|  | /* | 
|  | * Performance counter core code | 
|  | * | 
|  | *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 
|  | *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | 
|  | *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
|  | *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | 
|  | * | 
|  | *  For licensing details see kernel-base/COPYING | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <linux/dcache.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/vmstat.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/perf_counter.h> | 
|  |  | 
|  | #include <asm/irq_regs.h> | 
|  |  | 
|  | /* | 
|  | * Each CPU has a list of per CPU counters: | 
|  | */ | 
|  | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | 
|  |  | 
|  | int perf_max_counters __read_mostly = 1; | 
|  | static int perf_reserved_percpu __read_mostly; | 
|  | static int perf_overcommit __read_mostly = 1; | 
|  |  | 
|  | static atomic_t nr_counters __read_mostly; | 
|  | static atomic_t nr_mmap_counters __read_mostly; | 
|  | static atomic_t nr_comm_counters __read_mostly; | 
|  |  | 
|  | /* | 
|  | * perf counter paranoia level: | 
|  | *  0 - not paranoid | 
|  | *  1 - disallow cpu counters to unpriv | 
|  | *  2 - disallow kernel profiling to unpriv | 
|  | */ | 
|  | int sysctl_perf_counter_paranoid __read_mostly; | 
|  |  | 
|  | static inline bool perf_paranoid_cpu(void) | 
|  | { | 
|  | return sysctl_perf_counter_paranoid > 0; | 
|  | } | 
|  |  | 
|  | static inline bool perf_paranoid_kernel(void) | 
|  | { | 
|  | return sysctl_perf_counter_paranoid > 1; | 
|  | } | 
|  |  | 
|  | int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */ | 
|  |  | 
|  | /* | 
|  | * max perf counter sample rate | 
|  | */ | 
|  | int sysctl_perf_counter_sample_rate __read_mostly = 100000; | 
|  |  | 
|  | static atomic64_t perf_counter_id; | 
|  |  | 
|  | /* | 
|  | * Lock for (sysadmin-configurable) counter reservations: | 
|  | */ | 
|  | static DEFINE_SPINLOCK(perf_resource_lock); | 
|  |  | 
|  | /* | 
|  | * Architecture provided APIs - weak aliases: | 
|  | */ | 
|  | extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void __weak hw_perf_disable(void)		{ barrier(); } | 
|  | void __weak hw_perf_enable(void)		{ barrier(); } | 
|  |  | 
|  | void __weak hw_perf_counter_setup(int cpu)	{ barrier(); } | 
|  |  | 
|  | int __weak | 
|  | hw_perf_group_sched_in(struct perf_counter *group_leader, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | struct perf_counter_context *ctx, int cpu) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __weak perf_counter_print_debug(void)	{ } | 
|  |  | 
|  | static DEFINE_PER_CPU(int, disable_count); | 
|  |  | 
|  | void __perf_disable(void) | 
|  | { | 
|  | __get_cpu_var(disable_count)++; | 
|  | } | 
|  |  | 
|  | bool __perf_enable(void) | 
|  | { | 
|  | return !--__get_cpu_var(disable_count); | 
|  | } | 
|  |  | 
|  | void perf_disable(void) | 
|  | { | 
|  | __perf_disable(); | 
|  | hw_perf_disable(); | 
|  | } | 
|  |  | 
|  | void perf_enable(void) | 
|  | { | 
|  | if (__perf_enable()) | 
|  | hw_perf_enable(); | 
|  | } | 
|  |  | 
|  | static void get_ctx(struct perf_counter_context *ctx) | 
|  | { | 
|  | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | 
|  | } | 
|  |  | 
|  | static void free_ctx(struct rcu_head *head) | 
|  | { | 
|  | struct perf_counter_context *ctx; | 
|  |  | 
|  | ctx = container_of(head, struct perf_counter_context, rcu_head); | 
|  | kfree(ctx); | 
|  | } | 
|  |  | 
|  | static void put_ctx(struct perf_counter_context *ctx) | 
|  | { | 
|  | if (atomic_dec_and_test(&ctx->refcount)) { | 
|  | if (ctx->parent_ctx) | 
|  | put_ctx(ctx->parent_ctx); | 
|  | if (ctx->task) | 
|  | put_task_struct(ctx->task); | 
|  | call_rcu(&ctx->rcu_head, free_ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the perf_counter_context for a task and lock it. | 
|  | * This has to cope with with the fact that until it is locked, | 
|  | * the context could get moved to another task. | 
|  | */ | 
|  | static struct perf_counter_context * | 
|  | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | 
|  | { | 
|  | struct perf_counter_context *ctx; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | retry: | 
|  | ctx = rcu_dereference(task->perf_counter_ctxp); | 
|  | if (ctx) { | 
|  | /* | 
|  | * If this context is a clone of another, it might | 
|  | * get swapped for another underneath us by | 
|  | * perf_counter_task_sched_out, though the | 
|  | * rcu_read_lock() protects us from any context | 
|  | * getting freed.  Lock the context and check if it | 
|  | * got swapped before we could get the lock, and retry | 
|  | * if so.  If we locked the right context, then it | 
|  | * can't get swapped on us any more. | 
|  | */ | 
|  | spin_lock_irqsave(&ctx->lock, *flags); | 
|  | if (ctx != rcu_dereference(task->perf_counter_ctxp)) { | 
|  | spin_unlock_irqrestore(&ctx->lock, *flags); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (!atomic_inc_not_zero(&ctx->refcount)) { | 
|  | spin_unlock_irqrestore(&ctx->lock, *flags); | 
|  | ctx = NULL; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the context for a task and increment its pin_count so it | 
|  | * can't get swapped to another task.  This also increments its | 
|  | * reference count so that the context can't get freed. | 
|  | */ | 
|  | static struct perf_counter_context *perf_pin_task_context(struct task_struct *task) | 
|  | { | 
|  | struct perf_counter_context *ctx; | 
|  | unsigned long flags; | 
|  |  | 
|  | ctx = perf_lock_task_context(task, &flags); | 
|  | if (ctx) { | 
|  | ++ctx->pin_count; | 
|  | spin_unlock_irqrestore(&ctx->lock, flags); | 
|  | } | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | static void perf_unpin_context(struct perf_counter_context *ctx) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&ctx->lock, flags); | 
|  | --ctx->pin_count; | 
|  | spin_unlock_irqrestore(&ctx->lock, flags); | 
|  | put_ctx(ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a counter from the lists for its context. | 
|  | * Must be called with ctx->mutex and ctx->lock held. | 
|  | */ | 
|  | static void | 
|  | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | 
|  | { | 
|  | struct perf_counter *group_leader = counter->group_leader; | 
|  |  | 
|  | /* | 
|  | * Depending on whether it is a standalone or sibling counter, | 
|  | * add it straight to the context's counter list, or to the group | 
|  | * leader's sibling list: | 
|  | */ | 
|  | if (group_leader == counter) | 
|  | list_add_tail(&counter->list_entry, &ctx->counter_list); | 
|  | else { | 
|  | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | 
|  | group_leader->nr_siblings++; | 
|  | } | 
|  |  | 
|  | list_add_rcu(&counter->event_entry, &ctx->event_list); | 
|  | ctx->nr_counters++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove a counter from the lists for its context. | 
|  | * Must be called with ctx->mutex and ctx->lock held. | 
|  | */ | 
|  | static void | 
|  | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | 
|  | { | 
|  | struct perf_counter *sibling, *tmp; | 
|  |  | 
|  | if (list_empty(&counter->list_entry)) | 
|  | return; | 
|  | ctx->nr_counters--; | 
|  |  | 
|  | list_del_init(&counter->list_entry); | 
|  | list_del_rcu(&counter->event_entry); | 
|  |  | 
|  | if (counter->group_leader != counter) | 
|  | counter->group_leader->nr_siblings--; | 
|  |  | 
|  | /* | 
|  | * If this was a group counter with sibling counters then | 
|  | * upgrade the siblings to singleton counters by adding them | 
|  | * to the context list directly: | 
|  | */ | 
|  | list_for_each_entry_safe(sibling, tmp, | 
|  | &counter->sibling_list, list_entry) { | 
|  |  | 
|  | list_move_tail(&sibling->list_entry, &ctx->counter_list); | 
|  | sibling->group_leader = sibling; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | counter_sched_out(struct perf_counter *counter, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | struct perf_counter_context *ctx) | 
|  | { | 
|  | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | 
|  | return; | 
|  |  | 
|  | counter->state = PERF_COUNTER_STATE_INACTIVE; | 
|  | counter->tstamp_stopped = ctx->time; | 
|  | counter->pmu->disable(counter); | 
|  | counter->oncpu = -1; | 
|  |  | 
|  | if (!is_software_counter(counter)) | 
|  | cpuctx->active_oncpu--; | 
|  | ctx->nr_active--; | 
|  | if (counter->attr.exclusive || !cpuctx->active_oncpu) | 
|  | cpuctx->exclusive = 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | group_sched_out(struct perf_counter *group_counter, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | struct perf_counter_context *ctx) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  |  | 
|  | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | 
|  | return; | 
|  |  | 
|  | counter_sched_out(group_counter, cpuctx, ctx); | 
|  |  | 
|  | /* | 
|  | * Schedule out siblings (if any): | 
|  | */ | 
|  | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | 
|  | counter_sched_out(counter, cpuctx, ctx); | 
|  |  | 
|  | if (group_counter->attr.exclusive) | 
|  | cpuctx->exclusive = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cross CPU call to remove a performance counter | 
|  | * | 
|  | * We disable the counter on the hardware level first. After that we | 
|  | * remove it from the context list. | 
|  | */ | 
|  | static void __perf_counter_remove_from_context(void *info) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
|  | struct perf_counter *counter = info; | 
|  | struct perf_counter_context *ctx = counter->ctx; | 
|  |  | 
|  | /* | 
|  | * If this is a task context, we need to check whether it is | 
|  | * the current task context of this cpu. If not it has been | 
|  | * scheduled out before the smp call arrived. | 
|  | */ | 
|  | if (ctx->task && cpuctx->task_ctx != ctx) | 
|  | return; | 
|  |  | 
|  | spin_lock(&ctx->lock); | 
|  | /* | 
|  | * Protect the list operation against NMI by disabling the | 
|  | * counters on a global level. | 
|  | */ | 
|  | perf_disable(); | 
|  |  | 
|  | counter_sched_out(counter, cpuctx, ctx); | 
|  |  | 
|  | list_del_counter(counter, ctx); | 
|  |  | 
|  | if (!ctx->task) { | 
|  | /* | 
|  | * Allow more per task counters with respect to the | 
|  | * reservation: | 
|  | */ | 
|  | cpuctx->max_pertask = | 
|  | min(perf_max_counters - ctx->nr_counters, | 
|  | perf_max_counters - perf_reserved_percpu); | 
|  | } | 
|  |  | 
|  | perf_enable(); | 
|  | spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Remove the counter from a task's (or a CPU's) list of counters. | 
|  | * | 
|  | * Must be called with ctx->mutex held. | 
|  | * | 
|  | * CPU counters are removed with a smp call. For task counters we only | 
|  | * call when the task is on a CPU. | 
|  | * | 
|  | * If counter->ctx is a cloned context, callers must make sure that | 
|  | * every task struct that counter->ctx->task could possibly point to | 
|  | * remains valid.  This is OK when called from perf_release since | 
|  | * that only calls us on the top-level context, which can't be a clone. | 
|  | * When called from perf_counter_exit_task, it's OK because the | 
|  | * context has been detached from its task. | 
|  | */ | 
|  | static void perf_counter_remove_from_context(struct perf_counter *counter) | 
|  | { | 
|  | struct perf_counter_context *ctx = counter->ctx; | 
|  | struct task_struct *task = ctx->task; | 
|  |  | 
|  | if (!task) { | 
|  | /* | 
|  | * Per cpu counters are removed via an smp call and | 
|  | * the removal is always sucessful. | 
|  | */ | 
|  | smp_call_function_single(counter->cpu, | 
|  | __perf_counter_remove_from_context, | 
|  | counter, 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | retry: | 
|  | task_oncpu_function_call(task, __perf_counter_remove_from_context, | 
|  | counter); | 
|  |  | 
|  | spin_lock_irq(&ctx->lock); | 
|  | /* | 
|  | * If the context is active we need to retry the smp call. | 
|  | */ | 
|  | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | 
|  | spin_unlock_irq(&ctx->lock); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The lock prevents that this context is scheduled in so we | 
|  | * can remove the counter safely, if the call above did not | 
|  | * succeed. | 
|  | */ | 
|  | if (!list_empty(&counter->list_entry)) { | 
|  | list_del_counter(counter, ctx); | 
|  | } | 
|  | spin_unlock_irq(&ctx->lock); | 
|  | } | 
|  |  | 
|  | static inline u64 perf_clock(void) | 
|  | { | 
|  | return cpu_clock(smp_processor_id()); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the record of the current time in a context. | 
|  | */ | 
|  | static void update_context_time(struct perf_counter_context *ctx) | 
|  | { | 
|  | u64 now = perf_clock(); | 
|  |  | 
|  | ctx->time += now - ctx->timestamp; | 
|  | ctx->timestamp = now; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the total_time_enabled and total_time_running fields for a counter. | 
|  | */ | 
|  | static void update_counter_times(struct perf_counter *counter) | 
|  | { | 
|  | struct perf_counter_context *ctx = counter->ctx; | 
|  | u64 run_end; | 
|  |  | 
|  | if (counter->state < PERF_COUNTER_STATE_INACTIVE) | 
|  | return; | 
|  |  | 
|  | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | 
|  |  | 
|  | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | 
|  | run_end = counter->tstamp_stopped; | 
|  | else | 
|  | run_end = ctx->time; | 
|  |  | 
|  | counter->total_time_running = run_end - counter->tstamp_running; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update total_time_enabled and total_time_running for all counters in a group. | 
|  | */ | 
|  | static void update_group_times(struct perf_counter *leader) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  |  | 
|  | update_counter_times(leader); | 
|  | list_for_each_entry(counter, &leader->sibling_list, list_entry) | 
|  | update_counter_times(counter); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cross CPU call to disable a performance counter | 
|  | */ | 
|  | static void __perf_counter_disable(void *info) | 
|  | { | 
|  | struct perf_counter *counter = info; | 
|  | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
|  | struct perf_counter_context *ctx = counter->ctx; | 
|  |  | 
|  | /* | 
|  | * If this is a per-task counter, need to check whether this | 
|  | * counter's task is the current task on this cpu. | 
|  | */ | 
|  | if (ctx->task && cpuctx->task_ctx != ctx) | 
|  | return; | 
|  |  | 
|  | spin_lock(&ctx->lock); | 
|  |  | 
|  | /* | 
|  | * If the counter is on, turn it off. | 
|  | * If it is in error state, leave it in error state. | 
|  | */ | 
|  | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | 
|  | update_context_time(ctx); | 
|  | update_counter_times(counter); | 
|  | if (counter == counter->group_leader) | 
|  | group_sched_out(counter, cpuctx, ctx); | 
|  | else | 
|  | counter_sched_out(counter, cpuctx, ctx); | 
|  | counter->state = PERF_COUNTER_STATE_OFF; | 
|  | } | 
|  |  | 
|  | spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable a counter. | 
|  | * | 
|  | * If counter->ctx is a cloned context, callers must make sure that | 
|  | * every task struct that counter->ctx->task could possibly point to | 
|  | * remains valid.  This condition is satisifed when called through | 
|  | * perf_counter_for_each_child or perf_counter_for_each because they | 
|  | * hold the top-level counter's child_mutex, so any descendant that | 
|  | * goes to exit will block in sync_child_counter. | 
|  | * When called from perf_pending_counter it's OK because counter->ctx | 
|  | * is the current context on this CPU and preemption is disabled, | 
|  | * hence we can't get into perf_counter_task_sched_out for this context. | 
|  | */ | 
|  | static void perf_counter_disable(struct perf_counter *counter) | 
|  | { | 
|  | struct perf_counter_context *ctx = counter->ctx; | 
|  | struct task_struct *task = ctx->task; | 
|  |  | 
|  | if (!task) { | 
|  | /* | 
