| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_mount.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dir2_format.h" |
| #include "xfs_dir2_priv.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_alloc.h" |
| #include "xfs_bmap.h" |
| #include "xfs_attr.h" |
| #include "xfs_attr_leaf.h" |
| #include "xfs_error.h" |
| #include "xfs_trace.h" |
| |
| /* |
| * xfs_da_btree.c |
| * |
| * Routines to implement directories as Btrees of hashed names. |
| */ |
| |
| /*======================================================================== |
| * Function prototypes for the kernel. |
| *========================================================================*/ |
| |
| /* |
| * Routines used for growing the Btree. |
| */ |
| STATIC int xfs_da_root_split(xfs_da_state_t *state, |
| xfs_da_state_blk_t *existing_root, |
| xfs_da_state_blk_t *new_child); |
| STATIC int xfs_da_node_split(xfs_da_state_t *state, |
| xfs_da_state_blk_t *existing_blk, |
| xfs_da_state_blk_t *split_blk, |
| xfs_da_state_blk_t *blk_to_add, |
| int treelevel, |
| int *result); |
| STATIC void xfs_da_node_rebalance(xfs_da_state_t *state, |
| xfs_da_state_blk_t *node_blk_1, |
| xfs_da_state_blk_t *node_blk_2); |
| STATIC void xfs_da_node_add(xfs_da_state_t *state, |
| xfs_da_state_blk_t *old_node_blk, |
| xfs_da_state_blk_t *new_node_blk); |
| |
| /* |
| * Routines used for shrinking the Btree. |
| */ |
| STATIC int xfs_da_root_join(xfs_da_state_t *state, |
| xfs_da_state_blk_t *root_blk); |
| STATIC int xfs_da_node_toosmall(xfs_da_state_t *state, int *retval); |
| STATIC void xfs_da_node_remove(xfs_da_state_t *state, |
| xfs_da_state_blk_t *drop_blk); |
| STATIC void xfs_da_node_unbalance(xfs_da_state_t *state, |
| xfs_da_state_blk_t *src_node_blk, |
| xfs_da_state_blk_t *dst_node_blk); |
| |
| /* |
| * Utility routines. |
| */ |
| STATIC uint xfs_da_node_lasthash(xfs_dabuf_t *bp, int *count); |
| STATIC int xfs_da_node_order(xfs_dabuf_t *node1_bp, xfs_dabuf_t *node2_bp); |
| STATIC xfs_dabuf_t *xfs_da_buf_make(int nbuf, xfs_buf_t **bps); |
| STATIC int xfs_da_blk_unlink(xfs_da_state_t *state, |
| xfs_da_state_blk_t *drop_blk, |
| xfs_da_state_blk_t *save_blk); |
| STATIC void xfs_da_state_kill_altpath(xfs_da_state_t *state); |
| |
| /*======================================================================== |
| * Routines used for growing the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Create the initial contents of an intermediate node. |
| */ |
| int |
| xfs_da_node_create(xfs_da_args_t *args, xfs_dablk_t blkno, int level, |
| xfs_dabuf_t **bpp, int whichfork) |
| { |
| xfs_da_intnode_t *node; |
| xfs_dabuf_t *bp; |
| int error; |
| xfs_trans_t *tp; |
| |
| trace_xfs_da_node_create(args); |
| |
| tp = args->trans; |
| error = xfs_da_get_buf(tp, args->dp, blkno, -1, &bp, whichfork); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| node = bp->data; |
| node->hdr.info.forw = 0; |
| node->hdr.info.back = 0; |
| node->hdr.info.magic = cpu_to_be16(XFS_DA_NODE_MAGIC); |
| node->hdr.info.pad = 0; |
| node->hdr.count = 0; |
| node->hdr.level = cpu_to_be16(level); |
| |
| xfs_da_log_buf(tp, bp, |
| XFS_DA_LOGRANGE(node, &node->hdr, sizeof(node->hdr))); |
| |
| *bpp = bp; |
| return(0); |
| } |
| |
| /* |
| * Split a leaf node, rebalance, then possibly split |
| * intermediate nodes, rebalance, etc. |
| */ |
| int /* error */ |
| xfs_da_split(xfs_da_state_t *state) |
| { |
| xfs_da_state_blk_t *oldblk, *newblk, *addblk; |
| xfs_da_intnode_t *node; |
| xfs_dabuf_t *bp; |
| int max, action, error, i; |
| |
| trace_xfs_da_split(state->args); |
| |
| /* |
| * Walk back up the tree splitting/inserting/adjusting as necessary. |
| * If we need to insert and there isn't room, split the node, then |
| * decide which fragment to insert the new block from below into. |
| * Note that we may split the root this way, but we need more fixup. |
| */ |
| max = state->path.active - 1; |
| ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH)); |
| ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC || |
| state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC); |
| |
| addblk = &state->path.blk[max]; /* initial dummy value */ |
| for (i = max; (i >= 0) && addblk; state->path.active--, i--) { |
| oldblk = &state->path.blk[i]; |
| newblk = &state->altpath.blk[i]; |
| |
| /* |
| * If a leaf node then |
| * Allocate a new leaf node, then rebalance across them. |
| * else if an intermediate node then |
| * We split on the last layer, must we split the node? |
| */ |
| switch (oldblk->magic) { |
| case XFS_ATTR_LEAF_MAGIC: |
| error = xfs_attr_leaf_split(state, oldblk, newblk); |
| if ((error != 0) && (error != ENOSPC)) { |
| return(error); /* GROT: attr is inconsistent */ |
| } |
| if (!error) { |
| addblk = newblk; |
| break; |
| } |
| /* |
| * Entry wouldn't fit, split the leaf again. |
| */ |
| state->extravalid = 1; |
| if (state->inleaf) { |
| state->extraafter = 0; /* before newblk */ |
| trace_xfs_attr_leaf_split_before(state->args); |
| error = xfs_attr_leaf_split(state, oldblk, |
| &state->extrablk); |
| } else { |
| state->extraafter = 1; /* after newblk */ |
| trace_xfs_attr_leaf_split_after(state->args); |
| error = xfs_attr_leaf_split(state, newblk, |
| &state->extrablk); |
| } |
| if (error) |
| return(error); /* GROT: attr inconsistent */ |
| addblk = newblk; |
| break; |
| case XFS_DIR2_LEAFN_MAGIC: |
| error = xfs_dir2_leafn_split(state, oldblk, newblk); |
| if (error) |
| return error; |
| addblk = newblk; |
| break; |
| case XFS_DA_NODE_MAGIC: |
| error = xfs_da_node_split(state, oldblk, newblk, addblk, |
| max - i, &action); |
| xfs_da_buf_done(addblk->bp); |
| addblk->bp = NULL; |
| if (error) |
| return(error); /* GROT: dir is inconsistent */ |
| /* |
| * Record the newly split block for the next time thru? |
| */ |
| if (action) |
| addblk = newblk; |
| else |
| addblk = NULL; |
| break; |
| } |
| |
| /* |
| * Update the btree to show the new hashval for this child. |
| */ |
| xfs_da_fixhashpath(state, &state->path); |
| /* |
| * If we won't need this block again, it's getting dropped |
| * from the active path by the loop control, so we need |
| * to mark it done now. |
| */ |
| if (i > 0 || !addblk) |
| xfs_da_buf_done(oldblk->bp); |
| } |
| if (!addblk) |
| return(0); |
| |
| /* |
| * Split the root node. |
| */ |
| ASSERT(state->path.active == 0); |
| oldblk = &state->path.blk[0]; |
| error = xfs_da_root_split(state, oldblk, addblk); |
| if (error) { |
| xfs_da_buf_done(oldblk->bp); |
| xfs_da_buf_done(addblk->bp); |
| addblk->bp = NULL; |
| return(error); /* GROT: dir is inconsistent */ |
| } |
| |
| /* |
| * Update pointers to the node which used to be block 0 and |
| * just got bumped because of the addition of a new root node. |
| * There might be three blocks involved if a double split occurred, |
| * and the original block 0 could be at any position in the list. |
| */ |
| |
| node = oldblk->bp->data; |
| if (node->hdr.info.forw) { |
| if (be32_to_cpu(node->hdr.info.forw) == addblk->blkno) { |
| bp = addblk->bp; |
| } else { |
| ASSERT(state->extravalid); |
| bp = state->extrablk.bp; |
| } |
| node = bp->data; |
| node->hdr.info.back = cpu_to_be32(oldblk->blkno); |
