|  | /* | 
|  | * drivers/mtd/nand/fsmc_nand.c | 
|  | * | 
|  | * ST Microelectronics | 
|  | * Flexible Static Memory Controller (FSMC) | 
|  | * Driver for NAND portions | 
|  | * | 
|  | * Copyright © 2010 ST Microelectronics | 
|  | * Vipin Kumar <vipin.kumar@st.com> | 
|  | * Ashish Priyadarshi | 
|  | * | 
|  | * Based on drivers/mtd/nand/nomadik_nand.c | 
|  | * | 
|  | * This file is licensed under the terms of the GNU General Public | 
|  | * License version 2. This program is licensed "as is" without any | 
|  | * warranty of any kind, whether express or implied. | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/dma-direction.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/resource.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/nand_ecc.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/amba/bus.h> | 
|  | #include <mtd/mtd-abi.h> | 
|  |  | 
|  | /* fsmc controller registers for NOR flash */ | 
|  | #define CTRL			0x0 | 
|  | /* ctrl register definitions */ | 
|  | #define BANK_ENABLE		(1 << 0) | 
|  | #define MUXED			(1 << 1) | 
|  | #define NOR_DEV			(2 << 2) | 
|  | #define WIDTH_8			(0 << 4) | 
|  | #define WIDTH_16		(1 << 4) | 
|  | #define RSTPWRDWN		(1 << 6) | 
|  | #define WPROT			(1 << 7) | 
|  | #define WRT_ENABLE		(1 << 12) | 
|  | #define WAIT_ENB		(1 << 13) | 
|  |  | 
|  | #define CTRL_TIM		0x4 | 
|  | /* ctrl_tim register definitions */ | 
|  |  | 
|  | #define FSMC_NOR_BANK_SZ	0x8 | 
|  | #define FSMC_NOR_REG_SIZE	0x40 | 
|  |  | 
|  | #define FSMC_NOR_REG(base, bank, reg)		(base + \ | 
|  | FSMC_NOR_BANK_SZ * (bank) + \ | 
|  | reg) | 
|  |  | 
|  | /* fsmc controller registers for NAND flash */ | 
|  | #define PC			0x00 | 
|  | /* pc register definitions */ | 
|  | #define FSMC_RESET		(1 << 0) | 
|  | #define FSMC_WAITON		(1 << 1) | 
|  | #define FSMC_ENABLE		(1 << 2) | 
|  | #define FSMC_DEVTYPE_NAND	(1 << 3) | 
|  | #define FSMC_DEVWID_8		(0 << 4) | 
|  | #define FSMC_DEVWID_16		(1 << 4) | 
|  | #define FSMC_ECCEN		(1 << 6) | 
|  | #define FSMC_ECCPLEN_512	(0 << 7) | 
|  | #define FSMC_ECCPLEN_256	(1 << 7) | 
|  | #define FSMC_TCLR_1		(1) | 
|  | #define FSMC_TCLR_SHIFT		(9) | 
|  | #define FSMC_TCLR_MASK		(0xF) | 
|  | #define FSMC_TAR_1		(1) | 
|  | #define FSMC_TAR_SHIFT		(13) | 
|  | #define FSMC_TAR_MASK		(0xF) | 
|  | #define STS			0x04 | 
|  | /* sts register definitions */ | 
|  | #define FSMC_CODE_RDY		(1 << 15) | 
|  | #define COMM			0x08 | 
|  | /* comm register definitions */ | 
|  | #define FSMC_TSET_0		0 | 
|  | #define FSMC_TSET_SHIFT		0 | 
|  | #define FSMC_TSET_MASK		0xFF | 
|  | #define FSMC_TWAIT_6		6 | 
|  | #define FSMC_TWAIT_SHIFT	8 | 
|  | #define FSMC_TWAIT_MASK		0xFF | 
|  | #define FSMC_THOLD_4		4 | 
|  | #define FSMC_THOLD_SHIFT	16 | 
|  | #define FSMC_THOLD_MASK		0xFF | 
|  | #define FSMC_THIZ_1		1 | 
|  | #define FSMC_THIZ_SHIFT		24 | 
|  | #define FSMC_THIZ_MASK		0xFF | 
|  | #define ATTRIB			0x0C | 
|  | #define IOATA			0x10 | 
|  | #define ECC1			0x14 | 
|  | #define ECC2			0x18 | 
|  | #define ECC3			0x1C | 
|  | #define FSMC_NAND_BANK_SZ	0x20 | 
|  |  | 
|  | #define FSMC_NAND_REG(base, bank, reg)		(base + FSMC_NOR_REG_SIZE + \ | 
|  | (FSMC_NAND_BANK_SZ * (bank)) + \ | 
|  | reg) | 
|  |  | 
|  | #define FSMC_BUSY_WAIT_TIMEOUT	(1 * HZ) | 
|  |  | 
|  | struct fsmc_nand_timings { | 
|  | uint8_t tclr; | 
|  | uint8_t tar; | 
|  | uint8_t thiz; | 
|  | uint8_t thold; | 
|  | uint8_t twait; | 
|  | uint8_t tset; | 
|  | }; | 
|  |  | 
|  | enum access_mode { | 
|  | USE_DMA_ACCESS = 1, | 
|  | USE_WORD_ACCESS, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct fsmc_nand_data - structure for FSMC NAND device state | 
|  | * | 
|  | * @pid:		Part ID on the AMBA PrimeCell format | 
|  | * @mtd:		MTD info for a NAND flash. | 
|  | * @nand:		Chip related info for a NAND flash. | 
|  | * @partitions:		Partition info for a NAND Flash. | 
|  | * @nr_partitions:	Total number of partition of a NAND flash. | 
|  | * | 
|  | * @bank:		Bank number for probed device. | 
|  | * @clk:		Clock structure for FSMC. | 
|  | * | 
|  | * @read_dma_chan:	DMA channel for read access | 
|  | * @write_dma_chan:	DMA channel for write access to NAND | 
|  | * @dma_access_complete: Completion structure | 
