blob: 67ff13f4f7311b222578b1757edc95b3f46cdaac [file] [log] [blame]
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: card.c
* Purpose: Provide functions to setup NIC operation mode
* Functions:
* vnt_set_rspinf - Set RSPINF
* vnt_update_ifs - Update slotTime,SIFS,DIFS, and EIFS
* vnt_update_top_rates - Update BasicTopRate
* vnt_add_basic_rate - Add to BasicRateSet
* vnt_ofdm_min_rate - Check if any OFDM rate is in BasicRateSet
* vnt_get_tsf_offset - Calculate TSFOffset
* vnt_get_current_tsf - Read Current NIC TSF counter
* vnt_get_next_tbtt - Calculate Next Beacon TSF counter
* vnt_reset_next_tbtt - Set NIC Beacon time
* vnt_update_next_tbtt - Sync. NIC Beacon time
* vnt_radio_power_off - Turn Off NIC Radio Power
* vnt_radio_power_on - Turn On NIC Radio Power
*
* Revision History:
* 06-10-2003 Bryan YC Fan: Re-write codes to support VT3253 spec.
* 08-26-2003 Kyle Hsu: Modify the definition type of dwIoBase.
* 09-01-2003 Bryan YC Fan: Add vnt_update_ifs().
*
*/
#include "device.h"
#include "card.h"
#include "baseband.h"
#include "mac.h"
#include "desc.h"
#include "rf.h"
#include "power.h"
#include "key.h"
#include "usbpipe.h"
/* const u16 cwRXBCNTSFOff[MAX_RATE] =
{17, 34, 96, 192, 34, 23, 17, 11, 8, 5, 4, 3}; */
static const u16 cwRXBCNTSFOff[MAX_RATE] = {
192, 96, 34, 17, 34, 23, 17, 11, 8, 5, 4, 3
};
/*
* Description: Set NIC media channel
*
* Parameters:
* In:
* pDevice - The adapter to be set
* connection_channel - Channel to be set
* Out:
* none
*/
void vnt_set_channel(struct vnt_private *priv, u32 connection_channel)
{
if (connection_channel > CB_MAX_CHANNEL || !connection_channel)
return;
/* clear NAV */
vnt_mac_reg_bits_on(priv, MAC_REG_MACCR, MACCR_CLRNAV);
/* Set Channel[7] = 0 to tell H/W channel is changing now. */
vnt_mac_reg_bits_off(priv, MAC_REG_CHANNEL, 0xb0);
vnt_control_out(priv, MESSAGE_TYPE_SELECT_CHANNEL,
connection_channel, 0, 0, NULL);
vnt_control_out_u8(priv, MESSAGE_REQUEST_MACREG, MAC_REG_CHANNEL,
(u8)(connection_channel|0x80));
}
/*
* Description: Get CCK mode basic rate
*
* Parameters:
* In:
* priv - The adapter to be set
* rate_idx - Receiving data rate
* Out:
* none
*
* Return Value: response Control frame rate
*
*/
static u16 vnt_get_cck_rate(struct vnt_private *priv, u16 rate_idx)
{
u16 ui = rate_idx;
while (ui > RATE_1M) {
if (priv->basic_rates & (1 << ui))
return ui;
ui--;
}
return RATE_1M;
}
/*
* Description: Get OFDM mode basic rate
*
* Parameters:
* In:
* priv - The adapter to be set
* rate_idx - Receiving data rate
* Out:
* none
*
* Return Value: response Control frame rate
*
*/
static u16 vnt_get_ofdm_rate(struct vnt_private *priv, u16 rate_idx)
{
u16 ui = rate_idx;
dev_dbg(&priv->usb->dev, "%s basic rate: %d\n",
__func__, priv->basic_rates);
if (!vnt_ofdm_min_rate(priv)) {
dev_dbg(&priv->usb->dev, "%s (NO OFDM) %d\n",
__func__, rate_idx);
if (rate_idx > RATE_24M)
rate_idx = RATE_24M;
return rate_idx;
}
while (ui > RATE_11M) {
if (priv->basic_rates & (1 << ui)) {
dev_dbg(&priv->usb->dev, "%s rate: %d\n",
__func__, ui);
return ui;
}
ui--;
}
dev_dbg(&priv->usb->dev, "%s basic rate: 24M\n", __func__);
return RATE_24M;
}
/*
* Description: Calculate TxRate and RsvTime fields for RSPINF in OFDM mode.