|  | * Disable the counter on the cpu that it's on | 
|  | */ | 
|  | smp_call_function_single(counter->cpu, __perf_counter_disable, | 
|  | counter, 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | retry: | 
|  | task_oncpu_function_call(task, __perf_counter_disable, counter); | 
|  |  | 
|  | spin_lock_irq(&ctx->lock); | 
|  | /* | 
|  | * If the counter is still active, we need to retry the cross-call. | 
|  | */ | 
|  | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | 
|  | spin_unlock_irq(&ctx->lock); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since we have the lock this context can't be scheduled | 
|  | * in, so we can change the state safely. | 
|  | */ | 
|  | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | 
|  | update_counter_times(counter); | 
|  | counter->state = PERF_COUNTER_STATE_OFF; | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&ctx->lock); | 
|  | } | 
|  |  | 
|  | static int | 
|  | counter_sched_in(struct perf_counter *counter, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | struct perf_counter_context *ctx, | 
|  | int cpu) | 
|  | { | 
|  | if (counter->state <= PERF_COUNTER_STATE_OFF) | 
|  | return 0; | 
|  |  | 
|  | counter->state = PERF_COUNTER_STATE_ACTIVE; | 
|  | counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */ | 
|  | /* | 
|  | * The new state must be visible before we turn it on in the hardware: | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | if (counter->pmu->enable(counter)) { | 
|  | counter->state = PERF_COUNTER_STATE_INACTIVE; | 
|  | counter->oncpu = -1; | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | 
|  |  | 
|  | if (!is_software_counter(counter)) | 
|  | cpuctx->active_oncpu++; | 
|  | ctx->nr_active++; | 
|  |  | 
|  | if (counter->attr.exclusive) | 
|  | cpuctx->exclusive = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | group_sched_in(struct perf_counter *group_counter, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | struct perf_counter_context *ctx, | 
|  | int cpu) | 
|  | { | 
|  | struct perf_counter *counter, *partial_group; | 
|  | int ret; | 
|  |  | 
|  | if (group_counter->state == PERF_COUNTER_STATE_OFF) | 
|  | return 0; | 
|  |  | 
|  | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | 
|  | if (ret) | 
|  | return ret < 0 ? ret : 0; | 
|  |  | 
|  | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * Schedule in siblings as one group (if any): | 
|  | */ | 
|  | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | 
|  | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | 
|  | partial_group = counter; | 
|  | goto group_error; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | group_error: | 
|  | /* | 
|  | * Groups can be scheduled in as one unit only, so undo any | 
|  | * partial group before returning: | 
|  | */ | 
|  | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | 
|  | if (counter == partial_group) | 
|  | break; | 
|  | counter_sched_out(counter, cpuctx, ctx); | 
|  | } | 
|  | counter_sched_out(group_counter, cpuctx, ctx); | 
|  |  | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 1 for a group consisting entirely of software counters, | 
|  | * 0 if the group contains any hardware counters. | 
|  | */ | 
|  | static int is_software_only_group(struct perf_counter *leader) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  |  | 
|  | if (!is_software_counter(leader)) | 
|  | return 0; | 
|  |  | 
|  | list_for_each_entry(counter, &leader->sibling_list, list_entry) | 
|  | if (!is_software_counter(counter)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Work out whether we can put this counter group on the CPU now. | 
|  | */ | 
|  | static int group_can_go_on(struct perf_counter *counter, | 
|  | struct perf_cpu_context *cpuctx, | 
|  | int can_add_hw) | 
|  | { | 
|  | /* | 
|  | * Groups consisting entirely of software counters can always go on. | 
|  | */ | 
|  | if (is_software_only_group(counter)) | 
|  | return 1; | 
|  | /* | 
|  | * If an exclusive group is already on, no other hardware | 
|  | * counters can go on. | 
|  | */ | 
|  | if (cpuctx->exclusive) | 
|  | return 0; | 
|  | /* | 
|  | * If this group is exclusive and there are already | 
|  | * counters on the CPU, it can't go on. | 
|  | */ | 
|  | if (counter->attr.exclusive && cpuctx->active_oncpu) | 
|  | return 0; | 
|  | /* | 
|  | * Otherwise, try to add it if all previous groups were able | 
|  | * to go on. | 
|  | */ | 
|  | return can_add_hw; | 
|  | } | 
|  |  | 
|  | static void add_counter_to_ctx(struct perf_counter *counter, | 
|  | struct perf_counter_context *ctx) | 
|  | { | 
|  | list_add_counter(counter, ctx); | 
|  | counter->tstamp_enabled = ctx->time; | 
|  | counter->tstamp_running = ctx->time; | 
|  | counter->tstamp_stopped = ctx->time; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cross CPU call to install and enable a performance counter | 
|  | * | 
|  | * Must be called with ctx->mutex held | 
|  | */ | 
|  | static void __perf_install_in_context(void *info) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
|  | struct perf_counter *counter = info; | 
|  | struct perf_counter_context *ctx = counter->ctx; | 
|  | struct perf_counter *leader = counter->group_leader; | 
|  | int cpu = smp_processor_id(); | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * If this is a task context, we need to check whether it is | 
|  | * the current task context of this cpu. If not it has been | 
|  | * scheduled out before the smp call arrived. | 
|  | * Or possibly this is the right context but it isn't | 
|  | * on this cpu because it had no counters. | 
|  | */ | 
|  | if (ctx->task && cpuctx->task_ctx != ctx) { | 
|  | if (cpuctx->task_ctx || ctx->task != current) | 
|  | return; | 
|  | cpuctx->task_ctx = ctx; | 
|  | } | 
|  |  | 
|  | spin_lock(&ctx->lock); | 
|  | ctx->is_active = 1; | 
|  | update_context_time(ctx); | 
|  |  | 
|  | /* | 
|  | * Protect the list operation against NMI by disabling the | 
|  | * counters on a global level. NOP for non NMI based counters. | 
|  | */ | 
|  | perf_disable(); | 
|  |  | 
|  | add_counter_to_ctx(counter, ctx); | 
|  |  | 
|  | /* | 
|  | * Don't put the counter on if it is disabled or if | 
|  | * it is in a group and the group isn't on. | 
|  | */ | 
|  | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | 
|  | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * An exclusive counter can't go on if there are already active | 
|  | * hardware counters, and no hardware counter can go on if there | 
|  | * is already an exclusive counter on. | 
|  | */ | 
|  | if (!group_can_go_on(counter, cpuctx, 1)) | 
|  | err = -EEXIST; | 
|  | else | 
|  | err = counter_sched_in(counter, cpuctx, ctx, cpu); | 
|  |  | 
|  | if (err) { | 
|  | /* | 
|  | * This counter couldn't go on.  If it is in a group | 
|  | * then we have to pull the whole group off. | 
|  | * If the counter group is pinned then put it in error state. | 
|  | */ | 
|  | if (leader != counter) | 
|  | group_sched_out(leader, cpuctx, ctx); | 
|  | if (leader->attr.pinned) { | 
|  | update_group_times(leader); | 
|  | leader->state = PERF_COUNTER_STATE_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!err && !ctx->task && cpuctx->max_pertask) | 
|  | cpuctx->max_pertask--; | 
|  |  | 
|  | unlock: | 
|  | perf_enable(); | 
|  |  | 
|  | spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach a performance counter to a context | 
|  | * | 
|  | * First we add the counter to the list with the hardware enable bit | 
|  | * in counter->hw_config cleared. | 
|  | * | 
|  | * If the counter is attached to a task which is on a CPU we use a smp | 
|  | * call to enable it in the task context. The task might have been | 
|  | * scheduled away, but we check this in the smp call again. | 
|  | * | 
|  | * Must be called with ctx->mutex held. | 
|  | */ | 
|  | static void | 
|  | perf_install_in_context(struct perf_counter_context *ctx, | 
|  | struct perf_counter *counter, | 
|  | int cpu) | 
|  | { | 
|  | struct task_struct *task = ctx->task; | 
|  |  | 
|  | if (!task) { | 
|  | /* | 
|  | * Per cpu counters are installed via an smp call and | 
|  | * the install is always sucessful. | 
|  | */ | 
|  | smp_call_function_single(cpu, __perf_install_in_context, | 
|  | counter, 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | retry: | 
|  | task_oncpu_function_call(task, __perf_install_in_context, | 
|  | counter); | 
|  |  | 
|  | spin_lock_irq(&ctx->lock); | 
|  | /* | 
|  | * we need to retry the smp call. | 
|  | */ | 
|  | if (ctx->is_active && list_empty(&counter->list_entry)) { | 
|  | spin_unlock_irq(&ctx->lock); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The lock prevents that this context is scheduled in so we | 
|  | * can add the counter safely, if it the call above did not | 
|  | * succeed. | 
|  | */ | 
|  | if (list_empty(&counter->list_entry)) | 
|  | add_counter_to_ctx(counter, ctx); | 
|  | spin_unlock_irq(&ctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cross CPU call to enable a performance counter | 
|  | */ | 
|  | static void __perf_counter_enable(void *info) | 
|  | { | 
|  | struct perf_counter *counter = info; | 
|  | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
|  | struct perf_counter_context *ctx = counter->ctx; | 
|  | struct perf_counter *leader = counter->group_leader; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * If this is a per-task counter, need to check whether this | 
|  | * counter's task is the current task on this cpu. | 
|  | */ | 
|  | if (ctx->task && cpuctx->task_ctx != ctx) { | 
|  | if (cpuctx->task_ctx || ctx->task != current) | 
|  | return; | 
|  | cpuctx->task_ctx = ctx; | 
|  | } | 
|  |  | 
|  | spin_lock(&ctx->lock); | 
|  | ctx->is_active = 1; | 
|  | update_context_time(ctx); | 
|  |  | 
|  | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | 
|  | goto unlock; | 
|  | counter->state = PERF_COUNTER_STATE_INACTIVE; | 
|  | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | 
|  |  | 
|  | /* | 
|  | * If the counter is in a group and isn't the group leader, | 
|  | * then don't put it on unless the group is on. | 
|  | */ | 
|  | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | 
|  | goto unlock; | 
|  |  | 
|  | if (!group_can_go_on(counter, cpuctx, 1)) { | 
|  | err = -EEXIST; | 
|  | } else { | 
|  | perf_disable(); | 
|  | if (counter == leader) | 
|  | err = group_sched_in(counter, cpuctx, ctx, | 
|  | smp_processor_id()); | 
|  | else | 
|  | err = counter_sched_in(counter, cpuctx, ctx, | 
|  | smp_processor_id()); | 
|  | perf_enable(); | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | /* | 
|  | * If this counter can't go on and it's part of a | 
|  | * group, then the whole group has to come off. | 
|  | */ | 
|  | if (leader != counter) | 
|  | group_sched_out(leader, cpuctx, ctx); | 
|  | if (leader->attr.pinned) { | 
|  | update_group_times(leader); | 
|  | leader->state = PERF_COUNTER_STATE_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | unlock: | 
|  | spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable a counter. | 
|  | * | 
|  | * If counter->ctx is a cloned context, callers must make sure that | 
|  | * every task struct that counter->ctx->task could possibly point to | 
|  | * remains valid.  This condition is satisfied when called through | 
|  | * perf_counter_for_each_child or perf_counter_for_each as described | 
|  | * for perf_counter_disable. | 
|  | */ | 
|  | static void perf_counter_enable(struct perf_counter *counter) | 
|  | { | 
|  | struct perf_counter_context *ctx = counter->ctx; | 
|  | struct task_struct *task = ctx->task; | 
|  |  | 
|  | if (!task) { | 
|  | /* | 
|  | * Enable the counter on the cpu that it's on | 
|  | */ | 
|  | smp_call_function_single(counter->cpu, __perf_counter_enable, | 
|  | counter, 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&ctx->lock); | 
|  | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If the counter is in error state, clear that first. | 
|  | * That way, if we see the counter in error state below, we | 
|  | * know that it has gone back into error state, as distinct | 
|  | * from the task having been scheduled away before the | 
|  | * cross-call arrived. | 
|  | */ | 
|  | if (counter->state == PERF_COUNTER_STATE_ERROR) | 
|  | counter->state = PERF_COUNTER_STATE_OFF; | 
|  |  | 
|  | retry: | 
|  | spin_unlock_irq(&ctx->lock); | 
|  | task_oncpu_function_call(task, __perf_counter_enable, counter); | 
|  |  | 
|  | spin_lock_irq(&ctx->lock); | 
|  |  | 
|  | /* | 
|  | * If the context is active and the counter is still off, | 
|  | * we need to retry the cross-call. | 
|  | */ | 
|  | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | 
|  | goto retry; | 
|  |  | 
|  | /* | 
|  | * Since we have the lock this context can't be scheduled | 
|  | * in, so we can change the state safely. | 
|  | */ | 
|  | if (counter->state == PERF_COUNTER_STATE_OFF) { | 
|  | counter->state = PERF_COUNTER_STATE_INACTIVE; | 
|  | counter->tstamp_enabled = | 
|  | ctx->time - counter->total_time_enabled; | 
|  | } | 
|  | out: | 
|  | spin_unlock_irq(&ctx->lock); | 
|  | } | 
|  |  | 
|  | static int perf_counter_refresh(struct perf_counter *counter, int refresh) | 
|  | { | 
|  | /* | 
|  | * not supported on inherited counters | 
|  | */ | 
|  | if (counter->attr.inherit) | 
|  | return -EINVAL; | 
|  |  | 
|  | atomic_add(refresh, &counter->event_limit); | 
|  | perf_counter_enable(counter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __perf_counter_sched_out(struct perf_counter_context *ctx, | 
|  | struct perf_cpu_context *cpuctx) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  |  | 
|  | spin_lock(&ctx->lock); | 
|  | ctx->is_active = 0; | 
|  | if (likely(!ctx->nr_counters)) | 
|  | goto out; | 
|  | update_context_time(ctx); | 
|  |  | 
|  | perf_disable(); | 
|  | if (ctx->nr_active) { | 
|  | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 
|  | if (counter != counter->group_leader) | 
|  | counter_sched_out(counter, cpuctx, ctx); | 
|  | else | 
|  | group_sched_out(counter, cpuctx, ctx); | 
|  | } | 
|  | } | 
|  | perf_enable(); | 
|  | out: | 
|  | spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test whether two contexts are equivalent, i.e. whether they | 
|  | * have both been cloned from the same version of the same context | 
|  | * and they both have the same number of enabled counters. | 
|  | * If the number of enabled counters is the same, then the set | 
|  | * of enabled counters should be the same, because these are both | 
|  | * inherited contexts, therefore we can't access individual counters | 
|  | * in them directly with an fd; we can only enable/disable all | 
|  | * counters via prctl, or enable/disable all counters in a family | 
|  | * via ioctl, which will have the same effect on both contexts. | 
|  | */ | 
|  | static int context_equiv(struct perf_counter_context *ctx1, | 
|  | struct perf_counter_context *ctx2) | 
|  | { | 
|  | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | 
|  | && ctx1->parent_gen == ctx2->parent_gen | 
|  | && !ctx1->pin_count && !ctx2->pin_count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from scheduler to remove the counters of the current task, | 
|  | * with interrupts disabled. | 
|  | * | 
|  | * We stop each counter and update the counter value in counter->count. | 
|  | * | 
|  | * This does not protect us against NMI, but disable() | 
|  | * sets the disabled bit in the control field of counter _before_ | 
|  | * accessing the counter control register. If a NMI hits, then it will | 
|  | * not restart the counter. | 
|  | */ | 
|  | void perf_counter_task_sched_out(struct task_struct *task, | 
|  | struct task_struct *next, int cpu) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 
|  | struct perf_counter_context *ctx = task->perf_counter_ctxp; | 
|  | struct perf_counter_context *next_ctx; | 
|  | struct perf_counter_context *parent; | 
|  | struct pt_regs *regs; | 
|  | int do_switch = 1; | 
|  |  | 