|  | * | 
|  | * @data_pa:		NAND Physical port for Data. | 
|  | * @data_va:		NAND port for Data. | 
|  | * @cmd_va:		NAND port for Command. | 
|  | * @addr_va:		NAND port for Address. | 
|  | * @regs_va:		FSMC regs base address. | 
|  | */ | 
|  | struct fsmc_nand_data { | 
|  | u32			pid; | 
|  | struct nand_chip	nand; | 
|  |  | 
|  | unsigned int		bank; | 
|  | struct device		*dev; | 
|  | enum access_mode	mode; | 
|  | struct clk		*clk; | 
|  |  | 
|  | /* DMA related objects */ | 
|  | struct dma_chan		*read_dma_chan; | 
|  | struct dma_chan		*write_dma_chan; | 
|  | struct completion	dma_access_complete; | 
|  |  | 
|  | struct fsmc_nand_timings *dev_timings; | 
|  |  | 
|  | dma_addr_t		data_pa; | 
|  | void __iomem		*data_va; | 
|  | void __iomem		*cmd_va; | 
|  | void __iomem		*addr_va; | 
|  | void __iomem		*regs_va; | 
|  | }; | 
|  |  | 
|  | static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  |  | 
|  | if (section >= chip->ecc.steps) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = (section * 16) + 2; | 
|  | oobregion->length = 3; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  |  | 
|  | if (section >= chip->ecc.steps) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = (section * 16) + 8; | 
|  |  | 
|  | if (section < chip->ecc.steps - 1) | 
|  | oobregion->length = 8; | 
|  | else | 
|  | oobregion->length = mtd->oobsize - oobregion->offset; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = { | 
|  | .ecc = fsmc_ecc1_ooblayout_ecc, | 
|  | .free = fsmc_ecc1_ooblayout_free, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * ECC placement definitions in oobfree type format. | 
|  | * There are 13 bytes of ecc for every 512 byte block and it has to be read | 
|  | * consecutively and immediately after the 512 byte data block for hardware to | 
|  | * generate the error bit offsets in 512 byte data. | 
|  | */ | 
|  | static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  |  | 
|  | if (section >= chip->ecc.steps) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->length = chip->ecc.bytes; | 
|  |  | 
|  | if (!section && mtd->writesize <= 512) | 
|  | oobregion->offset = 0; | 
|  | else | 
|  | oobregion->offset = (section * 16) + 2; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobregion) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  |  | 
|  | if (section >= chip->ecc.steps) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobregion->offset = (section * 16) + 15; | 
|  |  | 
|  | if (section < chip->ecc.steps - 1) | 
|  | oobregion->length = 3; | 
|  | else | 
|  | oobregion->length = mtd->oobsize - oobregion->offset; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = { | 
|  | .ecc = fsmc_ecc4_ooblayout_ecc, | 
|  | .free = fsmc_ecc4_ooblayout_free, | 
|  | }; | 
|  |  | 
|  | static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd) | 
|  | { | 
|  | return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_cmd_ctrl - For facilitaing Hardware access | 
|  | * This routine allows hardware specific access to control-lines(ALE,CLE) | 
|  | */ | 
|  | static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) | 
|  | { | 
|  | struct nand_chip *this = mtd_to_nand(mtd); | 
|  | struct fsmc_nand_data *host = mtd_to_fsmc(mtd); | 
|  | void __iomem *regs = host->regs_va; | 
|  | unsigned int bank = host->bank; | 
|  |  | 
|  | if (ctrl & NAND_CTRL_CHANGE) { | 
|  | u32 pc; | 
|  |  | 
|  | if (ctrl & NAND_CLE) { | 
|  | this->IO_ADDR_R = host->cmd_va; | 
|  | this->IO_ADDR_W = host->cmd_va; | 
|  | } else if (ctrl & NAND_ALE) { | 
|  | this->IO_ADDR_R = host->addr_va; | 
|  | this->IO_ADDR_W = host->addr_va; | 
|  | } else { | 
|  | this->IO_ADDR_R = host->data_va; | 
|  | this->IO_ADDR_W = host->data_va; | 
|  | } | 
|  |  | 
|  | pc = readl(FSMC_NAND_REG(regs, bank, PC)); | 
|  | if (ctrl & NAND_NCE) | 
|  | pc |= FSMC_ENABLE; | 
|  | else | 
|  | pc &= ~FSMC_ENABLE; | 
|  | writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC)); | 
|  | } | 
|  |  | 
|  | mb(); | 
|  |  | 
|  | if (cmd != NAND_CMD_NONE) | 
|  | writeb_relaxed(cmd, this->IO_ADDR_W); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine | 
|  | * | 