| xfs_da_log_buf(state->args->trans, bp, |
| XFS_DA_LOGRANGE(node, &node->hdr.info, |
| sizeof(node->hdr.info))); |
| } |
| node = oldblk->bp->data; |
| if (node->hdr.info.back) { |
| if (be32_to_cpu(node->hdr.info.back) == addblk->blkno) { |
| bp = addblk->bp; |
| } else { |
| ASSERT(state->extravalid); |
| bp = state->extrablk.bp; |
| } |
| node = bp->data; |
| node->hdr.info.forw = cpu_to_be32(oldblk->blkno); |
| xfs_da_log_buf(state->args->trans, bp, |
| XFS_DA_LOGRANGE(node, &node->hdr.info, |
| sizeof(node->hdr.info))); |
| } |
| xfs_da_buf_done(oldblk->bp); |
| xfs_da_buf_done(addblk->bp); |
| addblk->bp = NULL; |
| return(0); |
| } |
| |
| /* |
| * Split the root. We have to create a new root and point to the two |
| * parts (the split old root) that we just created. Copy block zero to |
| * the EOF, extending the inode in process. |
| */ |
| STATIC int /* error */ |
| xfs_da_root_split(xfs_da_state_t *state, xfs_da_state_blk_t *blk1, |
| xfs_da_state_blk_t *blk2) |
| { |
| xfs_da_intnode_t *node, *oldroot; |
| xfs_da_args_t *args; |
| xfs_dablk_t blkno; |
| xfs_dabuf_t *bp; |
| int error, size; |
| xfs_inode_t *dp; |
| xfs_trans_t *tp; |
| xfs_mount_t *mp; |
| xfs_dir2_leaf_t *leaf; |
| |
| trace_xfs_da_root_split(state->args); |
| |
| /* |
| * Copy the existing (incorrect) block from the root node position |
| * to a free space somewhere. |
| */ |
| args = state->args; |
| ASSERT(args != NULL); |
| error = xfs_da_grow_inode(args, &blkno); |
| if (error) |
| return(error); |
| dp = args->dp; |
| tp = args->trans; |
| mp = state->mp; |
| error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| node = bp->data; |
| oldroot = blk1->bp->data; |
| if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)) { |
| size = (int)((char *)&oldroot->btree[be16_to_cpu(oldroot->hdr.count)] - |
| (char *)oldroot); |
| } else { |
| ASSERT(oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC)); |
| leaf = (xfs_dir2_leaf_t *)oldroot; |
| size = (int)((char *)&leaf->ents[be16_to_cpu(leaf->hdr.count)] - |
| (char *)leaf); |
| } |
| memcpy(node, oldroot, size); |
| xfs_da_log_buf(tp, bp, 0, size - 1); |
| xfs_da_buf_done(blk1->bp); |
| blk1->bp = bp; |
| blk1->blkno = blkno; |
| |
| /* |
| * Set up the new root node. |
| */ |
| error = xfs_da_node_create(args, |
| (args->whichfork == XFS_DATA_FORK) ? mp->m_dirleafblk : 0, |
| be16_to_cpu(node->hdr.level) + 1, &bp, args->whichfork); |
| if (error) |
| return(error); |
| node = bp->data; |
| node->btree[0].hashval = cpu_to_be32(blk1->hashval); |
| node->btree[0].before = cpu_to_be32(blk1->blkno); |
| node->btree[1].hashval = cpu_to_be32(blk2->hashval); |
| node->btree[1].before = cpu_to_be32(blk2->blkno); |
| node->hdr.count = cpu_to_be16(2); |
| |
| #ifdef DEBUG |
| if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC)) { |
| ASSERT(blk1->blkno >= mp->m_dirleafblk && |
| blk1->blkno < mp->m_dirfreeblk); |
| ASSERT(blk2->blkno >= mp->m_dirleafblk && |
| blk2->blkno < mp->m_dirfreeblk); |
| } |
| #endif |
| |
| /* Header is already logged by xfs_da_node_create */ |
| xfs_da_log_buf(tp, bp, |
| XFS_DA_LOGRANGE(node, node->btree, |
| sizeof(xfs_da_node_entry_t) * 2)); |
| xfs_da_buf_done(bp); |
| |
| return(0); |
| } |
| |
| /* |
| * Split the node, rebalance, then add the new entry. |
| */ |
| STATIC int /* error */ |
| xfs_da_node_split(xfs_da_state_t *state, xfs_da_state_blk_t *oldblk, |
| xfs_da_state_blk_t *newblk, |
| xfs_da_state_blk_t *addblk, |
| int treelevel, int *result) |
| { |
| xfs_da_intnode_t *node; |
| xfs_dablk_t blkno; |
| int newcount, error; |
| int useextra; |
| |
| trace_xfs_da_node_split(state->args); |
| |
| node = oldblk->bp->data; |
| ASSERT(node->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| |
| /* |
| * With V2 dirs the extra block is data or freespace. |
| */ |
| useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK; |
| newcount = 1 + useextra; |
| /* |
| * Do we have to split the node? |
| */ |
| if ((be16_to_cpu(node->hdr.count) + newcount) > state->node_ents) { |
| /* |
| * Allocate a new node, add to the doubly linked chain of |
| * nodes, then move some of our excess entries into it. |
| */ |
| error = xfs_da_grow_inode(state->args, &blkno); |
| if (error) |
| return(error); /* GROT: dir is inconsistent */ |
| |
| error = xfs_da_node_create(state->args, blkno, treelevel, |
| &newblk->bp, state->args->whichfork); |
| if (error) |
| return(error); /* GROT: dir is inconsistent */ |
| newblk->blkno = blkno; |
| newblk->magic = XFS_DA_NODE_MAGIC; |
| xfs_da_node_rebalance(state, oldblk, newblk); |
| error = xfs_da_blk_link(state, oldblk, newblk); |
| if (error) |
| return(error); |
| *result = 1; |
| } else { |
| *result = 0; |
| } |
| |
| /* |
| * Insert the new entry(s) into the correct block |
| * (updating last hashval in the process). |
| * |
| * xfs_da_node_add() inserts BEFORE the given index, |
| * and as a result of using node_lookup_int() we always |
| * point to a valid entry (not after one), but a split |
| * operation always results in a new block whose hashvals |
| * FOLLOW the current block. |
| * |
| * If we had double-split op below us, then add the extra block too. |
| */ |
| node = oldblk->bp->data; |
| if (oldblk->index <= be16_to_cpu(node->hdr.count)) { |
| oldblk->index++; |
| xfs_da_node_add(state, oldblk, addblk); |
| if (useextra) { |
| if (state->extraafter) |
| oldblk->index++; |
| xfs_da_node_add(state, oldblk, &state->extrablk); |
| state->extravalid = 0; |
| } |
| } else { |
| newblk->index++; |
| xfs_da_node_add(state, newblk, addblk); |
| if (useextra) { |
| if (state->extraafter) |
| newblk->index++; |
| xfs_da_node_add(state, newblk, &state->extrablk); |
| state->extravalid = 0; |
| } |
| } |
| |
| return(0); |
| } |
| |
| /* |
| * Balance the btree elements between two intermediate nodes, |
| * usually one full and one empty. |
| * |
| * NOTE: if blk2 is empty, then it will get the upper half of blk1. |
| */ |
| STATIC void |
| xfs_da_node_rebalance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1, |
| xfs_da_state_blk_t *blk2) |
| { |
| xfs_da_intnode_t *node1, *node2, *tmpnode; |
| xfs_da_node_entry_t *btree_s, *btree_d; |
| int count, tmp; |
| xfs_trans_t *tp; |
| |
| trace_xfs_da_node_rebalance(state->args); |
| |
| node1 = blk1->bp->data; |
| node2 = blk2->bp->data; |
| /* |
| * Figure out how many entries need to move, and in which direction. |
| * Swap the nodes around if that makes it simpler. |
| */ |
| if ((be16_to_cpu(node1->hdr.count) > 0) && (be16_to_cpu(node2->hdr.count) > 0) && |
| ((be32_to_cpu(node2->btree[0].hashval) < be32_to_cpu(node1->btree[0].hashval)) || |
| (be32_to_cpu(node2->btree[be16_to_cpu(node2->hdr.count)-1].hashval) < |
| be32_to_cpu(node1->btree[be16_to_cpu(node1->hdr.count)-1].hashval)))) { |
| tmpnode = node1; |
| node1 = node2; |
| node2 = tmpnode; |
| } |
| ASSERT(node1->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| ASSERT(node2->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| count = (be16_to_cpu(node1->hdr.count) - be16_to_cpu(node2->hdr.count)) / 2; |
| if (count == 0) |
| return; |
| tp = state->args->trans; |
| /* |
| * Two cases: high-to-low and low-to-high. |
