| /* |
| * EMIF driver |
| * |
| * Copyright (C) 2012 Texas Instruments, Inc. |
| * |
| * Aneesh V <aneesh@ti.com> |
| * Santosh Shilimkar <santosh.shilimkar@ti.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/reboot.h> |
| #include <linux/platform_data/emif_plat.h> |
| #include <linux/io.h> |
| #include <linux/device.h> |
| #include <linux/platform_device.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/seq_file.h> |
| #include <linux/module.h> |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| #include <memory/jedec_ddr.h> |
| #include "emif.h" |
| |
| /** |
| * struct emif_data - Per device static data for driver's use |
| * @duplicate: Whether the DDR devices attached to this EMIF |
| * instance are exactly same as that on EMIF1. In |
| * this case we can save some memory and processing |
| * @temperature_level: Maximum temperature of LPDDR2 devices attached |
| * to this EMIF - read from MR4 register. If there |
| * are two devices attached to this EMIF, this |
| * value is the maximum of the two temperature |
| * levels. |
| * @node: node in the device list |
| * @base: base address of memory-mapped IO registers. |
| * @dev: device pointer. |
| * @addressing table with addressing information from the spec |
| * @regs_cache: An array of 'struct emif_regs' that stores |
| * calculated register values for different |
| * frequencies, to avoid re-calculating them on |
| * each DVFS transition. |
| * @curr_regs: The set of register values used in the last |
| * frequency change (i.e. corresponding to the |
| * frequency in effect at the moment) |
| * @plat_data: Pointer to saved platform data. |
| */ |
| struct emif_data { |
| u8 duplicate; |
| u8 temperature_level; |
| u8 lpmode; |
| struct list_head node; |
| unsigned long irq_state; |
| void __iomem *base; |
| struct device *dev; |
| const struct lpddr2_addressing *addressing; |
| struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; |
| struct emif_regs *curr_regs; |
| struct emif_platform_data *plat_data; |
| }; |
| |
| static struct emif_data *emif1; |
| static spinlock_t emif_lock; |
| static unsigned long irq_state; |
| static u32 t_ck; /* DDR clock period in ps */ |
| static LIST_HEAD(device_list); |
| |
| /* |
| * Calculate the period of DDR clock from frequency value |
| */ |
| static void set_ddr_clk_period(u32 freq) |
| { |
| /* Divide 10^12 by frequency to get period in ps */ |
| t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); |
| } |
| |
| /* |
| * Get the CL from SDRAM_CONFIG register |
| */ |
| static u32 get_cl(struct emif_data *emif) |
| { |
| u32 cl; |
| void __iomem *base = emif->base; |
| |
| cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; |
| |
| return cl; |
| } |
| |
| static void set_lpmode(struct emif_data *emif, u8 lpmode) |
| { |
| u32 temp; |
| void __iomem *base = emif->base; |
| |
| temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); |
| temp &= ~LP_MODE_MASK; |
| temp |= (lpmode << LP_MODE_SHIFT); |
| writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); |
| } |
| |
| static void do_freq_update(void) |
| { |
| struct emif_data *emif; |
| |
| /* |
| * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE |
| * |
| * i728 DESCRIPTION: |
| * The EMIF automatically puts the SDRAM into self-refresh mode |
| * after the EMIF has not performed accesses during |
| * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles |
| * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set |
| * to 0x2. If during a small window the following three events |
| * occur: |
| * - The SR_TIMING counter expires |
| * - And frequency change is requested |
| * - And OCP access is requested |
| * Then it causes instable clock on the DDR interface. |
| * |
| * WORKAROUND |
| * To avoid the occurrence of the three events, the workaround |
| * is to disable the self-refresh when requesting a frequency |
| * change. Before requesting a frequency change the software must |
| * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the |
| * frequency change has been done, the software can reprogram |
| * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 |
| */ |
| list_for_each_entry(emif, &device_list, node) { |
| if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| set_lpmode(emif, EMIF_LP_MODE_DISABLE); |
| } |
| |
| /* |
| * TODO: Do FREQ_UPDATE here when an API |
| * is available for this as part of the new |
| * clock framework |
| */ |
