| /* | 
 |  * Contains CPU feature definitions | 
 |  * | 
 |  * Copyright (C) 2015 ARM Ltd. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program.  If not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) "CPU features: " fmt | 
 |  | 
 | #include <linux/bsearch.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/types.h> | 
 | #include <asm/cpu.h> | 
 | #include <asm/cpufeature.h> | 
 | #include <asm/cpu_ops.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/sysreg.h> | 
 |  | 
 | unsigned long elf_hwcap __read_mostly; | 
 | EXPORT_SYMBOL_GPL(elf_hwcap); | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | #define COMPAT_ELF_HWCAP_DEFAULT	\ | 
 | 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ | 
 | 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ | 
 | 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\ | 
 | 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\ | 
 | 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\ | 
 | 				 COMPAT_HWCAP_LPAE) | 
 | unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; | 
 | unsigned int compat_elf_hwcap2 __read_mostly; | 
 | #endif | 
 |  | 
 | DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); | 
 |  | 
 | #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ | 
 | 	{						\ | 
 | 		.sign = SIGNED,				\ | 
 | 		.strict = STRICT,			\ | 
 | 		.type = TYPE,				\ | 
 | 		.shift = SHIFT,				\ | 
 | 		.width = WIDTH,				\ | 
 | 		.safe_val = SAFE_VAL,			\ | 
 | 	} | 
 |  | 
 | /* Define a feature with signed values */ | 
 | #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ | 
 | 	__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) | 
 |  | 
 | /* Define a feature with unsigned value */ | 
 | #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ | 
 | 	__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) | 
 |  | 
 | #define ARM64_FTR_END					\ | 
 | 	{						\ | 
 | 		.width = 0,				\ | 
 | 	} | 
 |  | 
 | static struct arm64_ftr_bits ftr_id_aa64isar0[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* RAZ */ | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_id_aa64pfr0[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI), | 
 | 	/* Linux doesn't care about the EL3 */ | 
 | 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY), | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0), | 
 | 	/* Linux shouldn't care about secure memory */ | 
 | 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0), | 
 | 	/* | 
 | 	 * Differing PARange is fine as long as all peripherals and memory are mapped | 
 | 	 * within the minimum PARange of all CPUs | 
 | 	 */ | 
 | 	U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0), | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0), | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_ctr[] = { | 
 | 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0), | 
 | 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */ | 
 | 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */ | 
 | 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */ | 
 | 	/* | 
 | 	 * Linux can handle differing I-cache policies. Userspace JITs will | 
 | 	 * make use of *minLine | 
 | 	 */ | 
 | 	U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),	/* L1Ip */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),	/* RAZ */ | 
 | 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */ | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_id_mmfr0[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),	/* InnerShr */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */ | 
 | 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),	/* OuterShr */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */ | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_id_aa64dfr0[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0), | 
 | 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0), | 
 | 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0), | 
 | 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0), | 
 | 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0), | 
 | 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0), | 
 | 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6), | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_mvfr2[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */ | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_dczid[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),	/* RAZ */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */ | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 |  | 