| */ |
| if (count > 0) { |
| /* |
| * Move elements in node2 up to make a hole. |
| */ |
| if ((tmp = be16_to_cpu(node2->hdr.count)) > 0) { |
| tmp *= (uint)sizeof(xfs_da_node_entry_t); |
| btree_s = &node2->btree[0]; |
| btree_d = &node2->btree[count]; |
| memmove(btree_d, btree_s, tmp); |
| } |
| |
| /* |
| * Move the req'd B-tree elements from high in node1 to |
| * low in node2. |
| */ |
| be16_add_cpu(&node2->hdr.count, count); |
| tmp = count * (uint)sizeof(xfs_da_node_entry_t); |
| btree_s = &node1->btree[be16_to_cpu(node1->hdr.count) - count]; |
| btree_d = &node2->btree[0]; |
| memcpy(btree_d, btree_s, tmp); |
| be16_add_cpu(&node1->hdr.count, -count); |
| } else { |
| /* |
| * Move the req'd B-tree elements from low in node2 to |
| * high in node1. |
| */ |
| count = -count; |
| tmp = count * (uint)sizeof(xfs_da_node_entry_t); |
| btree_s = &node2->btree[0]; |
| btree_d = &node1->btree[be16_to_cpu(node1->hdr.count)]; |
| memcpy(btree_d, btree_s, tmp); |
| be16_add_cpu(&node1->hdr.count, count); |
| xfs_da_log_buf(tp, blk1->bp, |
| XFS_DA_LOGRANGE(node1, btree_d, tmp)); |
| |
| /* |
| * Move elements in node2 down to fill the hole. |
| */ |
| tmp = be16_to_cpu(node2->hdr.count) - count; |
| tmp *= (uint)sizeof(xfs_da_node_entry_t); |
| btree_s = &node2->btree[count]; |
| btree_d = &node2->btree[0]; |
| memmove(btree_d, btree_s, tmp); |
| be16_add_cpu(&node2->hdr.count, -count); |
| } |
| |
| /* |
| * Log header of node 1 and all current bits of node 2. |
| */ |
| xfs_da_log_buf(tp, blk1->bp, |
| XFS_DA_LOGRANGE(node1, &node1->hdr, sizeof(node1->hdr))); |
| xfs_da_log_buf(tp, blk2->bp, |
| XFS_DA_LOGRANGE(node2, &node2->hdr, |
| sizeof(node2->hdr) + |
| sizeof(node2->btree[0]) * be16_to_cpu(node2->hdr.count))); |
| |
| /* |
| * Record the last hashval from each block for upward propagation. |
| * (note: don't use the swapped node pointers) |
| */ |
| node1 = blk1->bp->data; |
| node2 = blk2->bp->data; |
| blk1->hashval = be32_to_cpu(node1->btree[be16_to_cpu(node1->hdr.count)-1].hashval); |
| blk2->hashval = be32_to_cpu(node2->btree[be16_to_cpu(node2->hdr.count)-1].hashval); |
| |
| /* |
| * Adjust the expected index for insertion. |
| */ |
| if (blk1->index >= be16_to_cpu(node1->hdr.count)) { |
| blk2->index = blk1->index - be16_to_cpu(node1->hdr.count); |
| blk1->index = be16_to_cpu(node1->hdr.count) + 1; /* make it invalid */ |
| } |
| } |
| |
| /* |
| * Add a new entry to an intermediate node. |
| */ |
| STATIC void |
| xfs_da_node_add(xfs_da_state_t *state, xfs_da_state_blk_t *oldblk, |
| xfs_da_state_blk_t *newblk) |
| { |
| xfs_da_intnode_t *node; |
| xfs_da_node_entry_t *btree; |
| int tmp; |
| |
| trace_xfs_da_node_add(state->args); |
| |
| node = oldblk->bp->data; |
| ASSERT(node->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| ASSERT((oldblk->index >= 0) && (oldblk->index <= be16_to_cpu(node->hdr.count))); |
| ASSERT(newblk->blkno != 0); |
| if (state->args->whichfork == XFS_DATA_FORK) |
| ASSERT(newblk->blkno >= state->mp->m_dirleafblk && |
| newblk->blkno < state->mp->m_dirfreeblk); |
| |
| /* |
| * We may need to make some room before we insert the new node. |
| */ |
| tmp = 0; |
| btree = &node->btree[ oldblk->index ]; |
| if (oldblk->index < be16_to_cpu(node->hdr.count)) { |
| tmp = (be16_to_cpu(node->hdr.count) - oldblk->index) * (uint)sizeof(*btree); |
| memmove(btree + 1, btree, tmp); |
| } |
| btree->hashval = cpu_to_be32(newblk->hashval); |
| btree->before = cpu_to_be32(newblk->blkno); |
| xfs_da_log_buf(state->args->trans, oldblk->bp, |
| XFS_DA_LOGRANGE(node, btree, tmp + sizeof(*btree))); |
| be16_add_cpu(&node->hdr.count, 1); |
| xfs_da_log_buf(state->args->trans, oldblk->bp, |
| XFS_DA_LOGRANGE(node, &node->hdr, sizeof(node->hdr))); |
| |
| /* |
| * Copy the last hash value from the oldblk to propagate upwards. |
| */ |
| oldblk->hashval = be32_to_cpu(node->btree[be16_to_cpu(node->hdr.count)-1 ].hashval); |
| } |
| |
| /*======================================================================== |
| * Routines used for shrinking the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Deallocate an empty leaf node, remove it from its parent, |
| * possibly deallocating that block, etc... |
| */ |
| int |
| xfs_da_join(xfs_da_state_t *state) |
| { |
| xfs_da_state_blk_t *drop_blk, *save_blk; |
| int action, error; |
| |
| trace_xfs_da_join(state->args); |
| |
| action = 0; |
| drop_blk = &state->path.blk[ state->path.active-1 ]; |
| save_blk = &state->altpath.blk[ state->path.active-1 ]; |
| ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC); |
| ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC || |
| drop_blk->magic == XFS_DIR2_LEAFN_MAGIC); |
| |
| /* |
| * Walk back up the tree joining/deallocating as necessary. |
| * When we stop dropping blocks, break out. |
| */ |
| for ( ; state->path.active >= 2; drop_blk--, save_blk--, |
| state->path.active--) { |
| /* |
| * See if we can combine the block with a neighbor. |
| * (action == 0) => no options, just leave |
| * (action == 1) => coalesce, then unlink |
| * (action == 2) => block empty, unlink it |
| */ |
| switch (drop_blk->magic) { |
| case XFS_ATTR_LEAF_MAGIC: |
| error = xfs_attr_leaf_toosmall(state, &action); |
| if (error) |
| return(error); |
| if (action == 0) |
| return(0); |
| xfs_attr_leaf_unbalance(state, drop_blk, save_blk); |
| break; |
| case XFS_DIR2_LEAFN_MAGIC: |
| error = xfs_dir2_leafn_toosmall(state, &action); |
| if (error) |
| return error; |
| if (action == 0) |
| return 0; |
| xfs_dir2_leafn_unbalance(state, drop_blk, save_blk); |
| break; |
| case XFS_DA_NODE_MAGIC: |
| /* |
| * Remove the offending node, fixup hashvals, |
| * check for a toosmall neighbor. |
| */ |
| xfs_da_node_remove(state, drop_blk); |
| xfs_da_fixhashpath(state, &state->path); |
| error = xfs_da_node_toosmall(state, &action); |
| if (error) |
| return(error); |
| if (action == 0) |
| return 0; |
| xfs_da_node_unbalance(state, drop_blk, save_blk); |
| break; |
| } |
| xfs_da_fixhashpath(state, &state->altpath); |
| error = xfs_da_blk_unlink(state, drop_blk, save_blk); |
| xfs_da_state_kill_altpath(state); |
| if (error) |
| return(error); |
| error = xfs_da_shrink_inode(state->args, drop_blk->blkno, |
| drop_blk->bp); |
| drop_blk->bp = NULL; |
| if (error) |
| return(error); |
| } |
| /* |
| * We joined all the way to the top. If it turns out that |
| * we only have one entry in the root, make the child block |
| * the new root. |
| */ |
| xfs_da_node_remove(state, drop_blk); |
| xfs_da_fixhashpath(state, &state->path); |
| error = xfs_da_root_join(state, &state->path.blk[0]); |
| return(error); |
| } |
| |
| #ifdef DEBUG |
| static void |
| xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level) |
| { |
| __be16 magic = blkinfo->magic; |
| |
| if (level == 1) { |
| ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || |
| magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| } else |
| ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| ASSERT(!blkinfo->forw); |
| ASSERT(!blkinfo->back); |
| } |
| #else /* !DEBUG */ |
| #define xfs_da_blkinfo_onlychild_validate(blkinfo, level) |
| #endif /* !DEBUG */ |
| |
| /* |