| |
| list_for_each_entry(emif, &device_list, node) { |
| if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); |
| } |
| } |
| |
| /* Find addressing table entry based on the device's type and density */ |
| static const struct lpddr2_addressing *get_addressing_table( |
| const struct ddr_device_info *device_info) |
| { |
| u32 index, type, density; |
| |
| type = device_info->type; |
| density = device_info->density; |
| |
| switch (type) { |
| case DDR_TYPE_LPDDR2_S4: |
| index = density - 1; |
| break; |
| case DDR_TYPE_LPDDR2_S2: |
| switch (density) { |
| case DDR_DENSITY_1Gb: |
| case DDR_DENSITY_2Gb: |
| index = density + 3; |
| break; |
| default: |
| index = density - 1; |
| } |
| break; |
| default: |
| return NULL; |
| } |
| |
| return &lpddr2_jedec_addressing_table[index]; |
| } |
| |
| /* |
| * Find the the right timing table from the array of timing |
| * tables of the device using DDR clock frequency |
| */ |
| static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, |
| u32 freq) |
| { |
| u32 i, min, max, freq_nearest; |
| const struct lpddr2_timings *timings = NULL; |
| const struct lpddr2_timings *timings_arr = emif->plat_data->timings; |
| struct device *dev = emif->dev; |
| |
| /* Start with a very high frequency - 1GHz */ |
| freq_nearest = 1000000000; |
| |
| /* |
| * Find the timings table such that: |
| * 1. the frequency range covers the required frequency(safe) AND |
| * 2. the max_freq is closest to the required frequency(optimal) |
| */ |
| for (i = 0; i < emif->plat_data->timings_arr_size; i++) { |
| max = timings_arr[i].max_freq; |
| min = timings_arr[i].min_freq; |
| if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { |
| freq_nearest = max; |
| timings = &timings_arr[i]; |
| } |
| } |
| |
| if (!timings) |
| dev_err(dev, "%s: couldn't find timings for - %dHz\n", |
| __func__, freq); |
| |
| dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", |
| __func__, freq, freq_nearest); |
| |
| return timings; |
| } |
| |
| static u32 get_sdram_ref_ctrl_shdw(u32 freq, |
| const struct lpddr2_addressing *addressing) |
| { |
| u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; |
| |
| /* Scale down frequency and t_refi to avoid overflow */ |
| freq_khz = freq / 1000; |
| t_refi = addressing->tREFI_ns / 100; |
| |
| /* |
| * refresh rate to be set is 'tREFI(in us) * freq in MHz |
| * division by 10000 to account for change in units |
| */ |
| val = t_refi * freq_khz / 10000; |
| ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; |
| |
| return ref_ctrl_shdw; |
| } |
| |
| static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, |
| const struct lpddr2_min_tck *min_tck, |
| const struct lpddr2_addressing *addressing) |
| { |
| u32 tim1 = 0, val = 0; |
| |
| val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; |
| tim1 |= val << T_WTR_SHIFT; |
| |
| if (addressing->num_banks == B8) |
| val = DIV_ROUND_UP(timings->tFAW, t_ck*4); |
| else |
| val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); |
| tim1 |= (val - 1) << T_RRD_SHIFT; |
| |
| val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; |
| tim1 |= val << T_RC_SHIFT; |
| |
| val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); |
| tim1 |= (val - 1) << T_RAS_SHIFT; |
| |
| val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; |
| tim1 |= val << T_WR_SHIFT; |
| |
| val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; |
| tim1 |= val << T_RCD_SHIFT; |
| |
| val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; |
| tim1 |= val << T_RP_SHIFT; |
| |
| return tim1; |
| } |
| |
| static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, |
| const struct lpddr2_min_tck *min_tck, |
| const struct lpddr2_addressing *addressing) |
| { |
| u32 tim1 = 0, val = 0; |
| |
| val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; |
| tim1 = val << T_WTR_SHIFT; |
| |
| /* |
| * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps |
| * to tFAW for de-rating |
| */ |
| if (addressing->num_banks == B8) { |
| val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; |
| } else { |
| val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); |
| val = max(min_tck->tRRD, val) - 1; |
| } |
| tim1 |= val << T_RRD_SHIFT; |
| |
| val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); |
| tim1 |= (val - 1) << T_RC_SHIFT; |
| |
| val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); |
| val = max(min_tck->tRASmin, val) - 1; |
