blob: ad6193ea45974c6bb796bc2eb632e46b7735f78a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2006 Freescale Semiconductor, Inc. All rights reserved.
*
* Authors: Shlomi Gridish <gridish@freescale.com>
* Li Yang <leoli@freescale.com>
*
* Description:
* QE UCC Fast API Set - UCC Fast specific routines implementations.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/stddef.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/export.h>
#include <asm/io.h>
#include <soc/fsl/qe/immap_qe.h>
#include <soc/fsl/qe/qe.h>
#include <soc/fsl/qe/ucc.h>
#include <soc/fsl/qe/ucc_fast.h>
void ucc_fast_dump_regs(struct ucc_fast_private * uccf)
{
printk(KERN_INFO "UCC%u Fast registers:\n", uccf->uf_info->ucc_num);
printk(KERN_INFO "Base address: 0x%p\n", uccf->uf_regs);
printk(KERN_INFO "gumr : addr=0x%p, val=0x%08x\n",
&uccf->uf_regs->gumr, qe_ioread32be(&uccf->uf_regs->gumr));
printk(KERN_INFO "upsmr : addr=0x%p, val=0x%08x\n",
&uccf->uf_regs->upsmr, qe_ioread32be(&uccf->uf_regs->upsmr));
printk(KERN_INFO "utodr : addr=0x%p, val=0x%04x\n",
&uccf->uf_regs->utodr, qe_ioread16be(&uccf->uf_regs->utodr));
printk(KERN_INFO "udsr : addr=0x%p, val=0x%04x\n",
&uccf->uf_regs->udsr, qe_ioread16be(&uccf->uf_regs->udsr));
printk(KERN_INFO "ucce : addr=0x%p, val=0x%08x\n",
&uccf->uf_regs->ucce, qe_ioread32be(&uccf->uf_regs->ucce));
printk(KERN_INFO "uccm : addr=0x%p, val=0x%08x\n",
&uccf->uf_regs->uccm, qe_ioread32be(&uccf->uf_regs->uccm));
printk(KERN_INFO "uccs : addr=0x%p, val=0x%02x\n",
&uccf->uf_regs->uccs, qe_ioread8(&uccf->uf_regs->uccs));
printk(KERN_INFO "urfb : addr=0x%p, val=0x%08x\n",
&uccf->uf_regs->urfb, qe_ioread32be(&uccf->uf_regs->urfb));
printk(KERN_INFO "urfs : addr=0x%p, val=0x%04x\n",
&uccf->uf_regs->urfs, qe_ioread16be(&uccf->uf_regs->urfs));
printk(KERN_INFO "urfet : addr=0x%p, val=0x%04x\n",
&uccf->uf_regs->urfet, qe_ioread16be(&uccf->uf_regs->urfet));
printk(KERN_INFO "urfset: addr=0x%p, val=0x%04x\n",
&uccf->uf_regs->urfset,
qe_ioread16be(&uccf->uf_regs->urfset));
printk(KERN_INFO "utfb : addr=0x%p, val=0x%08x\n",
&uccf->uf_regs->utfb, qe_ioread32be(&uccf->uf_regs->utfb));
printk(KERN_INFO "utfs : addr=0x%p, val=0x%04x\n",
&uccf->uf_regs->utfs, qe_ioread16be(&uccf->uf_regs->utfs));
printk(KERN_INFO "utfet : addr=0x%p, val=0x%04x\n",
&uccf->uf_regs->utfet, qe_ioread16be(&uccf->uf_regs->utfet));
printk(KERN_INFO "utftt : addr=0x%p, val=0x%04x\n",
&uccf->uf_regs->utftt, qe_ioread16be(&uccf->uf_regs->utftt));
printk(KERN_INFO "utpt : addr=0x%p, val=0x%04x\n",
&uccf->uf_regs->utpt, qe_ioread16be(&uccf->uf_regs->utpt));
printk(KERN_INFO "urtry : addr=0x%p, val=0x%08x\n",
&uccf->uf_regs->urtry, qe_ioread32be(&uccf->uf_regs->urtry));
printk(KERN_INFO "guemr : addr=0x%p, val=0x%02x\n",
&uccf->uf_regs->guemr, qe_ioread8(&uccf->uf_regs->guemr));
}
EXPORT_SYMBOL(ucc_fast_dump_regs);