*
* Parameters:
* In:
* rate - Tx Rate
* bb_type - Tx Packet type
* Out:
* tx_rate - pointer to RSPINF TxRate field
* rsv_time- pointer to RSPINF RsvTime field
*
* Return Value: none
*
*/
static void vnt_calculate_ofdm_rate(u16 rate, u8 bb_type,
u8 *tx_rate, u8 *rsv_time)
{
switch (rate) {
case RATE_6M:
if (bb_type == BB_TYPE_11A) {
*tx_rate = 0x9b;
*rsv_time = 24;
} else {
*tx_rate = 0x8b;
*rsv_time = 30;
}
break;
case RATE_9M:
if (bb_type == BB_TYPE_11A) {
*tx_rate = 0x9f;
*rsv_time = 16;
} else {
*tx_rate = 0x8f;
*rsv_time = 22;
}
break;
case RATE_12M:
if (bb_type == BB_TYPE_11A) {
*tx_rate = 0x9a;
*rsv_time = 12;
} else {
*tx_rate = 0x8a;
*rsv_time = 18;
}
break;
case RATE_18M:
if (bb_type == BB_TYPE_11A) {
*tx_rate = 0x9e;
*rsv_time = 8;
} else {
*tx_rate = 0x8e;
*rsv_time = 14;
}
break;
case RATE_36M:
if (bb_type == BB_TYPE_11A) {
*tx_rate = 0x9d;
*rsv_time = 4;
} else {
*tx_rate = 0x8d;
*rsv_time = 10;
}
break;
case RATE_48M:
if (bb_type == BB_TYPE_11A) {
*tx_rate = 0x98;
*rsv_time = 4;
} else {
*tx_rate = 0x88;
*rsv_time = 10;
}
break;
case RATE_54M:
if (bb_type == BB_TYPE_11A) {
*tx_rate = 0x9c;
*rsv_time = 4;
} else {
*tx_rate = 0x8c;
*rsv_time = 10;
}
break;
case RATE_24M:
default:
if (bb_type == BB_TYPE_11A) {
*tx_rate = 0x99;
*rsv_time = 8;
} else {
*tx_rate = 0x89;
*rsv_time = 14;
}
break;
}
}
/*
* Description: Set RSPINF
*
* Parameters:
* In:
* pDevice - The adapter to be set
* Out:
* none
*
* Return Value: None.
*
*/
void vnt_set_rspinf(struct vnt_private *priv, u8 bb_type)
{
struct vnt_phy_field phy[4];
u8 tx_rate[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; /* For OFDM */
u8 rsv_time[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
u8 data[34];
int i;
/*RSPINF_b_1*/
vnt_get_phy_field(priv, 14,
vnt_get_cck_rate(priv, RATE_1M), PK_TYPE_11B, &phy[0]);
/*RSPINF_b_2*/
vnt_get_phy_field(priv, 14,
vnt_get_cck_rate(priv, RATE_2M), PK_TYPE_11B, &phy[1]);
/*RSPINF_b_5*/
vnt_get_phy_field(priv, 14,
vnt_get_cck_rate(priv, RATE_5M), PK_TYPE_11B, &phy[2]);
/*RSPINF_b_11*/
vnt_get_phy_field(priv, 14,
vnt_get_cck_rate(priv, RATE_11M), PK_TYPE_11B, &phy[3]);
/*RSPINF_a_6*/
vnt_calculate_ofdm_rate(RATE_6M, bb_type, &tx_rate[0], &rsv_time[0]);
/*RSPINF_a_9*/
vnt_calculate_ofdm_rate(RATE_9M, bb_type, &tx_rate[1], &rsv_time[1]);
/*RSPINF_a_12*/
vnt_calculate_ofdm_rate(RATE_12M, bb_type, &tx_rate[2], &rsv_time[2]);
/*RSPINF_a_18*/
vnt_calculate_ofdm_rate(RATE_18M, bb_type, &tx_rate[3], &rsv_time[3]);
/*RSPINF_a_24*/
vnt_calculate_ofdm_rate(RATE_24M, bb_type, &tx_rate[4], &rsv_time[4]);
/*RSPINF_a_36*/
vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_36M),
bb_type, &tx_rate[5], &rsv_time[5]);
/*RSPINF_a_48*/
vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_48M),
bb_type, &tx_rate[6], &rsv_time[6]);
/*RSPINF_a_54*/
vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_54M),
bb_type, &tx_rate[7], &rsv_time[7]);
/*RSPINF_a_72*/
vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_54M),
bb_type, &tx_rate[8], &rsv_time[8]);
put_unaligned(phy[0].len, (u16 *)&data[0]);
data[2] = phy[0].signal;
data[3] = phy[0].service;
put_unaligned(phy[1].len, (u16 *)&data[4]);
data[6] = phy[1].signal;
data[7] = phy[1].service;
put_unaligned(phy[2].len, (u16 *)&data[8]);
data[10] = phy[2].signal;
data[11] = phy[2].service;
put_unaligned(phy[3].len, (u16 *)&data[12]);
data[14] = phy[3].signal;
data[15] = phy[3].service;
for (i = 0; i < 9; i++) {
data[16 + i * 2] = tx_rate[i];
data[16 + i * 2 + 1] = rsv_time[i];
}
vnt_control_out(priv, MESSAGE_TYPE_WRITE,
MAC_REG_RSPINF_B_1, MESSAGE_REQUEST_MACREG, 34, &data[0]);
}
/*
* Description: Update IFS
*
* Parameters:
* In:
* priv - The adapter to be set
* Out:
* none
*
* Return Value: None.