| tim1 |= val << T_RAS_SHIFT; |
| |
| val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; |
| tim1 |= val << T_WR_SHIFT; |
| |
| val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); |
| tim1 |= (val - 1) << T_RCD_SHIFT; |
| |
| val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); |
| tim1 |= (val - 1) << T_RP_SHIFT; |
| |
| return tim1; |
| } |
| |
| static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, |
| const struct lpddr2_min_tck *min_tck, |
| const struct lpddr2_addressing *addressing, |
| u32 type) |
| { |
| u32 tim2 = 0, val = 0; |
| |
| val = min_tck->tCKE - 1; |
| tim2 |= val << T_CKE_SHIFT; |
| |
| val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; |
| tim2 |= val << T_RTP_SHIFT; |
| |
| /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ |
| val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; |
| tim2 |= val << T_XSNR_SHIFT; |
| |
| /* XSRD same as XSNR for LPDDR2 */ |
| tim2 |= val << T_XSRD_SHIFT; |
| |
| val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; |
| tim2 |= val << T_XP_SHIFT; |
| |
| return tim2; |
| } |
| |
| static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, |
| const struct lpddr2_min_tck *min_tck, |
| const struct lpddr2_addressing *addressing, |
| u32 type, u32 ip_rev, u32 derated) |
| { |
| u32 tim3 = 0, val = 0, t_dqsck; |
| |
| val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; |
| val = val > 0xF ? 0xF : val; |
| tim3 |= val << T_RAS_MAX_SHIFT; |
| |
| val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; |
| tim3 |= val << T_RFC_SHIFT; |
| |
| t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? |
| timings->tDQSCK_max_derated : timings->tDQSCK_max; |
| if (ip_rev == EMIF_4D5) |
| val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; |
| else |
| val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; |
| |
| tim3 |= val << T_TDQSCKMAX_SHIFT; |
| |
| val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; |
| tim3 |= val << ZQ_ZQCS_SHIFT; |
| |
| val = DIV_ROUND_UP(timings->tCKESR, t_ck); |
| val = max(min_tck->tCKESR, val) - 1; |
| tim3 |= val << T_CKESR_SHIFT; |
| |
| if (ip_rev == EMIF_4D5) { |
| tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; |
| |
| val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; |
| tim3 |= val << T_PDLL_UL_SHIFT; |
| } |
| |
| return tim3; |
| } |
| |
| static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) |
| { |
| u32 idle = 0, val = 0; |
| |
| /* |
| * Maximum value in normal conditions and increased frequency |
| * when voltage is ramping |
| */ |
| if (volt_ramp) |
| val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; |
| else |
| val = 0x1FF; |
| |
| /* |
| * READ_IDLE_CTRL register in EMIF4D has same offset and fields |
| * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts |
| */ |
| idle |= val << DLL_CALIB_INTERVAL_SHIFT; |
| idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; |
| |
| return idle; |
| } |
| |
| static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) |
| { |
| u32 calib = 0, val = 0; |
| |
| if (volt_ramp == DDR_VOLTAGE_RAMPING) |
| val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; |
| else |
| val = 0; /* Disabled when voltage is stable */ |
| |
| calib |= val << DLL_CALIB_INTERVAL_SHIFT; |
| calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; |
| |
| return calib; |
| } |
| |
| static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, |
| u32 freq, u8 RL) |
| { |
| u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; |
| |
| val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; |
| phy |= val << READ_LATENCY_SHIFT_4D; |
| |
| if (freq <= 100000000) |
| val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; |
| else if (freq <= 200000000) |
| val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; |
| else |
| val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; |
| |
| phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; |
| |
| return phy; |
| } |
| |
| static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) |
| { |
| u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; |
| |
| /* |
| * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, |
| * half-delay is not needed else set half-delay |
| */ |
| if (freq >= 265000000 && freq < 267000000) |
| half_delay = 0; |
| else |
| half_delay = 1; |
| |
| phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; |
| phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, |
