blob: e4515bf920388e317dd60e5fa1e5e40b9efa4de4 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*
*/
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_reg.h"
#include "intel_crtc.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dsb.h"
#include "intel_dsb_buffer.h"
#include "intel_dsb_regs.h"
#include "intel_vblank.h"
#include "intel_vrr.h"
#include "skl_watermark.h"
#define CACHELINE_BYTES 64
enum dsb_id {
INVALID_DSB = -1,
DSB1,
DSB2,
DSB3,
MAX_DSB_PER_PIPE
};
struct intel_dsb {
enum dsb_id id;
struct intel_dsb_buffer dsb_buf;
struct intel_crtc *crtc;
/*
* maximum number of dwords the buffer will hold.
*/
unsigned int size;
/*
* free_pos will point the first free dword and
* help in calculating tail of command buffer.
*/
unsigned int free_pos;
/*
* ins_start_offset will help to store start dword of the dsb
* instuction and help in identifying the batch of auto-increment
* register.
*/
unsigned int ins_start_offset;
int dewake_scanline;
};
/**
* DOC: DSB
*
* A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
* which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
* engine that can be programmed to download the DSB from memory.
* It allows driver to batch submit display HW programming. This helps to
* reduce loading time and CPU activity, thereby making the context switch
* faster. DSB Support added from Gen12 Intel graphics based platform.
*
* DSB's can access only the pipe, plane, and transcoder Data Island Packet
* registers.
*
* DSB HW can support only register writes (both indexed and direct MMIO
* writes). There are no registers reads possible with DSB HW engine.
*/
/* DSB opcodes. */
#define DSB_OPCODE_SHIFT 24
#define DSB_OPCODE_NOOP 0x0
#define DSB_OPCODE_MMIO_WRITE 0x1
#define DSB_BYTE_EN 0xf
#define DSB_BYTE_EN_SHIFT 20
#define DSB_REG_VALUE_MASK 0xfffff
#define DSB_OPCODE_WAIT_USEC 0x2
#define DSB_OPCODE_WAIT_SCANLINE 0x3
#define DSB_OPCODE_WAIT_VBLANKS 0x4
#define DSB_OPCODE_WAIT_DSL_IN 0x5
#define DSB_OPCODE_WAIT_DSL_OUT 0x6
#define DSB_SCANLINE_UPPER_SHIFT 20
#define DSB_SCANLINE_LOWER_SHIFT 0
#define DSB_OPCODE_INTERRUPT 0x7
#define DSB_OPCODE_INDEXED_WRITE 0x9
/* see DSB_REG_VALUE_MASK */
#define DSB_OPCODE_POLL 0xA
/* see DSB_REG_VALUE_MASK */
static bool assert_dsb_has_room(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
/* each instruction is 2 dwords */
return !drm_WARN(&i915->drm, dsb->free_pos > dsb->size - 2,
"[CRTC:%d:%s] DSB %d buffer overflow\n",
crtc->base.base.id, crtc->base.name, dsb->id);
}
static void intel_dsb_dump(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
int i;
drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] DSB %d commands {\n",
crtc->base.base.id, crtc->base.name, dsb->id);
for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4)
drm_dbg_kms(&i915->drm,
" 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4,
intel_dsb_buffer_read(&dsb->dsb_buf, i),
intel_dsb_buffer_read(&dsb->dsb_buf, i + 1),
intel_dsb_buffer_read(&dsb->dsb_buf, i + 2),
intel_dsb_buffer_read(&dsb->dsb_buf, i + 3));
drm_dbg_kms(&i915->drm, "}\n");
}
static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe,
enum dsb_id id)
{
return intel_de_read_fw(i915, DSB_CTRL(pipe, id)) & DSB_STATUS_BUSY;
}
static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw)
{
if (!assert_dsb_has_room(dsb))
return;
/* Every instruction should be 8 byte aligned. */
dsb->free_pos = ALIGN(dsb->free_pos, 2);
dsb->ins_start_offset = dsb->free_pos;
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, ldw);
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, udw);
}
static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb,
u32 opcode, i915_reg_t reg)
{
u32 prev_opcode, prev_reg;
/*
* Nothing emitted yet? Must check before looking
* at the actual data since i915_gem_object_create_internal()
* does *not* give you zeroed memory!
*/
if (dsb->free_pos == 0)
return false;
prev_opcode = intel_dsb_buffer_read(&dsb->dsb_buf,
dsb->ins_start_offset + 1) & ~DSB_REG_VALUE_MASK;
prev_reg = intel_dsb_buffer_read(&dsb->dsb_buf,
dsb->ins_start_offset + 1) & DSB_REG_VALUE_MASK;
return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg);
}
static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg)
{
/* only full byte-enables can be converted to indexed writes */
return intel_dsb_prev_ins_is_write(dsb,
DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT |
DSB_BYTE_EN << DSB_BYTE_EN_SHIFT,
reg);
}
static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg)
{
return intel_dsb_prev_ins_is_write(dsb,
DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT,
reg);
}
/**
* intel_dsb_reg_write() - Emit register wriite to the DSB context
* @dsb: DSB context
* @reg: register address.