|  | * This routine initializes timing parameters related to NAND memory access in | 
|  | * FSMC registers | 
|  | */ | 
|  | static void fsmc_nand_setup(void __iomem *regs, uint32_t bank, | 
|  | uint32_t busw, struct fsmc_nand_timings *timings) | 
|  | { | 
|  | uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; | 
|  | uint32_t tclr, tar, thiz, thold, twait, tset; | 
|  | struct fsmc_nand_timings *tims; | 
|  | struct fsmc_nand_timings default_timings = { | 
|  | .tclr	= FSMC_TCLR_1, | 
|  | .tar	= FSMC_TAR_1, | 
|  | .thiz	= FSMC_THIZ_1, | 
|  | .thold	= FSMC_THOLD_4, | 
|  | .twait	= FSMC_TWAIT_6, | 
|  | .tset	= FSMC_TSET_0, | 
|  | }; | 
|  |  | 
|  | if (timings) | 
|  | tims = timings; | 
|  | else | 
|  | tims = &default_timings; | 
|  |  | 
|  | tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; | 
|  | tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; | 
|  | thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; | 
|  | thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; | 
|  | twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; | 
|  | tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; | 
|  |  | 
|  | if (busw) | 
|  | writel_relaxed(value | FSMC_DEVWID_16, | 
|  | FSMC_NAND_REG(regs, bank, PC)); | 
|  | else | 
|  | writel_relaxed(value | FSMC_DEVWID_8, | 
|  | FSMC_NAND_REG(regs, bank, PC)); | 
|  |  | 
|  | writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar, | 
|  | FSMC_NAND_REG(regs, bank, PC)); | 
|  | writel_relaxed(thiz | thold | twait | tset, | 
|  | FSMC_NAND_REG(regs, bank, COMM)); | 
|  | writel_relaxed(thiz | thold | twait | tset, | 
|  | FSMC_NAND_REG(regs, bank, ATTRIB)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers | 
|  | */ | 
|  | static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | struct fsmc_nand_data *host = mtd_to_fsmc(mtd); | 
|  | void __iomem *regs = host->regs_va; | 
|  | uint32_t bank = host->bank; | 
|  |  | 
|  | writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256, | 
|  | FSMC_NAND_REG(regs, bank, PC)); | 
|  | writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN, | 
|  | FSMC_NAND_REG(regs, bank, PC)); | 
|  | writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN, | 
|  | FSMC_NAND_REG(regs, bank, PC)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by | 
|  | * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to | 
|  | * max of 8-bits) | 
|  | */ | 
|  | static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, | 
|  | uint8_t *ecc) | 
|  | { | 
|  | struct fsmc_nand_data *host = mtd_to_fsmc(mtd); | 
|  | void __iomem *regs = host->regs_va; | 
|  | uint32_t bank = host->bank; | 
|  | uint32_t ecc_tmp; | 
|  | unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; | 
|  |  | 
|  | do { | 
|  | if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY) | 
|  | break; | 
|  | else | 
|  | cond_resched(); | 
|  | } while (!time_after_eq(jiffies, deadline)); | 
|  |  | 
|  | if (time_after_eq(jiffies, deadline)) { | 
|  | dev_err(host->dev, "calculate ecc timed out\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); | 
|  | ecc[0] = (uint8_t) (ecc_tmp >> 0); | 
|  | ecc[1] = (uint8_t) (ecc_tmp >> 8); | 
|  | ecc[2] = (uint8_t) (ecc_tmp >> 16); | 
|  | ecc[3] = (uint8_t) (ecc_tmp >> 24); | 
|  |  | 
|  | ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); | 
|  | ecc[4] = (uint8_t) (ecc_tmp >> 0); | 
|  | ecc[5] = (uint8_t) (ecc_tmp >> 8); | 
|  | ecc[6] = (uint8_t) (ecc_tmp >> 16); | 
|  | ecc[7] = (uint8_t) (ecc_tmp >> 24); | 
|  |  | 
|  | ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); | 
|  | ecc[8] = (uint8_t) (ecc_tmp >> 0); | 
|  | ecc[9] = (uint8_t) (ecc_tmp >> 8); | 
|  | ecc[10] = (uint8_t) (ecc_tmp >> 16); | 
|  | ecc[11] = (uint8_t) (ecc_tmp >> 24); | 
|  |  | 
|  | ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); | 
|  | ecc[12] = (uint8_t) (ecc_tmp >> 16); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by | 
|  | * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to | 
|  | * max of 1-bit) | 
|  | */ | 
|  | static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, | 
|  | uint8_t *ecc) | 
|  | { | 
|  | struct fsmc_nand_data *host = mtd_to_fsmc(mtd); | 
|  | void __iomem *regs = host->regs_va; | 