|  | regs = task_pt_regs(task); | 
|  | perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | 
|  |  | 
|  | if (likely(!ctx || !cpuctx->task_ctx)) | 
|  | return; | 
|  |  | 
|  | update_context_time(ctx); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | parent = rcu_dereference(ctx->parent_ctx); | 
|  | next_ctx = next->perf_counter_ctxp; | 
|  | if (parent && next_ctx && | 
|  | rcu_dereference(next_ctx->parent_ctx) == parent) { | 
|  | /* | 
|  | * Looks like the two contexts are clones, so we might be | 
|  | * able to optimize the context switch.  We lock both | 
|  | * contexts and check that they are clones under the | 
|  | * lock (including re-checking that neither has been | 
|  | * uncloned in the meantime).  It doesn't matter which | 
|  | * order we take the locks because no other cpu could | 
|  | * be trying to lock both of these tasks. | 
|  | */ | 
|  | spin_lock(&ctx->lock); | 
|  | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | 
|  | if (context_equiv(ctx, next_ctx)) { | 
|  | /* | 
|  | * XXX do we need a memory barrier of sorts | 
|  | * wrt to rcu_dereference() of perf_counter_ctxp | 
|  | */ | 
|  | task->perf_counter_ctxp = next_ctx; | 
|  | next->perf_counter_ctxp = ctx; | 
|  | ctx->task = next; | 
|  | next_ctx->task = task; | 
|  | do_switch = 0; | 
|  | } | 
|  | spin_unlock(&next_ctx->lock); | 
|  | spin_unlock(&ctx->lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (do_switch) { | 
|  | __perf_counter_sched_out(ctx, cpuctx); | 
|  | cpuctx->task_ctx = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with IRQs disabled | 
|  | */ | 
|  | static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
|  |  | 
|  | if (!cpuctx->task_ctx) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | 
|  | return; | 
|  |  | 
|  | __perf_counter_sched_out(ctx, cpuctx); | 
|  | cpuctx->task_ctx = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with IRQs disabled | 
|  | */ | 
|  | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | 
|  | { | 
|  | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __perf_counter_sched_in(struct perf_counter_context *ctx, | 
|  | struct perf_cpu_context *cpuctx, int cpu) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  | int can_add_hw = 1; | 
|  |  | 
|  | spin_lock(&ctx->lock); | 
|  | ctx->is_active = 1; | 
|  | if (likely(!ctx->nr_counters)) | 
|  | goto out; | 
|  |  | 
|  | ctx->timestamp = perf_clock(); | 
|  |  | 
|  | perf_disable(); | 
|  |  | 
|  | /* | 
|  | * First go through the list and put on any pinned groups | 
|  | * in order to give them the best chance of going on. | 
|  | */ | 
|  | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 
|  | if (counter->state <= PERF_COUNTER_STATE_OFF || | 
|  | !counter->attr.pinned) | 
|  | continue; | 
|  | if (counter->cpu != -1 && counter->cpu != cpu) | 
|  | continue; | 
|  |  | 
|  | if (counter != counter->group_leader) | 
|  | counter_sched_in(counter, cpuctx, ctx, cpu); | 
|  | else { | 
|  | if (group_can_go_on(counter, cpuctx, 1)) | 
|  | group_sched_in(counter, cpuctx, ctx, cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this pinned group hasn't been scheduled, | 
|  | * put it in error state. | 
|  | */ | 
|  | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | 
|  | update_group_times(counter); | 
|  | counter->state = PERF_COUNTER_STATE_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 
|  | /* | 
|  | * Ignore counters in OFF or ERROR state, and | 
|  | * ignore pinned counters since we did them already. | 
|  | */ | 
|  | if (counter->state <= PERF_COUNTER_STATE_OFF || | 
|  | counter->attr.pinned) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Listen to the 'cpu' scheduling filter constraint | 
|  | * of counters: | 
|  | */ | 
|  | if (counter->cpu != -1 && counter->cpu != cpu) | 
|  | continue; | 
|  |  | 
|  | if (counter != counter->group_leader) { | 
|  | if (counter_sched_in(counter, cpuctx, ctx, cpu)) | 
|  | can_add_hw = 0; | 
|  | } else { | 
|  | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | 
|  | if (group_sched_in(counter, cpuctx, ctx, cpu)) | 
|  | can_add_hw = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | perf_enable(); | 
|  | out: | 
|  | spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from scheduler to add the counters of the current task | 
|  | * with interrupts disabled. | 
|  | * | 
|  | * We restore the counter value and then enable it. | 
|  | * | 
|  | * This does not protect us against NMI, but enable() | 
|  | * sets the enabled bit in the control field of counter _before_ | 
|  | * accessing the counter control register. If a NMI hits, then it will | 
|  | * keep the counter running. | 
|  | */ | 
|  | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 
|  | struct perf_counter_context *ctx = task->perf_counter_ctxp; | 
|  |  | 
|  | if (likely(!ctx)) | 
|  | return; | 
|  | if (cpuctx->task_ctx == ctx) | 
|  | return; | 
|  | __perf_counter_sched_in(ctx, cpuctx, cpu); | 
|  | cpuctx->task_ctx = ctx; | 
|  | } | 
|  |  | 
|  | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | 
|  | { | 
|  | struct perf_counter_context *ctx = &cpuctx->ctx; | 
|  |  | 
|  | __perf_counter_sched_in(ctx, cpuctx, cpu); | 
|  | } | 
|  |  | 
|  | #define MAX_INTERRUPTS (~0ULL) | 
|  |  | 
|  | static void perf_log_throttle(struct perf_counter *counter, int enable); | 
|  | static void perf_log_period(struct perf_counter *counter, u64 period); | 
|  |  | 
|  | static void perf_adjust_period(struct perf_counter *counter, u64 events) | 
|  | { | 
|  | struct hw_perf_counter *hwc = &counter->hw; | 
|  | u64 period, sample_period; | 
|  | s64 delta; | 
|  |  | 
|  | events *= hwc->sample_period; | 
|  | period = div64_u64(events, counter->attr.sample_freq); | 
|  |  | 
|  | delta = (s64)(period - hwc->sample_period); | 
|  | delta = (delta + 7) / 8; /* low pass filter */ | 
|  |  | 
|  | sample_period = hwc->sample_period + delta; | 
|  |  | 
|  | if (!sample_period) | 
|  | sample_period = 1; | 
|  |  | 
|  | perf_log_period(counter, sample_period); | 
|  |  | 
|  | hwc->sample_period = sample_period; | 
|  | } | 
|  |  | 
|  | static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  | struct hw_perf_counter *hwc; | 
|  | u64 interrupts, freq; | 
|  |  | 
|  | spin_lock(&ctx->lock); | 
|  | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 
|  | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | 
|  | continue; | 
|  |  | 
|  | hwc = &counter->hw; | 
|  |  | 
|  | interrupts = hwc->interrupts; | 
|  | hwc->interrupts = 0; | 
|  |  | 
|  | /* | 
|  | * unthrottle counters on the tick | 
|  | */ | 
|  | if (interrupts == MAX_INTERRUPTS) { | 
|  | perf_log_throttle(counter, 1); | 
|  | counter->pmu->unthrottle(counter); | 
|  | interrupts = 2*sysctl_perf_counter_sample_rate/HZ; | 
|  | } | 
|  |  | 
|  | if (!counter->attr.freq || !counter->attr.sample_freq) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * if the specified freq < HZ then we need to skip ticks | 
|  | */ | 
|  | if (counter->attr.sample_freq < HZ) { | 
|  | freq = counter->attr.sample_freq; | 
|  |  | 
|  | hwc->freq_count += freq; | 
|  | hwc->freq_interrupts += interrupts; | 
|  |  | 
|  | if (hwc->freq_count < HZ) | 
|  | continue; | 
|  |  | 
|  | interrupts = hwc->freq_interrupts; | 
|  | hwc->freq_interrupts = 0; | 
|  | hwc->freq_count -= HZ; | 
|  | } else | 
|  | freq = HZ; | 
|  |  | 
|  | perf_adjust_period(counter, freq * interrupts); | 
|  |  | 
|  | /* | 
|  | * In order to avoid being stalled by an (accidental) huge | 
|  | * sample period, force reset the sample period if we didn't | 
|  | * get any events in this freq period. | 
|  | */ | 
|  | if (!interrupts) { | 
|  | perf_disable(); | 
|  | counter->pmu->disable(counter); | 
|  | atomic64_set(&hwc->period_left, 0); | 
|  | counter->pmu->enable(counter); | 
|  | perf_enable(); | 
|  | } | 
|  | } | 
|  | spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Round-robin a context's counters: | 
|  | */ | 
|  | static void rotate_ctx(struct perf_counter_context *ctx) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  |  | 
|  | if (!ctx->nr_counters) | 
|  | return; | 
|  |  | 
|  | spin_lock(&ctx->lock); | 
|  | /* | 
|  | * Rotate the first entry last (works just fine for group counters too): | 
|  | */ | 
|  | perf_disable(); | 
|  | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 
|  | list_move_tail(&counter->list_entry, &ctx->counter_list); | 
|  | break; | 
|  | } | 
|  | perf_enable(); | 
|  |  | 
|  | spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | void perf_counter_task_tick(struct task_struct *curr, int cpu) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  | struct perf_counter_context *ctx; | 
|  |  | 
|  | if (!atomic_read(&nr_counters)) | 
|  | return; | 
|  |  | 
|  | cpuctx = &per_cpu(perf_cpu_context, cpu); | 
|  | ctx = curr->perf_counter_ctxp; | 
|  |  | 
|  | perf_ctx_adjust_freq(&cpuctx->ctx); | 
|  | if (ctx) | 
|  | perf_ctx_adjust_freq(ctx); | 
|  |  | 
|  | perf_counter_cpu_sched_out(cpuctx); | 
|  | if (ctx) | 
|  | __perf_counter_task_sched_out(ctx); | 
|  |  | 
|  | rotate_ctx(&cpuctx->ctx); | 
|  | if (ctx) | 
|  | rotate_ctx(ctx); | 
|  |  | 
|  | perf_counter_cpu_sched_in(cpuctx, cpu); | 
|  | if (ctx) | 
|  | perf_counter_task_sched_in(curr, cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cross CPU call to read the hardware counter | 
|  | */ | 
|  | static void __read(void *info) | 
|  | { | 
|  | struct perf_counter *counter = info; | 
|  | struct perf_counter_context *ctx = counter->ctx; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | if (ctx->is_active) | 
|  | update_context_time(ctx); | 
|  | counter->pmu->read(counter); | 
|  | update_counter_times(counter); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static u64 perf_counter_read(struct perf_counter *counter) | 
|  | { | 
|  | /* | 
|  | * If counter is enabled and currently active on a CPU, update the | 
|  | * value in the counter structure: | 
|  | */ | 
|  | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | 
|  | smp_call_function_single(counter->oncpu, | 
|  | __read, counter, 1); | 
|  | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | 
|  | update_counter_times(counter); | 
|  | } | 
|  |  | 
|  | return atomic64_read(&counter->count); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the perf_counter context in a task_struct: | 
|  | */ | 
|  | static void | 
|  | __perf_counter_init_context(struct perf_counter_context *ctx, | 
|  | struct task_struct *task) | 
|  | { | 
|  | memset(ctx, 0, sizeof(*ctx)); | 
|  | spin_lock_init(&ctx->lock); | 
|  | mutex_init(&ctx->mutex); | 
|  | INIT_LIST_HEAD(&ctx->counter_list); | 
|  | INIT_LIST_HEAD(&ctx->event_list); | 
|  | atomic_set(&ctx->refcount, 1); | 
|  | ctx->task = task; | 
|  | } | 
|  |  | 
|  | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | 
|  | { | 
|  | struct perf_counter_context *parent_ctx; | 
|  | struct perf_counter_context *ctx; | 
|  | struct perf_cpu_context *cpuctx; | 
|  | struct task_struct *task; | 
|  | unsigned long flags; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * If cpu is not a wildcard then this is a percpu counter: | 
|  | */ | 
|  | if (cpu != -1) { | 
|  | /* Must be root to operate on a CPU counter: */ | 
|  | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | 
|  | return ERR_PTR(-EACCES); | 
|  |  | 
|  | if (cpu < 0 || cpu > num_possible_cpus()) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* | 
|  | * We could be clever and allow to attach a counter to an | 
|  | * offline CPU and activate it when the CPU comes up, but | 
|  | * that's for later. | 
|  | */ | 
|  | if (!cpu_isset(cpu, cpu_online_map)) | 
|  | return ERR_PTR(-ENODEV); | 
|  |  | 
|  | cpuctx = &per_cpu(perf_cpu_context, cpu); | 
|  | ctx = &cpuctx->ctx; | 
|  | get_ctx(ctx); | 
|  |  | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (!pid) | 
|  | task = current; | 
|  | else | 
|  | task = find_task_by_vpid(pid); | 
|  | if (task) | 
|  | get_task_struct(task); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (!task) | 
|  | return ERR_PTR(-ESRCH); | 
|  |  | 
|  | /* | 
|  | * Can't attach counters to a dying task. | 
|  | */ | 
|  | err = -ESRCH; | 
|  | if (task->flags & PF_EXITING) | 
|  | goto errout; | 
|  |  | 
|  | /* Reuse ptrace permission checks for now. */ | 
|  | err = -EACCES; | 
|  | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | 
|  | goto errout; | 
|  |  | 
|  | retry: | 
|  | ctx = perf_lock_task_context(task, &flags); | 
|  | if (ctx) { | 
|  | parent_ctx = ctx->parent_ctx; | 
|  | if (parent_ctx) { | 
|  | put_ctx(parent_ctx); | 
|  | ctx->parent_ctx = NULL;		/* no longer a clone */ | 
|  | } | 
|  | spin_unlock_irqrestore(&ctx->lock, flags); | 
|  | } | 
|  |  | 
|  | if (!ctx) { | 
|  | ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | 
|  | err = -ENOMEM; | 
|  | if (!ctx) | 
|  | goto errout; | 
|  | __perf_counter_init_context(ctx, task); | 
|  | get_ctx(ctx); | 
|  | if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) { | 
|  | /* | 
|  | * We raced with some other task; use | 
|  | * the context they set. | 
|  | */ | 
|  | kfree(ctx); | 
|  | goto retry; | 
|  | } | 
|  | get_task_struct(task); | 
|  | } | 
|  |  | 
|  | put_task_struct(task); | 
|  | return ctx; | 
|  |  | 
|  | errout: | 
|  | put_task_struct(task); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static void free_counter_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  |  | 
|  | counter = container_of(head, struct perf_counter, rcu_head); | 
|  | if (counter->ns) | 
|  | put_pid_ns(counter->ns); | 
|  | kfree(counter); | 
|  | } | 
|  |  | 
|  | static void perf_pending_sync(struct perf_counter *counter); | 
|  |  | 
|  | static void free_counter(struct perf_counter *counter) | 
|  | { | 
|  | perf_pending_sync(counter); | 
|  |  | 
|  | atomic_dec(&nr_counters); | 
|  | if (counter->attr.mmap) | 
|  | atomic_dec(&nr_mmap_counters); | 
|  | if (counter->attr.comm) | 
|  | atomic_dec(&nr_comm_counters); | 
|  |  | 
|  | if (counter->destroy) | 
|  | counter->destroy(counter); | 
|  |  | 
|  | put_ctx(counter->ctx); | 
|  | call_rcu(&counter->rcu_head, free_counter_rcu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when the last reference to the file is gone. | 
|  | */ | 
|  | static int perf_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct perf_counter *counter = file->private_data; | 
|  | struct perf_counter_context *ctx = counter->ctx; | 
|  |  | 
|  | file->private_data = NULL; | 
|  |  | 
|  | WARN_ON_ONCE(ctx->parent_ctx); | 
|  | mutex_lock(&ctx->mutex); | 
|  | perf_counter_remove_from_context(counter); | 
|  | mutex_unlock(&ctx->mutex); | 
|  |  | 
|  | mutex_lock(&counter->owner->perf_counter_mutex); | 
|  | list_del_init(&counter->owner_entry); | 
|  | mutex_unlock(&counter->owner->perf_counter_mutex); | 
|  | put_task_struct(counter->owner); | 
|  |  | 
|  | free_counter(counter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the performance counter - simple non blocking version for now | 
|  | */ | 
|  | static ssize_t | 
|  | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | 
|  | { | 
|  | u64 values[4]; | 
|  | int n; | 
|  |  | 
|  | /* | 
|  | * Return end-of-file for a read on a counter that is in | 
|  | * error state (i.e. because it was pinned but it couldn't be | 
|  | * scheduled on to the CPU at some point). | 
|  | */ | 
|  | if (counter->state == PERF_COUNTER_STATE_ERROR) | 
|  | return 0; | 
|  |  | 
|  | WARN_ON_ONCE(counter->ctx->parent_ctx); | 
|  | mutex_lock(&counter->child_mutex); | 
|  | values[0] = perf_counter_read(counter); | 
|  | n = 1; | 
|  | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
|  | values[n++] = counter->total_time_enabled + | 
|  | atomic64_read(&counter->child_total_time_enabled); | 
|  | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
|  | values[n++] = counter->total_time_running + | 
|  | atomic64_read(&counter->child_total_time_running); | 
|  | if (counter->attr.read_format & PERF_FORMAT_ID) | 