| t_ck) - 1) << READ_LATENCY_SHIFT_4D5); |
| |
| return phy; |
| } |
| |
| static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) |
| { |
| u32 fifo_we_slave_ratio; |
| |
| fifo_we_slave_ratio = DIV_ROUND_CLOSEST( |
| EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); |
| |
| return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | |
| fifo_we_slave_ratio << 22; |
| } |
| |
| static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) |
| { |
| u32 fifo_we_slave_ratio; |
| |
| fifo_we_slave_ratio = DIV_ROUND_CLOSEST( |
| EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); |
| |
| return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | |
| fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; |
| } |
| |
| static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) |
| { |
| u32 fifo_we_slave_ratio; |
| |
| fifo_we_slave_ratio = DIV_ROUND_CLOSEST( |
| EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); |
| |
| return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | |
| fifo_we_slave_ratio << 13; |
| } |
| |
| static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) |
| { |
| u32 pwr_mgmt_ctrl = 0, timeout; |
| u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; |
| u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; |
| u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; |
| u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; |
| |
| struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; |
| |
| if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { |
| lpmode = cust_cfgs->lpmode; |
| timeout_perf = cust_cfgs->lpmode_timeout_performance; |
| timeout_pwr = cust_cfgs->lpmode_timeout_power; |
| freq_threshold = cust_cfgs->lpmode_freq_threshold; |
| } |
| |
| /* Timeout based on DDR frequency */ |
| timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; |
| |
| /* The value to be set in register is "log2(timeout) - 3" */ |
| if (timeout < 16) { |
| timeout = 0; |
| } else { |
| timeout = __fls(timeout) - 3; |
| if (timeout & (timeout - 1)) |
| timeout++; |
| } |
| |
| switch (lpmode) { |
| case EMIF_LP_MODE_CLOCK_STOP: |
| pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) | |
| SR_TIM_MASK | PD_TIM_MASK; |
| break; |
| case EMIF_LP_MODE_SELF_REFRESH: |
| /* Workaround for errata i735 */ |
| if (timeout < 6) |
| timeout = 6; |
| |
| pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) | |
| CS_TIM_MASK | PD_TIM_MASK; |
| break; |
| case EMIF_LP_MODE_PWR_DN: |
| pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) | |
| CS_TIM_MASK | SR_TIM_MASK; |
| break; |
| case EMIF_LP_MODE_DISABLE: |
| default: |
| pwr_mgmt_ctrl = CS_TIM_MASK | |
| PD_TIM_MASK | SR_TIM_MASK; |
| } |
| |
| /* No CS_TIM in EMIF_4D5 */ |
| if (ip_rev == EMIF_4D5) |
| pwr_mgmt_ctrl &= ~CS_TIM_MASK; |
| |
| pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; |
| |
| return pwr_mgmt_ctrl; |
| } |
| |
| /* |
| * Program EMIF shadow registers that are not dependent on temperature |
| * or voltage |
| */ |
| static void setup_registers(struct emif_data *emif, struct emif_regs *regs) |
| { |
| void __iomem *base = emif->base; |
| |
| writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); |
| writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); |
| |
| /* Settings specific for EMIF4D5 */ |
| if (emif->plat_data->ip_rev != EMIF_4D5) |
| return; |
| writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); |
| writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); |
| writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); |
| } |
| |
| /* |
| * When voltage ramps dll calibration and forced read idle should |
| * happen more often |
| */ |
| static void setup_volt_sensitive_regs(struct emif_data *emif, |
| struct emif_regs *regs, u32 volt_state) |
| { |
| u32 calib_ctrl; |
| void __iomem *base = emif->base; |
| |
| /* |
| * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as |
| * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* |
| * is an alias of the respective read_idle_ctrl_shdw_* (members of |
| * a union). So, the below code takes care of both cases |
| */ |
| if (volt_state == DDR_VOLTAGE_RAMPING) |
| calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; |
| else |
| calib_ctrl = regs->dll_calib_ctrl_shdw_normal; |
| |
| writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); |
| } |
| |
| /* |
| * setup_temperature_sensitive_regs() - set the timings for temperature |