u32 ucc_fast_get_qe_cr_subblock(int uccf_num)
{
switch (uccf_num) {
case 0: return QE_CR_SUBBLOCK_UCCFAST1;
case 1: return QE_CR_SUBBLOCK_UCCFAST2;
case 2: return QE_CR_SUBBLOCK_UCCFAST3;
case 3: return QE_CR_SUBBLOCK_UCCFAST4;
case 4: return QE_CR_SUBBLOCK_UCCFAST5;
case 5: return QE_CR_SUBBLOCK_UCCFAST6;
case 6: return QE_CR_SUBBLOCK_UCCFAST7;
case 7: return QE_CR_SUBBLOCK_UCCFAST8;
default: return QE_CR_SUBBLOCK_INVALID;
}
}
EXPORT_SYMBOL(ucc_fast_get_qe_cr_subblock);
void ucc_fast_transmit_on_demand(struct ucc_fast_private * uccf)
{
qe_iowrite16be(UCC_FAST_TOD, &uccf->uf_regs->utodr);
}
EXPORT_SYMBOL(ucc_fast_transmit_on_demand);
void ucc_fast_enable(struct ucc_fast_private * uccf, enum comm_dir mode)
{
struct ucc_fast __iomem *uf_regs;
u32 gumr;
uf_regs = uccf->uf_regs;
/* Enable reception and/or transmission on this UCC. */
gumr = qe_ioread32be(&uf_regs->gumr);
if (mode & COMM_DIR_TX) {
gumr |= UCC_FAST_GUMR_ENT;
uccf->enabled_tx = 1;
}
if (mode & COMM_DIR_RX) {
gumr |= UCC_FAST_GUMR_ENR;
uccf->enabled_rx = 1;
}
qe_iowrite32be(gumr, &uf_regs->gumr);
}
EXPORT_SYMBOL(ucc_fast_enable);
void ucc_fast_disable(struct ucc_fast_private * uccf, enum comm_dir mode)
{
struct ucc_fast __iomem *uf_regs;
u32 gumr;
uf_regs = uccf->uf_regs;
/* Disable reception and/or transmission on this UCC. */
gumr = qe_ioread32be(&uf_regs->gumr);
if (mode & COMM_DIR_TX) {
gumr &= ~UCC_FAST_GUMR_ENT;
uccf->enabled_tx = 0;
}
if (mode & COMM_DIR_RX) {
gumr &= ~UCC_FAST_GUMR_ENR;
uccf->enabled_rx = 0;
}
qe_iowrite32be(gumr, &uf_regs->gumr);
}
EXPORT_SYMBOL(ucc_fast_disable);
int ucc_fast_init(struct ucc_fast_info * uf_info, struct ucc_fast_private ** uccf_ret)
{
struct ucc_fast_private *uccf;
struct ucc_fast __iomem *uf_regs;
u32 gumr;
int ret;
if (!uf_info)
return -EINVAL;
/* check if the UCC port number is in range. */
if ((uf_info->ucc_num < 0) || (uf_info->ucc_num > UCC_MAX_NUM - 1)) {
printk(KERN_ERR "%s: illegal UCC number\n", __func__);
return -EINVAL;
}
/* Check that 'max_rx_buf_length' is properly aligned (4). */
if (uf_info->max_rx_buf_length & (UCC_FAST_MRBLR_ALIGNMENT - 1)) {
printk(KERN_ERR "%s: max_rx_buf_length not aligned\n",
__func__);
return -EINVAL;
}
/* Validate Virtual Fifo register values */
if (uf_info->urfs < UCC_FAST_URFS_MIN_VAL) {
printk(KERN_ERR "%s: urfs is too small\n", __func__);
return -EINVAL;
}
if (uf_info->urfs & (UCC_FAST_VIRT_FIFO_REGS_ALIGNMENT - 1)) {
printk(KERN_ERR "%s: urfs is not aligned\n", __func__);
return -EINVAL;
}
if (uf_info->urfet & (UCC_FAST_VIRT_FIFO_REGS_ALIGNMENT - 1)) {
printk(KERN_ERR "%s: urfet is not aligned.\n", __func__);
return -EINVAL;
}
if (uf_info->urfset & (UCC_FAST_VIRT_FIFO_REGS_ALIGNMENT - 1)) {
printk(KERN_ERR "%s: urfset is not aligned\n", __func__);
return -EINVAL;
}
if (uf_info->utfs & (UCC_FAST_VIRT_FIFO_REGS_ALIGNMENT - 1)) {
printk(KERN_ERR "%s: utfs is not aligned\n", __func__);