* @val: value.
*
* This function is used for writing register-value pair in command
* buffer of DSB.
*/
void intel_dsb_reg_write(struct intel_dsb *dsb,
i915_reg_t reg, u32 val)
{
u32 old_val;
/*
* For example the buffer will look like below for 3 dwords for auto
* increment register:
* +--------------------------------------------------------+
* | size = 3 | offset &| value1 | value2 | value3 | zero |
* | | opcode | | | | |
* +--------------------------------------------------------+
* + + + + + + +
* 0 4 8 12 16 20 24
* Byte
*
* As every instruction is 8 byte aligned the index of dsb instruction
* will start always from even number while dealing with u32 array. If
* we are writing odd no of dwords, Zeros will be added in the end for
* padding.
*/
if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) &&
!intel_dsb_prev_ins_is_indexed_write(dsb, reg)) {
intel_dsb_emit(dsb, val,
(DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
(DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
i915_mmio_reg_offset(reg));
} else {
if (!assert_dsb_has_room(dsb))
return;
/* convert to indexed write? */
if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) {
u32 prev_val = intel_dsb_buffer_read(&dsb->dsb_buf,
dsb->ins_start_offset + 0);
intel_dsb_buffer_write(&dsb->dsb_buf,
dsb->ins_start_offset + 0, 1); /* count */
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 1,
(DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) |
i915_mmio_reg_offset(reg));
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 2, prev_val);
dsb->free_pos++;
}
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, val);
/* Update the count */
old_val = intel_dsb_buffer_read(&dsb->dsb_buf, dsb->ins_start_offset);
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset, old_val + 1);
/* if number of data words is odd, then the last dword should be 0.*/
if (dsb->free_pos & 0x1)
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos, 0);
}
}
static u32 intel_dsb_mask_to_byte_en(u32 mask)
{
return (!!(mask & 0xff000000) << 3 |
!!(mask & 0x00ff0000) << 2 |
!!(mask & 0x0000ff00) << 1 |
!!(mask & 0x000000ff) << 0);
}
/* Note: mask implemented via byte enables! */
void intel_dsb_reg_write_masked(struct intel_dsb *dsb,
i915_reg_t reg, u32 mask, u32 val)
{
intel_dsb_emit(dsb, val,
(DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
(intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) |
i915_mmio_reg_offset(reg));
}
void intel_dsb_noop(struct intel_dsb *dsb, int count)
{
int i;
for (i = 0; i < count; i++)
intel_dsb_emit(dsb, 0,
DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT);
}
void intel_dsb_nonpost_start(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
enum pipe pipe = crtc->pipe;
intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
DSB_NON_POSTED, DSB_NON_POSTED);
intel_dsb_noop(dsb, 4);
}
void intel_dsb_nonpost_end(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
enum pipe pipe = crtc->pipe;
intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
DSB_NON_POSTED, 0);
intel_dsb_noop(dsb, 4);
}
static void intel_dsb_align_tail(struct intel_dsb *dsb)
{
u32 aligned_tail, tail;
tail = dsb->free_pos * 4;
aligned_tail = ALIGN(tail, CACHELINE_BYTES);
if (aligned_tail > tail)
intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0,
aligned_tail - tail);
dsb->free_pos = aligned_tail / 4;
}
void intel_dsb_finish(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
/*
* DSB_FORCE_DEWAKE remains active even after DSB is
* disabled, so make sure to clear it (if set during
* intel_dsb_commit()).