|  | uint32_t bank = host->bank; | 
|  | uint32_t ecc_tmp; | 
|  |  | 
|  | ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); | 
|  | ecc[0] = (uint8_t) (ecc_tmp >> 0); | 
|  | ecc[1] = (uint8_t) (ecc_tmp >> 8); | 
|  | ecc[2] = (uint8_t) (ecc_tmp >> 16); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Count the number of 0's in buff upto a max of max_bits */ | 
|  | static int count_written_bits(uint8_t *buff, int size, int max_bits) | 
|  | { | 
|  | int k, written_bits = 0; | 
|  |  | 
|  | for (k = 0; k < size; k++) { | 
|  | written_bits += hweight8(~buff[k]); | 
|  | if (written_bits > max_bits) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return written_bits; | 
|  | } | 
|  |  | 
|  | static void dma_complete(void *param) | 
|  | { | 
|  | struct fsmc_nand_data *host = param; | 
|  |  | 
|  | complete(&host->dma_access_complete); | 
|  | } | 
|  |  | 
|  | static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | struct dma_chan *chan; | 
|  | struct dma_device *dma_dev; | 
|  | struct dma_async_tx_descriptor *tx; | 
|  | dma_addr_t dma_dst, dma_src, dma_addr; | 
|  | dma_cookie_t cookie; | 
|  | unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; | 
|  | int ret; | 
|  | unsigned long time_left; | 
|  |  | 
|  | if (direction == DMA_TO_DEVICE) | 
|  | chan = host->write_dma_chan; | 
|  | else if (direction == DMA_FROM_DEVICE) | 
|  | chan = host->read_dma_chan; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | dma_dev = chan->device; | 
|  | dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); | 
|  |  | 
|  | if (direction == DMA_TO_DEVICE) { | 
|  | dma_src = dma_addr; | 
|  | dma_dst = host->data_pa; | 
|  | } else { | 
|  | dma_src = host->data_pa; | 
|  | dma_dst = dma_addr; | 
|  | } | 
|  |  | 
|  | tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, | 
|  | len, flags); | 
|  | if (!tx) { | 
|  | dev_err(host->dev, "device_prep_dma_memcpy error\n"); | 
|  | ret = -EIO; | 
|  | goto unmap_dma; | 
|  | } | 
|  |  | 
|  | tx->callback = dma_complete; | 
|  | tx->callback_param = host; | 
|  | cookie = tx->tx_submit(tx); | 
|  |  | 
|  | ret = dma_submit_error(cookie); | 
|  | if (ret) { | 
|  | dev_err(host->dev, "dma_submit_error %d\n", cookie); | 
|  | goto unmap_dma; | 
|  | } | 
|  |  | 
|  | dma_async_issue_pending(chan); | 
|  |  | 
|  | time_left = | 
|  | wait_for_completion_timeout(&host->dma_access_complete, | 
|  | msecs_to_jiffies(3000)); | 
|  | if (time_left == 0) { | 
|  | dmaengine_terminate_all(chan); | 
|  | dev_err(host->dev, "wait_for_completion_timeout\n"); | 
|  | ret = -ETIMEDOUT; | 
|  | goto unmap_dma; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | unmap_dma: | 
|  | dma_unmap_single(dma_dev->dev, dma_addr, len, direction); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_write_buf - write buffer to chip | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	data buffer | 
|  | * @len:	number of bytes to write | 
|  | */ | 
|  | static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  |  | 
|  | if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && | 
|  | IS_ALIGNED(len, sizeof(uint32_t))) { | 
|  | uint32_t *p = (uint32_t *)buf; | 
|  | len = len >> 2; | 
|  | for (i = 0; i < len; i++) | 
|  | writel_relaxed(p[i], chip->IO_ADDR_W); | 
|  | } else { | 
|  | for (i = 0; i < len; i++) | 
|  | writeb_relaxed(buf[i], chip->IO_ADDR_W); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_read_buf - read chip data into buffer | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	buffer to store date | 
|  | * @len:	number of bytes to read | 
|  | */ | 
|  | static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  |  | 
|  | if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && | 
|  | IS_ALIGNED(len, sizeof(uint32_t))) { | 
|  | uint32_t *p = (uint32_t *)buf; | 
|  | len = len >> 2; | 
|  | for (i = 0; i < len; i++) | 
|  | p[i] = readl_relaxed(chip->IO_ADDR_R); | 
|  | } else { | 
|  | for (i = 0; i < len; i++) | 
|  | buf[i] = readb_relaxed(chip->IO_ADDR_R); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_read_buf_dma - read chip data into buffer | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	buffer to store date | 