| * We have only one entry in the root. Copy the only remaining child of |
| * the old root to block 0 as the new root node. |
| */ |
| STATIC int |
| xfs_da_root_join(xfs_da_state_t *state, xfs_da_state_blk_t *root_blk) |
| { |
| xfs_da_intnode_t *oldroot; |
| xfs_da_args_t *args; |
| xfs_dablk_t child; |
| xfs_dabuf_t *bp; |
| int error; |
| |
| trace_xfs_da_root_join(state->args); |
| |
| args = state->args; |
| ASSERT(args != NULL); |
| ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC); |
| oldroot = root_blk->bp->data; |
| ASSERT(oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| ASSERT(!oldroot->hdr.info.forw); |
| ASSERT(!oldroot->hdr.info.back); |
| |
| /* |
| * If the root has more than one child, then don't do anything. |
| */ |
| if (be16_to_cpu(oldroot->hdr.count) > 1) |
| return(0); |
| |
| /* |
| * Read in the (only) child block, then copy those bytes into |
| * the root block's buffer and free the original child block. |
| */ |
| child = be32_to_cpu(oldroot->btree[0].before); |
| ASSERT(child != 0); |
| error = xfs_da_read_buf(args->trans, args->dp, child, -1, &bp, |
| args->whichfork); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| xfs_da_blkinfo_onlychild_validate(bp->data, |
| be16_to_cpu(oldroot->hdr.level)); |
| |
| memcpy(root_blk->bp->data, bp->data, state->blocksize); |
| xfs_da_log_buf(args->trans, root_blk->bp, 0, state->blocksize - 1); |
| error = xfs_da_shrink_inode(args, child, bp); |
| return(error); |
| } |
| |
| /* |
| * Check a node block and its neighbors to see if the block should be |
| * collapsed into one or the other neighbor. Always keep the block |
| * with the smaller block number. |
| * If the current block is over 50% full, don't try to join it, return 0. |
| * If the block is empty, fill in the state structure and return 2. |
| * If it can be collapsed, fill in the state structure and return 1. |
| * If nothing can be done, return 0. |
| */ |
| STATIC int |
| xfs_da_node_toosmall(xfs_da_state_t *state, int *action) |
| { |
| xfs_da_intnode_t *node; |
| xfs_da_state_blk_t *blk; |
| xfs_da_blkinfo_t *info; |
| int count, forward, error, retval, i; |
| xfs_dablk_t blkno; |
| xfs_dabuf_t *bp; |
| |
| /* |
| * Check for the degenerate case of the block being over 50% full. |
| * If so, it's not worth even looking to see if we might be able |
| * to coalesce with a sibling. |
| */ |
| blk = &state->path.blk[ state->path.active-1 ]; |
| info = blk->bp->data; |
| ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| node = (xfs_da_intnode_t *)info; |
| count = be16_to_cpu(node->hdr.count); |
| if (count > (state->node_ents >> 1)) { |
| *action = 0; /* blk over 50%, don't try to join */ |
| return(0); /* blk over 50%, don't try to join */ |
| } |
| |
| /* |
| * Check for the degenerate case of the block being empty. |
| * If the block is empty, we'll simply delete it, no need to |
| * coalesce it with a sibling block. We choose (arbitrarily) |
| * to merge with the forward block unless it is NULL. |
| */ |
| if (count == 0) { |
| /* |
| * Make altpath point to the block we want to keep and |
| * path point to the block we want to drop (this one). |
| */ |
| forward = (info->forw != 0); |
| memcpy(&state->altpath, &state->path, sizeof(state->path)); |
| error = xfs_da_path_shift(state, &state->altpath, forward, |
| 0, &retval); |
| if (error) |
| return(error); |
| if (retval) { |
| *action = 0; |
| } else { |
| *action = 2; |
| } |
| return(0); |
| } |
| |
| /* |
| * Examine each sibling block to see if we can coalesce with |
| * at least 25% free space to spare. We need to figure out |
| * whether to merge with the forward or the backward block. |
| * We prefer coalescing with the lower numbered sibling so as |
| * to shrink a directory over time. |
| */ |
| /* start with smaller blk num */ |
| forward = (be32_to_cpu(info->forw) < be32_to_cpu(info->back)); |
| for (i = 0; i < 2; forward = !forward, i++) { |
| if (forward) |
| blkno = be32_to_cpu(info->forw); |
| else |
| blkno = be32_to_cpu(info->back); |
| if (blkno == 0) |
| continue; |
| error = xfs_da_read_buf(state->args->trans, state->args->dp, |
| blkno, -1, &bp, state->args->whichfork); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| |
| node = (xfs_da_intnode_t *)info; |
| count = state->node_ents; |
| count -= state->node_ents >> 2; |
| count -= be16_to_cpu(node->hdr.count); |
| node = bp->data; |
| ASSERT(node->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| count -= be16_to_cpu(node->hdr.count); |
| xfs_da_brelse(state->args->trans, bp); |
| if (count >= 0) |
| break; /* fits with at least 25% to spare */ |
| } |
| if (i >= 2) { |
| *action = 0; |
| return(0); |
| } |
| |
| /* |
| * Make altpath point to the block we want to keep (the lower |
| * numbered block) and path point to the block we want to drop. |
| */ |
| memcpy(&state->altpath, &state->path, sizeof(state->path)); |
| if (blkno < blk->blkno) { |
| error = xfs_da_path_shift(state, &state->altpath, forward, |
| 0, &retval); |
| if (error) { |
| return(error); |
| } |
| if (retval) { |
| *action = 0; |
| return(0); |
| } |
| } else { |
| error = xfs_da_path_shift(state, &state->path, forward, |
| 0, &retval); |
| if (error) { |
| return(error); |
| } |
| if (retval) { |
| *action = 0; |
| return(0); |
| } |
| } |
| *action = 1; |
| return(0); |
| } |
| |
| /* |
| * Walk back up the tree adjusting hash values as necessary, |
| * when we stop making changes, return. |
| */ |
| void |
| xfs_da_fixhashpath(xfs_da_state_t *state, xfs_da_state_path_t *path) |
| { |
| xfs_da_state_blk_t *blk; |
| xfs_da_intnode_t *node; |
| xfs_da_node_entry_t *btree; |
| xfs_dahash_t lasthash=0; |
| int level, count; |
| |
| level = path->active-1; |
| blk = &path->blk[ level ]; |
| switch (blk->magic) { |
| case XFS_ATTR_LEAF_MAGIC: |
| lasthash = xfs_attr_leaf_lasthash(blk->bp, &count); |
| if (count == 0) |
| return; |
| break; |
| case XFS_DIR2_LEAFN_MAGIC: |
| lasthash = xfs_dir2_leafn_lasthash(blk->bp, &count); |
| if (count == 0) |
| return; |
| break; |
| case XFS_DA_NODE_MAGIC: |
| lasthash = xfs_da_node_lasthash(blk->bp, &count); |
| if (count == 0) |
| return; |
| break; |
| } |
| for (blk--, level--; level >= 0; blk--, level--) { |
| node = blk->bp->data; |
| ASSERT(node->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| btree = &node->btree[ blk->index ]; |
| if (be32_to_cpu(btree->hashval) == lasthash) |
| break; |
| blk->hashval = lasthash; |
| btree->hashval = cpu_to_be32(lasthash); |
| xfs_da_log_buf(state->args->trans, blk->bp, |
| XFS_DA_LOGRANGE(node, btree, sizeof(*btree))); |
| |
| lasthash = be32_to_cpu(node->btree[be16_to_cpu(node->hdr.count)-1].hashval); |
| } |
| } |
| |
| /* |
| * Remove an entry from an intermediate node. |
| */ |
| STATIC void |
| xfs_da_node_remove(xfs_da_state_t *state, xfs_da_state_blk_t *drop_blk) |
| { |
| xfs_da_intnode_t *node; |
| xfs_da_node_entry_t *btree; |
| int tmp; |
| |
| trace_xfs_da_node_remove(state->args); |
| |
| node = drop_blk->bp->data; |
| ASSERT(drop_blk->index < be16_to_cpu(node->hdr.count)); |
| ASSERT(drop_blk->index >= 0); |
| |
| /* |
| * Copy over the offending entry, or just zero it out. |
| */ |
| btree = &node->btree[drop_blk->index]; |