 | static struct arm64_ftr_bits ftr_id_isar5[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),	/* RAZ */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0), | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_id_mmfr4[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* RAZ */ | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_id_pfr0[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),	/* RAZ */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */ | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */ | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | /* | 
 |  * Common ftr bits for a 32bit register with all hidden, strict | 
 |  * attributes, with 4bit feature fields and a default safe value of | 
 |  * 0. Covers the following 32bit registers: | 
 |  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1] | 
 |  */ | 
 | static struct arm64_ftr_bits ftr_generic_32bits[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_generic[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0), | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_generic32[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0), | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | static struct arm64_ftr_bits ftr_aa64raz[] = { | 
 | 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0), | 
 | 	ARM64_FTR_END, | 
 | }; | 
 |  | 
 | #define ARM64_FTR_REG(id, table)		\ | 
 | 	{					\ | 
 | 		.sys_id = id,			\ | 
 | 		.name = #id,			\ | 
 | 		.ftr_bits = &((table)[0]),	\ | 
 | 	} | 
 |  | 
 | static struct arm64_ftr_reg arm64_ftr_regs[] = { | 
 |  | 
 | 	/* Op1 = 0, CRn = 0, CRm = 1 */ | 
 | 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0), | 
 | 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits), | 
 | 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits), | 
 | 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0), | 
 | 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits), | 
 | 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits), | 
 | 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits), | 
 |  | 
 | 	/* Op1 = 0, CRn = 0, CRm = 2 */ | 
 | 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits), | 
 | 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits), | 
 | 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits), | 
 | 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits), | 
 | 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits), | 
 | 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5), | 
 | 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4), | 
 |  | 
 | 	/* Op1 = 0, CRn = 0, CRm = 3 */ | 
 | 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits), | 
 | 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits), | 
 | 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2), | 
 |  | 
 | 	/* Op1 = 0, CRn = 0, CRm = 4 */ | 
 | 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0), | 
 | 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz), | 
 |  | 
 | 	/* Op1 = 0, CRn = 0, CRm = 5 */ | 
 | 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0), | 
 | 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic), | 
 |  | 
 | 	/* Op1 = 0, CRn = 0, CRm = 6 */ | 
 | 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0), | 
 | 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz), | 
 |  | 
 | 	/* Op1 = 0, CRn = 0, CRm = 7 */ | 
 | 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0), | 
 | 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1), | 
 |  | 
 | 	/* Op1 = 3, CRn = 0, CRm = 0 */ | 
 | 	ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr), | 
 | 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid), | 
 |  | 
 | 	/* Op1 = 3, CRn = 14, CRm = 0 */ | 
 | 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32), | 
 | }; | 
 |  | 
 | static int search_cmp_ftr_reg(const void *id, const void *regp) | 
 | { | 
 | 	return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id; | 
 | } | 
 |  | 
 | /* | 
 |  * get_arm64_ftr_reg - Lookup a feature register entry using its | 
 |  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the | 
 |  * ascending order of sys_id , we use binary search to find a matching | 
 |  * entry. | 