*
*/
void vnt_update_ifs(struct vnt_private *priv)
{
u8 max_min = 0;
u8 data[4];
if (priv->packet_type == PK_TYPE_11A) {
priv->slot = C_SLOT_SHORT;
priv->sifs = C_SIFS_A;
priv->difs = C_SIFS_A + 2 * C_SLOT_SHORT;
max_min = 4;
} else if (priv->packet_type == PK_TYPE_11B) {
priv->slot = C_SLOT_LONG;
priv->sifs = C_SIFS_BG;
priv->difs = C_SIFS_BG + 2 * C_SLOT_LONG;
max_min = 5;
} else {/* PK_TYPE_11GA & PK_TYPE_11GB */
bool ofdm_rate = false;
unsigned int ii = 0;
priv->sifs = C_SIFS_BG;
if (priv->short_slot_time)
priv->slot = C_SLOT_SHORT;
else
priv->slot = C_SLOT_LONG;
priv->difs = C_SIFS_BG + 2 * priv->slot;
for (ii = RATE_54M; ii >= RATE_6M; ii--) {
if (priv->basic_rates & ((u32)(0x1 << ii))) {
ofdm_rate = true;
break;
}
}
if (ofdm_rate == true)
max_min = 4;
else
max_min = 5;
}
priv->eifs = C_EIFS;
switch (priv->rf_type) {
case RF_VT3226D0:
if (priv->bb_type != BB_TYPE_11B) {
priv->sifs -= 1;
priv->difs -= 1;
break;
}
case RF_AIROHA7230:
case RF_AL2230:
case RF_AL2230S:
if (priv->bb_type != BB_TYPE_11B)
break;
case RF_RFMD2959:
case RF_VT3226:
case RF_VT3342A0:
priv->sifs -= 3;
priv->difs -= 3;
break;
case RF_MAXIM2829:
if (priv->bb_type == BB_TYPE_11A) {
priv->sifs -= 5;
priv->difs -= 5;
} else {
priv->sifs -= 2;
priv->difs -= 2;
}
break;
}
data[0] = (u8)priv->sifs;
data[1] = (u8)priv->difs;
data[2] = (u8)priv->eifs;
data[3] = (u8)priv->slot;
vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_SIFS,
MESSAGE_REQUEST_MACREG, 4, &data[0]);
max_min |= 0xa0;
vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_CWMAXMIN0,
MESSAGE_REQUEST_MACREG, 1, &max_min);
}
void vnt_update_top_rates(struct vnt_private *priv)
{
u8 top_ofdm = RATE_24M, top_cck = RATE_1M;
u8 i;
/*Determines the highest basic rate.*/
for (i = RATE_54M; i >= RATE_6M; i--) {
if (priv->basic_rates & (u16)(1 << i)) {
top_ofdm = i;
break;
}
}
priv->top_ofdm_basic_rate = top_ofdm;
for (i = RATE_11M;; i--) {
if (priv->basic_rates & (u16)(1 << i)) {
top_cck = i;
break;
}
if (i == RATE_1M)
break;
}
priv->top_cck_basic_rate = top_cck;
}
int vnt_ofdm_min_rate(struct vnt_private *priv)
{
int ii;
for (ii = RATE_54M; ii >= RATE_6M; ii--) {
if ((priv->basic_rates) & ((u16)(1 << ii)))
return true;
}
return false;
}
u8 vnt_get_pkt_type(struct vnt_private *priv)
{
if (priv->bb_type == BB_TYPE_11A || priv->bb_type == BB_TYPE_11B)
return (u8)priv->bb_type;
else if (vnt_ofdm_min_rate(priv))
return PK_TYPE_11GA;
return PK_TYPE_11GB;
}
/*
* Description: Calculate TSF offset of two TSF input
* Get TSF Offset from RxBCN's TSF and local TSF
*
* Parameters:
* In:
* rx_rate - rx rate.