| * sensitive registers. This happens once at initialisation time based |
| * on the temperature at boot time and subsequently based on the temperature |
| * alert interrupt. Temperature alert can happen when the temperature |
| * increases or drops. So this function can have the effect of either |
| * derating the timings or going back to nominal values. |
| */ |
| static void setup_temperature_sensitive_regs(struct emif_data *emif, |
| struct emif_regs *regs) |
| { |
| u32 tim1, tim3, ref_ctrl, type; |
| void __iomem *base = emif->base; |
| u32 temperature; |
| |
| type = emif->plat_data->device_info->type; |
| |
| tim1 = regs->sdram_tim1_shdw; |
| tim3 = regs->sdram_tim3_shdw; |
| ref_ctrl = regs->ref_ctrl_shdw; |
| |
| /* No de-rating for non-lpddr2 devices */ |
| if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) |
| goto out; |
| |
| temperature = emif->temperature_level; |
| if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { |
| ref_ctrl = regs->ref_ctrl_shdw_derated; |
| } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { |
| tim1 = regs->sdram_tim1_shdw_derated; |
| tim3 = regs->sdram_tim3_shdw_derated; |
| ref_ctrl = regs->ref_ctrl_shdw_derated; |
| } |
| |
| out: |
| writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); |
| writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); |
| writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); |
| } |
| |
| static void get_default_timings(struct emif_data *emif) |
| { |
| struct emif_platform_data *pd = emif->plat_data; |
| |
| pd->timings = lpddr2_jedec_timings; |
| pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); |
| |
| dev_warn(emif->dev, "%s: using default timings\n", __func__); |
| } |
| |
| static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, |
| u32 ip_rev, struct device *dev) |
| { |
| int valid; |
| |
| valid = (type == DDR_TYPE_LPDDR2_S4 || |
| type == DDR_TYPE_LPDDR2_S2) |
| && (density >= DDR_DENSITY_64Mb |
| && density <= DDR_DENSITY_8Gb) |
| && (io_width >= DDR_IO_WIDTH_8 |
| && io_width <= DDR_IO_WIDTH_32); |
| |
| /* Combinations of EMIF and PHY revisions that we support today */ |
| switch (ip_rev) { |
| case EMIF_4D: |
| valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); |
| break; |
| case EMIF_4D5: |
| valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); |
| break; |
| default: |
| valid = 0; |
| } |
| |
| if (!valid) |
| dev_err(dev, "%s: invalid DDR details\n", __func__); |
| return valid; |
| } |
| |
| static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, |
| struct device *dev) |
| { |
| int valid = 1; |
| |
| if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && |
| (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) |
| valid = cust_cfgs->lpmode_freq_threshold && |
| cust_cfgs->lpmode_timeout_performance && |
| cust_cfgs->lpmode_timeout_power; |
| |
| if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) |
| valid = valid && cust_cfgs->temp_alert_poll_interval_ms; |
| |
| if (!valid) |
| dev_warn(dev, "%s: invalid custom configs\n", __func__); |
| |
| return valid; |
| } |
| |
| static struct emif_data *__init_or_module get_device_details( |
| struct platform_device *pdev) |
| { |
| u32 size; |
| struct emif_data *emif = NULL; |
| struct ddr_device_info *dev_info; |
| struct emif_custom_configs *cust_cfgs; |
| struct emif_platform_data *pd; |
| struct device *dev; |
| void *temp; |
| |
| pd = pdev->dev.platform_data; |
| dev = &pdev->dev; |
| |
| if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, |
| pd->device_info->density, pd->device_info->io_width, |
| pd->phy_type, pd->ip_rev, dev))) { |
| dev_err(dev, "%s: invalid device data\n", __func__); |
| goto error; |
| } |
| |
| emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); |
| temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); |
| dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); |
| |
| if (!emif || !pd || !dev_info) { |
| dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); |
| goto error; |
| } |
| |
| memcpy(temp, pd, sizeof(*pd)); |
| pd = temp; |
| memcpy(dev_info, pd->device_info, sizeof(*dev_info)); |
| |
| pd->device_info = dev_info; |
| emif->plat_data = pd; |
| emif->dev = dev; |
| emif->temperature_level = SDRAM_TEMP_NOMINAL; |
| |
| /* |
| * For EMIF instances other than EMIF1 see if the devices connected |
| * are exactly same as on EMIF1(which is typically the case). If so, |