 |  * | 
 |  * returns - Upon success,  matching ftr_reg entry for id. | 
 |  *         - NULL on failure. It is upto the caller to decide | 
 |  *	     the impact of a failure. | 
 |  */ | 
 | static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id) | 
 | { | 
 | 	return bsearch((const void *)(unsigned long)sys_id, | 
 | 			arm64_ftr_regs, | 
 | 			ARRAY_SIZE(arm64_ftr_regs), | 
 | 			sizeof(arm64_ftr_regs[0]), | 
 | 			search_cmp_ftr_reg); | 
 | } | 
 |  | 
 | static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val) | 
 | { | 
 | 	u64 mask = arm64_ftr_mask(ftrp); | 
 |  | 
 | 	reg &= ~mask; | 
 | 	reg |= (ftr_val << ftrp->shift) & mask; | 
 | 	return reg; | 
 | } | 
 |  | 
 | static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur) | 
 | { | 
 | 	s64 ret = 0; | 
 |  | 
 | 	switch (ftrp->type) { | 
 | 	case FTR_EXACT: | 
 | 		ret = ftrp->safe_val; | 
 | 		break; | 
 | 	case FTR_LOWER_SAFE: | 
 | 		ret = new < cur ? new : cur; | 
 | 		break; | 
 | 	case FTR_HIGHER_SAFE: | 
 | 		ret = new > cur ? new : cur; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __init sort_cmp_ftr_regs(const void *a, const void *b) | 
 | { | 
 | 	return ((const struct arm64_ftr_reg *)a)->sys_id - | 
 | 		 ((const struct arm64_ftr_reg *)b)->sys_id; | 
 | } | 
 |  | 
 | static void __init swap_ftr_regs(void *a, void *b, int size) | 
 | { | 
 | 	struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a; | 
 | 	*(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b; | 
 | 	*(struct arm64_ftr_reg *)b = tmp; | 
 | } | 
 |  | 
 | static void __init sort_ftr_regs(void) | 
 | { | 
 | 	/* Keep the array sorted so that we can do the binary search */ | 
 | 	sort(arm64_ftr_regs, | 
 | 		ARRAY_SIZE(arm64_ftr_regs), | 
 | 		sizeof(arm64_ftr_regs[0]), | 
 | 		sort_cmp_ftr_regs, | 
 | 		swap_ftr_regs); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialise the CPU feature register from Boot CPU values. | 
 |  * Also initiliases the strict_mask for the register. | 
 |  */ | 
 | static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new) | 
 | { | 
 | 	u64 val = 0; | 
 | 	u64 strict_mask = ~0x0ULL; | 
 | 	struct arm64_ftr_bits *ftrp; | 
 | 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg); | 
 |  | 
 | 	BUG_ON(!reg); | 
 |  | 
 | 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) { | 
 | 		s64 ftr_new = arm64_ftr_value(ftrp, new); | 
 |  | 
 | 		val = arm64_ftr_set_value(ftrp, val, ftr_new); | 
 | 		if (!ftrp->strict) | 
 | 			strict_mask &= ~arm64_ftr_mask(ftrp); | 
 | 	} | 
 | 	reg->sys_val = val; | 
 | 	reg->strict_mask = strict_mask; | 
 | } | 
 |  | 
 | void __init init_cpu_features(struct cpuinfo_arm64 *info) | 
 | { | 
 | 	/* Before we start using the tables, make sure it is sorted */ | 
 | 	sort_ftr_regs(); | 
 |  | 
 | 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr); | 
 | 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid); | 
 | 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq); | 
 | 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0); | 
 | 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1); | 
 | 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0); | 
 | 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1); | 
 | 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0); | 
 | 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1); | 
 | 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0); | 
 | 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1); | 
 | 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0); | 
 | 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0); | 
 | 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1); | 
 | 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2); | 
 | 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3); | 
 | 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4); | 
 | 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5); | 
 | 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0); | 
 | 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1); | 
 | 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2); | 
 | 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3); | 
 | 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0); | 
 | 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1); | 
 | 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0); | 