*/
intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id),
DSB_FORCE_DEWAKE, 0);
intel_dsb_align_tail(dsb);
intel_dsb_buffer_flush_map(&dsb->dsb_buf);
}
static int intel_dsb_dewake_scanline(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
unsigned int latency = skl_watermark_max_latency(i915, 0);
int vblank_start;
if (crtc_state->vrr.enable) {
vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
} else {
vblank_start = adjusted_mode->crtc_vblank_start;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
vblank_start = DIV_ROUND_UP(vblank_start, 2);
}
return max(0, vblank_start - intel_usecs_to_scanlines(adjusted_mode, latency));
}
static u32 dsb_chicken(struct intel_crtc *crtc)
{
if (crtc->mode_flags & I915_MODE_FLAG_VRR)
return DSB_CTRL_WAIT_SAFE_WINDOW |
DSB_CTRL_NO_WAIT_VBLANK |
DSB_INST_WAIT_SAFE_WINDOW |
DSB_INST_NO_WAIT_VBLANK;
else
return 0;
}
static void _intel_dsb_commit(struct intel_dsb *dsb, u32 ctrl,
int dewake_scanline)
{
struct intel_crtc *crtc = dsb->crtc;
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 tail;
tail = dsb->free_pos * 4;
if (drm_WARN_ON(&dev_priv->drm, !IS_ALIGNED(tail, CACHELINE_BYTES)))
return;
if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
drm_err(&dev_priv->drm, "[CRTC:%d:%s] DSB %d is busy\n",
crtc->base.base.id, crtc->base.name, dsb->id);
return;
}
intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id),
ctrl | DSB_ENABLE);
intel_de_write_fw(dev_priv, DSB_CHICKEN(pipe, dsb->id),
dsb_chicken(crtc));
intel_de_write_fw(dev_priv, DSB_HEAD(pipe, dsb->id),
intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf));
if (dewake_scanline >= 0) {
int diff, hw_dewake_scanline;
hw_dewake_scanline = intel_crtc_scanline_to_hw(crtc, dewake_scanline);
intel_de_write_fw(dev_priv, DSB_PMCTRL(pipe, dsb->id),
DSB_ENABLE_DEWAKE |
DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline));
/*
* Force DEwake immediately if we're already past
* or close to racing past the target scanline.
*/
diff = dewake_scanline - intel_get_crtc_scanline(crtc);
intel_de_write_fw(dev_priv, DSB_PMCTRL_2(pipe, dsb->id),
(diff >= 0 && diff < 5 ? DSB_FORCE_DEWAKE : 0) |
DSB_BLOCK_DEWAKE_EXTENSION);
}
intel_de_write_fw(dev_priv, DSB_TAIL(pipe, dsb->id),
intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf) + tail);
}
/**
* intel_dsb_commit() - Trigger workload execution of DSB.
* @dsb: DSB context
* @wait_for_vblank: wait for vblank before executing
*
* This function is used to do actual write to hardware using DSB.
*/
void intel_dsb_commit(struct intel_dsb *dsb,
bool wait_for_vblank)
{
_intel_dsb_commit(dsb,
wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0,
wait_for_vblank ? dsb->dewake_scanline : -1);
}
void intel_dsb_wait(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1)) {
u32 offset = intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf);
intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id),
DSB_ENABLE | DSB_HALT);
drm_err(&dev_priv->drm,
"[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n",
crtc->base.base.id, crtc->base.name, dsb->id,
intel_de_read_fw(dev_priv, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset,
intel_de_read_fw(dev_priv, DSB_HEAD(pipe, dsb->id)) - offset,
intel_de_read_fw(dev_priv, DSB_TAIL(pipe, dsb->id)) - offset);
intel_dsb_dump(dsb);
}
/* Attempt to reset it */
dsb->free_pos = 0;
dsb->ins_start_offset = 0;
intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id), 0);
}
/**
* intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
* @crtc_state: the CRTC state
* @max_cmds: number of commands we need to fit into command buffer
*
* This function prepare the command buffer which is used to store dsb
* instructions with data.
*
* Returns:
* DSB context, NULL on failure
*/
struct intel_dsb *intel_dsb_prepare(const struct intel_crtc_state *crtc_state,
unsigned int max_cmds)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
intel_wakeref_t wakeref;
struct intel_dsb *dsb;
unsigned int size;
if (!HAS_DSB(i915))
return NULL;
/* TODO: DSB is broken in Xe KMD, so disabling it until fixed */
if (!IS_ENABLED(I915))
return NULL;
dsb = kzalloc(sizeof(*dsb), GFP_KERNEL);
if (!dsb)
goto out;
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
/* ~1 qword per instruction, full cachelines */
size = ALIGN(max_cmds * 8, CACHELINE_BYTES);
if (!intel_dsb_buffer_create(crtc, &dsb->dsb_buf, size))
goto out_put_rpm;
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
dsb->id = DSB1;
dsb->crtc = crtc;
dsb->size = size / 4; /* in dwords */
dsb->free_pos = 0;
dsb->ins_start_offset = 0;
dsb->dewake_scanline = intel_dsb_dewake_scanline(crtc_state);
return dsb;
out_put_rpm:
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
kfree(dsb);
out:
drm_info_once(&i915->drm,
"[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n",
crtc->base.base.id, crtc->base.name, DSB1);
return NULL;
}
/**
* intel_dsb_cleanup() - To cleanup DSB context.
* @dsb: DSB context
*
* This function cleanup the DSB context by unpinning and releasing
* the VMA object associated with it.
*/
void intel_dsb_cleanup(struct intel_dsb *dsb)
{
intel_dsb_buffer_cleanup(&dsb->dsb_buf);
kfree(dsb);
}