return -EINVAL;
}
if (uf_info->utfet & (UCC_FAST_VIRT_FIFO_REGS_ALIGNMENT - 1)) {
printk(KERN_ERR "%s: utfet is not aligned\n", __func__);
return -EINVAL;
}
if (uf_info->utftt & (UCC_FAST_VIRT_FIFO_REGS_ALIGNMENT - 1)) {
printk(KERN_ERR "%s: utftt is not aligned\n", __func__);
return -EINVAL;
}
uccf = kzalloc(sizeof(struct ucc_fast_private), GFP_KERNEL);
if (!uccf) {
printk(KERN_ERR "%s: Cannot allocate private data\n",
__func__);
return -ENOMEM;
}
uccf->ucc_fast_tx_virtual_fifo_base_offset = -1;
uccf->ucc_fast_rx_virtual_fifo_base_offset = -1;
/* Fill fast UCC structure */
uccf->uf_info = uf_info;
/* Set the PHY base address */
uccf->uf_regs = ioremap(uf_info->regs, sizeof(struct ucc_fast));
if (uccf->uf_regs == NULL) {
printk(KERN_ERR "%s: Cannot map UCC registers\n", __func__);
kfree(uccf);
return -ENOMEM;
}
uccf->enabled_tx = 0;
uccf->enabled_rx = 0;
uccf->stopped_tx = 0;
uccf->stopped_rx = 0;
uf_regs = uccf->uf_regs;
uccf->p_ucce = &uf_regs->ucce;
uccf->p_uccm = &uf_regs->uccm;
#ifdef CONFIG_UGETH_TX_ON_DEMAND
uccf->p_utodr = &uf_regs->utodr;
#endif
#ifdef STATISTICS
uccf->tx_frames = 0;
uccf->rx_frames = 0;
uccf->rx_discarded = 0;
#endif /* STATISTICS */
/* Set UCC to fast type */
ret = ucc_set_type(uf_info->ucc_num, UCC_SPEED_TYPE_FAST);
if (ret) {
printk(KERN_ERR "%s: cannot set UCC type\n", __func__);
ucc_fast_free(uccf);
return ret;
}
uccf->mrblr = uf_info->max_rx_buf_length;
/* Set GUMR */
/* For more details see the hardware spec. */
gumr = uf_info->ttx_trx;
if (uf_info->tci)
gumr |= UCC_FAST_GUMR_TCI;
if (uf_info->cdp)
gumr |= UCC_FAST_GUMR_CDP;
if (uf_info->ctsp)
gumr |= UCC_FAST_GUMR_CTSP;
if (uf_info->cds)
gumr |= UCC_FAST_GUMR_CDS;
if (uf_info->ctss)
gumr |= UCC_FAST_GUMR_CTSS;
if (uf_info->txsy)
gumr |= UCC_FAST_GUMR_TXSY;
if (uf_info->rsyn)
gumr |= UCC_FAST_GUMR_RSYN;
gumr |= uf_info->synl;
if (uf_info->rtsm)
gumr |= UCC_FAST_GUMR_RTSM;
gumr |= uf_info->renc;
if (uf_info->revd)
gumr |= UCC_FAST_GUMR_REVD;
gumr |= uf_info->tenc;
gumr |= uf_info->tcrc;
gumr |= uf_info->mode;
qe_iowrite32be(gumr, &uf_regs->gumr);
/* Allocate memory for Tx Virtual Fifo */
uccf->ucc_fast_tx_virtual_fifo_base_offset =
qe_muram_alloc(uf_info->utfs, UCC_FAST_VIRT_FIFO_REGS_ALIGNMENT);
if (uccf->ucc_fast_tx_virtual_fifo_base_offset < 0) {
printk(KERN_ERR "%s: cannot allocate MURAM for TX FIFO\n",
__func__);
ucc_fast_free(uccf);
return -ENOMEM;
}
/* Allocate memory for Rx Virtual Fifo */
uccf->ucc_fast_rx_virtual_fifo_base_offset =
qe_muram_alloc(uf_info->urfs +
UCC_FAST_RECEIVE_VIRTUAL_FIFO_SIZE_FUDGE_FACTOR,
UCC_FAST_VIRT_FIFO_REGS_ALIGNMENT);
if (uccf->ucc_fast_rx_virtual_fifo_base_offset < 0) {
printk(KERN_ERR "%s: cannot allocate MURAM for RX FIFO\n",
__func__);
ucc_fast_free(uccf);
return -ENOMEM;
}
/* Set Virtual Fifo registers */
qe_iowrite16be(uf_info->urfs, &uf_regs->urfs);