 | 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1); | 
 | 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2); | 
 | } | 
 |  | 
 | static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new) | 
 | { | 
 | 	struct arm64_ftr_bits *ftrp; | 
 |  | 
 | 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { | 
 | 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val); | 
 | 		s64 ftr_new = arm64_ftr_value(ftrp, new); | 
 |  | 
 | 		if (ftr_cur == ftr_new) | 
 | 			continue; | 
 | 		/* Find a safe value */ | 
 | 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur); | 
 | 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot) | 
 | { | 
 | 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); | 
 |  | 
 | 	BUG_ON(!regp); | 
 | 	update_cpu_ftr_reg(regp, val); | 
 | 	if ((boot & regp->strict_mask) == (val & regp->strict_mask)) | 
 | 		return 0; | 
 | 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n", | 
 | 			regp->name, boot, cpu, val); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Update system wide CPU feature registers with the values from a | 
 |  * non-boot CPU. Also performs SANITY checks to make sure that there | 
 |  * aren't any insane variations from that of the boot CPU. | 
 |  */ | 
 | void update_cpu_features(int cpu, | 
 | 			 struct cpuinfo_arm64 *info, | 
 | 			 struct cpuinfo_arm64 *boot) | 
 | { | 
 | 	int taint = 0; | 
 |  | 
 | 	/* | 
 | 	 * The kernel can handle differing I-cache policies, but otherwise | 
 | 	 * caches should look identical. Userspace JITs will make use of | 
 | 	 * *minLine. | 
 | 	 */ | 
 | 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu, | 
 | 				      info->reg_ctr, boot->reg_ctr); | 
 |  | 
 | 	/* | 
 | 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes | 
 | 	 * could result in too much or too little memory being zeroed if a | 
 | 	 * process is preempted and migrated between CPUs. | 
 | 	 */ | 
 | 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu, | 
 | 				      info->reg_dczid, boot->reg_dczid); | 
 |  | 
 | 	/* If different, timekeeping will be broken (especially with KVM) */ | 
 | 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu, | 
 | 				      info->reg_cntfrq, boot->reg_cntfrq); | 
 |  | 
 | 	/* | 
 | 	 * The kernel uses self-hosted debug features and expects CPUs to | 
 | 	 * support identical debug features. We presently need CTX_CMPs, WRPs, | 
 | 	 * and BRPs to be identical. | 
 | 	 * ID_AA64DFR1 is currently RES0. | 
 | 	 */ | 
 | 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu, | 
 | 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu, | 
 | 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1); | 
 | 	/* | 
 | 	 * Even in big.LITTLE, processors should be identical instruction-set | 
 | 	 * wise. | 
 | 	 */ | 
 | 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu, | 
 | 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu, | 
 | 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1); | 
 |  | 
 | 	/* | 
 | 	 * Differing PARange support is fine as long as all peripherals and | 
 | 	 * memory are mapped within the minimum PARange of all CPUs. | 
 | 	 * Linux should not care about secure memory. | 
 | 	 */ | 
 | 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu, | 
 | 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu, | 
 | 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1); | 
 |  | 
 | 	/* | 
 | 	 * EL3 is not our concern. | 
 | 	 * ID_AA64PFR1 is currently RES0. | 
 | 	 */ | 
 | 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu, | 
 | 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu, | 
 | 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1); | 
 |  | 
 | 	/* | 
 | 	 * If we have AArch32, we care about 32-bit features for compat. These | 
 | 	 * registers should be RES0 otherwise. | 
 | 	 */ | 
 | 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu, | 
 | 					info->reg_id_dfr0, boot->reg_id_dfr0); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu, | 
 | 					info->reg_id_isar0, boot->reg_id_isar0); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu, | 
 | 					info->reg_id_isar1, boot->reg_id_isar1); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu, | 
 | 					info->reg_id_isar2, boot->reg_id_isar2); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu, | 
 | 					info->reg_id_isar3, boot->reg_id_isar3); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu, | 