| if (drop_blk->index < (be16_to_cpu(node->hdr.count)-1)) { |
| tmp = be16_to_cpu(node->hdr.count) - drop_blk->index - 1; |
| tmp *= (uint)sizeof(xfs_da_node_entry_t); |
| memmove(btree, btree + 1, tmp); |
| xfs_da_log_buf(state->args->trans, drop_blk->bp, |
| XFS_DA_LOGRANGE(node, btree, tmp)); |
| btree = &node->btree[be16_to_cpu(node->hdr.count)-1]; |
| } |
| memset((char *)btree, 0, sizeof(xfs_da_node_entry_t)); |
| xfs_da_log_buf(state->args->trans, drop_blk->bp, |
| XFS_DA_LOGRANGE(node, btree, sizeof(*btree))); |
| be16_add_cpu(&node->hdr.count, -1); |
| xfs_da_log_buf(state->args->trans, drop_blk->bp, |
| XFS_DA_LOGRANGE(node, &node->hdr, sizeof(node->hdr))); |
| |
| /* |
| * Copy the last hash value from the block to propagate upwards. |
| */ |
| btree--; |
| drop_blk->hashval = be32_to_cpu(btree->hashval); |
| } |
| |
| /* |
| * Unbalance the btree elements between two intermediate nodes, |
| * move all Btree elements from one node into another. |
| */ |
| STATIC void |
| xfs_da_node_unbalance(xfs_da_state_t *state, xfs_da_state_blk_t *drop_blk, |
| xfs_da_state_blk_t *save_blk) |
| { |
| xfs_da_intnode_t *drop_node, *save_node; |
| xfs_da_node_entry_t *btree; |
| int tmp; |
| xfs_trans_t *tp; |
| |
| trace_xfs_da_node_unbalance(state->args); |
| |
| drop_node = drop_blk->bp->data; |
| save_node = save_blk->bp->data; |
| ASSERT(drop_node->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| ASSERT(save_node->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| tp = state->args->trans; |
| |
| /* |
| * If the dying block has lower hashvals, then move all the |
| * elements in the remaining block up to make a hole. |
| */ |
| if ((be32_to_cpu(drop_node->btree[0].hashval) < be32_to_cpu(save_node->btree[ 0 ].hashval)) || |
| (be32_to_cpu(drop_node->btree[be16_to_cpu(drop_node->hdr.count)-1].hashval) < |
| be32_to_cpu(save_node->btree[be16_to_cpu(save_node->hdr.count)-1].hashval))) |
| { |
| btree = &save_node->btree[be16_to_cpu(drop_node->hdr.count)]; |
| tmp = be16_to_cpu(save_node->hdr.count) * (uint)sizeof(xfs_da_node_entry_t); |
| memmove(btree, &save_node->btree[0], tmp); |
| btree = &save_node->btree[0]; |
| xfs_da_log_buf(tp, save_blk->bp, |
| XFS_DA_LOGRANGE(save_node, btree, |
| (be16_to_cpu(save_node->hdr.count) + be16_to_cpu(drop_node->hdr.count)) * |
| sizeof(xfs_da_node_entry_t))); |
| } else { |
| btree = &save_node->btree[be16_to_cpu(save_node->hdr.count)]; |
| xfs_da_log_buf(tp, save_blk->bp, |
| XFS_DA_LOGRANGE(save_node, btree, |
| be16_to_cpu(drop_node->hdr.count) * |
| sizeof(xfs_da_node_entry_t))); |
| } |
| |
| /* |
| * Move all the B-tree elements from drop_blk to save_blk. |
| */ |
| tmp = be16_to_cpu(drop_node->hdr.count) * (uint)sizeof(xfs_da_node_entry_t); |
| memcpy(btree, &drop_node->btree[0], tmp); |
| be16_add_cpu(&save_node->hdr.count, be16_to_cpu(drop_node->hdr.count)); |
| |
| xfs_da_log_buf(tp, save_blk->bp, |
| XFS_DA_LOGRANGE(save_node, &save_node->hdr, |
| sizeof(save_node->hdr))); |
| |
| /* |
| * Save the last hashval in the remaining block for upward propagation. |
| */ |
| save_blk->hashval = be32_to_cpu(save_node->btree[be16_to_cpu(save_node->hdr.count)-1].hashval); |
| } |
| |
| /*======================================================================== |
| * Routines used for finding things in the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Walk down the Btree looking for a particular filename, filling |
| * in the state structure as we go. |
| * |
| * We will set the state structure to point to each of the elements |
| * in each of the nodes where either the hashval is or should be. |
| * |
| * We support duplicate hashval's so for each entry in the current |
| * node that could contain the desired hashval, descend. This is a |
| * pruned depth-first tree search. |
| */ |
| int /* error */ |
| xfs_da_node_lookup_int(xfs_da_state_t *state, int *result) |
| { |
| xfs_da_state_blk_t *blk; |
| xfs_da_blkinfo_t *curr; |
| xfs_da_intnode_t *node; |
| xfs_da_node_entry_t *btree; |
| xfs_dablk_t blkno; |
| int probe, span, max, error, retval; |
| xfs_dahash_t hashval, btreehashval; |
| xfs_da_args_t *args; |
| |
| args = state->args; |
| |
| /* |
| * Descend thru the B-tree searching each level for the right |
| * node to use, until the right hashval is found. |
| */ |
| blkno = (args->whichfork == XFS_DATA_FORK)? state->mp->m_dirleafblk : 0; |
| for (blk = &state->path.blk[0], state->path.active = 1; |
| state->path.active <= XFS_DA_NODE_MAXDEPTH; |
| blk++, state->path.active++) { |
| /* |
| * Read the next node down in the tree. |
| */ |
| blk->blkno = blkno; |
| error = xfs_da_read_buf(args->trans, args->dp, blkno, |
| -1, &blk->bp, args->whichfork); |
| if (error) { |
| blk->blkno = 0; |
| state->path.active--; |
| return(error); |
| } |
| curr = blk->bp->data; |
| blk->magic = be16_to_cpu(curr->magic); |
| ASSERT(blk->magic == XFS_DA_NODE_MAGIC || |
| blk->magic == XFS_DIR2_LEAFN_MAGIC || |
| blk->magic == XFS_ATTR_LEAF_MAGIC); |
| |
| /* |
| * Search an intermediate node for a match. |
| */ |
| if (blk->magic == XFS_DA_NODE_MAGIC) { |
| node = blk->bp->data; |
| max = be16_to_cpu(node->hdr.count); |
| blk->hashval = be32_to_cpu(node->btree[max-1].hashval); |
| |
| /* |
| * Binary search. (note: small blocks will skip loop) |
| */ |
| probe = span = max / 2; |
| hashval = args->hashval; |
| for (btree = &node->btree[probe]; span > 4; |
| btree = &node->btree[probe]) { |
| span /= 2; |
| btreehashval = be32_to_cpu(btree->hashval); |
| if (btreehashval < hashval) |
| probe += span; |
| else if (btreehashval > hashval) |
| probe -= span; |
| else |
| break; |
| } |
| ASSERT((probe >= 0) && (probe < max)); |
| ASSERT((span <= 4) || (be32_to_cpu(btree->hashval) == hashval)); |
| |
| /* |
| * Since we may have duplicate hashval's, find the first |
| * matching hashval in the node. |
| */ |
| while ((probe > 0) && (be32_to_cpu(btree->hashval) >= hashval)) { |
| btree--; |
| probe--; |
| } |
| while ((probe < max) && (be32_to_cpu(btree->hashval) < hashval)) { |
| btree++; |
| probe++; |
| } |
| |
| /* |
| * Pick the right block to descend on. |
| */ |
| if (probe == max) { |
| blk->index = max-1; |
| blkno = be32_to_cpu(node->btree[max-1].before); |
| } else { |
| blk->index = probe; |
| blkno = be32_to_cpu(btree->before); |
| } |
| } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { |
| blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL); |
| break; |
| } else if (blk->magic == XFS_DIR2_LEAFN_MAGIC) { |
| blk->hashval = xfs_dir2_leafn_lasthash(blk->bp, NULL); |
| break; |
| } |
| } |
| |
| /* |
| * A leaf block that ends in the hashval that we are interested in |
| * (final hashval == search hashval) means that the next block may |
| * contain more entries with the same hashval, shift upward to the |
| * next leaf and keep searching. |
| */ |
| for (;;) { |
| if (blk->magic == XFS_DIR2_LEAFN_MAGIC) { |
| retval = xfs_dir2_leafn_lookup_int(blk->bp, args, |
| &blk->index, state); |
| } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { |
| retval = xfs_attr_leaf_lookup_int(blk->bp, args); |
| blk->index = args->index; |
| args->blkno = blk->blkno; |
| } else { |