|  | values[n++] = counter->id; | 
|  | mutex_unlock(&counter->child_mutex); | 
|  |  | 
|  | if (count < n * sizeof(u64)) | 
|  | return -EINVAL; | 
|  | count = n * sizeof(u64); | 
|  |  | 
|  | if (copy_to_user(buf, values, count)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | 
|  | { | 
|  | struct perf_counter *counter = file->private_data; | 
|  |  | 
|  | return perf_read_hw(counter, buf, count); | 
|  | } | 
|  |  | 
|  | static unsigned int perf_poll(struct file *file, poll_table *wait) | 
|  | { | 
|  | struct perf_counter *counter = file->private_data; | 
|  | struct perf_mmap_data *data; | 
|  | unsigned int events = POLL_HUP; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | data = rcu_dereference(counter->data); | 
|  | if (data) | 
|  | events = atomic_xchg(&data->poll, 0); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | poll_wait(file, &counter->waitq, wait); | 
|  |  | 
|  | return events; | 
|  | } | 
|  |  | 
|  | static void perf_counter_reset(struct perf_counter *counter) | 
|  | { | 
|  | (void)perf_counter_read(counter); | 
|  | atomic64_set(&counter->count, 0); | 
|  | perf_counter_update_userpage(counter); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Holding the top-level counter's child_mutex means that any | 
|  | * descendant process that has inherited this counter will block | 
|  | * in sync_child_counter if it goes to exit, thus satisfying the | 
|  | * task existence requirements of perf_counter_enable/disable. | 
|  | */ | 
|  | static void perf_counter_for_each_child(struct perf_counter *counter, | 
|  | void (*func)(struct perf_counter *)) | 
|  | { | 
|  | struct perf_counter *child; | 
|  |  | 
|  | WARN_ON_ONCE(counter->ctx->parent_ctx); | 
|  | mutex_lock(&counter->child_mutex); | 
|  | func(counter); | 
|  | list_for_each_entry(child, &counter->child_list, child_list) | 
|  | func(child); | 
|  | mutex_unlock(&counter->child_mutex); | 
|  | } | 
|  |  | 
|  | static void perf_counter_for_each(struct perf_counter *counter, | 
|  | void (*func)(struct perf_counter *)) | 
|  | { | 
|  | struct perf_counter_context *ctx = counter->ctx; | 
|  | struct perf_counter *sibling; | 
|  |  | 
|  | WARN_ON_ONCE(ctx->parent_ctx); | 
|  | mutex_lock(&ctx->mutex); | 
|  | counter = counter->group_leader; | 
|  |  | 
|  | perf_counter_for_each_child(counter, func); | 
|  | func(counter); | 
|  | list_for_each_entry(sibling, &counter->sibling_list, list_entry) | 
|  | perf_counter_for_each_child(counter, func); | 
|  | mutex_unlock(&ctx->mutex); | 
|  | } | 
|  |  | 
|  | static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | 
|  | { | 
|  | struct perf_counter_context *ctx = counter->ctx; | 
|  | unsigned long size; | 
|  | int ret = 0; | 
|  | u64 value; | 
|  |  | 
|  | if (!counter->attr.sample_period) | 
|  | return -EINVAL; | 
|  |  | 
|  | size = copy_from_user(&value, arg, sizeof(value)); | 
|  | if (size != sizeof(value)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!value) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irq(&ctx->lock); | 
|  | if (counter->attr.freq) { | 
|  | if (value > sysctl_perf_counter_sample_rate) { | 
|  | ret = -EINVAL; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | counter->attr.sample_freq = value; | 
|  | } else { | 
|  | perf_log_period(counter, value); | 
|  |  | 
|  | counter->attr.sample_period = value; | 
|  | counter->hw.sample_period = value; | 
|  | } | 
|  | unlock: | 
|  | spin_unlock_irq(&ctx->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | struct perf_counter *counter = file->private_data; | 
|  | void (*func)(struct perf_counter *); | 
|  | u32 flags = arg; | 
|  |  | 
|  | switch (cmd) { | 
|  | case PERF_COUNTER_IOC_ENABLE: | 
|  | func = perf_counter_enable; | 
|  | break; | 
|  | case PERF_COUNTER_IOC_DISABLE: | 
|  | func = perf_counter_disable; | 
|  | break; | 
|  | case PERF_COUNTER_IOC_RESET: | 
|  | func = perf_counter_reset; | 
|  | break; | 
|  |  | 
|  | case PERF_COUNTER_IOC_REFRESH: | 
|  | return perf_counter_refresh(counter, arg); | 
|  |  | 
|  | case PERF_COUNTER_IOC_PERIOD: | 
|  | return perf_counter_period(counter, (u64 __user *)arg); | 
|  |  | 
|  | default: | 
|  | return -ENOTTY; | 
|  | } | 
|  |  | 
|  | if (flags & PERF_IOC_FLAG_GROUP) | 
|  | perf_counter_for_each(counter, func); | 
|  | else | 
|  | perf_counter_for_each_child(counter, func); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int perf_counter_task_enable(void) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  |  | 
|  | mutex_lock(¤t->perf_counter_mutex); | 
|  | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | 
|  | perf_counter_for_each_child(counter, perf_counter_enable); | 
|  | mutex_unlock(¤t->perf_counter_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int perf_counter_task_disable(void) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  |  | 
|  | mutex_lock(¤t->perf_counter_mutex); | 
|  | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | 
|  | perf_counter_for_each_child(counter, perf_counter_disable); | 
|  | mutex_unlock(¤t->perf_counter_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Callers need to ensure there can be no nesting of this function, otherwise | 
|  | * the seqlock logic goes bad. We can not serialize this because the arch | 
|  | * code calls this from NMI context. | 
|  | */ | 
|  | void perf_counter_update_userpage(struct perf_counter *counter) | 
|  | { | 
|  | struct perf_counter_mmap_page *userpg; | 
|  | struct perf_mmap_data *data; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | data = rcu_dereference(counter->data); | 
|  | if (!data) | 
|  | goto unlock; | 
|  |  | 
|  | userpg = data->user_page; | 
|  |  | 
|  | /* | 
|  | * Disable preemption so as to not let the corresponding user-space | 
|  | * spin too long if we get preempted. | 
|  | */ | 
|  | preempt_disable(); | 
|  | ++userpg->lock; | 
|  | barrier(); | 
|  | userpg->index = counter->hw.idx; | 
|  | userpg->offset = atomic64_read(&counter->count); | 
|  | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | 
|  | userpg->offset -= atomic64_read(&counter->hw.prev_count); | 
|  |  | 
|  | barrier(); | 
|  | ++userpg->lock; | 
|  | preempt_enable(); | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
|  | { | 
|  | struct perf_counter *counter = vma->vm_file->private_data; | 
|  | struct perf_mmap_data *data; | 
|  | int ret = VM_FAULT_SIGBUS; | 
|  |  | 
|  | if (vmf->flags & FAULT_FLAG_MKWRITE) { | 
|  | if (vmf->pgoff == 0) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | data = rcu_dereference(counter->data); | 
|  | if (!data) | 
|  | goto unlock; | 
|  |  | 
|  | if (vmf->pgoff == 0) { | 
|  | vmf->page = virt_to_page(data->user_page); | 
|  | } else { | 
|  | int nr = vmf->pgoff - 1; | 
|  |  | 
|  | if ((unsigned)nr > data->nr_pages) | 
|  | goto unlock; | 
|  |  | 
|  | if (vmf->flags & FAULT_FLAG_WRITE) | 
|  | goto unlock; | 
|  |  | 
|  | vmf->page = virt_to_page(data->data_pages[nr]); | 
|  | } | 
|  |  | 
|  | get_page(vmf->page); | 
|  | vmf->page->mapping = vma->vm_file->f_mapping; | 
|  | vmf->page->index   = vmf->pgoff; | 
|  |  | 
|  | ret = 0; | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | 
|  | { | 
|  | struct perf_mmap_data *data; | 
|  | unsigned long size; | 
|  | int i; | 
|  |  | 
|  | WARN_ON(atomic_read(&counter->mmap_count)); | 
|  |  | 
|  | size = sizeof(struct perf_mmap_data); | 
|  | size += nr_pages * sizeof(void *); | 
|  |  | 
|  | data = kzalloc(size, GFP_KERNEL); | 
|  | if (!data) | 
|  | goto fail; | 
|  |  | 
|  | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | 
|  | if (!data->user_page) | 
|  | goto fail_user_page; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | 
|  | if (!data->data_pages[i]) | 
|  | goto fail_data_pages; | 
|  | } | 
|  |  | 
|  | data->nr_pages = nr_pages; | 
|  | atomic_set(&data->lock, -1); | 
|  |  | 
|  | rcu_assign_pointer(counter->data, data); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail_data_pages: | 
|  | for (i--; i >= 0; i--) | 
|  | free_page((unsigned long)data->data_pages[i]); | 
|  |  | 
|  | free_page((unsigned long)data->user_page); | 
|  |  | 
|  | fail_user_page: | 
|  | kfree(data); | 
|  |  | 
|  | fail: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void perf_mmap_free_page(unsigned long addr) | 
|  | { | 
|  | struct page *page = virt_to_page(addr); | 
|  |  | 
|  | page->mapping = NULL; | 
|  | __free_page(page); | 
|  | } | 
|  |  | 
|  | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | 
|  | { | 
|  | struct perf_mmap_data *data; | 
|  | int i; | 
|  |  | 
|  | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | 
|  |  | 
|  | perf_mmap_free_page((unsigned long)data->user_page); | 
|  | for (i = 0; i < data->nr_pages; i++) | 
|  | perf_mmap_free_page((unsigned long)data->data_pages[i]); | 
|  |  | 
|  | kfree(data); | 
|  | } | 
|  |  | 
|  | static void perf_mmap_data_free(struct perf_counter *counter) | 
|  | { | 
|  | struct perf_mmap_data *data = counter->data; | 
|  |  | 
|  | WARN_ON(atomic_read(&counter->mmap_count)); | 
|  |  | 
|  | rcu_assign_pointer(counter->data, NULL); | 
|  | call_rcu(&data->rcu_head, __perf_mmap_data_free); | 
|  | } | 
|  |  | 
|  | static void perf_mmap_open(struct vm_area_struct *vma) | 
|  | { | 
|  | struct perf_counter *counter = vma->vm_file->private_data; | 
|  |  | 
|  | atomic_inc(&counter->mmap_count); | 
|  | } | 
|  |  | 
|  | static void perf_mmap_close(struct vm_area_struct *vma) | 
|  | { | 
|  | struct perf_counter *counter = vma->vm_file->private_data; | 
|  |  | 
|  | WARN_ON_ONCE(counter->ctx->parent_ctx); | 
|  | if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) { | 
|  | struct user_struct *user = current_user(); | 
|  |  | 
|  | atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm); | 
|  | vma->vm_mm->locked_vm -= counter->data->nr_locked; | 
|  | perf_mmap_data_free(counter); | 
|  | mutex_unlock(&counter->mmap_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct vm_operations_struct perf_mmap_vmops = { | 
|  | .open		= perf_mmap_open, | 
|  | .close		= perf_mmap_close, | 
|  | .fault		= perf_mmap_fault, | 
|  | .page_mkwrite	= perf_mmap_fault, | 
|  | }; | 
|  |  | 
|  | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | struct perf_counter *counter = file->private_data; | 
|  | unsigned long user_locked, user_lock_limit; | 
|  | struct user_struct *user = current_user(); | 
|  | unsigned long locked, lock_limit; | 
|  | unsigned long vma_size; | 
|  | unsigned long nr_pages; | 
|  | long user_extra, extra; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!(vma->vm_flags & VM_SHARED)) | 
|  | return -EINVAL; | 
|  |  | 
|  | vma_size = vma->vm_end - vma->vm_start; | 
|  | nr_pages = (vma_size / PAGE_SIZE) - 1; | 
|  |  | 
|  | /* | 
|  | * If we have data pages ensure they're a power-of-two number, so we | 
|  | * can do bitmasks instead of modulo. | 
|  | */ | 
|  | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (vma->vm_pgoff != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | WARN_ON_ONCE(counter->ctx->parent_ctx); | 
|  | mutex_lock(&counter->mmap_mutex); | 
|  | if (atomic_inc_not_zero(&counter->mmap_count)) { | 
|  | if (nr_pages != counter->data->nr_pages) | 
|  | ret = -EINVAL; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | user_extra = nr_pages + 1; | 
|  | user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10); | 
|  |  | 
|  | /* | 
|  | * Increase the limit linearly with more CPUs: | 
|  | */ | 
|  | user_lock_limit *= num_online_cpus(); | 
|  |  | 
|  | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | 
|  |  | 
|  | extra = 0; | 
|  | if (user_locked > user_lock_limit) | 
|  | extra = user_locked - user_lock_limit; | 
|  |  | 
|  | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | 
|  | lock_limit >>= PAGE_SHIFT; | 
|  | locked = vma->vm_mm->locked_vm + extra; | 
|  |  | 
|  | if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { | 
|  | ret = -EPERM; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | WARN_ON(counter->data); | 
|  | ret = perf_mmap_data_alloc(counter, nr_pages); | 
|  | if (ret) | 
|  | goto unlock; | 
|  |  | 
|  | atomic_set(&counter->mmap_count, 1); | 
|  | atomic_long_add(user_extra, &user->locked_vm); | 
|  | vma->vm_mm->locked_vm += extra; | 
|  | counter->data->nr_locked = extra; | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | counter->data->writable = 1; | 
|  |  | 
|  | unlock: | 
|  | mutex_unlock(&counter->mmap_mutex); | 
|  |  | 
|  | vma->vm_flags |= VM_RESERVED; | 
|  | vma->vm_ops = &perf_mmap_vmops; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int perf_fasync(int fd, struct file *filp, int on) | 
|  | { | 
|  | struct inode *inode = filp->f_path.dentry->d_inode; | 
|  | struct perf_counter *counter = filp->private_data; | 
|  | int retval; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | retval = fasync_helper(fd, filp, on, &counter->fasync); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  |  | 
|  | if (retval < 0) | 
|  | return retval; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct file_operations perf_fops = { | 
|  | .release		= perf_release, | 
|  | .read			= perf_read, | 
|  | .poll			= perf_poll, | 
|  | .unlocked_ioctl		= perf_ioctl, | 
|  | .compat_ioctl		= perf_ioctl, | 
|  | .mmap			= perf_mmap, | 
|  | .fasync			= perf_fasync, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Perf counter wakeup | 
|  | * | 
|  | * If there's data, ensure we set the poll() state and publish everything | 
|  | * to user-space before waking everybody up. | 
|  | */ | 
|  |  | 
|  | void perf_counter_wakeup(struct perf_counter *counter) | 
|  | { | 
|  | wake_up_all(&counter->waitq); | 
|  |  | 
|  | if (counter->pending_kill) { | 
|  | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | 
|  | counter->pending_kill = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pending wakeups | 
|  | * | 
|  | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | 
|  | * | 
|  | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | 
|  | * single linked list and use cmpxchg() to add entries lockless. | 
|  | */ | 
|  |  | 
|  | static void perf_pending_counter(struct perf_pending_entry *entry) | 
|  | { | 
|  | struct perf_counter *counter = container_of(entry, | 
|  | struct perf_counter, pending); | 
|  |  | 
|  | if (counter->pending_disable) { | 
|  | counter->pending_disable = 0; | 
|  | perf_counter_disable(counter); | 
|  | } | 
|  |  | 
|  | if (counter->pending_wakeup) { | 
|  | counter->pending_wakeup = 0; | 
|  | perf_counter_wakeup(counter); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | 
|  |  | 
|  | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | 
|  | PENDING_TAIL, | 
|  | }; | 
|  |  | 
|  | static void perf_pending_queue(struct perf_pending_entry *entry, | 
|  | void (*func)(struct perf_pending_entry *)) | 
|  | { | 
|  | struct perf_pending_entry **head; | 
|  |  | 
|  | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | 
|  | return; | 
|  |  | 
|  | entry->func = func; | 
|  |  | 
|  | head = &get_cpu_var(perf_pending_head); | 
|  |  | 
|  | do { | 
|  | entry->next = *head; | 
|  | } while (cmpxchg(head, entry->next, entry) != entry->next); | 
|  |  | 
|  | set_perf_counter_pending(); | 
|  |  | 
|  | put_cpu_var(perf_pending_head); | 
|  | } | 
|  |  | 
|  | static int __perf_pending_run(void) | 
|  | { | 
|  | struct perf_pending_entry *list; | 
|  | int nr = 0; | 
|  |  | 
|  | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | 
|  | while (list != PENDING_TAIL) { | 
|  | void (*func)(struct perf_pending_entry *); | 
|  | struct perf_pending_entry *entry = list; | 
|  |  | 
|  | list = list->next; | 
|  |  | 
|  | func = entry->func; | 
|  | entry->next = NULL; | 
|  | /* | 
|  | * Ensure we observe the unqueue before we issue the wakeup, | 
|  | * so that we won't be waiting forever. | 
|  | * -- see perf_not_pending(). | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | func(entry); | 
|  | nr++; | 
|  | } | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static inline int perf_not_pending(struct perf_counter *counter) | 