|  | * @len:	number of bytes to read | 
|  | */ | 
|  | static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len) | 
|  | { | 
|  | struct fsmc_nand_data *host  = mtd_to_fsmc(mtd); | 
|  |  | 
|  | dma_xfer(host, buf, len, DMA_FROM_DEVICE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_write_buf_dma - write buffer to chip | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	data buffer | 
|  | * @len:	number of bytes to write | 
|  | */ | 
|  | static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf, | 
|  | int len) | 
|  | { | 
|  | struct fsmc_nand_data *host = mtd_to_fsmc(mtd); | 
|  |  | 
|  | dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_read_page_hwecc | 
|  | * @mtd:	mtd info structure | 
|  | * @chip:	nand chip info structure | 
|  | * @buf:	buffer to store read data | 
|  | * @oob_required:	caller expects OOB data read to chip->oob_poi | 
|  | * @page:	page number to read | 
|  | * | 
|  | * This routine is needed for fsmc version 8 as reading from NAND chip has to be | 
|  | * performed in a strict sequence as follows: | 
|  | * data(512 byte) -> ecc(13 byte) | 
|  | * After this read, fsmc hardware generates and reports error data bits(up to a | 
|  | * max of 8 bits) | 
|  | */ | 
|  | static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint8_t *buf, int oob_required, int page) | 
|  | { | 
|  | int i, j, s, stat, eccsize = chip->ecc.size; | 
|  | int eccbytes = chip->ecc.bytes; | 
|  | int eccsteps = chip->ecc.steps; | 
|  | uint8_t *p = buf; | 
|  | uint8_t *ecc_calc = chip->buffers->ecccalc; | 
|  | uint8_t *ecc_code = chip->buffers->ecccode; | 
|  | int off, len, group = 0; | 
|  | /* | 
|  | * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we | 
|  | * end up reading 14 bytes (7 words) from oob. The local array is | 
|  | * to maintain word alignment | 
|  | */ | 
|  | uint16_t ecc_oob[7]; | 
|  | uint8_t *oob = (uint8_t *)&ecc_oob[0]; | 
|  | unsigned int max_bitflips = 0; | 
|  |  | 
|  | for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); | 
|  | chip->ecc.hwctl(mtd, NAND_ECC_READ); | 
|  | chip->read_buf(mtd, p, eccsize); | 
|  |  | 
|  | for (j = 0; j < eccbytes;) { | 
|  | struct mtd_oob_region oobregion; | 
|  | int ret; | 
|  |  | 
|  | ret = mtd_ooblayout_ecc(mtd, group++, &oobregion); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | off = oobregion.offset; | 
|  | len = oobregion.length; | 
|  |  | 
|  | /* | 
|  | * length is intentionally kept a higher multiple of 2 | 
|  | * to read at least 13 bytes even in case of 16 bit NAND | 
|  | * devices | 
|  | */ | 
|  | if (chip->options & NAND_BUSWIDTH_16) | 
|  | len = roundup(len, 2); | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); | 
|  | chip->read_buf(mtd, oob + j, len); | 
|  | j += len; | 
|  | } | 
|  |  | 
|  | memcpy(&ecc_code[i], oob, chip->ecc.bytes); | 
|  | chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
|  |  | 
|  | stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); | 
|  | if (stat < 0) { | 
|  | mtd->ecc_stats.failed++; | 
|  | } else { | 
|  | mtd->ecc_stats.corrected += stat; | 
|  | max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
|  | } | 
|  | } | 
|  |  | 
|  | return max_bitflips; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_bch8_correct_data | 
|  | * @mtd:	mtd info structure | 
|  | * @dat:	buffer of read data | 
|  | * @read_ecc:	ecc read from device spare area | 
|  | * @calc_ecc:	ecc calculated from read data | 
|  | * | 
|  | * calc_ecc is a 104 bit information containing maximum of 8 error | 
|  | * offset informations of 13 bits each in 512 bytes of read data. | 
|  | */ | 
|  | static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, | 
|  | uint8_t *read_ecc, uint8_t *calc_ecc) | 
|  | { | 
|  | struct nand_chip *chip = mtd_to_nand(mtd); | 
|  | struct fsmc_nand_data *host = mtd_to_fsmc(mtd); | 
|  | void __iomem *regs = host->regs_va; | 
|  | unsigned int bank = host->bank; | 
|  | uint32_t err_idx[8]; | 
|  | uint32_t num_err, i; | 
|  | uint32_t ecc1, ecc2, ecc3, ecc4; | 
|  |  | 
|  | num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF; | 
|  |  | 
|  | /* no bit flipping */ | 
|  | if (likely(num_err == 0)) | 
|  | return 0; | 