 | 					info->reg_id_isar4, boot->reg_id_isar4); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu, | 
 | 					info->reg_id_isar5, boot->reg_id_isar5); | 
 |  | 
 | 	/* | 
 | 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and | 
 | 	 * ACTLR formats could differ across CPUs and therefore would have to | 
 | 	 * be trapped for virtualization anyway. | 
 | 	 */ | 
 | 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu, | 
 | 					info->reg_id_mmfr0, boot->reg_id_mmfr0); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu, | 
 | 					info->reg_id_mmfr1, boot->reg_id_mmfr1); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu, | 
 | 					info->reg_id_mmfr2, boot->reg_id_mmfr2); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu, | 
 | 					info->reg_id_mmfr3, boot->reg_id_mmfr3); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu, | 
 | 					info->reg_id_pfr0, boot->reg_id_pfr0); | 
 | 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu, | 
 | 					info->reg_id_pfr1, boot->reg_id_pfr1); | 
 | 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu, | 
 | 					info->reg_mvfr0, boot->reg_mvfr0); | 
 | 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu, | 
 | 					info->reg_mvfr1, boot->reg_mvfr1); | 
 | 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu, | 
 | 					info->reg_mvfr2, boot->reg_mvfr2); | 
 |  | 
 | 	/* | 
 | 	 * Mismatched CPU features are a recipe for disaster. Don't even | 
 | 	 * pretend to support them. | 
 | 	 */ | 
 | 	WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC, | 
 | 			"Unsupported CPU feature variation.\n"); | 
 | } | 
 |  | 
 | u64 read_system_reg(u32 id) | 
 | { | 
 | 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id); | 
 |  | 
 | 	/* We shouldn't get a request for an unsupported register */ | 
 | 	BUG_ON(!regp); | 
 | 	return regp->sys_val; | 
 | } | 
 |  | 
 | #include <linux/irqchip/arm-gic-v3.h> | 
 |  | 
 | static bool | 
 | feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry) | 
 | { | 
 | 	int val = cpuid_feature_extract_field(reg, entry->field_pos); | 
 |  | 
 | 	return val >= entry->min_field_value; | 
 | } | 
 |  | 
 | static bool | 
 | has_cpuid_feature(const struct arm64_cpu_capabilities *entry) | 
 | { | 
 | 	u64 val; | 
 |  | 
 | 	val = read_system_reg(entry->sys_reg); | 
 | 	return feature_matches(val, entry); | 
 | } | 
 |  | 
 | static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry) | 
 | { | 
 | 	bool has_sre; | 
 |  | 
 | 	if (!has_cpuid_feature(entry)) | 
 | 		return false; | 
 |  | 
 | 	has_sre = gic_enable_sre(); | 
 | 	if (!has_sre) | 
 | 		pr_warn_once("%s present but disabled by higher exception level\n", | 
 | 			     entry->desc); | 
 |  | 
 | 	return has_sre; | 
 | } | 
 |  | 
 | static const struct arm64_cpu_capabilities arm64_features[] = { | 
 | 	{ | 
 | 		.desc = "GIC system register CPU interface", | 
 | 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF, | 
 | 		.matches = has_useable_gicv3_cpuif, | 
 | 		.sys_reg = SYS_ID_AA64PFR0_EL1, | 
 | 		.field_pos = ID_AA64PFR0_GIC_SHIFT, | 
 | 		.min_field_value = 1, | 
 | 	}, | 
 | #ifdef CONFIG_ARM64_PAN | 
 | 	{ | 
 | 		.desc = "Privileged Access Never", | 
 | 		.capability = ARM64_HAS_PAN, | 
 | 		.matches = has_cpuid_feature, | 
 | 		.sys_reg = SYS_ID_AA64MMFR1_EL1, | 
 | 		.field_pos = ID_AA64MMFR1_PAN_SHIFT, | 
 | 		.min_field_value = 1, | 
 | 		.enable = cpu_enable_pan, | 
 | 	}, | 
 | #endif /* CONFIG_ARM64_PAN */ | 
 | #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS) | 
 | 	{ | 
 | 		.desc = "LSE atomic instructions", | 
 | 		.capability = ARM64_HAS_LSE_ATOMICS, | 
 | 		.matches = has_cpuid_feature, | 
 | 		.sys_reg = SYS_ID_AA64ISAR0_EL1, | 
 | 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT, | 
 | 		.min_field_value = 2, | 
 | 	}, | 
 | #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */ | 
 | 	{}, | 
 | }; | 
 |  | 
 | #define HWCAP_CAP(reg, field, min_value, type, cap)		\ | 
 | 	{							\ | 
 | 		.desc = #cap,					\ | 
 | 		.matches = has_cpuid_feature,			\ | 
 | 		.sys_reg = reg,					\ | 
 | 		.field_pos = field,				\ | 
 | 		.min_field_value = min_value,			\ | 
 | 		.hwcap_type = type,				\ | 
 | 		.hwcap = cap,					\ | 
 | 	} | 
 |  | 
 | static const struct arm64_cpu_capabilities arm64_hwcaps[] = { | 
 | 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL), | 
