcie, 1, 0x4C, 0x1, 0x786174A0);
phy_write_reg(pcie, 1, 0x4D, 0x1, 0x048000BB);
phy_write_reg(pcie, 0, 0x51, 0x1, 0x079EC062);
phy_write_reg(pcie, 0, 0x52, 0x1, 0x20000000);
phy_write_reg(pcie, 1, 0x52, 0x1, 0x20000000);
phy_write_reg(pcie, 1, 0x56, 0x1, 0x00003806);
phy_write_reg(pcie, 0, 0x60, 0x1, 0x004B03A5);
phy_write_reg(pcie, 0, 0x64, 0x1, 0x3F0F1F0F);
phy_write_reg(pcie, 0, 0x66, 0x1, 0x00008000);
return 0;
}
static int rcar_pcie_phy_init_gen2(struct rcar_pcie *pcie)
{
/*
* These settings come from the R-Car Series, 2nd Generation User's
* Manual, section 50.3.1 (2) Initialization of the physical layer.
*/
rcar_pci_write_reg(pcie, 0x000f0030, GEN2_PCIEPHYADDR);
rcar_pci_write_reg(pcie, 0x00381203, GEN2_PCIEPHYDATA);
rcar_pci_write_reg(pcie, 0x00000001, GEN2_PCIEPHYCTRL);
rcar_pci_write_reg(pcie, 0x00000006, GEN2_PCIEPHYCTRL);
rcar_pci_write_reg(pcie, 0x000f0054, GEN2_PCIEPHYADDR);
/* The following value is for DC connection, no termination resistor */
rcar_pci_write_reg(pcie, 0x13802007, GEN2_PCIEPHYDATA);
rcar_pci_write_reg(pcie, 0x00000001, GEN2_PCIEPHYCTRL);
rcar_pci_write_reg(pcie, 0x00000006, GEN2_PCIEPHYCTRL);
return 0;
}
static int rcar_pcie_phy_init_gen3(struct rcar_pcie *pcie)
{
int err;
err = phy_init(pcie->phy);
if (err)
return err;
err = phy_power_on(pcie->phy);
if (err)
phy_exit(pcie->phy);
return err;
}
static int rcar_msi_alloc(struct rcar_msi *chip)
{
int msi;
mutex_lock(&chip->lock);
msi = find_first_zero_bit(chip->used, INT_PCI_MSI_NR);
if (msi < INT_PCI_MSI_NR)
set_bit(msi, chip->used);
else
msi = -ENOSPC;
mutex_unlock(&chip->lock);
return msi;
}
static int rcar_msi_alloc_region(struct rcar_msi *chip, int no_irqs)
{
int msi;
mutex_lock(&chip->lock);
msi = bitmap_find_free_region(chip->used, INT_PCI_MSI_NR,
order_base_2(no_irqs));
mutex_unlock(&chip->lock);
return msi;
}
static void rcar_msi_free(struct rcar_msi *chip, unsigned long irq)
{
mutex_lock(&chip->lock);
clear_bit(irq, chip->used);
mutex_unlock(&chip->lock);
}
static irqreturn_t rcar_pcie_msi_irq(int irq, void *data)
{
struct rcar_pcie *pcie = data;
struct rcar_msi *msi = &pcie->msi;
struct device *dev = pcie->dev;
unsigned long reg;
reg = rcar_pci_read_reg(pcie, PCIEMSIFR);
/* MSI & INTx share an interrupt - we only handle MSI here */
if (!reg)
return IRQ_NONE;
while (reg) {
unsigned int index = find_first_bit(&reg, 32);
unsigned int msi_irq;
/* clear the interrupt */
rcar_pci_write_reg(pcie, 1 << index, PCIEMSIFR);
msi_irq = irq_find_mapping(msi->domain, index);
if (msi_irq) {
if (test_bit(index, msi->used))
generic_handle_irq(msi_irq);
else
dev_info(dev, "unhandled MSI\n");
} else {
/* Unknown MSI, just clear it */
dev_dbg(dev, "unexpected MSI\n");
}
/* see if there's any more pending in this vector */
reg = rcar_pci_read_reg(pcie, PCIEMSIFR);
}
return IRQ_HANDLED;
}
static int rcar_msi_setup_irq(struct msi_controller *chip, struct pci_dev *pdev,
struct msi_desc *desc)
{
struct rcar_msi *msi = to_rcar_msi(chip);