|  |  | 
|  | /* too many errors */ | 
|  | if (unlikely(num_err > 8)) { | 
|  | /* | 
|  | * This is a temporary erase check. A newly erased page read | 
|  | * would result in an ecc error because the oob data is also | 
|  | * erased to FF and the calculated ecc for an FF data is not | 
|  | * FF..FF. | 
|  | * This is a workaround to skip performing correction in case | 
|  | * data is FF..FF | 
|  | * | 
|  | * Logic: | 
|  | * For every page, each bit written as 0 is counted until these | 
|  | * number of bits are greater than 8 (the maximum correction | 
|  | * capability of FSMC for each 512 + 13 bytes) | 
|  | */ | 
|  |  | 
|  | int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); | 
|  | int bits_data = count_written_bits(dat, chip->ecc.size, 8); | 
|  |  | 
|  | if ((bits_ecc + bits_data) <= 8) { | 
|  | if (bits_data) | 
|  | memset(dat, 0xff, chip->ecc.size); | 
|  | return bits_data; | 
|  | } | 
|  |  | 
|  | return -EBADMSG; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ------------------- calc_ecc[] bit wise -----------|--13 bits--| | 
|  | * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| | 
|  | * | 
|  | * calc_ecc is a 104 bit information containing maximum of 8 error | 
|  | * offset informations of 13 bits each. calc_ecc is copied into a | 
|  | * uint64_t array and error offset indexes are populated in err_idx | 
|  | * array | 
|  | */ | 
|  | ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); | 
|  | ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); | 
|  | ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); | 
|  | ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); | 
|  |  | 
|  | err_idx[0] = (ecc1 >> 0) & 0x1FFF; | 
|  | err_idx[1] = (ecc1 >> 13) & 0x1FFF; | 
|  | err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); | 
|  | err_idx[3] = (ecc2 >> 7) & 0x1FFF; | 
|  | err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); | 
|  | err_idx[5] = (ecc3 >> 1) & 0x1FFF; | 
|  | err_idx[6] = (ecc3 >> 14) & 0x1FFF; | 
|  | err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); | 
|  |  | 
|  | i = 0; | 
|  | while (num_err--) { | 
|  | change_bit(0, (unsigned long *)&err_idx[i]); | 
|  | change_bit(1, (unsigned long *)&err_idx[i]); | 
|  |  | 
|  | if (err_idx[i] < chip->ecc.size * 8) { | 
|  | change_bit(err_idx[i], (unsigned long *)dat); | 
|  | i++; | 
|  | } | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static bool filter(struct dma_chan *chan, void *slave) | 
|  | { | 
|  | chan->private = slave; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int fsmc_nand_probe_config_dt(struct platform_device *pdev, | 
|  | struct fsmc_nand_data *host, | 
|  | struct nand_chip *nand) | 
|  | { | 
|  | struct device_node *np = pdev->dev.of_node; | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | nand->options = 0; | 
|  |  | 
|  | if (!of_property_read_u32(np, "bank-width", &val)) { | 
|  | if (val == 2) { | 
|  | nand->options |= NAND_BUSWIDTH_16; | 
|  | } else if (val != 1) { | 
|  | dev_err(&pdev->dev, "invalid bank-width %u\n", val); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (of_get_property(np, "nand-skip-bbtscan", NULL)) | 
|  | nand->options |= NAND_SKIP_BBTSCAN; | 
|  |  | 
|  | host->dev_timings = devm_kzalloc(&pdev->dev, | 
|  | sizeof(*host->dev_timings), GFP_KERNEL); | 
|  | if (!host->dev_timings) | 
|  | return -ENOMEM; | 
|  | ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings, | 
|  | sizeof(*host->dev_timings)); | 
|  | if (ret) { | 
|  | dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n"); | 
|  | host->dev_timings = NULL; | 
|  | } | 
|  |  | 
|  | /* Set default NAND bank to 0 */ | 
|  | host->bank = 0; | 
|  | if (!of_property_read_u32(np, "bank", &val)) { | 
|  | if (val > 3) { | 
|  | dev_err(&pdev->dev, "invalid bank %u\n", val); | 
|  | return -EINVAL; | 
|  | } | 
|  | host->bank = val; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_nand_probe - Probe function | 
|  | * @pdev:       platform device structure | 
|  | */ | 
|  | static int __init fsmc_nand_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct fsmc_nand_data *host; | 
|  | struct mtd_info *mtd; | 
|  | struct nand_chip *nand; | 