| ASSERT(0); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| if (((retval == ENOENT) || (retval == ENOATTR)) && |
| (blk->hashval == args->hashval)) { |
| error = xfs_da_path_shift(state, &state->path, 1, 1, |
| &retval); |
| if (error) |
| return(error); |
| if (retval == 0) { |
| continue; |
| } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { |
| /* path_shift() gives ENOENT */ |
| retval = XFS_ERROR(ENOATTR); |
| } |
| } |
| break; |
| } |
| *result = retval; |
| return(0); |
| } |
| |
| /*======================================================================== |
| * Utility routines. |
| *========================================================================*/ |
| |
| /* |
| * Link a new block into a doubly linked list of blocks (of whatever type). |
| */ |
| int /* error */ |
| xfs_da_blk_link(xfs_da_state_t *state, xfs_da_state_blk_t *old_blk, |
| xfs_da_state_blk_t *new_blk) |
| { |
| xfs_da_blkinfo_t *old_info, *new_info, *tmp_info; |
| xfs_da_args_t *args; |
| int before=0, error; |
| xfs_dabuf_t *bp; |
| |
| /* |
| * Set up environment. |
| */ |
| args = state->args; |
| ASSERT(args != NULL); |
| old_info = old_blk->bp->data; |
| new_info = new_blk->bp->data; |
| ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC || |
| old_blk->magic == XFS_DIR2_LEAFN_MAGIC || |
| old_blk->magic == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(old_blk->magic == be16_to_cpu(old_info->magic)); |
| ASSERT(new_blk->magic == be16_to_cpu(new_info->magic)); |
| ASSERT(old_blk->magic == new_blk->magic); |
| |
| switch (old_blk->magic) { |
| case XFS_ATTR_LEAF_MAGIC: |
| before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp); |
| break; |
| case XFS_DIR2_LEAFN_MAGIC: |
| before = xfs_dir2_leafn_order(old_blk->bp, new_blk->bp); |
| break; |
| case XFS_DA_NODE_MAGIC: |
| before = xfs_da_node_order(old_blk->bp, new_blk->bp); |
| break; |
| } |
| |
| /* |
| * Link blocks in appropriate order. |
| */ |
| if (before) { |
| /* |
| * Link new block in before existing block. |
| */ |
| trace_xfs_da_link_before(args); |
| new_info->forw = cpu_to_be32(old_blk->blkno); |
| new_info->back = old_info->back; |
| if (old_info->back) { |
| error = xfs_da_read_buf(args->trans, args->dp, |
| be32_to_cpu(old_info->back), |
| -1, &bp, args->whichfork); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| tmp_info = bp->data; |
| ASSERT(be16_to_cpu(tmp_info->magic) == be16_to_cpu(old_info->magic)); |
| ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno); |
| tmp_info->forw = cpu_to_be32(new_blk->blkno); |
| xfs_da_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1); |
| xfs_da_buf_done(bp); |
| } |
| old_info->back = cpu_to_be32(new_blk->blkno); |
| } else { |
| /* |
| * Link new block in after existing block. |
| */ |
| trace_xfs_da_link_after(args); |
| new_info->forw = old_info->forw; |
| new_info->back = cpu_to_be32(old_blk->blkno); |
| if (old_info->forw) { |
| error = xfs_da_read_buf(args->trans, args->dp, |
| be32_to_cpu(old_info->forw), |
| -1, &bp, args->whichfork); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| tmp_info = bp->data; |
| ASSERT(tmp_info->magic == old_info->magic); |
| ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno); |
| tmp_info->back = cpu_to_be32(new_blk->blkno); |
| xfs_da_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1); |
| xfs_da_buf_done(bp); |
| } |
| old_info->forw = cpu_to_be32(new_blk->blkno); |
| } |
| |
| xfs_da_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1); |
| xfs_da_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1); |
| return(0); |
| } |
| |
| /* |
| * Compare two intermediate nodes for "order". |
| */ |
| STATIC int |
| xfs_da_node_order(xfs_dabuf_t *node1_bp, xfs_dabuf_t *node2_bp) |
| { |
| xfs_da_intnode_t *node1, *node2; |
| |
| node1 = node1_bp->data; |
| node2 = node2_bp->data; |
| ASSERT(node1->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) && |
| node2->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| if ((be16_to_cpu(node1->hdr.count) > 0) && (be16_to_cpu(node2->hdr.count) > 0) && |
| ((be32_to_cpu(node2->btree[0].hashval) < |
| be32_to_cpu(node1->btree[0].hashval)) || |
| (be32_to_cpu(node2->btree[be16_to_cpu(node2->hdr.count)-1].hashval) < |
| be32_to_cpu(node1->btree[be16_to_cpu(node1->hdr.count)-1].hashval)))) { |
| return(1); |
| } |
| return(0); |
| } |
| |
| /* |
| * Pick up the last hashvalue from an intermediate node. |
| */ |
| STATIC uint |
| xfs_da_node_lasthash(xfs_dabuf_t *bp, int *count) |
| { |
| xfs_da_intnode_t *node; |
| |
| node = bp->data; |
| ASSERT(node->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| if (count) |
| *count = be16_to_cpu(node->hdr.count); |
| if (!node->hdr.count) |
| return(0); |
| return be32_to_cpu(node->btree[be16_to_cpu(node->hdr.count)-1].hashval); |
| } |
| |
| /* |
| * Unlink a block from a doubly linked list of blocks. |
| */ |
| STATIC int /* error */ |
| xfs_da_blk_unlink(xfs_da_state_t *state, xfs_da_state_blk_t *drop_blk, |
| xfs_da_state_blk_t *save_blk) |
| { |
| xfs_da_blkinfo_t *drop_info, *save_info, *tmp_info; |
| xfs_da_args_t *args; |
| xfs_dabuf_t *bp; |
| int error; |
| |
| /* |
| * Set up environment. |
| */ |
| args = state->args; |
| ASSERT(args != NULL); |
| save_info = save_blk->bp->data; |
| drop_info = drop_blk->bp->data; |
| ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC || |
| save_blk->magic == XFS_DIR2_LEAFN_MAGIC || |
| save_blk->magic == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(save_blk->magic == be16_to_cpu(save_info->magic)); |
| ASSERT(drop_blk->magic == be16_to_cpu(drop_info->magic)); |
| ASSERT(save_blk->magic == drop_blk->magic); |
| ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) || |
| (be32_to_cpu(save_info->back) == drop_blk->blkno)); |
| ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) || |
| (be32_to_cpu(drop_info->back) == save_blk->blkno)); |
| |
| /* |
| * Unlink the leaf block from the doubly linked chain of leaves. |
| */ |
| if (be32_to_cpu(save_info->back) == drop_blk->blkno) { |
| trace_xfs_da_unlink_back(args); |
| save_info->back = drop_info->back; |
| if (drop_info->back) { |
| error = xfs_da_read_buf(args->trans, args->dp, |
| be32_to_cpu(drop_info->back), |
| -1, &bp, args->whichfork); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| tmp_info = bp->data; |
| ASSERT(tmp_info->magic == save_info->magic); |
| ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno); |
| tmp_info->forw = cpu_to_be32(save_blk->blkno); |
| xfs_da_log_buf(args->trans, bp, 0, |
| sizeof(*tmp_info) - 1); |
| xfs_da_buf_done(bp); |
| } |
| } else { |
| trace_xfs_da_unlink_forward(args); |
| save_info->forw = drop_info->forw; |
| if (drop_info->forw) { |
| error = xfs_da_read_buf(args->trans, args->dp, |
| be32_to_cpu(drop_info->forw), |
| -1, &bp, args->whichfork); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| tmp_info = bp->data; |
| ASSERT(tmp_info->magic == save_info->magic); |
| ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno); |
| tmp_info->back = cpu_to_be32(save_blk->blkno); |
| xfs_da_log_buf(args->trans, bp, 0, |
| sizeof(*tmp_info) - 1); |
| xfs_da_buf_done(bp); |
| } |
| } |
| |