| * mark it as a duplicate of EMIF1 and skip copying timings data. |
| * This will save some memory and some computation later. |
| */ |
| emif->duplicate = emif1 && (memcmp(dev_info, |
| emif1->plat_data->device_info, |
| sizeof(struct ddr_device_info)) == 0); |
| |
| if (emif->duplicate) { |
| pd->timings = NULL; |
| pd->min_tck = NULL; |
| goto out; |
| } else if (emif1) { |
| dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", |
| __func__); |
| } |
| |
| /* |
| * Copy custom configs - ignore allocation error, if any, as |
| * custom_configs is not very critical |
| */ |
| cust_cfgs = pd->custom_configs; |
| if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { |
| temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); |
| if (temp) |
| memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); |
| else |
| dev_warn(dev, "%s:%d: allocation error\n", __func__, |
| __LINE__); |
| pd->custom_configs = temp; |
| } |
| |
| /* |
| * Copy timings and min-tck values from platform data. If it is not |
| * available or if memory allocation fails, use JEDEC defaults |
| */ |
| size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; |
| if (pd->timings) { |
| temp = devm_kzalloc(dev, size, GFP_KERNEL); |
| if (temp) { |
| memcpy(temp, pd->timings, sizeof(*pd->timings)); |
| pd->timings = temp; |
| } else { |
| dev_warn(dev, "%s:%d: allocation error\n", __func__, |
| __LINE__); |
| get_default_timings(emif); |
| } |
| } else { |
| get_default_timings(emif); |
| } |
| |
| if (pd->min_tck) { |
| temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); |
| if (temp) { |
| memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); |
| pd->min_tck = temp; |
| } else { |
| dev_warn(dev, "%s:%d: allocation error\n", __func__, |
| __LINE__); |
| pd->min_tck = &lpddr2_jedec_min_tck; |
| } |
| } else { |
| pd->min_tck = &lpddr2_jedec_min_tck; |
| } |
| |
| out: |
| return emif; |
| |
| error: |
| return NULL; |
| } |
| |
| static int __init_or_module emif_probe(struct platform_device *pdev) |
| { |
| struct emif_data *emif; |
| struct resource *res; |
| |
| emif = get_device_details(pdev); |
| if (!emif) { |
| pr_err("%s: error getting device data\n", __func__); |
| goto error; |
| } |
| |
| list_add(&emif->node, &device_list); |
| emif->addressing = get_addressing_table(emif->plat_data->device_info); |
| |
| /* Save pointers to each other in emif and device structures */ |
| emif->dev = &pdev->dev; |
| platform_set_drvdata(pdev, emif); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res) { |
| dev_err(emif->dev, "%s: error getting memory resource\n", |
| __func__); |
| goto error; |
| } |
| |
| emif->base = devm_request_and_ioremap(emif->dev, res); |
| if (!emif->base) { |
| dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n", |
| __func__); |
| goto error; |
| } |
| |
| /* One-time actions taken on probing the first device */ |
| if (!emif1) { |
| emif1 = emif; |
| spin_lock_init(&emif_lock); |
| |
| /* |
| * TODO: register notifiers for frequency and voltage |
| * change here once the respective frameworks are |
| * available |
| */ |
| } |
| |
| dev_info(&pdev->dev, "%s: device configured with addr = %p\n", |
| __func__, emif->base); |
| |
| return 0; |
| error: |
| return -ENODEV; |
| } |
| |
| static int get_emif_reg_values(struct emif_data *emif, u32 freq, |
| struct emif_regs *regs) |
| { |
| u32 cs1_used, ip_rev, phy_type; |
| u32 cl, type; |
| const struct lpddr2_timings *timings; |
| const struct lpddr2_min_tck *min_tck; |
| const struct ddr_device_info *device_info; |
| const struct lpddr2_addressing *addressing; |
| struct emif_data *emif_for_calc; |
| struct device *dev; |
| const struct emif_custom_configs *custom_configs; |
| |
| dev = emif->dev; |
| /* |
| * If the devices on this EMIF instance is duplicate of EMIF1, |
| * use EMIF1 details for the calculation |
| */ |
| emif_for_calc = emif->duplicate ? emif1 : emif; |
| timings = get_timings_table(emif_for_calc, freq); |
| addressing = emif_for_calc->addressing; |
| if (!timings || !addressing) { |
| dev_err(dev, "%s: not enough data available for %dHz", |
| __func__, freq); |
| return -1; |
| } |
| |
| device_info = emif_for_calc->plat_data->device_info; |
| type = device_info->type; |
| cs1_used = device_info->cs1_used; |
| ip_rev = emif_for_calc->plat_data->ip_rev; |
| phy_type = emif_for_calc->plat_data->phy_type; |
| |
| min_tck = emif_for_calc->plat_data->min_tck; |