|  | struct resource *res; | 
|  | dma_cap_mask_t mask; | 
|  | int ret = 0; | 
|  | u32 pid; | 
|  | int i; | 
|  |  | 
|  | /* Allocate memory for the device structure (and zero it) */ | 
|  | host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); | 
|  | if (!host) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nand = &host->nand; | 
|  |  | 
|  | ret = fsmc_nand_probe_config_dt(pdev, host, nand); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); | 
|  | host->data_va = devm_ioremap_resource(&pdev->dev, res); | 
|  | if (IS_ERR(host->data_va)) | 
|  | return PTR_ERR(host->data_va); | 
|  |  | 
|  | host->data_pa = (dma_addr_t)res->start; | 
|  |  | 
|  | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); | 
|  | host->addr_va = devm_ioremap_resource(&pdev->dev, res); | 
|  | if (IS_ERR(host->addr_va)) | 
|  | return PTR_ERR(host->addr_va); | 
|  |  | 
|  | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); | 
|  | host->cmd_va = devm_ioremap_resource(&pdev->dev, res); | 
|  | if (IS_ERR(host->cmd_va)) | 
|  | return PTR_ERR(host->cmd_va); | 
|  |  | 
|  | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); | 
|  | host->regs_va = devm_ioremap_resource(&pdev->dev, res); | 
|  | if (IS_ERR(host->regs_va)) | 
|  | return PTR_ERR(host->regs_va); | 
|  |  | 
|  | host->clk = devm_clk_get(&pdev->dev, NULL); | 
|  | if (IS_ERR(host->clk)) { | 
|  | dev_err(&pdev->dev, "failed to fetch block clock\n"); | 
|  | return PTR_ERR(host->clk); | 
|  | } | 
|  |  | 
|  | ret = clk_prepare_enable(host->clk); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * This device ID is actually a common AMBA ID as used on the | 
|  | * AMBA PrimeCell bus. However it is not a PrimeCell. | 
|  | */ | 
|  | for (pid = 0, i = 0; i < 4; i++) | 
|  | pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); | 
|  | host->pid = pid; | 
|  | dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " | 
|  | "revision %02x, config %02x\n", | 
|  | AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), | 
|  | AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); | 
|  |  | 
|  | host->dev = &pdev->dev; | 
|  |  | 
|  | if (host->mode == USE_DMA_ACCESS) | 
|  | init_completion(&host->dma_access_complete); | 
|  |  | 
|  | /* Link all private pointers */ | 
|  | mtd = nand_to_mtd(&host->nand); | 
|  | nand_set_controller_data(nand, host); | 
|  | nand_set_flash_node(nand, pdev->dev.of_node); | 
|  |  | 
|  | mtd->dev.parent = &pdev->dev; | 
|  | nand->IO_ADDR_R = host->data_va; | 
|  | nand->IO_ADDR_W = host->data_va; | 
|  | nand->cmd_ctrl = fsmc_cmd_ctrl; | 
|  | nand->chip_delay = 30; | 
|  |  | 
|  | /* | 
|  | * Setup default ECC mode. nand_dt_init() called from nand_scan_ident() | 
|  | * can overwrite this value if the DT provides a different value. | 
|  | */ | 
|  | nand->ecc.mode = NAND_ECC_HW; | 
|  | nand->ecc.hwctl = fsmc_enable_hwecc; | 
|  | nand->ecc.size = 512; | 
|  | nand->badblockbits = 7; | 
|  |  | 
|  | switch (host->mode) { | 
|  | case USE_DMA_ACCESS: | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_MEMCPY, mask); | 
|  | host->read_dma_chan = dma_request_channel(mask, filter, NULL); | 
|  | if (!host->read_dma_chan) { | 
|  | dev_err(&pdev->dev, "Unable to get read dma channel\n"); | 
|  | goto err_req_read_chnl; | 
|  | } | 
|  | host->write_dma_chan = dma_request_channel(mask, filter, NULL); | 
|  | if (!host->write_dma_chan) { | 
|  | dev_err(&pdev->dev, "Unable to get write dma channel\n"); | 
|  | goto err_req_write_chnl; | 
|  | } | 
|  | nand->read_buf = fsmc_read_buf_dma; | 
|  | nand->write_buf = fsmc_write_buf_dma; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | case USE_WORD_ACCESS: | 
|  | nand->read_buf = fsmc_read_buf; | 
|  | nand->write_buf = fsmc_write_buf; | 
|  | break; | 
|  | } | 
|  |  | 
|  | fsmc_nand_setup(host->regs_va, host->bank, | 
|  | nand->options & NAND_BUSWIDTH_16, | 
|  | host->dev_timings); | 
|  |  | 
|  | if (AMBA_REV_BITS(host->pid) >= 8) { | 
|  | nand->ecc.read_page = fsmc_read_page_hwecc; | 
|  | nand->ecc.calculate = fsmc_read_hwecc_ecc4; | 
|  | nand->ecc.correct = fsmc_bch8_correct_data; | 
|  | nand->ecc.bytes = 13; | 