 | 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES), | 
 | 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1), | 
 | 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2), | 
 | 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32), | 
 | 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS), | 
 | 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP), | 
 | 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD), | 
 | #ifdef CONFIG_COMPAT | 
 | 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL), | 
 | 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES), | 
 | 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1), | 
 | 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2), | 
 | 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32), | 
 | #endif | 
 | 	{}, | 
 | }; | 
 |  | 
 | static void cap_set_hwcap(const struct arm64_cpu_capabilities *cap) | 
 | { | 
 | 	switch (cap->hwcap_type) { | 
 | 	case CAP_HWCAP: | 
 | 		elf_hwcap |= cap->hwcap; | 
 | 		break; | 
 | #ifdef CONFIG_COMPAT | 
 | 	case CAP_COMPAT_HWCAP: | 
 | 		compat_elf_hwcap |= (u32)cap->hwcap; | 
 | 		break; | 
 | 	case CAP_COMPAT_HWCAP2: | 
 | 		compat_elf_hwcap2 |= (u32)cap->hwcap; | 
 | 		break; | 
 | #endif | 
 | 	default: | 
 | 		WARN_ON(1); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* Check if we have a particular HWCAP enabled */ | 
 | static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap) | 
 | { | 
 | 	bool rc; | 
 |  | 
 | 	switch (cap->hwcap_type) { | 
 | 	case CAP_HWCAP: | 
 | 		rc = (elf_hwcap & cap->hwcap) != 0; | 
 | 		break; | 
 | #ifdef CONFIG_COMPAT | 
 | 	case CAP_COMPAT_HWCAP: | 
 | 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0; | 
 | 		break; | 
 | 	case CAP_COMPAT_HWCAP2: | 
 | 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0; | 
 | 		break; | 
 | #endif | 
 | 	default: | 
 | 		WARN_ON(1); | 
 | 		rc = false; | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void setup_cpu_hwcaps(void) | 
 | { | 
 | 	int i; | 
 | 	const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps; | 
 |  | 
 | 	for (i = 0; hwcaps[i].desc; i++) | 
 | 		if (hwcaps[i].matches(&hwcaps[i])) | 
 | 			cap_set_hwcap(&hwcaps[i]); | 
 | } | 
 |  | 
 | void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps, | 
 | 			    const char *info) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; caps[i].desc; i++) { | 
 | 		if (!caps[i].matches(&caps[i])) | 
 | 			continue; | 
 |  | 
 | 		if (!cpus_have_cap(caps[i].capability)) | 
 | 			pr_info("%s %s\n", info, caps[i].desc); | 
 | 		cpus_set_cap(caps[i].capability); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Run through the enabled capabilities and enable() it on all active | 
 |  * CPUs | 
 |  */ | 
 | static void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; caps[i].desc; i++) | 
 | 		if (caps[i].enable && cpus_have_cap(caps[i].capability)) | 
 | 			on_each_cpu(caps[i].enable, NULL, true); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 |  | 
 | /* | 
 |  * Flag to indicate if we have computed the system wide | 
 |  * capabilities based on the boot time active CPUs. This | 
 |  * will be used to determine if a new booting CPU should | 
 |  * go through the verification process to make sure that it | 
 |  * supports the system capabilities, without using a hotplug | 
 |  * notifier. | 
 |  */ | 
 | static bool sys_caps_initialised; | 
 |  | 
 | static inline void set_sys_caps_initialised(void) | 
 | { | 
 | 	sys_caps_initialised = true; | 
 | } | 
 |  | 
 | /* | 
 |  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated. | 
 |  */ | 
 | static u64 __raw_read_system_reg(u32 sys_id) | 
 | { | 
 | 	switch (sys_id) { | 
 | 	case SYS_ID_PFR0_EL1:		return (u64)read_cpuid(ID_PFR0_EL1); | 
 | 	case SYS_ID_PFR1_EL1:		return (u64)read_cpuid(ID_PFR1_EL1); | 
 | 	case SYS_ID_DFR0_EL1:		return (u64)read_cpuid(ID_DFR0_EL1); | 
 | 	case SYS_ID_MMFR0_EL1:		return (u64)read_cpuid(ID_MMFR0_EL1); | 
 | 	case SYS_ID_MMFR1_EL1:		return (u64)read_cpuid(ID_MMFR1_EL1); | 
 | 	case SYS_ID_MMFR2_EL1:		return (u64)read_cpuid(ID_MMFR2_EL1); | 
 | 	case SYS_ID_MMFR3_EL1:		return (u64)read_cpuid(ID_MMFR3_EL1); | 
 | 	case SYS_ID_ISAR0_EL1:		return (u64)read_cpuid(ID_ISAR0_EL1); | 
 | 	case SYS_ID_ISAR1_EL1:		return (u64)read_cpuid(ID_ISAR1_EL1); | 
 | 	case SYS_ID_ISAR2_EL1:		return (u64)read_cpuid(ID_ISAR2_EL1); | 