| custom_configs = emif_for_calc->plat_data->custom_configs; |
| |
| set_ddr_clk_period(freq); |
| |
| regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); |
| regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, |
| addressing); |
| regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, |
| addressing, type); |
| regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, |
| addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); |
| |
| cl = get_cl(emif); |
| |
| if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { |
| regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( |
| timings, freq, cl); |
| } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { |
| regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); |
| regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); |
| regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); |
| regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); |
| } else { |
| return -1; |
| } |
| |
| /* Only timeout values in pwr_mgmt_ctrl_shdw register */ |
| regs->pwr_mgmt_ctrl_shdw = |
| get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & |
| (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); |
| |
| if (ip_rev & EMIF_4D) { |
| regs->read_idle_ctrl_shdw_normal = |
| get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); |
| |
| regs->read_idle_ctrl_shdw_volt_ramp = |
| get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); |
| } else if (ip_rev & EMIF_4D5) { |
| regs->dll_calib_ctrl_shdw_normal = |
| get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); |
| |
| regs->dll_calib_ctrl_shdw_volt_ramp = |
| get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); |
| } |
| |
| if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { |
| regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, |
| addressing); |
| |
| regs->sdram_tim1_shdw_derated = |
| get_sdram_tim_1_shdw_derated(timings, min_tck, |
| addressing); |
| |
| regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, |
| min_tck, addressing, type, ip_rev, |
| EMIF_DERATED_TIMINGS); |
| } |
| |
| regs->freq = freq; |
| |
| return 0; |
| } |
| |
| /* |
| * get_regs() - gets the cached emif_regs structure for a given EMIF instance |
| * given frequency(freq): |
| * |
| * As an optimisation, every EMIF instance other than EMIF1 shares the |
| * register cache with EMIF1 if the devices connected on this instance |
| * are same as that on EMIF1(indicated by the duplicate flag) |
| * |
| * If we do not have an entry corresponding to the frequency given, we |
| * allocate a new entry and calculate the values |
| * |
| * Upon finding the right reg dump, save it in curr_regs. It can be |
| * directly used for thermal de-rating and voltage ramping changes. |
| */ |
| static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) |
| { |
| int i; |
| struct emif_regs **regs_cache; |
| struct emif_regs *regs = NULL; |
| struct device *dev; |
| |
| dev = emif->dev; |
| if (emif->curr_regs && emif->curr_regs->freq == freq) { |
| dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); |
| return emif->curr_regs; |
| } |
| |
| if (emif->duplicate) |
| regs_cache = emif1->regs_cache; |
| else |
| regs_cache = emif->regs_cache; |
| |
| for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { |
| if (regs_cache[i]->freq == freq) { |
| regs = regs_cache[i]; |
| dev_dbg(dev, |
| "%s: reg dump found in reg cache for %u Hz\n", |
| __func__, freq); |
| break; |
| } |
| } |
| |
| /* |
| * If we don't have an entry for this frequency in the cache create one |
| * and calculate the values |
| */ |
| if (!regs) { |
| regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); |
| if (!regs) |
| return NULL; |
| |
| if (get_emif_reg_values(emif, freq, regs)) { |
| devm_kfree(emif->dev, regs); |
| return NULL; |
| } |
| |
| /* |
| * Now look for an un-used entry in the cache and save the |
| * newly created struct. If there are no free entries |
| * over-write the last entry |
| */ |
| for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) |
| ; |
| |
| if (i >= EMIF_MAX_NUM_FREQUENCIES) { |
| dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", |
| __func__); |
| i = EMIF_MAX_NUM_FREQUENCIES - 1; |
| devm_kfree(emif->dev, regs_cache[i]); |
| } |
| regs_cache[i] = regs; |
| } |
| |
| return regs; |
| } |
| |
| static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) |
| { |
| dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, |
| volt_state); |
| |
| if (!emif->curr_regs) { |
| dev_err(emif->dev, |
| "%s: volt-notify before registers are ready: %d\n", |
| __func__, volt_state); |
| return; |
| } |
| |
| setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); |
| } |
| |
| /* |
| * TODO: voltage notify handling should be hooked up to |
| * regulator framework as soon as the necessary support |
| * is available in mainline kernel. This function is un-used |
| * right now. |
| */ |
| static void __attribute__((unused)) volt_notify_handling(u32 volt_state) |
| { |
| struct emif_data *emif; |
| |
| spin_lock_irqsave(&emif_lock, irq_state); |
| |
| list_for_each_entry(emif, &device_list, node) |
| do_volt_notify_handling(emif, volt_state); |
| do_freq_update(); |
| |
| spin_unlock_irqrestore(&emif_lock, irq_state); |
| } |
| |
| static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) |
| { |
| struct emif_regs *regs; |
| |
| regs = get_regs(emif, new_freq); |
| if (!regs) |
| return; |
| |
| emif->curr_regs = regs; |
| |
| /* |
| * Update the shadow registers: |
| * Temperature and voltage-ramp sensitive settings are also configured |
| * in terms of DDR cycles. So, we need to update them too when there |
| * is a freq change |
| */ |
| dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", |
| __func__, new_freq); |
| setup_registers(emif, regs); |
| setup_temperature_sensitive_regs(emif, regs); |
| setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); |
| |
| /* |
| * Part of workaround for errata i728. See do_freq_update() |
| * for more details |
| */ |
| if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| set_lpmode(emif, EMIF_LP_MODE_DISABLE); |
| } |
| |
| /* |
| * TODO: frequency notify handling should be hooked up to |
| * clock framework as soon as the necessary support is |
| * available in mainline kernel. This function is un-used |
| * right now. |
| */ |
| static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) |
| { |
| struct emif_data *emif; |
| |
| /* |
| * NOTE: we are taking the spin-lock here and releases it |
| * only in post-notifier. This doesn't look good and |
| * Sparse complains about it, but this seems to be |
| * un-avoidable. We need to lock a sequence of events |
| * that is split between EMIF and clock framework. |
| * |
| * 1. EMIF driver updates EMIF timings in shadow registers in the |
| * frequency pre-notify callback from clock framework |
| * 2. clock framework sets up the registers for the new frequency |
| * 3. clock framework initiates a hw-sequence that updates |
| * the frequency EMIF timings synchronously. |
| * |
| * All these 3 steps should be performed as an atomic operation |
| * vis-a-vis similar sequence in the EMIF interrupt handler |
| * for temperature events. Otherwise, there could be race |
| * conditions that could result in incorrect EMIF timings for |
| * a given frequency |
| */ |
| spin_lock_irqsave(&emif_lock, irq_state); |
| |
| list_for_each_entry(emif, &device_list, node) |
| do_freq_pre_notify_handling(emif, new_freq); |
| } |
| |
| static void do_freq_post_notify_handling(struct emif_data *emif) |
| { |
| /* |
| * Part of workaround for errata i728. See do_freq_update() |
| * for more details |
| */ |
| if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); |
| } |
| |
| /* |
| * TODO: frequency notify handling should be hooked up to |
| * clock framework as soon as the necessary support is |
| * available in mainline kernel. This function is un-used |
| * right now. |
| */ |
| static void __attribute__((unused)) freq_post_notify_handling(void) |
| { |
| struct emif_data *emif; |
| |
| list_for_each_entry(emif, &device_list, node) |
| do_freq_post_notify_handling(emif); |
| |
| /* |
| * Lock is done in pre-notify handler. See freq_pre_notify_handling() |
| * for more details |
| */ |
| spin_unlock_irqrestore(&emif_lock, irq_state); |
| } |
| |
| static struct platform_driver emif_driver = { |
| .driver = { |
| .name = "emif", |
| }, |
| }; |
| |
| static int __init_or_module emif_register(void) |
| { |
| return platform_driver_probe(&emif_driver, emif_probe); |
| } |
| |
| static void __exit emif_unregister(void) |
| { |
| platform_driver_unregister(&emif_driver); |
| } |
| |
| module_init(emif_register); |
| module_exit(emif_unregister); |
| MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:emif"); |
| MODULE_AUTHOR("Texas Instruments Inc"); |