|  | nand->ecc.strength = 8; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan to find existence of the device | 
|  | */ | 
|  | ret = nand_scan_ident(mtd, 1, NULL); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "No NAND Device found!\n"); | 
|  | goto err_scan_ident; | 
|  | } | 
|  |  | 
|  | if (AMBA_REV_BITS(host->pid) >= 8) { | 
|  | switch (mtd->oobsize) { | 
|  | case 16: | 
|  | case 64: | 
|  | case 128: | 
|  | case 224: | 
|  | case 256: | 
|  | break; | 
|  | default: | 
|  | dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n", | 
|  | mtd->oobsize); | 
|  | ret = -EINVAL; | 
|  | goto err_probe; | 
|  | } | 
|  |  | 
|  | mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops); | 
|  | } else { | 
|  | switch (nand->ecc.mode) { | 
|  | case NAND_ECC_HW: | 
|  | dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n"); | 
|  | nand->ecc.calculate = fsmc_read_hwecc_ecc1; | 
|  | nand->ecc.correct = nand_correct_data; | 
|  | nand->ecc.bytes = 3; | 
|  | nand->ecc.strength = 1; | 
|  | break; | 
|  |  | 
|  | case NAND_ECC_SOFT: | 
|  | if (nand->ecc.algo == NAND_ECC_BCH) { | 
|  | dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | dev_err(&pdev->dev, "Unsupported ECC mode!\n"); | 
|  | goto err_probe; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't set layout for BCH4 SW ECC. This will be | 
|  | * generated later in nand_bch_init() later. | 
|  | */ | 
|  | if (nand->ecc.mode == NAND_ECC_HW) { | 
|  | switch (mtd->oobsize) { | 
|  | case 16: | 
|  | case 64: | 
|  | case 128: | 
|  | mtd_set_ooblayout(mtd, | 
|  | &fsmc_ecc1_ooblayout_ops); | 
|  | break; | 
|  | default: | 
|  | dev_warn(&pdev->dev, | 
|  | "No oob scheme defined for oobsize %d\n", | 
|  | mtd->oobsize); | 
|  | ret = -EINVAL; | 
|  | goto err_probe; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Second stage of scan to fill MTD data-structures */ | 
|  | ret = nand_scan_tail(mtd); | 
|  | if (ret) | 
|  | goto err_probe; | 
|  |  | 
|  | mtd->name = "nand"; | 
|  | ret = mtd_device_register(mtd, NULL, 0); | 
|  | if (ret) | 
|  | goto err_probe; | 
|  |  | 
|  | platform_set_drvdata(pdev, host); | 
|  | dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); | 
|  | return 0; | 
|  |  | 
|  | err_probe: | 
|  | err_scan_ident: | 
|  | if (host->mode == USE_DMA_ACCESS) | 
|  | dma_release_channel(host->write_dma_chan); | 
|  | err_req_write_chnl: | 
|  | if (host->mode == USE_DMA_ACCESS) | 
|  | dma_release_channel(host->read_dma_chan); | 
|  | err_req_read_chnl: | 
|  | clk_disable_unprepare(host->clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean up routine | 
|  | */ | 
|  | static int fsmc_nand_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct fsmc_nand_data *host = platform_get_drvdata(pdev); | 
|  |  | 
|  | if (host) { | 
|  | nand_release(nand_to_mtd(&host->nand)); | 
|  |  | 
|  | if (host->mode == USE_DMA_ACCESS) { | 
|  | dma_release_channel(host->write_dma_chan); | 
|  | dma_release_channel(host->read_dma_chan); | 
|  | } | 
|  | clk_disable_unprepare(host->clk); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | static int fsmc_nand_suspend(struct device *dev) | 
|  | { | 
|  | struct fsmc_nand_data *host = dev_get_drvdata(dev); | 
|  | if (host) | 
|  | clk_disable_unprepare(host->clk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fsmc_nand_resume(struct device *dev) | 
|  | { | 
|  | struct fsmc_nand_data *host = dev_get_drvdata(dev); | 
|  | if (host) { | 
|  | clk_prepare_enable(host->clk); | 
|  | fsmc_nand_setup(host->regs_va, host->bank, | 
|  | host->nand.options & NAND_BUSWIDTH_16, | 
|  | host->dev_timings); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); | 
|  |  | 
|  | static const struct of_device_id fsmc_nand_id_table[] = { | 
|  | { .compatible = "st,spear600-fsmc-nand" }, | 
|  | { .compatible = "stericsson,fsmc-nand" }, | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); | 
|  |  | 
|  | static struct platform_driver fsmc_nand_driver = { | 
|  | .remove = fsmc_nand_remove, | 
|  | .driver = { | 
|  | .name = "fsmc-nand", | 
|  | .of_match_table = fsmc_nand_id_table, | 
|  | .pm = &fsmc_nand_pm_ops, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); | 
|  | MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); |