* tsf1 - Rx BCN's TSF
* tsf2 - Local TSF
* Out:
* none
*
* Return Value: TSF Offset value
*
*/
u64 vnt_get_tsf_offset(u8 rx_rate, u64 tsf1, u64 tsf2)
{
u64 tsf_offset = 0;
u16 rx_bcn_offset = 0;
rx_bcn_offset = cwRXBCNTSFOff[rx_rate % MAX_RATE];
tsf2 += (u64)rx_bcn_offset;
tsf_offset = tsf1 - tsf2;
return tsf_offset;
}
/*
* Description: Sync. TSF counter to BSS
* Get TSF offset and write to HW
*
* Parameters:
* In:
* priv - The adapter to be sync.
* time_stamp - Rx BCN's TSF
* local_tsf - Local TSF
* Out:
* none
*
* Return Value: none
*
*/
void vnt_adjust_tsf(struct vnt_private *priv, u8 rx_rate,
u64 time_stamp, u64 local_tsf)
{
u64 tsf_offset = 0;
u8 data[8];
tsf_offset = vnt_get_tsf_offset(rx_rate, time_stamp, local_tsf);
data[0] = (u8)tsf_offset;
data[1] = (u8)(tsf_offset >> 8);
data[2] = (u8)(tsf_offset >> 16);
data[3] = (u8)(tsf_offset >> 24);
data[4] = (u8)(tsf_offset >> 32);
data[5] = (u8)(tsf_offset >> 40);
data[6] = (u8)(tsf_offset >> 48);
data[7] = (u8)(tsf_offset >> 56);
vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
MESSAGE_REQUEST_TSF, 0, 8, data);
}
/*
* Description: Read NIC TSF counter
* Get local TSF counter
*
* Parameters:
* In:
* priv - The adapter to be read
* Out:
* current_tsf - Current TSF counter
*
* Return Value: true if success; otherwise false
*
*/
bool vnt_get_current_tsf(struct vnt_private *priv, u64 *current_tsf)
{
*current_tsf = priv->current_tsf;
return true;
}
/*
* Description: Clear NIC TSF counter
* Clear local TSF counter
*
* Parameters:
* In:
* priv - The adapter to be read
*
* Return Value: true if success; otherwise false
*
*/
bool vnt_clear_current_tsf(struct vnt_private *priv)
{
vnt_mac_reg_bits_on(priv, MAC_REG_TFTCTL, TFTCTL_TSFCNTRST);
priv->current_tsf = 0;
return true;
}
/*
* Description: Read NIC TSF counter
* Get NEXTTBTT from adjusted TSF and Beacon Interval
*
* Parameters:
* In:
* tsf - Current TSF counter
* beacon_interval - Beacon Interval
* Out:
* tsf - Current TSF counter
*
* Return Value: TSF value of next Beacon
*
*/
u64 vnt_get_next_tbtt(u64 tsf, u16 beacon_interval)
{
u32 beacon_int;
beacon_int = beacon_interval * 1024;
/* Next TBTT =
* ((local_current_TSF / beacon_interval) + 1) * beacon_interval
*/
if (beacon_int) {
do_div(tsf, beacon_int);
tsf += 1;
tsf *= beacon_int;
}
return tsf;
}
/*
* Description: Set NIC TSF counter for first Beacon time
* Get NEXTTBTT from adjusted TSF and Beacon Interval
*
* Parameters:
* In:
* dwIoBase - IO Base
* beacon_interval - Beacon Interval
* Out:
* none
*
* Return Value: none
*
*/
void vnt_reset_next_tbtt(struct vnt_private *priv, u16 beacon_interval)
{
u64 next_tbtt = 0;
u8 data[8];
vnt_clear_current_tsf(priv);
next_tbtt = vnt_get_next_tbtt(next_tbtt, beacon_interval);
data[0] = (u8)next_tbtt;
data[1] = (u8)(next_tbtt >> 8);
data[2] = (u8)(next_tbtt >> 16);
data[3] = (u8)(next_tbtt >> 24);
data[4] = (u8)(next_tbtt >> 32);
data[5] = (u8)(next_tbtt >> 40);
data[6] = (u8)(next_tbtt >> 48);
data[7] = (u8)(next_tbtt >> 56);
vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
MESSAGE_REQUEST_TBTT, 0, 8, data);
}
/*
* Description: Sync NIC TSF counter for Beacon time