 | 	case SYS_ID_ISAR3_EL1:		return (u64)read_cpuid(ID_ISAR3_EL1); | 
 | 	case SYS_ID_ISAR4_EL1:		return (u64)read_cpuid(ID_ISAR4_EL1); | 
 | 	case SYS_ID_ISAR5_EL1:		return (u64)read_cpuid(ID_ISAR4_EL1); | 
 | 	case SYS_MVFR0_EL1:		return (u64)read_cpuid(MVFR0_EL1); | 
 | 	case SYS_MVFR1_EL1:		return (u64)read_cpuid(MVFR1_EL1); | 
 | 	case SYS_MVFR2_EL1:		return (u64)read_cpuid(MVFR2_EL1); | 
 |  | 
 | 	case SYS_ID_AA64PFR0_EL1:	return (u64)read_cpuid(ID_AA64PFR0_EL1); | 
 | 	case SYS_ID_AA64PFR1_EL1:	return (u64)read_cpuid(ID_AA64PFR0_EL1); | 
 | 	case SYS_ID_AA64DFR0_EL1:	return (u64)read_cpuid(ID_AA64DFR0_EL1); | 
 | 	case SYS_ID_AA64DFR1_EL1:	return (u64)read_cpuid(ID_AA64DFR0_EL1); | 
 | 	case SYS_ID_AA64MMFR0_EL1:	return (u64)read_cpuid(ID_AA64MMFR0_EL1); | 
 | 	case SYS_ID_AA64MMFR1_EL1:	return (u64)read_cpuid(ID_AA64MMFR1_EL1); | 
 | 	case SYS_ID_AA64ISAR0_EL1:	return (u64)read_cpuid(ID_AA64ISAR0_EL1); | 
 | 	case SYS_ID_AA64ISAR1_EL1:	return (u64)read_cpuid(ID_AA64ISAR1_EL1); | 
 |  | 
 | 	case SYS_CNTFRQ_EL0:		return (u64)read_cpuid(CNTFRQ_EL0); | 
 | 	case SYS_CTR_EL0:		return (u64)read_cpuid(CTR_EL0); | 
 | 	case SYS_DCZID_EL0:		return (u64)read_cpuid(DCZID_EL0); | 
 | 	default: | 
 | 		BUG(); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Park the CPU which doesn't have the capability as advertised | 
 |  * by the system. | 
 |  */ | 
 | static void fail_incapable_cpu(char *cap_type, | 
 | 				 const struct arm64_cpu_capabilities *cap) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc); | 
 | 	/* Mark this CPU absent */ | 
 | 	set_cpu_present(cpu, 0); | 
 |  | 
 | 	/* Check if we can park ourselves */ | 
 | 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) | 
 | 		cpu_ops[cpu]->cpu_die(cpu); | 
 | 	asm( | 
 | 	"1:	wfe\n" | 
 | 	"	wfi\n" | 
 | 	"	b	1b"); | 
 | } | 
 |  | 
 | /* | 
 |  * Run through the enabled system capabilities and enable() it on this CPU. | 
 |  * The capabilities were decided based on the available CPUs at the boot time. | 
 |  * Any new CPU should match the system wide status of the capability. If the | 
 |  * new CPU doesn't have a capability which the system now has enabled, we | 
 |  * cannot do anything to fix it up and could cause unexpected failures. So | 
 |  * we park the CPU. | 
 |  */ | 
 | void verify_local_cpu_capabilities(void) | 
 | { | 
 | 	int i; | 
 | 	const struct arm64_cpu_capabilities *caps; | 
 |  | 
 | 	/* | 
 | 	 * If we haven't computed the system capabilities, there is nothing | 
 | 	 * to verify. | 
 | 	 */ | 
 | 	if (!sys_caps_initialised) | 
 | 		return; | 
 |  | 
 | 	caps = arm64_features; | 
 | 	for (i = 0; caps[i].desc; i++) { | 
 | 		if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg) | 
 | 			continue; | 
 | 		/* | 
 | 		 * If the new CPU misses an advertised feature, we cannot proceed | 
 | 		 * further, park the cpu. | 
 | 		 */ | 
 | 		if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i])) | 
 | 			fail_incapable_cpu("arm64_features", &caps[i]); | 
 | 		if (caps[i].enable) | 
 | 			caps[i].enable(NULL); | 
 | 	} | 
 |  | 
 | 	for (i = 0, caps = arm64_hwcaps; caps[i].desc; i++) { | 
 | 		if (!cpus_have_hwcap(&caps[i])) | 
 | 			continue; | 
 | 		if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i])) | 
 | 			fail_incapable_cpu("arm64_hwcaps", &caps[i]); | 
 | 	} | 
 | } | 
 |  | 
 | #else	/* !CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | static inline void set_sys_caps_initialised(void) | 
 | { | 
 | } | 
 |  | 
 | #endif	/* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | static void setup_feature_capabilities(void) | 
 | { | 
 | 	update_cpu_capabilities(arm64_features, "detected feature:"); | 
 | 	enable_cpu_capabilities(arm64_features); | 
 | } | 
 |  | 
 | void __init setup_cpu_features(void) | 
 | { | 
 | 	u32 cwg; | 
 | 	int cls; | 
 |  | 
 | 	/* Set the CPU feature capabilies */ | 
 | 	setup_feature_capabilities(); | 
 | 	setup_cpu_hwcaps(); | 
 |  | 
 | 	/* Advertise that we have computed the system capabilities */ | 
 | 	set_sys_caps_initialised(); | 
 |  | 
 | 	/* | 
 | 	 * Check for sane CTR_EL0.CWG value. | 
 | 	 */ | 
 | 	cwg = cache_type_cwg(); | 
 | 	cls = cache_line_size(); | 
 | 	if (!cwg) | 
 | 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n", | 
 | 			cls); | 
 | 	if (L1_CACHE_BYTES < cls) | 
 | 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n", | 
 | 			L1_CACHE_BYTES, cls); | 
 | } |