struct rcar_pcie *pcie = container_of(chip, struct rcar_pcie, msi.chip);
struct msi_msg msg;
unsigned int irq;
int hwirq;
hwirq = rcar_msi_alloc(msi);
if (hwirq < 0)
return hwirq;
irq = irq_find_mapping(msi->domain, hwirq);
if (!irq) {
rcar_msi_free(msi, hwirq);
return -EINVAL;
}
irq_set_msi_desc(irq, desc);
msg.address_lo = rcar_pci_read_reg(pcie, PCIEMSIALR) & ~MSIFE;
msg.address_hi = rcar_pci_read_reg(pcie, PCIEMSIAUR);
msg.data = hwirq;
pci_write_msi_msg(irq, &msg);
return 0;
}
static int rcar_msi_setup_irqs(struct msi_controller *chip,
struct pci_dev *pdev, int nvec, int type)
{
struct rcar_pcie *pcie = container_of(chip, struct rcar_pcie, msi.chip);
struct rcar_msi *msi = to_rcar_msi(chip);
struct msi_desc *desc;
struct msi_msg msg;
unsigned int irq;
int hwirq;
int i;
/* MSI-X interrupts are not supported */
if (type == PCI_CAP_ID_MSIX)
return -EINVAL;
WARN_ON(!list_is_singular(&pdev->dev.msi_list));
desc = list_entry(pdev->dev.msi_list.next, struct msi_desc, list);
hwirq = rcar_msi_alloc_region(msi, nvec);
if (hwirq < 0)
return -ENOSPC;
irq = irq_find_mapping(msi->domain, hwirq);
if (!irq)
return -ENOSPC;
for (i = 0; i < nvec; i++) {
/*
* irq_create_mapping() called from rcar_pcie_probe() pre-
* allocates descs, so there is no need to allocate descs here.
* We can therefore assume that if irq_find_mapping() above
* returns non-zero, then the descs are also successfully
* allocated.
*/
if (irq_set_msi_desc_off(irq, i, desc)) {
/* TODO: clear */
return -EINVAL;
}
}
desc->nvec_used = nvec;
desc->msi_attrib.multiple = order_base_2(nvec);
msg.address_lo = rcar_pci_read_reg(pcie, PCIEMSIALR) & ~MSIFE;
msg.address_hi = rcar_pci_read_reg(pcie, PCIEMSIAUR);
msg.data = hwirq;
pci_write_msi_msg(irq, &msg);
return 0;
}
static void rcar_msi_teardown_irq(struct msi_controller *chip, unsigned int irq)
{
struct rcar_msi *msi = to_rcar_msi(chip);
struct irq_data *d = irq_get_irq_data(irq);
rcar_msi_free(msi, d->hwirq);
}
static struct irq_chip rcar_msi_irq_chip = {
.name = "R-Car PCIe MSI",
.irq_enable = pci_msi_unmask_irq,
.irq_disable = pci_msi_mask_irq,
.irq_mask = pci_msi_mask_irq,
.irq_unmask = pci_msi_unmask_irq,
};
static int rcar_msi_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_and_handler(irq, &rcar_msi_irq_chip, handle_simple_irq);
irq_set_chip_data(irq, domain->host_data);
return 0;
}
static const struct irq_domain_ops msi_domain_ops = {
.map = rcar_msi_map,
};
static void rcar_pcie_unmap_msi(struct rcar_pcie *pcie)
{
struct rcar_msi *msi = &pcie->msi;
int i, irq;
for (i = 0; i < INT_PCI_MSI_NR; i++) {
irq = irq_find_mapping(msi->domain, i);
if (irq > 0)
irq_dispose_mapping(irq);
}
irq_domain_remove(msi->domain);
}
static int rcar_pcie_enable_msi(struct rcar_pcie *pcie)
{
struct device *dev = pcie->dev;
struct rcar_msi *msi = &pcie->msi;
phys_addr_t base;
int err, i;
mutex_init(&msi->lock);
msi->chip.dev = dev;
msi->chip.setup_irq = rcar_msi_setup_irq;
msi->chip.setup_irqs = rcar_msi_setup_irqs;
msi->chip.teardown_irq = rcar_msi_teardown_irq;