* Get NEXTTBTT and write to HW
*
* Parameters:
* In:
* priv - The adapter to be set
* tsf - Current TSF counter
* beacon_interval - Beacon Interval
* Out:
* none
*
* Return Value: none
*
*/
void vnt_update_next_tbtt(struct vnt_private *priv, u64 tsf,
u16 beacon_interval)
{
u8 data[8];
tsf = vnt_get_next_tbtt(tsf, beacon_interval);
data[0] = (u8)tsf;
data[1] = (u8)(tsf >> 8);
data[2] = (u8)(tsf >> 16);
data[3] = (u8)(tsf >> 24);
data[4] = (u8)(tsf >> 32);
data[5] = (u8)(tsf >> 40);
data[6] = (u8)(tsf >> 48);
data[7] = (u8)(tsf >> 56);
vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
MESSAGE_REQUEST_TBTT, 0, 8, data);
dev_dbg(&priv->usb->dev, "%s TBTT: %8llx\n", __func__, tsf);
}
/*
* Description: Turn off Radio power
*
* Parameters:
* In:
* priv - The adapter to be turned off
* Out:
* none
*
* Return Value: true if success; otherwise false
*
*/
int vnt_radio_power_off(struct vnt_private *priv)
{
int ret = true;
switch (priv->rf_type) {
case RF_AL2230:
case RF_AL2230S:
case RF_AIROHA7230:
case RF_VT3226:
case RF_VT3226D0:
case RF_VT3342A0:
vnt_mac_reg_bits_off(priv, MAC_REG_SOFTPWRCTL,
(SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
break;
}
vnt_mac_reg_bits_off(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
vnt_set_deep_sleep(priv);
vnt_mac_reg_bits_on(priv, MAC_REG_GPIOCTL1, GPIO3_INTMD);
return ret;
}
/*
* Description: Turn on Radio power
*
* Parameters:
* In:
* priv - The adapter to be turned on
* Out:
* none
*
* Return Value: true if success; otherwise false
*
*/
int vnt_radio_power_on(struct vnt_private *priv)
{
int ret = true;
vnt_exit_deep_sleep(priv);
vnt_mac_reg_bits_on(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
switch (priv->rf_type) {
case RF_AL2230:
case RF_AL2230S:
case RF_AIROHA7230:
case RF_VT3226:
case RF_VT3226D0:
case RF_VT3342A0:
vnt_mac_reg_bits_on(priv, MAC_REG_SOFTPWRCTL,
(SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
break;
}
vnt_mac_reg_bits_off(priv, MAC_REG_GPIOCTL1, GPIO3_INTMD);
return ret;
}
void vnt_set_bss_mode(struct vnt_private *priv)
{
if (priv->rf_type == RF_AIROHA7230 && priv->bb_type == BB_TYPE_11A)
vnt_mac_set_bb_type(priv, BB_TYPE_11G);
else
vnt_mac_set_bb_type(priv, priv->bb_type);
priv->packet_type = vnt_get_pkt_type(priv);
if (priv->bb_type == BB_TYPE_11A)
vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x03);
else if (priv->bb_type == BB_TYPE_11B)
vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x02);
else if (priv->bb_type == BB_TYPE_11G)
vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x08);
vnt_update_ifs(priv);
vnt_set_rspinf(priv, (u8)priv->bb_type);
if (priv->bb_type == BB_TYPE_11A) {
if (priv->rf_type == RF_AIROHA7230) {
priv->bb_vga[0] = 0x20;
vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
0xe7, priv->bb_vga[0]);
}
priv->bb_vga[2] = 0x10;
priv->bb_vga[3] = 0x10;
} else {
if (priv->rf_type == RF_AIROHA7230) {
priv->bb_vga[0] = 0x1c;
vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
0xe7, priv->bb_vga[0]);
}
priv->bb_vga[2] = 0x0;
priv->bb_vga[3] = 0x0;
}
vnt_set_vga_gain_offset(priv, priv->bb_vga[0]);
}