qe_iowrite16be(uf_info->urfet, &uf_regs->urfet);
qe_iowrite16be(uf_info->urfset, &uf_regs->urfset);
qe_iowrite16be(uf_info->utfs, &uf_regs->utfs);
qe_iowrite16be(uf_info->utfet, &uf_regs->utfet);
qe_iowrite16be(uf_info->utftt, &uf_regs->utftt);
/* utfb, urfb are offsets from MURAM base */
qe_iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset,
&uf_regs->utfb);
qe_iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset,
&uf_regs->urfb);
/* Mux clocking */
/* Grant Support */
ucc_set_qe_mux_grant(uf_info->ucc_num, uf_info->grant_support);
/* Breakpoint Support */
ucc_set_qe_mux_bkpt(uf_info->ucc_num, uf_info->brkpt_support);
/* Set Tsa or NMSI mode. */
ucc_set_qe_mux_tsa(uf_info->ucc_num, uf_info->tsa);
/* If NMSI (not Tsa), set Tx and Rx clock. */
if (!uf_info->tsa) {
/* Rx clock routing */
if ((uf_info->rx_clock != QE_CLK_NONE) &&
ucc_set_qe_mux_rxtx(uf_info->ucc_num, uf_info->rx_clock,
COMM_DIR_RX)) {
printk(KERN_ERR "%s: illegal value for RX clock\n",
__func__);
ucc_fast_free(uccf);
return -EINVAL;
}
/* Tx clock routing */
if ((uf_info->tx_clock != QE_CLK_NONE) &&
ucc_set_qe_mux_rxtx(uf_info->ucc_num, uf_info->tx_clock,
COMM_DIR_TX)) {
printk(KERN_ERR "%s: illegal value for TX clock\n",
__func__);
ucc_fast_free(uccf);
return -EINVAL;
}
} else {
/* tdm Rx clock routing */
if ((uf_info->rx_clock != QE_CLK_NONE) &&
ucc_set_tdm_rxtx_clk(uf_info->tdm_num, uf_info->rx_clock,
COMM_DIR_RX)) {
pr_err("%s: illegal value for RX clock", __func__);
ucc_fast_free(uccf);
return -EINVAL;
}
/* tdm Tx clock routing */
if ((uf_info->tx_clock != QE_CLK_NONE) &&
ucc_set_tdm_rxtx_clk(uf_info->tdm_num, uf_info->tx_clock,
COMM_DIR_TX)) {
pr_err("%s: illegal value for TX clock", __func__);
ucc_fast_free(uccf);
return -EINVAL;
}
/* tdm Rx sync clock routing */
if ((uf_info->rx_sync != QE_CLK_NONE) &&
ucc_set_tdm_rxtx_sync(uf_info->tdm_num, uf_info->rx_sync,
COMM_DIR_RX)) {
pr_err("%s: illegal value for RX clock", __func__);
ucc_fast_free(uccf);
return -EINVAL;
}
/* tdm Tx sync clock routing */
if ((uf_info->tx_sync != QE_CLK_NONE) &&
ucc_set_tdm_rxtx_sync(uf_info->tdm_num, uf_info->tx_sync,
COMM_DIR_TX)) {
pr_err("%s: illegal value for TX clock", __func__);
ucc_fast_free(uccf);
return -EINVAL;
}
}
/* Set interrupt mask register at UCC level. */
qe_iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
/* First, clear anything pending at UCC level,
* otherwise, old garbage may come through
* as soon as the dam is opened. */
/* Writing '1' clears */
qe_iowrite32be(0xffffffff, &uf_regs->ucce);
*uccf_ret = uccf;
return 0;
}
EXPORT_SYMBOL(ucc_fast_init);
void ucc_fast_free(struct ucc_fast_private * uccf)
{
if (!uccf)
return;
qe_muram_free(uccf->ucc_fast_tx_virtual_fifo_base_offset);
qe_muram_free(uccf->ucc_fast_rx_virtual_fifo_base_offset);
if (uccf->uf_regs)
iounmap(uccf->uf_regs);
kfree(uccf);
}
EXPORT_SYMBOL(ucc_fast_free);