msi->domain = irq_domain_add_linear(dev->of_node, INT_PCI_MSI_NR,
&msi_domain_ops, &msi->chip);
if (!msi->domain) {
dev_err(dev, "failed to create IRQ domain\n");
return -ENOMEM;
}
for (i = 0; i < INT_PCI_MSI_NR; i++)
irq_create_mapping(msi->domain, i);
/* Two irqs are for MSI, but they are also used for non-MSI irqs */
err = devm_request_irq(dev, msi->irq1, rcar_pcie_msi_irq,
IRQF_SHARED | IRQF_NO_THREAD,
rcar_msi_irq_chip.name, pcie);
if (err < 0) {
dev_err(dev, "failed to request IRQ: %d\n", err);
goto err;
}
err = devm_request_irq(dev, msi->irq2, rcar_pcie_msi_irq,
IRQF_SHARED | IRQF_NO_THREAD,
rcar_msi_irq_chip.name, pcie);
if (err < 0) {
dev_err(dev, "failed to request IRQ: %d\n", err);
goto err;
}
/* setup MSI data target */
msi->pages = __get_free_pages(GFP_KERNEL, 0);
if (!msi->pages) {
err = -ENOMEM;
goto err;
}
base = virt_to_phys((void *)msi->pages);
rcar_pci_write_reg(pcie, lower_32_bits(base) | MSIFE, PCIEMSIALR);
rcar_pci_write_reg(pcie, upper_32_bits(base), PCIEMSIAUR);
/* enable all MSI interrupts */
rcar_pci_write_reg(pcie, 0xffffffff, PCIEMSIIER);
return 0;
err:
rcar_pcie_unmap_msi(pcie);
return err;
}
static void rcar_pcie_teardown_msi(struct rcar_pcie *pcie)
{
struct rcar_msi *msi = &pcie->msi;
/* Disable all MSI interrupts */
rcar_pci_write_reg(pcie, 0, PCIEMSIIER);
/* Disable address decoding of the MSI interrupt, MSIFE */
rcar_pci_write_reg(pcie, 0, PCIEMSIALR);
free_pages(msi->pages, 0);
rcar_pcie_unmap_msi(pcie);
}
static int rcar_pcie_get_resources(struct rcar_pcie *pcie)
{
struct device *dev = pcie->dev;
struct resource res;
int err, i;
pcie->phy = devm_phy_optional_get(dev, "pcie");
if (IS_ERR(pcie->phy))
return PTR_ERR(pcie->phy);
err = of_address_to_resource(dev->of_node, 0, &res);
if (err)
return err;
pcie->base = devm_ioremap_resource(dev, &res);
if (IS_ERR(pcie->base))
return PTR_ERR(pcie->base);
pcie->bus_clk = devm_clk_get(dev, "pcie_bus");
if (IS_ERR(pcie->bus_clk)) {
dev_err(dev, "cannot get pcie bus clock\n");
return PTR_ERR(pcie->bus_clk);
}
i = irq_of_parse_and_map(dev->of_node, 0);
if (!i) {
dev_err(dev, "cannot get platform resources for msi interrupt\n");
err = -ENOENT;
goto err_irq1;
}
pcie->msi.irq1 = i;
i = irq_of_parse_and_map(dev->of_node, 1);
if (!i) {
dev_err(dev, "cannot get platform resources for msi interrupt\n");
err = -ENOENT;
goto err_irq2;
}
pcie->msi.irq2 = i;
return 0;
err_irq2:
irq_dispose_mapping(pcie->msi.irq1);
err_irq1:
return err;
}
static int rcar_pcie_inbound_ranges(struct rcar_pcie *pcie,
struct of_pci_range *range,
int *index)
{
u64 restype = range->flags;
u64 cpu_addr = range->cpu_addr;
u64 cpu_end = range->cpu_addr + range->size;
u64 pci_addr = range->pci_addr;
u32 flags = LAM_64BIT | LAR_ENABLE;
u64 mask;
u64 size;
int idx = *index;
if (restype & IORESOURCE_PREFETCH)
flags |= LAM_PREFETCH;
/*
* If the size of the range is larger than the alignment of the start
* address, we have to use multiple entries to perform the mapping.
