blob: 21776c529fa97a127836bf86a467a4e0bac47603 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _X86_MICROCODE_INTERNAL_H
#define _X86_MICROCODE_INTERNAL_H
#include <linux/earlycpio.h>
#include <linux/initrd.h>
#include <asm/cpu.h>
#include <asm/microcode.h>
struct device;
enum ucode_state {
UCODE_OK = 0,
UCODE_NEW,
UCODE_NEW_SAFE,
UCODE_UPDATED,
UCODE_NFOUND,
UCODE_ERROR,
UCODE_TIMEOUT,
UCODE_OFFLINE,
};
struct microcode_ops {
enum ucode_state (*request_microcode_fw)(int cpu, struct device *dev);
void (*microcode_fini_cpu)(int cpu);
/*
* The generic 'microcode_core' part guarantees that the callbacks
* below run on a target CPU when they are being called.
* See also the "Synchronization" section in microcode_core.c.
*/
enum ucode_state (*apply_microcode)(int cpu);
int (*collect_cpu_info)(int cpu, struct cpu_signature *csig);
void (*finalize_late_load)(int result);
unsigned int nmi_safe : 1,
use_nmi : 1;
};
struct early_load_data {
u32 old_rev;
u32 new_rev;
};
extern struct early_load_data early_data;
extern struct ucode_cpu_info ucode_cpu_info[];
struct cpio_data find_microcode_in_initrd(const char *path);
#define MAX_UCODE_COUNT 128
#define QCHAR(a, b, c, d) ((a) + ((b) << 8) + ((c) << 16) + ((d) << 24))
#define CPUID_INTEL1 QCHAR('G', 'e', 'n', 'u')
#define CPUID_INTEL2 QCHAR('i', 'n', 'e', 'I')
#define CPUID_INTEL3 QCHAR('n', 't', 'e', 'l')
#define CPUID_AMD1 QCHAR('A', 'u', 't', 'h')
#define CPUID_AMD2 QCHAR('e', 'n', 't', 'i')
#define CPUID_AMD3 QCHAR('c', 'A', 'M', 'D')
#define CPUID_IS(a, b, c, ebx, ecx, edx) \
(!(((ebx) ^ (a)) | ((edx) ^ (b)) | ((ecx) ^ (c))))
/*
* In early loading microcode phase on BSP, boot_cpu_data is not set up yet.
* x86_cpuid_vendor() gets vendor id for BSP.
*
* In 32 bit AP case, accessing boot_cpu_data needs linear address. To simplify
* coding, we still use x86_cpuid_vendor() to get vendor id for AP.
*
* x86_cpuid_vendor() gets vendor information directly from CPUID.
*/
static inline int x86_cpuid_vendor(void)
{
u32 eax = 0x00000000;
u32 ebx, ecx = 0, edx;
native_cpuid(&eax, &ebx, &ecx, &edx);
if (CPUID_IS(CPUID_INTEL1, CPUID_INTEL2, CPUID_INTEL3, ebx, ecx, edx))
return X86_VENDOR_INTEL;
if (CPUID_IS(CPUID_AMD1, CPUID_AMD2, CPUID_AMD3, ebx, ecx, edx))
return X86_VENDOR_AMD;
return X86_VENDOR_UNKNOWN;
}
static inline unsigned int x86_cpuid_family(void)
{
u32 eax = 0x00000001;
u32 ebx, ecx = 0, edx;
native_cpuid(&eax, &ebx, &ecx, &edx);
return x86_family(eax);
}
extern bool dis_ucode_ldr;
extern bool force_minrev;
#ifdef CONFIG_CPU_SUP_AMD
void load_ucode_amd_bsp(struct early_load_data *ed, unsigned int family);
void load_ucode_amd_ap(unsigned int family);
int save_microcode_in_initrd_amd(unsigned int family);
void reload_ucode_amd(unsigned int cpu);
struct microcode_ops *init_amd_microcode(void);
void exit_amd_microcode(void);
#else /* CONFIG_CPU_SUP_AMD */
static inline void load_ucode_amd_bsp(struct early_load_data *ed, unsigned int family) { }
static inline void load_ucode_amd_ap(unsigned int family) { }
static inline int save_microcode_in_initrd_amd(unsigned int family) { return -EINVAL; }
static inline void reload_ucode_amd(unsigned int cpu) { }
static inline struct microcode_ops *init_amd_microcode(void) { return NULL; }
static inline void exit_amd_microcode(void) { }
#endif /* !CONFIG_CPU_SUP_AMD */
#ifdef CONFIG_CPU_SUP_INTEL
void load_ucode_intel_bsp(struct early_load_data *ed);
void load_ucode_intel_ap(void);
void reload_ucode_intel(void);
struct microcode_ops *init_intel_microcode(void);
#else /* CONFIG_CPU_SUP_INTEL */
static inline void load_ucode_intel_bsp(struct early_load_data *ed) { }
static inline void load_ucode_intel_ap(void) { }
static inline void reload_ucode_intel(void) { }
static inline struct microcode_ops *init_intel_microcode(void) { return NULL; }
#endif /* !CONFIG_CPU_SUP_INTEL */
#endif /* _X86_MICROCODE_INTERNAL_H */