|  | { | 
|  | /* | 
|  | * If we flush on whatever cpu we run, there is a chance we don't | 
|  | * need to wait. | 
|  | */ | 
|  | get_cpu(); | 
|  | __perf_pending_run(); | 
|  | put_cpu(); | 
|  |  | 
|  | /* | 
|  | * Ensure we see the proper queue state before going to sleep | 
|  | * so that we do not miss the wakeup. -- see perf_pending_handle() | 
|  | */ | 
|  | smp_rmb(); | 
|  | return counter->pending.next == NULL; | 
|  | } | 
|  |  | 
|  | static void perf_pending_sync(struct perf_counter *counter) | 
|  | { | 
|  | wait_event(counter->waitq, perf_not_pending(counter)); | 
|  | } | 
|  |  | 
|  | void perf_counter_do_pending(void) | 
|  | { | 
|  | __perf_pending_run(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Callchain support -- arch specific | 
|  | */ | 
|  |  | 
|  | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Output | 
|  | */ | 
|  |  | 
|  | struct perf_output_handle { | 
|  | struct perf_counter	*counter; | 
|  | struct perf_mmap_data	*data; | 
|  | unsigned long		head; | 
|  | unsigned long		offset; | 
|  | int			nmi; | 
|  | int			sample; | 
|  | int			locked; | 
|  | unsigned long		flags; | 
|  | }; | 
|  |  | 
|  | static bool perf_output_space(struct perf_mmap_data *data, | 
|  | unsigned int offset, unsigned int head) | 
|  | { | 
|  | unsigned long tail; | 
|  | unsigned long mask; | 
|  |  | 
|  | if (!data->writable) | 
|  | return true; | 
|  |  | 
|  | mask = (data->nr_pages << PAGE_SHIFT) - 1; | 
|  | /* | 
|  | * Userspace could choose to issue a mb() before updating the tail | 
|  | * pointer. So that all reads will be completed before the write is | 
|  | * issued. | 
|  | */ | 
|  | tail = ACCESS_ONCE(data->user_page->data_tail); | 
|  | smp_rmb(); | 
|  |  | 
|  | offset = (offset - tail) & mask; | 
|  | head   = (head   - tail) & mask; | 
|  |  | 
|  | if ((int)(head - offset) < 0) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void perf_output_wakeup(struct perf_output_handle *handle) | 
|  | { | 
|  | atomic_set(&handle->data->poll, POLL_IN); | 
|  |  | 
|  | if (handle->nmi) { | 
|  | handle->counter->pending_wakeup = 1; | 
|  | perf_pending_queue(&handle->counter->pending, | 
|  | perf_pending_counter); | 
|  | } else | 
|  | perf_counter_wakeup(handle->counter); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Curious locking construct. | 
|  | * | 
|  | * We need to ensure a later event doesn't publish a head when a former | 
|  | * event isn't done writing. However since we need to deal with NMIs we | 
|  | * cannot fully serialize things. | 
|  | * | 
|  | * What we do is serialize between CPUs so we only have to deal with NMI | 
|  | * nesting on a single CPU. | 
|  | * | 
|  | * We only publish the head (and generate a wakeup) when the outer-most | 
|  | * event completes. | 
|  | */ | 
|  | static void perf_output_lock(struct perf_output_handle *handle) | 
|  | { | 
|  | struct perf_mmap_data *data = handle->data; | 
|  | int cpu; | 
|  |  | 
|  | handle->locked = 0; | 
|  |  | 
|  | local_irq_save(handle->flags); | 
|  | cpu = smp_processor_id(); | 
|  |  | 
|  | if (in_nmi() && atomic_read(&data->lock) == cpu) | 
|  | return; | 
|  |  | 
|  | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | 
|  | cpu_relax(); | 
|  |  | 
|  | handle->locked = 1; | 
|  | } | 
|  |  | 
|  | static void perf_output_unlock(struct perf_output_handle *handle) | 
|  | { | 
|  | struct perf_mmap_data *data = handle->data; | 
|  | unsigned long head; | 
|  | int cpu; | 
|  |  | 
|  | data->done_head = data->head; | 
|  |  | 
|  | if (!handle->locked) | 
|  | goto out; | 
|  |  | 
|  | again: | 
|  | /* | 
|  | * The xchg implies a full barrier that ensures all writes are done | 
|  | * before we publish the new head, matched by a rmb() in userspace when | 
|  | * reading this position. | 
|  | */ | 
|  | while ((head = atomic_long_xchg(&data->done_head, 0))) | 
|  | data->user_page->data_head = head; | 
|  |  | 
|  | /* | 
|  | * NMI can happen here, which means we can miss a done_head update. | 
|  | */ | 
|  |  | 
|  | cpu = atomic_xchg(&data->lock, -1); | 
|  | WARN_ON_ONCE(cpu != smp_processor_id()); | 
|  |  | 
|  | /* | 
|  | * Therefore we have to validate we did not indeed do so. | 
|  | */ | 
|  | if (unlikely(atomic_long_read(&data->done_head))) { | 
|  | /* | 
|  | * Since we had it locked, we can lock it again. | 
|  | */ | 
|  | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | 
|  | cpu_relax(); | 
|  |  | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (atomic_xchg(&data->wakeup, 0)) | 
|  | perf_output_wakeup(handle); | 
|  | out: | 
|  | local_irq_restore(handle->flags); | 
|  | } | 
|  |  | 
|  | static void perf_output_copy(struct perf_output_handle *handle, | 
|  | const void *buf, unsigned int len) | 
|  | { | 
|  | unsigned int pages_mask; | 
|  | unsigned int offset; | 
|  | unsigned int size; | 
|  | void **pages; | 
|  |  | 
|  | offset		= handle->offset; | 
|  | pages_mask	= handle->data->nr_pages - 1; | 
|  | pages		= handle->data->data_pages; | 
|  |  | 
|  | do { | 
|  | unsigned int page_offset; | 
|  | int nr; | 
|  |  | 
|  | nr	    = (offset >> PAGE_SHIFT) & pages_mask; | 
|  | page_offset = offset & (PAGE_SIZE - 1); | 
|  | size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len); | 
|  |  | 
|  | memcpy(pages[nr] + page_offset, buf, size); | 
|  |  | 
|  | len	    -= size; | 
|  | buf	    += size; | 
|  | offset	    += size; | 
|  | } while (len); | 
|  |  | 
|  | handle->offset = offset; | 
|  |  | 
|  | /* | 
|  | * Check we didn't copy past our reservation window, taking the | 
|  | * possible unsigned int wrap into account. | 
|  | */ | 
|  | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | 
|  | } | 
|  |  | 
|  | #define perf_output_put(handle, x) \ | 
|  | perf_output_copy((handle), &(x), sizeof(x)) | 
|  |  | 
|  | static int perf_output_begin(struct perf_output_handle *handle, | 
|  | struct perf_counter *counter, unsigned int size, | 
|  | int nmi, int sample) | 
|  | { | 
|  | struct perf_mmap_data *data; | 
|  | unsigned int offset, head; | 
|  | int have_lost; | 
|  | struct { | 
|  | struct perf_event_header header; | 
|  | u64			 id; | 
|  | u64			 lost; | 
|  | } lost_event; | 
|  |  | 
|  | /* | 
|  | * For inherited counters we send all the output towards the parent. | 
|  | */ | 
|  | if (counter->parent) | 
|  | counter = counter->parent; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | data = rcu_dereference(counter->data); | 
|  | if (!data) | 
|  | goto out; | 
|  |  | 
|  | handle->data	= data; | 
|  | handle->counter	= counter; | 
|  | handle->nmi	= nmi; | 
|  | handle->sample	= sample; | 
|  |  | 
|  | if (!data->nr_pages) | 
|  | goto fail; | 
|  |  | 
|  | have_lost = atomic_read(&data->lost); | 
|  | if (have_lost) | 
|  | size += sizeof(lost_event); | 
|  |  | 
|  | perf_output_lock(handle); | 
|  |  | 
|  | do { | 
|  | offset = head = atomic_long_read(&data->head); | 
|  | head += size; | 
|  | if (unlikely(!perf_output_space(data, offset, head))) | 
|  | goto fail; | 
|  | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | 
|  |  | 
|  | handle->offset	= offset; | 
|  | handle->head	= head; | 
|  |  | 
|  | if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT)) | 
|  | atomic_set(&data->wakeup, 1); | 
|  |  | 
|  | if (have_lost) { | 
|  | lost_event.header.type = PERF_EVENT_LOST; | 
|  | lost_event.header.misc = 0; | 
|  | lost_event.header.size = sizeof(lost_event); | 
|  | lost_event.id          = counter->id; | 
|  | lost_event.lost        = atomic_xchg(&data->lost, 0); | 
|  |  | 
|  | perf_output_put(handle, lost_event); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | atomic_inc(&data->lost); | 
|  | perf_output_unlock(handle); | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | static void perf_output_end(struct perf_output_handle *handle) | 
|  | { | 
|  | struct perf_counter *counter = handle->counter; | 
|  | struct perf_mmap_data *data = handle->data; | 
|  |  | 
|  | int wakeup_events = counter->attr.wakeup_events; | 
|  |  | 
|  | if (handle->sample && wakeup_events) { | 
|  | int events = atomic_inc_return(&data->events); | 
|  | if (events >= wakeup_events) { | 
|  | atomic_sub(wakeup_events, &data->events); | 
|  | atomic_set(&data->wakeup, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | perf_output_unlock(handle); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * only top level counters have the pid namespace they were created in | 
|  | */ | 
|  | if (counter->parent) | 
|  | counter = counter->parent; | 
|  |  | 
|  | return task_tgid_nr_ns(p, counter->ns); | 
|  | } | 
|  |  | 
|  | static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * only top level counters have the pid namespace they were created in | 
|  | */ | 
|  | if (counter->parent) | 
|  | counter = counter->parent; | 
|  |  | 
|  | return task_pid_nr_ns(p, counter->ns); | 
|  | } | 
|  |  | 
|  | static void perf_counter_output(struct perf_counter *counter, int nmi, | 
|  | struct perf_sample_data *data) | 
|  | { | 
|  | int ret; | 
|  | u64 sample_type = counter->attr.sample_type; | 
|  | struct perf_output_handle handle; | 
|  | struct perf_event_header header; | 
|  | u64 ip; | 
|  | struct { | 
|  | u32 pid, tid; | 
|  | } tid_entry; | 
|  | struct { | 
|  | u64 id; | 
|  | u64 counter; | 
|  | } group_entry; | 
|  | struct perf_callchain_entry *callchain = NULL; | 
|  | int callchain_size = 0; | 
|  | u64 time; | 
|  | struct { | 
|  | u32 cpu, reserved; | 
|  | } cpu_entry; | 
|  |  | 
|  | header.type = 0; | 
|  | header.size = sizeof(header); | 
|  |  | 
|  | header.misc = PERF_EVENT_MISC_OVERFLOW; | 
|  | header.misc |= perf_misc_flags(data->regs); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_IP) { | 
|  | ip = perf_instruction_pointer(data->regs); | 
|  | header.type |= PERF_SAMPLE_IP; | 
|  | header.size += sizeof(ip); | 
|  | } | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_TID) { | 
|  | /* namespace issues */ | 
|  | tid_entry.pid = perf_counter_pid(counter, current); | 
|  | tid_entry.tid = perf_counter_tid(counter, current); | 
|  |  | 
|  | header.type |= PERF_SAMPLE_TID; | 
|  | header.size += sizeof(tid_entry); | 
|  | } | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_TIME) { | 
|  | /* | 
|  | * Maybe do better on x86 and provide cpu_clock_nmi() | 
|  | */ | 
|  | time = sched_clock(); | 
|  |  | 
|  | header.type |= PERF_SAMPLE_TIME; | 
|  | header.size += sizeof(u64); | 
|  | } | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_ADDR) { | 
|  | header.type |= PERF_SAMPLE_ADDR; | 
|  | header.size += sizeof(u64); | 
|  | } | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_ID) { | 
|  | header.type |= PERF_SAMPLE_ID; | 
|  | header.size += sizeof(u64); | 
|  | } | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_CPU) { | 
|  | header.type |= PERF_SAMPLE_CPU; | 
|  | header.size += sizeof(cpu_entry); | 
|  |  | 
|  | cpu_entry.cpu = raw_smp_processor_id(); | 
|  | } | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_PERIOD) { | 
|  | header.type |= PERF_SAMPLE_PERIOD; | 
|  | header.size += sizeof(u64); | 
|  | } | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_GROUP) { | 
|  | header.type |= PERF_SAMPLE_GROUP; | 
|  | header.size += sizeof(u64) + | 
|  | counter->nr_siblings * sizeof(group_entry); | 
|  | } | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 
|  | callchain = perf_callchain(data->regs); | 
|  |  | 
|  | if (callchain) { | 
|  | callchain_size = (1 + callchain->nr) * sizeof(u64); | 
|  |  | 
|  | header.type |= PERF_SAMPLE_CALLCHAIN; | 
|  | header.size += callchain_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | perf_output_put(&handle, header); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_IP) | 
|  | perf_output_put(&handle, ip); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_TID) | 
|  | perf_output_put(&handle, tid_entry); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_TIME) | 
|  | perf_output_put(&handle, time); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_ADDR) | 
|  | perf_output_put(&handle, data->addr); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_ID) | 
|  | perf_output_put(&handle, counter->id); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_CPU) | 
|  | perf_output_put(&handle, cpu_entry); | 
|  |  | 
|  | if (sample_type & PERF_SAMPLE_PERIOD) | 
|  | perf_output_put(&handle, data->period); | 
|  |  | 
|  | /* | 
|  | * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult. | 
|  | */ | 
|  | if (sample_type & PERF_SAMPLE_GROUP) { | 
|  | struct perf_counter *leader, *sub; | 
|  | u64 nr = counter->nr_siblings; | 
|  |  | 
|  | perf_output_put(&handle, nr); | 
|  |  | 
|  | leader = counter->group_leader; | 
|  | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | 
|  | if (sub != counter) | 
|  | sub->pmu->read(sub); | 
|  |  | 
|  | group_entry.id = sub->id; | 
|  | group_entry.counter = atomic64_read(&sub->count); | 
|  |  | 
|  | perf_output_put(&handle, group_entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (callchain) | 
|  | perf_output_copy(&handle, callchain, callchain_size); | 
|  |  | 
|  | perf_output_end(&handle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fork tracking | 
|  | */ | 
|  |  | 
|  | struct perf_fork_event { | 
|  | struct task_struct	*task; | 
|  |  | 
|  | struct { | 
|  | struct perf_event_header	header; | 
|  |  | 
|  | u32				pid; | 
|  | u32				ppid; | 
|  | } event; | 
|  | }; | 
|  |  | 
|  | static void perf_counter_fork_output(struct perf_counter *counter, | 
|  | struct perf_fork_event *fork_event) | 
|  | { | 
|  | struct perf_output_handle handle; | 
|  | int size = fork_event->event.header.size; | 
|  | struct task_struct *task = fork_event->task; | 
|  | int ret = perf_output_begin(&handle, counter, size, 0, 0); | 
|  |  | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | fork_event->event.pid = perf_counter_pid(counter, task); | 
|  | fork_event->event.ppid = perf_counter_pid(counter, task->real_parent); | 
|  |  | 
|  | perf_output_put(&handle, fork_event->event); | 
|  | perf_output_end(&handle); | 
|  | } | 
|  |  | 
|  | static int perf_counter_fork_match(struct perf_counter *counter) | 
|  | { | 
|  | if (counter->attr.comm || counter->attr.mmap) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void perf_counter_fork_ctx(struct perf_counter_context *ctx, | 
|  | struct perf_fork_event *fork_event) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  |  | 
|  | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 
|  | return; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 
|  | if (perf_counter_fork_match(counter)) | 
|  | perf_counter_fork_output(counter, fork_event); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void perf_counter_fork_event(struct perf_fork_event *fork_event) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  | struct perf_counter_context *ctx; | 
|  |  | 
|  | cpuctx = &get_cpu_var(perf_cpu_context); | 
|  | perf_counter_fork_ctx(&cpuctx->ctx, fork_event); | 
|  | put_cpu_var(perf_cpu_context); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | /* | 
|  | * doesn't really matter which of the child contexts the | 
|  | * events ends up in. | 
|  | */ | 
|  | ctx = rcu_dereference(current->perf_counter_ctxp); | 
|  | if (ctx) | 
|  | perf_counter_fork_ctx(ctx, fork_event); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | void perf_counter_fork(struct task_struct *task) | 
|  | { | 
|  | struct perf_fork_event fork_event; | 
|  |  | 
|  | if (!atomic_read(&nr_comm_counters) && | 
|  | !atomic_read(&nr_mmap_counters)) | 
|  | return; | 
|  |  | 
|  | fork_event = (struct perf_fork_event){ | 
|  | .task	= task, | 
|  | .event  = { | 
|  | .header = { | 
|  | .type = PERF_EVENT_FORK, | 
|  | .size = sizeof(fork_event.event), | 
|  | }, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | perf_counter_fork_event(&fork_event); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * comm tracking | 
|  | */ | 
|  |  | 