*/
if (cpu_addr > 0) {
unsigned long nr_zeros = __ffs64(cpu_addr);
u64 alignment = 1ULL << nr_zeros;
size = min(range->size, alignment);
} else {
size = range->size;
}
/* Hardware supports max 4GiB inbound region */
size = min(size, 1ULL << 32);
mask = roundup_pow_of_two(size) - 1;
mask &= ~0xf;
while (cpu_addr < cpu_end) {
/*
* Set up 64-bit inbound regions as the range parser doesn't
* distinguish between 32 and 64-bit types.
*/
rcar_pci_write_reg(pcie, lower_32_bits(pci_addr),
PCIEPRAR(idx));
rcar_pci_write_reg(pcie, lower_32_bits(cpu_addr), PCIELAR(idx));
rcar_pci_write_reg(pcie, lower_32_bits(mask) | flags,
PCIELAMR(idx));
rcar_pci_write_reg(pcie, upper_32_bits(pci_addr),
PCIEPRAR(idx + 1));
rcar_pci_write_reg(pcie, upper_32_bits(cpu_addr),
PCIELAR(idx + 1));
rcar_pci_write_reg(pcie, 0, PCIELAMR(idx + 1));
pci_addr += size;
cpu_addr += size;
idx += 2;
if (idx > MAX_NR_INBOUND_MAPS) {
dev_err(pcie->dev, "Failed to map inbound regions!\n");
return -EINVAL;
}
}
*index = idx;
return 0;
}
static int rcar_pcie_parse_map_dma_ranges(struct rcar_pcie *pcie,
struct device_node *np)
{
struct of_pci_range range;
struct of_pci_range_parser parser;
int index = 0;
int err;
if (of_pci_dma_range_parser_init(&parser, np))
return -EINVAL;
/* Get the dma-ranges from DT */
for_each_of_pci_range(&parser, &range) {
u64 end = range.cpu_addr + range.size - 1;
dev_dbg(pcie->dev, "0x%08x 0x%016llx..0x%016llx -> 0x%016llx\n",
range.flags, range.cpu_addr, end, range.pci_addr);
err = rcar_pcie_inbound_ranges(pcie, &range, &index);
if (err)
return err;
}
return 0;
}
static const struct of_device_id rcar_pcie_of_match[] = {
{ .compatible = "renesas,pcie-r8a7779",
.data = rcar_pcie_phy_init_h1 },
{ .compatible = "renesas,pcie-r8a7790",
.data = rcar_pcie_phy_init_gen2 },
{ .compatible = "renesas,pcie-r8a7791",
.data = rcar_pcie_phy_init_gen2 },
{ .compatible = "renesas,pcie-rcar-gen2",
.data = rcar_pcie_phy_init_gen2 },
{ .compatible = "renesas,pcie-r8a7795",
.data = rcar_pcie_phy_init_gen3 },
{ .compatible = "renesas,pcie-rcar-gen3",
.data = rcar_pcie_phy_init_gen3 },
{},
};
static int rcar_pcie_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rcar_pcie *pcie;
u32 data;
int err;
int (*phy_init_fn)(struct rcar_pcie *);
struct pci_host_bridge *bridge;
bridge = pci_alloc_host_bridge(sizeof(*pcie));
if (!bridge)
return -ENOMEM;
pcie = pci_host_bridge_priv(bridge);
pcie->dev = dev;
platform_set_drvdata(pdev, pcie);