| xfs_da_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1); |
| return(0); |
| } |
| |
| /* |
| * Move a path "forward" or "!forward" one block at the current level. |
| * |
| * This routine will adjust a "path" to point to the next block |
| * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the |
| * Btree, including updating pointers to the intermediate nodes between |
| * the new bottom and the root. |
| */ |
| int /* error */ |
| xfs_da_path_shift(xfs_da_state_t *state, xfs_da_state_path_t *path, |
| int forward, int release, int *result) |
| { |
| xfs_da_state_blk_t *blk; |
| xfs_da_blkinfo_t *info; |
| xfs_da_intnode_t *node; |
| xfs_da_args_t *args; |
| xfs_dablk_t blkno=0; |
| int level, error; |
| |
| /* |
| * Roll up the Btree looking for the first block where our |
| * current index is not at the edge of the block. Note that |
| * we skip the bottom layer because we want the sibling block. |
| */ |
| args = state->args; |
| ASSERT(args != NULL); |
| ASSERT(path != NULL); |
| ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH)); |
| level = (path->active-1) - 1; /* skip bottom layer in path */ |
| for (blk = &path->blk[level]; level >= 0; blk--, level--) { |
| ASSERT(blk->bp != NULL); |
| node = blk->bp->data; |
| ASSERT(node->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| if (forward && (blk->index < be16_to_cpu(node->hdr.count)-1)) { |
| blk->index++; |
| blkno = be32_to_cpu(node->btree[blk->index].before); |
| break; |
| } else if (!forward && (blk->index > 0)) { |
| blk->index--; |
| blkno = be32_to_cpu(node->btree[blk->index].before); |
| break; |
| } |
| } |
| if (level < 0) { |
| *result = XFS_ERROR(ENOENT); /* we're out of our tree */ |
| ASSERT(args->op_flags & XFS_DA_OP_OKNOENT); |
| return(0); |
| } |
| |
| /* |
| * Roll down the edge of the subtree until we reach the |
| * same depth we were at originally. |
| */ |
| for (blk++, level++; level < path->active; blk++, level++) { |
| /* |
| * Release the old block. |
| * (if it's dirty, trans won't actually let go) |
| */ |
| if (release) |
| xfs_da_brelse(args->trans, blk->bp); |
| |
| /* |
| * Read the next child block. |
| */ |
| blk->blkno = blkno; |
| error = xfs_da_read_buf(args->trans, args->dp, blkno, -1, |
| &blk->bp, args->whichfork); |
| if (error) |
| return(error); |
| ASSERT(blk->bp != NULL); |
| info = blk->bp->data; |
| ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || |
| info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || |
| info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); |
| blk->magic = be16_to_cpu(info->magic); |
| if (blk->magic == XFS_DA_NODE_MAGIC) { |
| node = (xfs_da_intnode_t *)info; |
| blk->hashval = be32_to_cpu(node->btree[be16_to_cpu(node->hdr.count)-1].hashval); |
| if (forward) |
| blk->index = 0; |
| else |
| blk->index = be16_to_cpu(node->hdr.count)-1; |
| blkno = be32_to_cpu(node->btree[blk->index].before); |
| } else { |
| ASSERT(level == path->active-1); |
| blk->index = 0; |
| switch(blk->magic) { |
| case XFS_ATTR_LEAF_MAGIC: |
| blk->hashval = xfs_attr_leaf_lasthash(blk->bp, |
| NULL); |
| break; |
| case XFS_DIR2_LEAFN_MAGIC: |
| blk->hashval = xfs_dir2_leafn_lasthash(blk->bp, |
| NULL); |
| break; |
| default: |
| ASSERT(blk->magic == XFS_ATTR_LEAF_MAGIC || |
| blk->magic == XFS_DIR2_LEAFN_MAGIC); |
| break; |
| } |
| } |
| } |
| *result = 0; |
| return(0); |
| } |
| |
| |
| /*======================================================================== |
| * Utility routines. |
| *========================================================================*/ |
| |
| /* |
| * Implement a simple hash on a character string. |
| * Rotate the hash value by 7 bits, then XOR each character in. |
| * This is implemented with some source-level loop unrolling. |
| */ |
| xfs_dahash_t |
| xfs_da_hashname(const __uint8_t *name, int namelen) |
| { |
| xfs_dahash_t hash; |
| |
| /* |
| * Do four characters at a time as long as we can. |
| */ |
| for (hash = 0; namelen >= 4; namelen -= 4, name += 4) |
| hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^ |
| (name[3] << 0) ^ rol32(hash, 7 * 4); |
| |
| /* |
| * Now do the rest of the characters. |
| */ |
| switch (namelen) { |
| case 3: |
| return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^ |
| rol32(hash, 7 * 3); |
| case 2: |
| return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2); |
| case 1: |
| return (name[0] << 0) ^ rol32(hash, 7 * 1); |
| default: /* case 0: */ |
| return hash; |
| } |
| } |
| |
| enum xfs_dacmp |
| xfs_da_compname( |
| struct xfs_da_args *args, |
| const unsigned char *name, |
| int len) |
| { |
| return (args->namelen == len && memcmp(args->name, name, len) == 0) ? |
| XFS_CMP_EXACT : XFS_CMP_DIFFERENT; |
| } |
| |
| static xfs_dahash_t |
| xfs_default_hashname( |
| struct xfs_name *name) |
| { |
| return xfs_da_hashname(name->name, name->len); |
| } |
| |
| const struct xfs_nameops xfs_default_nameops = { |
| .hashname = xfs_default_hashname, |
| .compname = xfs_da_compname |
| }; |
| |
| int |
| xfs_da_grow_inode_int( |
| struct xfs_da_args *args, |
| xfs_fileoff_t *bno, |
| int count) |
| { |
| struct xfs_trans *tp = args->trans; |
| struct xfs_inode *dp = args->dp; |
| int w = args->whichfork; |
| xfs_drfsbno_t nblks = dp->i_d.di_nblocks; |
| struct xfs_bmbt_irec map, *mapp; |
| int nmap, error, got, i, mapi; |
| |
| /* |
| * Find a spot in the file space to put the new block. |
| */ |
| error = xfs_bmap_first_unused(tp, dp, count, bno, w); |
| if (error) |
| return error; |
| |
| /* |
| * Try mapping it in one filesystem block. |
| */ |
| nmap = 1; |
| ASSERT(args->firstblock != NULL); |
| error = xfs_bmapi_write(tp, dp, *bno, count, |
| xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG, |
| args->firstblock, args->total, &map, &nmap, |
| args->flist); |
| if (error) |
| return error; |
| |
| ASSERT(nmap <= 1); |
| if (nmap == 1) { |
| mapp = ↦ |
| mapi = 1; |
| } else if (nmap == 0 && count > 1) { |
| xfs_fileoff_t b; |
| int c; |
| |
| /* |
| * If we didn't get it and the block might work if fragmented, |
| * try without the CONTIG flag. Loop until we get it all. |
| */ |
| mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP); |
| for (b = *bno, mapi = 0; b < *bno + count; ) { |
| nmap = MIN(XFS_BMAP_MAX_NMAP, count); |
| c = (int)(*bno + count - b); |
| error = xfs_bmapi_write(tp, dp, b, c, |
| xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA, |
| args->firstblock, args->total, |
| &mapp[mapi], &nmap, args->flist); |
| if (error) |
| goto out_free_map; |
| if (nmap < 1) |
| break; |
| mapi += nmap; |
| b = mapp[mapi - 1].br_startoff + |
| mapp[mapi - 1].br_blockcount; |
| } |
| } else { |
| mapi = 0; |
| mapp = NULL; |
| } |
| |
| /* |
| * Count the blocks we got, make sure it matches the total. |
| */ |
| for (i = 0, got = 0; i < mapi; i++) |
| got += mapp[i].br_blockcount; |
| if (got != count || mapp[0].br_startoff != *bno || |
| mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount != |
| *bno + count) { |
| error = XFS_ERROR(ENOSPC); |
| goto out_free_map; |
| } |
| |
| /* account for newly allocated blocks in reserved blocks total */ |
| args->total -= dp->i_d.di_nblocks - nblks; |
| |
| out_free_map: |