|  | struct perf_comm_event { | 
|  | struct task_struct	*task; | 
|  | char			*comm; | 
|  | int			comm_size; | 
|  |  | 
|  | struct { | 
|  | struct perf_event_header	header; | 
|  |  | 
|  | u32				pid; | 
|  | u32				tid; | 
|  | } event; | 
|  | }; | 
|  |  | 
|  | static void perf_counter_comm_output(struct perf_counter *counter, | 
|  | struct perf_comm_event *comm_event) | 
|  | { | 
|  | struct perf_output_handle handle; | 
|  | int size = comm_event->event.header.size; | 
|  | int ret = perf_output_begin(&handle, counter, size, 0, 0); | 
|  |  | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | comm_event->event.pid = perf_counter_pid(counter, comm_event->task); | 
|  | comm_event->event.tid = perf_counter_tid(counter, comm_event->task); | 
|  |  | 
|  | perf_output_put(&handle, comm_event->event); | 
|  | perf_output_copy(&handle, comm_event->comm, | 
|  | comm_event->comm_size); | 
|  | perf_output_end(&handle); | 
|  | } | 
|  |  | 
|  | static int perf_counter_comm_match(struct perf_counter *counter) | 
|  | { | 
|  | if (counter->attr.comm) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void perf_counter_comm_ctx(struct perf_counter_context *ctx, | 
|  | struct perf_comm_event *comm_event) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  |  | 
|  | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 
|  | return; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 
|  | if (perf_counter_comm_match(counter)) | 
|  | perf_counter_comm_output(counter, comm_event); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void perf_counter_comm_event(struct perf_comm_event *comm_event) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  | struct perf_counter_context *ctx; | 
|  | unsigned int size; | 
|  | char *comm = comm_event->task->comm; | 
|  |  | 
|  | size = ALIGN(strlen(comm)+1, sizeof(u64)); | 
|  |  | 
|  | comm_event->comm = comm; | 
|  | comm_event->comm_size = size; | 
|  |  | 
|  | comm_event->event.header.size = sizeof(comm_event->event) + size; | 
|  |  | 
|  | cpuctx = &get_cpu_var(perf_cpu_context); | 
|  | perf_counter_comm_ctx(&cpuctx->ctx, comm_event); | 
|  | put_cpu_var(perf_cpu_context); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | /* | 
|  | * doesn't really matter which of the child contexts the | 
|  | * events ends up in. | 
|  | */ | 
|  | ctx = rcu_dereference(current->perf_counter_ctxp); | 
|  | if (ctx) | 
|  | perf_counter_comm_ctx(ctx, comm_event); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | void perf_counter_comm(struct task_struct *task) | 
|  | { | 
|  | struct perf_comm_event comm_event; | 
|  |  | 
|  | if (!atomic_read(&nr_comm_counters)) | 
|  | return; | 
|  |  | 
|  | comm_event = (struct perf_comm_event){ | 
|  | .task	= task, | 
|  | .event  = { | 
|  | .header = { .type = PERF_EVENT_COMM, }, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | perf_counter_comm_event(&comm_event); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mmap tracking | 
|  | */ | 
|  |  | 
|  | struct perf_mmap_event { | 
|  | struct vm_area_struct	*vma; | 
|  |  | 
|  | const char		*file_name; | 
|  | int			file_size; | 
|  |  | 
|  | struct { | 
|  | struct perf_event_header	header; | 
|  |  | 
|  | u32				pid; | 
|  | u32				tid; | 
|  | u64				start; | 
|  | u64				len; | 
|  | u64				pgoff; | 
|  | } event; | 
|  | }; | 
|  |  | 
|  | static void perf_counter_mmap_output(struct perf_counter *counter, | 
|  | struct perf_mmap_event *mmap_event) | 
|  | { | 
|  | struct perf_output_handle handle; | 
|  | int size = mmap_event->event.header.size; | 
|  | int ret = perf_output_begin(&handle, counter, size, 0, 0); | 
|  |  | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | mmap_event->event.pid = perf_counter_pid(counter, current); | 
|  | mmap_event->event.tid = perf_counter_tid(counter, current); | 
|  |  | 
|  | perf_output_put(&handle, mmap_event->event); | 
|  | perf_output_copy(&handle, mmap_event->file_name, | 
|  | mmap_event->file_size); | 
|  | perf_output_end(&handle); | 
|  | } | 
|  |  | 
|  | static int perf_counter_mmap_match(struct perf_counter *counter, | 
|  | struct perf_mmap_event *mmap_event) | 
|  | { | 
|  | if (counter->attr.mmap) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | 
|  | struct perf_mmap_event *mmap_event) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  |  | 
|  | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 
|  | return; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 
|  | if (perf_counter_mmap_match(counter, mmap_event)) | 
|  | perf_counter_mmap_output(counter, mmap_event); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  | struct perf_counter_context *ctx; | 
|  | struct vm_area_struct *vma = mmap_event->vma; | 
|  | struct file *file = vma->vm_file; | 
|  | unsigned int size; | 
|  | char tmp[16]; | 
|  | char *buf = NULL; | 
|  | const char *name; | 
|  |  | 
|  | if (file) { | 
|  | buf = kzalloc(PATH_MAX, GFP_KERNEL); | 
|  | if (!buf) { | 
|  | name = strncpy(tmp, "//enomem", sizeof(tmp)); | 
|  | goto got_name; | 
|  | } | 
|  | name = d_path(&file->f_path, buf, PATH_MAX); | 
|  | if (IS_ERR(name)) { | 
|  | name = strncpy(tmp, "//toolong", sizeof(tmp)); | 
|  | goto got_name; | 
|  | } | 
|  | } else { | 
|  | name = arch_vma_name(mmap_event->vma); | 
|  | if (name) | 
|  | goto got_name; | 
|  |  | 
|  | if (!vma->vm_mm) { | 
|  | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | 
|  | goto got_name; | 
|  | } | 
|  |  | 
|  | name = strncpy(tmp, "//anon", sizeof(tmp)); | 
|  | goto got_name; | 
|  | } | 
|  |  | 
|  | got_name: | 
|  | size = ALIGN(strlen(name)+1, sizeof(u64)); | 
|  |  | 
|  | mmap_event->file_name = name; | 
|  | mmap_event->file_size = size; | 
|  |  | 
|  | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | 
|  |  | 
|  | cpuctx = &get_cpu_var(perf_cpu_context); | 
|  | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | 
|  | put_cpu_var(perf_cpu_context); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | /* | 
|  | * doesn't really matter which of the child contexts the | 
|  | * events ends up in. | 
|  | */ | 
|  | ctx = rcu_dereference(current->perf_counter_ctxp); | 
|  | if (ctx) | 
|  | perf_counter_mmap_ctx(ctx, mmap_event); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | kfree(buf); | 
|  | } | 
|  |  | 
|  | void __perf_counter_mmap(struct vm_area_struct *vma) | 
|  | { | 
|  | struct perf_mmap_event mmap_event; | 
|  |  | 
|  | if (!atomic_read(&nr_mmap_counters)) | 
|  | return; | 
|  |  | 
|  | mmap_event = (struct perf_mmap_event){ | 
|  | .vma	= vma, | 
|  | .event  = { | 
|  | .header = { .type = PERF_EVENT_MMAP, }, | 
|  | .start  = vma->vm_start, | 
|  | .len    = vma->vm_end - vma->vm_start, | 
|  | .pgoff  = vma->vm_pgoff, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | perf_counter_mmap_event(&mmap_event); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Log sample_period changes so that analyzing tools can re-normalize the | 
|  | * event flow. | 
|  | */ | 
|  |  | 
|  | struct freq_event { | 
|  | struct perf_event_header	header; | 
|  | u64				time; | 
|  | u64				id; | 
|  | u64				period; | 
|  | }; | 
|  |  | 
|  | static void perf_log_period(struct perf_counter *counter, u64 period) | 
|  | { | 
|  | struct perf_output_handle handle; | 
|  | struct freq_event event; | 
|  | int ret; | 
|  |  | 
|  | if (counter->hw.sample_period == period) | 
|  | return; | 
|  |  | 
|  | if (counter->attr.sample_type & PERF_SAMPLE_PERIOD) | 
|  | return; | 
|  |  | 
|  | event = (struct freq_event) { | 
|  | .header = { | 
|  | .type = PERF_EVENT_PERIOD, | 
|  | .misc = 0, | 
|  | .size = sizeof(event), | 
|  | }, | 
|  | .time = sched_clock(), | 
|  | .id = counter->id, | 
|  | .period = period, | 
|  | }; | 
|  |  | 
|  | ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | perf_output_put(&handle, event); | 
|  | perf_output_end(&handle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IRQ throttle logging | 
|  | */ | 
|  |  | 
|  | static void perf_log_throttle(struct perf_counter *counter, int enable) | 
|  | { | 
|  | struct perf_output_handle handle; | 
|  | int ret; | 
|  |  | 
|  | struct { | 
|  | struct perf_event_header	header; | 
|  | u64				time; | 
|  | u64				id; | 
|  | } throttle_event = { | 
|  | .header = { | 
|  | .type = PERF_EVENT_THROTTLE + 1, | 
|  | .misc = 0, | 
|  | .size = sizeof(throttle_event), | 
|  | }, | 
|  | .time	= sched_clock(), | 
|  | .id	= counter->id, | 
|  | }; | 
|  |  | 
|  | ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | perf_output_put(&handle, throttle_event); | 
|  | perf_output_end(&handle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generic counter overflow handling, sampling. | 
|  | */ | 
|  |  | 
|  | int perf_counter_overflow(struct perf_counter *counter, int nmi, | 
|  | struct perf_sample_data *data) | 
|  | { | 
|  | int events = atomic_read(&counter->event_limit); | 
|  | int throttle = counter->pmu->unthrottle != NULL; | 
|  | struct hw_perf_counter *hwc = &counter->hw; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!throttle) { | 
|  | hwc->interrupts++; | 
|  | } else { | 
|  | if (hwc->interrupts != MAX_INTERRUPTS) { | 
|  | hwc->interrupts++; | 
|  | if (HZ * hwc->interrupts > | 
|  | (u64)sysctl_perf_counter_sample_rate) { | 
|  | hwc->interrupts = MAX_INTERRUPTS; | 
|  | perf_log_throttle(counter, 0); | 
|  | ret = 1; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Keep re-disabling counters even though on the previous | 
|  | * pass we disabled it - just in case we raced with a | 
|  | * sched-in and the counter got enabled again: | 
|  | */ | 
|  | ret = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (counter->attr.freq) { | 
|  | u64 now = sched_clock(); | 
|  | s64 delta = now - hwc->freq_stamp; | 
|  |  | 
|  | hwc->freq_stamp = now; | 
|  |  | 
|  | if (delta > 0 && delta < TICK_NSEC) | 
|  | perf_adjust_period(counter, NSEC_PER_SEC / (int)delta); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * XXX event_limit might not quite work as expected on inherited | 
|  | * counters | 
|  | */ | 
|  |  | 
|  | counter->pending_kill = POLL_IN; | 
|  | if (events && atomic_dec_and_test(&counter->event_limit)) { | 
|  | ret = 1; | 
|  | counter->pending_kill = POLL_HUP; | 
|  | if (nmi) { | 
|  | counter->pending_disable = 1; | 
|  | perf_pending_queue(&counter->pending, | 
|  | perf_pending_counter); | 
|  | } else | 
|  | perf_counter_disable(counter); | 
|  | } | 
|  |  | 
|  | perf_counter_output(counter, nmi, data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generic software counter infrastructure | 
|  | */ | 
|  |  | 
|  | static void perf_swcounter_update(struct perf_counter *counter) | 
|  | { | 
|  | struct hw_perf_counter *hwc = &counter->hw; | 
|  | u64 prev, now; | 
|  | s64 delta; | 
|  |  | 
|  | again: | 
|  | prev = atomic64_read(&hwc->prev_count); | 
|  | now = atomic64_read(&hwc->count); | 
|  | if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev) | 
|  | goto again; | 
|  |  | 
|  | delta = now - prev; | 
|  |  | 
|  | atomic64_add(delta, &counter->count); | 
|  | atomic64_sub(delta, &hwc->period_left); | 
|  | } | 
|  |  | 
|  | static void perf_swcounter_set_period(struct perf_counter *counter) | 
|  | { | 
|  | struct hw_perf_counter *hwc = &counter->hw; | 
|  | s64 left = atomic64_read(&hwc->period_left); | 
|  | s64 period = hwc->sample_period; | 
|  |  | 
|  | if (unlikely(left <= -period)) { | 
|  | left = period; | 
|  | atomic64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | } | 
|  |  | 
|  | if (unlikely(left <= 0)) { | 
|  | left += period; | 
|  | atomic64_add(period, &hwc->period_left); | 
|  | hwc->last_period = period; | 
|  | } | 
|  |  | 
|  | atomic64_set(&hwc->prev_count, -left); | 
|  | atomic64_set(&hwc->count, -left); | 
|  | } | 
|  |  | 
|  | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | 
|  | { | 
|  | enum hrtimer_restart ret = HRTIMER_RESTART; | 
|  | struct perf_sample_data data; | 
|  | struct perf_counter *counter; | 
|  | u64 period; | 
|  |  | 
|  | counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer); | 
|  | counter->pmu->read(counter); | 
|  |  | 
|  | data.addr = 0; | 
|  | data.regs = get_irq_regs(); | 
|  | /* | 
|  | * In case we exclude kernel IPs or are somehow not in interrupt | 
|  | * context, provide the next best thing, the user IP. | 
|  | */ | 
|  | if ((counter->attr.exclude_kernel || !data.regs) && | 
|  | !counter->attr.exclude_user) | 
|  | data.regs = task_pt_regs(current); | 
|  |  | 
|  | if (data.regs) { | 
|  | if (perf_counter_overflow(counter, 0, &data)) | 
|  | ret = HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | period = max_t(u64, 10000, counter->hw.sample_period); | 
|  | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void perf_swcounter_overflow(struct perf_counter *counter, | 
|  | int nmi, struct perf_sample_data *data) | 
|  | { | 
|  | data->period = counter->hw.last_period; | 
|  |  | 
|  | perf_swcounter_update(counter); | 
|  | perf_swcounter_set_period(counter); | 
|  | if (perf_counter_overflow(counter, nmi, data)) | 
|  | /* soft-disable the counter */ | 
|  | ; | 
|  | } | 
|  |  | 
|  | static int perf_swcounter_is_counting(struct perf_counter *counter) | 
|  | { | 
|  | struct perf_counter_context *ctx; | 
|  | unsigned long flags; | 
|  | int count; | 
|  |  | 
|  | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | 
|  | return 1; | 
|  |  | 
|  | if (counter->state != PERF_COUNTER_STATE_INACTIVE) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If the counter is inactive, it could be just because | 
|  | * its task is scheduled out, or because it's in a group | 
|  | * which could not go on the PMU.  We want to count in | 
|  | * the first case but not the second.  If the context is | 
|  | * currently active then an inactive software counter must | 
|  | * be the second case.  If it's not currently active then | 
|  | * we need to know whether the counter was active when the | 
|  | * context was last active, which we can determine by | 
|  | * comparing counter->tstamp_stopped with ctx->time. | 
|  | * | 
|  | * We are within an RCU read-side critical section, | 
|  | * which protects the existence of *ctx. | 
|  | */ | 
|  | ctx = counter->ctx; | 
|  | spin_lock_irqsave(&ctx->lock, flags); | 
|  | count = 1; | 
|  | /* Re-check state now we have the lock */ | 
|  | if (counter->state < PERF_COUNTER_STATE_INACTIVE || | 
|  | counter->ctx->is_active || | 
|  | counter->tstamp_stopped < ctx->time) | 
|  | count = 0; | 
|  | spin_unlock_irqrestore(&ctx->lock, flags); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int perf_swcounter_match(struct perf_counter *counter, | 
|  | enum perf_type_id type, | 
|  | u32 event, struct pt_regs *regs) | 
|  | { | 
|  | if (!perf_swcounter_is_counting(counter)) | 
|  | return 0; | 
|  |  | 
|  | if (counter->attr.type != type) | 
|  | return 0; | 
|  | if (counter->attr.config != event) | 
|  | return 0; | 
|  |  | 
|  | if (regs) { | 
|  | if (counter->attr.exclude_user && user_mode(regs)) | 
|  | return 0; | 
|  |  | 
|  | if (counter->attr.exclude_kernel && !user_mode(regs)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | 
|  | int nmi, struct perf_sample_data *data) | 
|  | { | 
|  | int neg = atomic64_add_negative(nr, &counter->hw.count); | 
|  |  | 
|  | if (counter->hw.sample_period && !neg && data->regs) | 
|  | perf_swcounter_overflow(counter, nmi, data); | 
|  | } | 
|  |  | 
|  | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | 
|  | enum perf_type_id type, | 
|  | u32 event, u64 nr, int nmi, | 
|  | struct perf_sample_data *data) | 
|  | { | 
|  | struct perf_counter *counter; | 
|  |  | 
|  | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 
|  | return; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 
|  | if (perf_swcounter_match(counter, type, event, data->regs)) | 
|  | perf_swcounter_add(counter, nr, nmi, data); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | 
|  | { | 
|  | if (in_nmi()) | 
|  | return &cpuctx->recursion[3]; | 