err = pci_parse_request_of_pci_ranges(dev, &pcie->resources, NULL);
if (err)
goto err_free_bridge;
pm_runtime_enable(pcie->dev);
err = pm_runtime_get_sync(pcie->dev);
if (err < 0) {
dev_err(pcie->dev, "pm_runtime_get_sync failed\n");
goto err_pm_disable;
}
err = rcar_pcie_get_resources(pcie);
if (err < 0) {
dev_err(dev, "failed to request resources: %d\n", err);
goto err_pm_put;
}
err = clk_prepare_enable(pcie->bus_clk);
if (err) {
dev_err(dev, "failed to enable bus clock: %d\n", err);
goto err_unmap_msi_irqs;
}
err = rcar_pcie_parse_map_dma_ranges(pcie, dev->of_node);
if (err)
goto err_clk_disable;
phy_init_fn = of_device_get_match_data(dev);
err = phy_init_fn(pcie);
if (err) {
dev_err(dev, "failed to init PCIe PHY\n");
goto err_clk_disable;
}
/* Failure to get a link might just be that no cards are inserted */
if (rcar_pcie_hw_init(pcie)) {
dev_info(dev, "PCIe link down\n");
err = -ENODEV;
goto err_phy_shutdown;
}
data = rcar_pci_read_reg(pcie, MACSR);
dev_info(dev, "PCIe x%d: link up\n", (data >> 20) & 0x3f);
if (IS_ENABLED(CONFIG_PCI_MSI)) {
err = rcar_pcie_enable_msi(pcie);
if (err < 0) {
dev_err(dev,
"failed to enable MSI support: %d\n",
err);
goto err_phy_shutdown;
}
}
err = rcar_pcie_enable(pcie);
if (err)
goto err_msi_teardown;
return 0;
err_msi_teardown:
if (IS_ENABLED(CONFIG_PCI_MSI))
rcar_pcie_teardown_msi(pcie);
err_phy_shutdown:
if (pcie->phy) {
phy_power_off(pcie->phy);
phy_exit(pcie->phy);
}
err_clk_disable:
clk_disable_unprepare(pcie->bus_clk);
err_unmap_msi_irqs:
irq_dispose_mapping(pcie->msi.irq2);
irq_dispose_mapping(pcie->msi.irq1);
err_pm_put:
pm_runtime_put(dev);
err_pm_disable:
pm_runtime_disable(dev);
pci_free_resource_list(&pcie->resources);
err_free_bridge:
pci_free_host_bridge(bridge);
return err;
}
static int rcar_pcie_resume_noirq(struct device *dev)
{
struct rcar_pcie *pcie = dev_get_drvdata(dev);
if (rcar_pci_read_reg(pcie, PMSR) &&
!(rcar_pci_read_reg(pcie, PCIETCTLR) & DL_DOWN))
return 0;
/* Re-establish the PCIe link */
rcar_pci_write_reg(pcie, CFINIT, PCIETCTLR);
return rcar_pcie_wait_for_dl(pcie);
}
static const struct dev_pm_ops rcar_pcie_pm_ops = {
.resume_noirq = rcar_pcie_resume_noirq,
};
static struct platform_driver rcar_pcie_driver = {
.driver = {
.name = "rcar-pcie",
.of_match_table = rcar_pcie_of_match,
.pm = &rcar_pcie_pm_ops,
.suppress_bind_attrs = true,
},
.probe = rcar_pcie_probe,
};
builtin_platform_driver(rcar_pcie_driver);