|  |  | 
|  | if (in_irq()) | 
|  | return &cpuctx->recursion[2]; | 
|  |  | 
|  | if (in_softirq()) | 
|  | return &cpuctx->recursion[1]; | 
|  |  | 
|  | return &cpuctx->recursion[0]; | 
|  | } | 
|  |  | 
|  | static void do_perf_swcounter_event(enum perf_type_id type, u32 event, | 
|  | u64 nr, int nmi, | 
|  | struct perf_sample_data *data) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | 
|  | int *recursion = perf_swcounter_recursion_context(cpuctx); | 
|  | struct perf_counter_context *ctx; | 
|  |  | 
|  | if (*recursion) | 
|  | goto out; | 
|  |  | 
|  | (*recursion)++; | 
|  | barrier(); | 
|  |  | 
|  | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, | 
|  | nr, nmi, data); | 
|  | rcu_read_lock(); | 
|  | /* | 
|  | * doesn't really matter which of the child contexts the | 
|  | * events ends up in. | 
|  | */ | 
|  | ctx = rcu_dereference(current->perf_counter_ctxp); | 
|  | if (ctx) | 
|  | perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | barrier(); | 
|  | (*recursion)--; | 
|  |  | 
|  | out: | 
|  | put_cpu_var(perf_cpu_context); | 
|  | } | 
|  |  | 
|  | void | 
|  | perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr) | 
|  | { | 
|  | struct perf_sample_data data = { | 
|  | .regs = regs, | 
|  | .addr = addr, | 
|  | }; | 
|  |  | 
|  | do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data); | 
|  | } | 
|  |  | 
|  | static void perf_swcounter_read(struct perf_counter *counter) | 
|  | { | 
|  | perf_swcounter_update(counter); | 
|  | } | 
|  |  | 
|  | static int perf_swcounter_enable(struct perf_counter *counter) | 
|  | { | 
|  | perf_swcounter_set_period(counter); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void perf_swcounter_disable(struct perf_counter *counter) | 
|  | { | 
|  | perf_swcounter_update(counter); | 
|  | } | 
|  |  | 
|  | static const struct pmu perf_ops_generic = { | 
|  | .enable		= perf_swcounter_enable, | 
|  | .disable	= perf_swcounter_disable, | 
|  | .read		= perf_swcounter_read, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Software counter: cpu wall time clock | 
|  | */ | 
|  |  | 
|  | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  | s64 prev; | 
|  | u64 now; | 
|  |  | 
|  | now = cpu_clock(cpu); | 
|  | prev = atomic64_read(&counter->hw.prev_count); | 
|  | atomic64_set(&counter->hw.prev_count, now); | 
|  | atomic64_add(now - prev, &counter->count); | 
|  | } | 
|  |  | 
|  | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | 
|  | { | 
|  | struct hw_perf_counter *hwc = &counter->hw; | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | 
|  | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | hwc->hrtimer.function = perf_swcounter_hrtimer; | 
|  | if (hwc->sample_period) { | 
|  | u64 period = max_t(u64, 10000, hwc->sample_period); | 
|  | __hrtimer_start_range_ns(&hwc->hrtimer, | 
|  | ns_to_ktime(period), 0, | 
|  | HRTIMER_MODE_REL, 0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | 
|  | { | 
|  | if (counter->hw.sample_period) | 
|  | hrtimer_cancel(&counter->hw.hrtimer); | 
|  | cpu_clock_perf_counter_update(counter); | 
|  | } | 
|  |  | 
|  | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | 
|  | { | 
|  | cpu_clock_perf_counter_update(counter); | 
|  | } | 
|  |  | 
|  | static const struct pmu perf_ops_cpu_clock = { | 
|  | .enable		= cpu_clock_perf_counter_enable, | 
|  | .disable	= cpu_clock_perf_counter_disable, | 
|  | .read		= cpu_clock_perf_counter_read, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Software counter: task time clock | 
|  | */ | 
|  |  | 
|  | static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) | 
|  | { | 
|  | u64 prev; | 
|  | s64 delta; | 
|  |  | 
|  | prev = atomic64_xchg(&counter->hw.prev_count, now); | 
|  | delta = now - prev; | 
|  | atomic64_add(delta, &counter->count); | 
|  | } | 
|  |  | 
|  | static int task_clock_perf_counter_enable(struct perf_counter *counter) | 
|  | { | 
|  | struct hw_perf_counter *hwc = &counter->hw; | 
|  | u64 now; | 
|  |  | 
|  | now = counter->ctx->time; | 
|  |  | 
|  | atomic64_set(&hwc->prev_count, now); | 
|  | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | hwc->hrtimer.function = perf_swcounter_hrtimer; | 
|  | if (hwc->sample_period) { | 
|  | u64 period = max_t(u64, 10000, hwc->sample_period); | 
|  | __hrtimer_start_range_ns(&hwc->hrtimer, | 
|  | ns_to_ktime(period), 0, | 
|  | HRTIMER_MODE_REL, 0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void task_clock_perf_counter_disable(struct perf_counter *counter) | 
|  | { | 
|  | if (counter->hw.sample_period) | 
|  | hrtimer_cancel(&counter->hw.hrtimer); | 
|  | task_clock_perf_counter_update(counter, counter->ctx->time); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void task_clock_perf_counter_read(struct perf_counter *counter) | 
|  | { | 
|  | u64 time; | 
|  |  | 
|  | if (!in_nmi()) { | 
|  | update_context_time(counter->ctx); | 
|  | time = counter->ctx->time; | 
|  | } else { | 
|  | u64 now = perf_clock(); | 
|  | u64 delta = now - counter->ctx->timestamp; | 
|  | time = counter->ctx->time + delta; | 
|  | } | 
|  |  | 
|  | task_clock_perf_counter_update(counter, time); | 
|  | } | 
|  |  | 
|  | static const struct pmu perf_ops_task_clock = { | 
|  | .enable		= task_clock_perf_counter_enable, | 
|  | .disable	= task_clock_perf_counter_disable, | 
|  | .read		= task_clock_perf_counter_read, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_EVENT_PROFILE | 
|  | void perf_tpcounter_event(int event_id) | 
|  | { | 
|  | struct perf_sample_data data = { | 
|  | .regs = get_irq_regs(); | 
|  | .addr = 0, | 
|  | }; | 
|  |  | 
|  | if (!data.regs) | 
|  | data.regs = task_pt_regs(current); | 
|  |  | 
|  | do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | 
|  |  | 
|  | extern int ftrace_profile_enable(int); | 
|  | extern void ftrace_profile_disable(int); | 
|  |  | 
|  | static void tp_perf_counter_destroy(struct perf_counter *counter) | 
|  | { | 
|  | ftrace_profile_disable(perf_event_id(&counter->attr)); | 
|  | } | 
|  |  | 
|  | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | 
|  | { | 
|  | int event_id = perf_event_id(&counter->attr); | 
|  | int ret; | 
|  |  | 
|  | ret = ftrace_profile_enable(event_id); | 
|  | if (ret) | 
|  | return NULL; | 
|  |  | 
|  | counter->destroy = tp_perf_counter_destroy; | 
|  |  | 
|  | return &perf_ops_generic; | 
|  | } | 
|  | #else | 
|  | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | 
|  | { | 
|  | const struct pmu *pmu = NULL; | 
|  |  | 
|  | /* | 
|  | * Software counters (currently) can't in general distinguish | 
|  | * between user, kernel and hypervisor events. | 
|  | * However, context switches and cpu migrations are considered | 
|  | * to be kernel events, and page faults are never hypervisor | 
|  | * events. | 
|  | */ | 
|  | switch (counter->attr.config) { | 
|  | case PERF_COUNT_SW_CPU_CLOCK: | 
|  | pmu = &perf_ops_cpu_clock; | 
|  |  | 
|  | break; | 
|  | case PERF_COUNT_SW_TASK_CLOCK: | 
|  | /* | 
|  | * If the user instantiates this as a per-cpu counter, | 
|  | * use the cpu_clock counter instead. | 
|  | */ | 
|  | if (counter->ctx->task) | 
|  | pmu = &perf_ops_task_clock; | 
|  | else | 
|  | pmu = &perf_ops_cpu_clock; | 
|  |  | 
|  | break; | 
|  | case PERF_COUNT_SW_PAGE_FAULTS: | 
|  | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | 
|  | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | 
|  | case PERF_COUNT_SW_CONTEXT_SWITCHES: | 
|  | case PERF_COUNT_SW_CPU_MIGRATIONS: | 
|  | pmu = &perf_ops_generic; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return pmu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize a counter structure | 
|  | */ | 
|  | static struct perf_counter * | 
|  | perf_counter_alloc(struct perf_counter_attr *attr, | 
|  | int cpu, | 
|  | struct perf_counter_context *ctx, | 
|  | struct perf_counter *group_leader, | 
|  | gfp_t gfpflags) | 
|  | { | 
|  | const struct pmu *pmu; | 
|  | struct perf_counter *counter; | 
|  | struct hw_perf_counter *hwc; | 
|  | long err; | 
|  |  | 
|  | counter = kzalloc(sizeof(*counter), gfpflags); | 
|  | if (!counter) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * Single counters are their own group leaders, with an | 
|  | * empty sibling list: | 
|  | */ | 
|  | if (!group_leader) | 
|  | group_leader = counter; | 
|  |  | 
|  | mutex_init(&counter->child_mutex); | 
|  | INIT_LIST_HEAD(&counter->child_list); | 
|  |  | 
|  | INIT_LIST_HEAD(&counter->list_entry); | 
|  | INIT_LIST_HEAD(&counter->event_entry); | 
|  | INIT_LIST_HEAD(&counter->sibling_list); | 
|  | init_waitqueue_head(&counter->waitq); | 
|  |  | 
|  | mutex_init(&counter->mmap_mutex); | 
|  |  | 
|  | counter->cpu		= cpu; | 
|  | counter->attr		= *attr; | 
|  | counter->group_leader	= group_leader; | 
|  | counter->pmu		= NULL; | 
|  | counter->ctx		= ctx; | 
|  | counter->oncpu		= -1; | 
|  |  | 
|  | counter->ns		= get_pid_ns(current->nsproxy->pid_ns); | 
|  | counter->id		= atomic64_inc_return(&perf_counter_id); | 
|  |  | 
|  | counter->state		= PERF_COUNTER_STATE_INACTIVE; | 
|  |  | 
|  | if (attr->disabled) | 
|  | counter->state = PERF_COUNTER_STATE_OFF; | 
|  |  | 
|  | pmu = NULL; | 
|  |  | 
|  | hwc = &counter->hw; | 
|  | hwc->sample_period = attr->sample_period; | 
|  | if (attr->freq && attr->sample_freq) | 
|  | hwc->sample_period = 1; | 
|  |  | 
|  | atomic64_set(&hwc->period_left, hwc->sample_period); | 
|  |  | 
|  | /* | 
|  | * we currently do not support PERF_SAMPLE_GROUP on inherited counters | 
|  | */ | 
|  | if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP)) | 
|  | goto done; | 
|  |  | 
|  | switch (attr->type) { | 
|  | case PERF_TYPE_RAW: | 
|  | case PERF_TYPE_HARDWARE: | 
|  | case PERF_TYPE_HW_CACHE: | 
|  | pmu = hw_perf_counter_init(counter); | 
|  | break; | 
|  |  | 
|  | case PERF_TYPE_SOFTWARE: | 
|  | pmu = sw_perf_counter_init(counter); | 
|  | break; | 
|  |  | 
|  | case PERF_TYPE_TRACEPOINT: | 
|  | pmu = tp_perf_counter_init(counter); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | done: | 
|  | err = 0; | 
|  | if (!pmu) | 
|  | err = -EINVAL; | 
|  | else if (IS_ERR(pmu)) | 
|  | err = PTR_ERR(pmu); | 
|  |  | 
|  | if (err) { | 
|  | if (counter->ns) | 
|  | put_pid_ns(counter->ns); | 
|  | kfree(counter); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | counter->pmu = pmu; | 
|  |  | 
|  | atomic_inc(&nr_counters); | 
|  | if (counter->attr.mmap) | 
|  | atomic_inc(&nr_mmap_counters); | 
|  | if (counter->attr.comm) | 
|  | atomic_inc(&nr_comm_counters); | 
|  |  | 
|  | return counter; | 
|  | } | 
|  |  | 
|  | static int perf_copy_attr(struct perf_counter_attr __user *uattr, | 
|  | struct perf_counter_attr *attr) | 
|  | { | 
|  | int ret; | 
|  | u32 size; | 
|  |  | 
|  | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * zero the full structure, so that a short copy will be nice. | 
|  | */ | 
|  | memset(attr, 0, sizeof(*attr)); | 
|  |  | 
|  | ret = get_user(size, &uattr->size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (size > PAGE_SIZE)	/* silly large */ | 
|  | goto err_size; | 
|  |  | 
|  | if (!size)		/* abi compat */ | 
|  | size = PERF_ATTR_SIZE_VER0; | 
|  |  | 
|  | if (size < PERF_ATTR_SIZE_VER0) | 
|  | goto err_size; | 
|  |  | 
|  | /* | 
|  | * If we're handed a bigger struct than we know of, | 
|  | * ensure all the unknown bits are 0. | 
|  | */ | 
|  | if (size > sizeof(*attr)) { | 
|  | unsigned long val; | 
|  | unsigned long __user *addr; | 
|  | unsigned long __user *end; | 
|  |  | 
|  | addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr), | 
|  | sizeof(unsigned long)); | 
|  | end  = PTR_ALIGN((void __user *)uattr + size, | 
|  | sizeof(unsigned long)); | 
|  |  | 
|  | for (; addr < end; addr += sizeof(unsigned long)) { | 
|  | ret = get_user(val, addr); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (val) | 
|  | goto err_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = copy_from_user(attr, uattr, size); | 
|  | if (ret) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * If the type exists, the corresponding creation will verify | 
|  | * the attr->config. | 
|  | */ | 
|  | if (attr->type >= PERF_TYPE_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | err_size: | 
|  | put_user(sizeof(*attr), &uattr->size); | 
|  | ret = -E2BIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | 
|  | * | 
|  | * @attr_uptr:	event type attributes for monitoring/sampling | 
|  | * @pid:		target pid | 
|  | * @cpu:		target cpu | 
|  | * @group_fd:		group leader counter fd | 
|  | */ | 
|  | SYSCALL_DEFINE5(perf_counter_open, | 
|  | struct perf_counter_attr __user *, attr_uptr, | 
|  | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | 
|  | { | 
|  | struct perf_counter *counter, *group_leader; | 
|  | struct perf_counter_attr attr; | 
|  | struct perf_counter_context *ctx; | 
|  | struct file *counter_file = NULL; | 
|  | struct file *group_file = NULL; | 
|  | int fput_needed = 0; | 
|  | int fput_needed2 = 0; | 
|  | int ret; | 
|  |  | 
|  | /* for future expandability... */ | 
|  | if (flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = perf_copy_attr(attr_uptr, &attr); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!attr.exclude_kernel) { | 
|  | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (attr.freq) { | 
|  | if (attr.sample_freq > sysctl_perf_counter_sample_rate) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the target context (task or percpu): | 
|  | */ | 
|  | ctx = find_get_context(pid, cpu); | 
|  | if (IS_ERR(ctx)) | 
|  | return PTR_ERR(ctx); | 
|  |  | 
|  | /* | 
|  | * Look up the group leader (we will attach this counter to it): | 
|  | */ | 
|  | group_leader = NULL; | 
|  | if (group_fd != -1) { | 
|  | ret = -EINVAL; | 
|  | group_file = fget_light(group_fd, &fput_needed); | 
|  | if (!group_file) | 
|  | goto err_put_context; | 
|  | if (group_file->f_op != &perf_fops) | 
|  | goto err_put_context; | 
|  |  | 
|  | group_leader = group_file->private_data; | 
|  | /* | 
|  | * Do not allow a recursive hierarchy (this new sibling | 
|  | * becoming part of another group-sibling): | 
|  | */ | 
|  | if (group_leader->group_leader != group_leader) | 
|  | goto err_put_context; | 
|  | /* | 
|  | * Do not allow to attach to a group in a different | 
|  | * task or CPU context: | 
|  | */ | 
|  | if (group_leader->ctx != ctx) | 
|  | goto err_put_context; | 
|  | /* | 
|  | * Only a group leader can be exclusive or pinned | 
|  | */ | 
|  | if (attr.exclusive || attr.pinned) | 
|  | goto err_put_context; | 
|  | } | 
|  |  | 
|  | counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, | 
|  | GFP_KERNEL); | 
|  | ret = PTR_ERR(counter); | 
|  | if (IS_ERR(counter)) | 
|  | goto err_put_context; | 
|  |  | 
|  | ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | 
|  | if (ret < 0) | 
|  | goto err_free_put_context; | 
|  |  | 
|  | counter_file = fget_light(ret, &fput_needed2); | 
|  | if (!counter_file) | 
|  | goto err_free_put_context; | 
|  |  | 
|  | counter->filp = counter_file; | 
|  | WARN_ON_ONCE(ctx->parent_ctx); | 
|  | mutex_lock(&ctx->mutex); | 
|  | perf_install_in_context(ctx, counter, cpu); | 
|  | ++ctx->generation; | 
|  | mutex_unlock(&ctx->mutex); | 
|  |  | 
|  | counter->owner = current; | 
|  | get_task_struct(current); | 
|  | mutex_lock(¤t->perf_counter_mutex); | 
|  | list_add_tail(&counter->owner_entry, ¤t->perf_counter_list); | 
|  | mutex_unlock(¤t->perf_counter_mutex); | 
|  |  | 
|  | fput_light(counter_file, fput_needed2); | 
|  |  | 
|  | out_fput: | 
|  | fput_light(group_file, fput_needed); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | err_free_put_context: | 
|  | kfree(counter); | 
|  |  | 
|  | err_put_context: | 
|  | put_ctx(ctx); | 
|  |  | 
|  | goto out_fput; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * inherit a counter from parent task to child task: | 
|  | */ | 
|  | static struct perf_counter * | 
|  | inherit_counter(struct perf_counter *parent_counter, | 
|  | struct task_struct *parent, | 
|  | struct perf_counter_context *parent_ctx, | 
|  | struct task_struct *child, | 
|  | struct perf_counter *group_leader, | 
|  | struct perf_counter_context *child_ctx) | 
|  | { | 
|  | struct perf_counter *child_counter; | 
|  |  | 
|  | /* | 
|  | * Instead of creating recursive hierarchies of counters, | 
|  | * we link inherited counters back to the original parent, | 
|  | * which has a filp for sure, which we use as the reference | 
|  | * count: | 
|  | */ | 
|  | if (parent_counter->parent) | 
|  | parent_counter = parent_counter->parent; | 
|  |  | 
|  | child_counter = perf_counter_alloc(&parent_counter->attr, | 
|  | parent_counter->cpu, child_ctx, | 
|  | group_leader, GFP_KERNEL); | 
|  | if (IS_ERR(child_counter)) | 
|  | return child_counter; | 
|  | get_ctx(child_ctx); | 
|  |  | 
|  | /* | 
|  | * Make the child state follow the state of the parent counter, | 
|  | * not its attr.disabled bit.  We hold the parent's mutex, | 
|  | * so we won't race with perf_counter_{en, dis}able_family. | 
|  | */ | 
|  | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | 
|  | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | 
|  | else | 
|  | child_counter->state = PERF_COUNTER_STATE_OFF; | 
|  |  | 
|  | if (parent_counter->attr.freq) | 
|  | child_counter->hw.sample_period = parent_counter->hw.sample_period; | 
|  |  | 
|  | /* | 
|  | * Link it up in the child's context: | 
|  | */ | 
|  | add_counter_to_ctx(child_counter, child_ctx); | 
|  |  | 
|  | child_counter->parent = parent_counter; | 
|  | /* | 
|  | * inherit into child's child as well: | 
|  | */ | 
|  | child_counter->attr.inherit = 1; | 
|  |  | 
|  | /* | 
|  | * Get a reference to the parent filp - we will fput it | 
|  | * when the child counter exits. This is safe to do because | 
|  | * we are in the parent and we know that the filp still | 
|  | * exists and has a nonzero count: | 
|  | */ | 
|  | atomic_long_inc(&parent_counter->filp->f_count); | 
|  |  | 
|  | /* | 
|  | * Link this into the parent counter's child list | 
|  | */ | 
|  | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | 
|  | mutex_lock(&parent_counter->child_mutex); | 
|  | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | 
|  | mutex_unlock(&parent_counter->child_mutex); | 
|  |  | 
|  | return child_counter; | 
|  | } | 
|  |  | 
|  | static int inherit_group(struct perf_counter *parent_counter, | 
|  | struct task_struct *parent, | 
|  | struct perf_counter_context *parent_ctx, | 
|  | struct task_struct *child, | 
|  | struct perf_counter_context *child_ctx) | 
|  | { | 
|  | struct perf_counter *leader; | 
|  | struct perf_counter *sub; | 
|  | struct perf_counter *child_ctr; | 
|  |  | 
|  | leader = inherit_counter(parent_counter, parent, parent_ctx, | 
|  | child, NULL, child_ctx); | 
|  | if (IS_ERR(leader)) | 
|  | return PTR_ERR(leader); | 
|  | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | 
|  | child_ctr = inherit_counter(sub, parent, parent_ctx, | 
|  | child, leader, child_ctx); | 
|  | if (IS_ERR(child_ctr)) | 
|  | return PTR_ERR(child_ctr); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sync_child_counter(struct perf_counter *child_counter, | 
|  | struct perf_counter *parent_counter) | 
|  | { | 
|  | u64 child_val; | 
|  |  | 
|  | child_val = atomic64_read(&child_counter->count); | 
|  |  | 
|  | /* | 
|  | * Add back the child's count to the parent's count: | 
|  | */ | 
|  | atomic64_add(child_val, &parent_counter->count); | 
|  | atomic64_add(child_counter->total_time_enabled, | 
|  | &parent_counter->child_total_time_enabled); | 
|  | atomic64_add(child_counter->total_time_running, | 
|  | &parent_counter->child_total_time_running); | 
|  |  | 
|  | /* | 
|  | * Remove this counter from the parent's list | 
|  | */ | 
|  | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | 
|  | mutex_lock(&parent_counter->child_mutex); | 
|  | list_del_init(&child_counter->child_list); | 
|  | mutex_unlock(&parent_counter->child_mutex); | 
|  |  | 
|  | /* | 
|  | * Release the parent counter, if this was the last | 
|  | * reference to it. | 
|  | */ | 
|  | fput(parent_counter->filp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __perf_counter_exit_task(struct perf_counter *child_counter, | 
|  | struct perf_counter_context *child_ctx) | 
|  | { | 
|  | struct perf_counter *parent_counter; | 
|  |  | 
|  | update_counter_times(child_counter); | 
|  | perf_counter_remove_from_context(child_counter); | 
|  |  | 
|  | parent_counter = child_counter->parent; | 
|  | /* | 
|  | * It can happen that parent exits first, and has counters | 
|  | * that are still around due to the child reference. These | 
|  | * counters need to be zapped - but otherwise linger. | 
|  | */ | 
|  | if (parent_counter) { | 
|  | sync_child_counter(child_counter, parent_counter); | 
|  | free_counter(child_counter); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a child task exits, feed back counter values to parent counters. | 
|  | */ | 
|  | void perf_counter_exit_task(struct task_struct *child) | 
|  | { | 
|  | struct perf_counter *child_counter, *tmp; | 
|  | struct perf_counter_context *child_ctx; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (likely(!child->perf_counter_ctxp)) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | /* | 
|  | * We can't reschedule here because interrupts are disabled, | 
|  | * and either child is current or it is a task that can't be | 
|  | * scheduled, so we are now safe from rescheduling changing | 
|  | * our context. | 
|  | */ | 
|  | child_ctx = child->perf_counter_ctxp; | 
|  | __perf_counter_task_sched_out(child_ctx); | 
|  |  | 
|  | /* | 
|  | * Take the context lock here so that if find_get_context is | 
|  | * reading child->perf_counter_ctxp, we wait until it has | 
|  | * incremented the context's refcount before we do put_ctx below. | 
|  | */ | 
|  | spin_lock(&child_ctx->lock); | 
|  | child->perf_counter_ctxp = NULL; | 
|  | if (child_ctx->parent_ctx) { | 
|  | /* | 
|  | * This context is a clone; unclone it so it can't get | 
|  | * swapped to another process while we're removing all | 
|  | * the counters from it. | 
|  | */ | 
|  | put_ctx(child_ctx->parent_ctx); | 
|  | child_ctx->parent_ctx = NULL; | 
|  | } | 
|  | spin_unlock(&child_ctx->lock); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* | 
|  | * We can recurse on the same lock type through: | 
|  | * | 
|  | *   __perf_counter_exit_task() | 
|  | *     sync_child_counter() | 
|  | *       fput(parent_counter->filp) | 
|  | *         perf_release() | 
|  | *           mutex_lock(&ctx->mutex) | 
|  | * | 
|  | * But since its the parent context it won't be the same instance. | 
|  | */ | 
|  | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | again: | 
|  | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | 
|  | list_entry) | 
|  | __perf_counter_exit_task(child_counter, child_ctx); | 
|  |  | 
|  | /* | 
|  | * If the last counter was a group counter, it will have appended all | 
|  | * its siblings to the list, but we obtained 'tmp' before that which | 
|  | * will still point to the list head terminating the iteration. | 
|  | */ | 
|  | if (!list_empty(&child_ctx->counter_list)) | 
|  | goto again; | 
|  |  | 
|  | mutex_unlock(&child_ctx->mutex); | 
|  |  | 
|  | put_ctx(child_ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * free an unexposed, unused context as created by inheritance by | 
|  | * init_task below, used by fork() in case of fail. | 
|  | */ | 
|  | void perf_counter_free_task(struct task_struct *task) | 
|  | { | 
|  | struct perf_counter_context *ctx = task->perf_counter_ctxp; | 
|  | struct perf_counter *counter, *tmp; | 
|  |  | 
|  | if (!ctx) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&ctx->mutex); | 
|  | again: | 
|  | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) { | 
|  | struct perf_counter *parent = counter->parent; | 
|  |  | 
|  | if (WARN_ON_ONCE(!parent)) | 
|  | continue; | 
|  |  | 
|  | mutex_lock(&parent->child_mutex); | 
|  | list_del_init(&counter->child_list); | 
|  | mutex_unlock(&parent->child_mutex); | 
|  |  | 
|  | fput(parent->filp); | 
|  |  | 
|  | list_del_counter(counter, ctx); | 
|  | free_counter(counter); | 
|  | } | 
|  |  | 
|  | if (!list_empty(&ctx->counter_list)) | 
|  | goto again; | 
|  |  | 
|  | mutex_unlock(&ctx->mutex); | 
|  |  | 
|  | put_ctx(ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the perf_counter context in task_struct | 
|  | */ | 
|  | int perf_counter_init_task(struct task_struct *child) | 
|  | { | 
|  | struct perf_counter_context *child_ctx, *parent_ctx; | 
|  | struct perf_counter_context *cloned_ctx; | 
|  | struct perf_counter *counter; | 
|  | struct task_struct *parent = current; | 
|  | int inherited_all = 1; | 
|  | int ret = 0; | 
|  |  | 
|  | child->perf_counter_ctxp = NULL; | 
|  |  | 
|  | mutex_init(&child->perf_counter_mutex); | 
|  | INIT_LIST_HEAD(&child->perf_counter_list); | 
|  |  | 
|  | if (likely(!parent->perf_counter_ctxp)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * This is executed from the parent task context, so inherit | 
|  | * counters that have been marked for cloning. | 
|  | * First allocate and initialize a context for the child. | 
|  | */ | 
|  |  | 
|  | child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | 
|  | if (!child_ctx) | 
|  | return -ENOMEM; | 
|  |  | 
|  | __perf_counter_init_context(child_ctx, child); | 
|  | child->perf_counter_ctxp = child_ctx; | 
|  | get_task_struct(child); | 
|  |  | 
|  | /* | 
|  | * If the parent's context is a clone, pin it so it won't get | 
|  | * swapped under us. | 
|  | */ | 
|  | parent_ctx = perf_pin_task_context(parent); | 
|  |  | 
|  | /* | 
|  | * No need to check if parent_ctx != NULL here; since we saw | 
|  | * it non-NULL earlier, the only reason for it to become NULL | 
|  | * is if we exit, and since we're currently in the middle of | 
|  | * a fork we can't be exiting at the same time. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Lock the parent list. No need to lock the child - not PID | 
|  | * hashed yet and not running, so nobody can access it. | 
|  | */ | 
|  | mutex_lock(&parent_ctx->mutex); | 
|  |  | 
|  | /* | 
|  | * We dont have to disable NMIs - we are only looking at | 
|  | * the list, not manipulating it: | 
|  | */ | 
|  | list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) { | 
|  | if (counter != counter->group_leader) | 
|  | continue; | 
|  |  | 
|  | if (!counter->attr.inherit) { | 
|  | inherited_all = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = inherit_group(counter, parent, parent_ctx, | 
|  | child, child_ctx); | 
|  | if (ret) { | 
|  | inherited_all = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (inherited_all) { | 
|  | /* | 
|  | * Mark the child context as a clone of the parent | 
|  | * context, or of whatever the parent is a clone of. | 
|  | * Note that if the parent is a clone, it could get | 
|  | * uncloned at any point, but that doesn't matter | 
|  | * because the list of counters and the generation | 
|  | * count can't have changed since we took the mutex. | 
|  | */ | 
|  | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | 
|  | if (cloned_ctx) { | 
|  | child_ctx->parent_ctx = cloned_ctx; | 
|  | child_ctx->parent_gen = parent_ctx->parent_gen; | 
|  | } else { | 
|  | child_ctx->parent_ctx = parent_ctx; | 
|  | child_ctx->parent_gen = parent_ctx->generation; | 
|  | } | 
|  | get_ctx(child_ctx->parent_ctx); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&parent_ctx->mutex); | 
|  |  | 
|  | perf_unpin_context(parent_ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __cpuinit perf_counter_init_cpu(int cpu) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  |  | 
|  | cpuctx = &per_cpu(perf_cpu_context, cpu); | 
|  | __perf_counter_init_context(&cpuctx->ctx, NULL); | 
|  |  | 
|  | spin_lock(&perf_resource_lock); | 
|  | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | 
|  | spin_unlock(&perf_resource_lock); | 
|  |  | 
|  | hw_perf_counter_setup(cpu); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static void __perf_counter_exit_cpu(void *info) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
|  | struct perf_counter_context *ctx = &cpuctx->ctx; | 
|  | struct perf_counter *counter, *tmp; | 
|  |  | 
|  | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | 
|  | __perf_counter_remove_from_context(counter); | 
|  | } | 
|  | static void perf_counter_exit_cpu(int cpu) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 
|  | struct perf_counter_context *ctx = &cpuctx->ctx; | 
|  |  | 
|  | mutex_lock(&ctx->mutex); | 
|  | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | 
|  | mutex_unlock(&ctx->mutex); | 
|  | } | 
|  | #else | 
|  | static inline void perf_counter_exit_cpu(int cpu) { } | 
|  | #endif | 
|  |  | 
|  | static int __cpuinit | 
|  | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | 
|  | { | 
|  | unsigned int cpu = (long)hcpu; | 
|  |  | 
|  | switch (action) { | 
|  |  | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_UP_PREPARE_FROZEN: | 
|  | perf_counter_init_cpu(cpu); | 
|  | break; | 
|  |  | 
|  | case CPU_DOWN_PREPARE: | 
|  | case CPU_DOWN_PREPARE_FROZEN: | 
|  | perf_counter_exit_cpu(cpu); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This has to have a higher priority than migration_notifier in sched.c. | 
|  | */ | 
|  | static struct notifier_block __cpuinitdata perf_cpu_nb = { | 
|  | .notifier_call		= perf_cpu_notify, | 
|  | .priority		= 20, | 
|  | }; | 
|  |  | 
|  | void __init perf_counter_init(void) | 
|  | { | 
|  | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | 
|  | (void *)(long)smp_processor_id()); | 
|  | register_cpu_notifier(&perf_cpu_nb); | 
|  | } | 
|  |  | 
|  | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", perf_reserved_percpu); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | perf_set_reserve_percpu(struct sysdev_class *class, | 
|  | const char *buf, | 
|  | size_t count) | 
|  | { | 
|  | struct perf_cpu_context *cpuctx; | 
|  | unsigned long val; | 
|  | int err, cpu, mpt; | 
|  |  | 
|  | err = strict_strtoul(buf, 10, &val); | 
|  | if (err) | 
|  | return err; | 
|  | if (val > perf_max_counters) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock(&perf_resource_lock); | 
|  | perf_reserved_percpu = val; | 
|  | for_each_online_cpu(cpu) { | 
|  | cpuctx = &per_cpu(perf_cpu_context, cpu); | 
|  | spin_lock_irq(&cpuctx->ctx.lock); | 
|  | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | 
|  | perf_max_counters - perf_reserved_percpu); | 
|  | cpuctx->max_pertask = mpt; | 
|  | spin_unlock_irq(&cpuctx->ctx.lock); | 
|  | } | 
|  | spin_unlock(&perf_resource_lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", perf_overcommit); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | 
|  | { | 
|  | unsigned long val; | 
|  | int err; | 
|  |  | 
|  | err = strict_strtoul(buf, 10, &val); | 
|  | if (err) | 
|  | return err; | 
|  | if (val > 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock(&perf_resource_lock); | 
|  | perf_overcommit = val; | 
|  | spin_unlock(&perf_resource_lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static SYSDEV_CLASS_ATTR( | 
|  | reserve_percpu, | 
|  | 0644, | 
|  | perf_show_reserve_percpu, | 
|  | perf_set_reserve_percpu | 
|  | ); | 
|  |  | 
|  | static SYSDEV_CLASS_ATTR( | 
|  | overcommit, | 
|  | 0644, | 
|  | perf_show_overcommit, | 
|  | perf_set_overcommit | 
|  | ); | 
|  |  | 
|  | static struct attribute *perfclass_attrs[] = { | 
|  | &attr_reserve_percpu.attr, | 
|  | &attr_overcommit.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static struct attribute_group perfclass_attr_group = { | 
|  | .attrs			= perfclass_attrs, | 
|  | .name			= "perf_counters", | 
|  | }; | 
|  |  | 
|  | static int __init perf_counter_sysfs_init(void) | 
|  | { | 
|  | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | 
|  | &perfclass_attr_group); | 
|  | } | 
|  | device_initcall(perf_counter_sysfs_init); |