| if (mapp != &map) |
| kmem_free(mapp); |
| return error; |
| } |
| |
| /* |
| * Add a block to the btree ahead of the file. |
| * Return the new block number to the caller. |
| */ |
| int |
| xfs_da_grow_inode( |
| struct xfs_da_args *args, |
| xfs_dablk_t *new_blkno) |
| { |
| xfs_fileoff_t bno; |
| int count; |
| int error; |
| |
| trace_xfs_da_grow_inode(args); |
| |
| if (args->whichfork == XFS_DATA_FORK) { |
| bno = args->dp->i_mount->m_dirleafblk; |
| count = args->dp->i_mount->m_dirblkfsbs; |
| } else { |
| bno = 0; |
| count = 1; |
| } |
| |
| error = xfs_da_grow_inode_int(args, &bno, count); |
| if (!error) |
| *new_blkno = (xfs_dablk_t)bno; |
| return error; |
| } |
| |
| /* |
| * Ick. We need to always be able to remove a btree block, even |
| * if there's no space reservation because the filesystem is full. |
| * This is called if xfs_bunmapi on a btree block fails due to ENOSPC. |
| * It swaps the target block with the last block in the file. The |
| * last block in the file can always be removed since it can't cause |
| * a bmap btree split to do that. |
| */ |
| STATIC int |
| xfs_da_swap_lastblock(xfs_da_args_t *args, xfs_dablk_t *dead_blknop, |
| xfs_dabuf_t **dead_bufp) |
| { |
| xfs_dablk_t dead_blkno, last_blkno, sib_blkno, par_blkno; |
| xfs_dabuf_t *dead_buf, *last_buf, *sib_buf, *par_buf; |
| xfs_fileoff_t lastoff; |
| xfs_inode_t *ip; |
| xfs_trans_t *tp; |
| xfs_mount_t *mp; |
| int error, w, entno, level, dead_level; |
| xfs_da_blkinfo_t *dead_info, *sib_info; |
| xfs_da_intnode_t *par_node, *dead_node; |
| xfs_dir2_leaf_t *dead_leaf2; |
| xfs_dahash_t dead_hash; |
| |
| trace_xfs_da_swap_lastblock(args); |
| |
| dead_buf = *dead_bufp; |
| dead_blkno = *dead_blknop; |
| tp = args->trans; |
| ip = args->dp; |
| w = args->whichfork; |
| ASSERT(w == XFS_DATA_FORK); |
| mp = ip->i_mount; |
| lastoff = mp->m_dirfreeblk; |
| error = xfs_bmap_last_before(tp, ip, &lastoff, w); |
| if (error) |
| return error; |
| if (unlikely(lastoff == 0)) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW, |
| mp); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| /* |
| * Read the last block in the btree space. |
| */ |
| last_blkno = (xfs_dablk_t)lastoff - mp->m_dirblkfsbs; |
| if ((error = xfs_da_read_buf(tp, ip, last_blkno, -1, &last_buf, w))) |
| return error; |
| /* |
| * Copy the last block into the dead buffer and log it. |
| */ |
| memcpy(dead_buf->data, last_buf->data, mp->m_dirblksize); |
| xfs_da_log_buf(tp, dead_buf, 0, mp->m_dirblksize - 1); |
| dead_info = dead_buf->data; |
| /* |
| * Get values from the moved block. |
| */ |
| if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC)) { |
| dead_leaf2 = (xfs_dir2_leaf_t *)dead_info; |
| dead_level = 0; |
| dead_hash = be32_to_cpu(dead_leaf2->ents[be16_to_cpu(dead_leaf2->hdr.count) - 1].hashval); |
| } else { |
| ASSERT(dead_info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC)); |
| dead_node = (xfs_da_intnode_t *)dead_info; |
| dead_level = be16_to_cpu(dead_node->hdr.level); |
| dead_hash = be32_to_cpu(dead_node->btree[be16_to_cpu(dead_node->hdr.count) - 1].hashval); |
| } |
| sib_buf = par_buf = NULL; |
| /* |
| * If the moved block has a left sibling, fix up the pointers. |
| */ |
| if ((sib_blkno = be32_to_cpu(dead_info->back))) { |
| if ((error = xfs_da_read_buf(tp, ip, sib_blkno, -1, &sib_buf, w))) |
| goto done; |
| sib_info = sib_buf->data; |
| if (unlikely( |
| be32_to_cpu(sib_info->forw) != last_blkno || |
| sib_info->magic != dead_info->magic)) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)", |
| XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto done; |
| } |
| sib_info->forw = cpu_to_be32(dead_blkno); |
| xfs_da_log_buf(tp, sib_buf, |
| XFS_DA_LOGRANGE(sib_info, &sib_info->forw, |
| sizeof(sib_info->forw))); |
| xfs_da_buf_done(sib_buf); |
| sib_buf = NULL; |
| } |
| /* |
| * If the moved block has a right sibling, fix up the pointers. |
| */ |
| if ((sib_blkno = be32_to_cpu(dead_info->forw))) { |
| if ((error = xfs_da_read_buf(tp, ip, sib_blkno, -1, &sib_buf, w))) |
| goto done; |
| sib_info = sib_buf->data; |
| if (unlikely( |
| be32_to_cpu(sib_info->back) != last_blkno || |
| sib_info->magic != dead_info->magic)) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)", |
| XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto done; |
| } |
| sib_info->back = cpu_to_be32(dead_blkno); |
| xfs_da_log_buf(tp, sib_buf, |
| XFS_DA_LOGRANGE(sib_info, &sib_info->back, |
| sizeof(sib_info->back))); |
| xfs_da_buf_done(sib_buf); |
| sib_buf = NULL; |
| } |
| par_blkno = mp->m_dirleafblk; |
| level = -1; |
| /* |
| * Walk down the tree looking for the parent of the moved block. |
| */ |
| for (;;) { |
| if ((error = xfs_da_read_buf(tp, ip, par_blkno, -1, &par_buf, w))) |
| goto done; |
| par_node = par_buf->data; |
| if (unlikely(par_node->hdr.info.magic != |
| cpu_to_be16(XFS_DA_NODE_MAGIC) || |
| (level >= 0 && level != be16_to_cpu(par_node->hdr.level) + 1))) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)", |
| XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto done; |
| } |
| level = be16_to_cpu(par_node->hdr.level); |
| for (entno = 0; |
| entno < be16_to_cpu(par_node->hdr.count) && |
| be32_to_cpu(par_node->btree[entno].hashval) < dead_hash; |
| entno++) |
| continue; |
| if (unlikely(entno == be16_to_cpu(par_node->hdr.count))) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)", |
| XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto done; |
| } |
| par_blkno = be32_to_cpu(par_node->btree[entno].before); |
| if (level == dead_level + 1) |
| break; |
| xfs_da_brelse(tp, par_buf); |
| par_buf = NULL; |
| } |
| /* |
| * We're in the right parent block. |
| * Look for the right entry. |
| */ |
| for (;;) { |
| for (; |
| entno < be16_to_cpu(par_node->hdr.count) && |
| be32_to_cpu(par_node->btree[entno].before) != last_blkno; |
| entno++) |
| continue; |
| if (entno < be16_to_cpu(par_node->hdr.count)) |
| break; |
| par_blkno = be32_to_cpu(par_node->hdr.info.forw); |
| xfs_da_brelse(tp, par_buf); |
| par_buf = NULL; |
| if (unlikely(par_blkno == 0)) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)", |
| XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto done; |
| } |
| if ((error = xfs_da_read_buf(tp, ip, par_blkno, -1, &par_buf, w))) |
| goto done; |
| par_node = par_buf->data; |
| if (unlikely( |
| be16_to_cpu(par_node->hdr.level) != level || |
| par_node->hdr.info.magic != cpu_to_be16(XFS_DA_NODE_MAGIC))) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)", |
| XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto done; |
| } |
| entno = 0; |
| } |
| /* |
| * Update the parent entry pointing to the moved block. |
| */ |
| par_node->btree[entno].before = cpu_to_be32(dead_blkno); |
| xfs_da_log_buf(tp, par_buf, |
| XFS_DA_LOGRANGE(par_node, &par_node->btree[entno].before, |
| sizeof(par_node->btree[entno].before))); |
| xfs_da_buf_done(par_buf); |
| xfs_da_buf_done(dead_buf); |
| *dead_blknop = last_blkno; |
| *dead_bufp = last_buf; |
| return 0; |
| done: |
| if (par_buf) |
| xfs_da_brelse(tp, par_buf); |
| if (sib_buf) |
| xfs_da_brelse(tp, sib_buf); |
| xfs_da_brelse(tp, last_buf); |
| return error; |
| } |
| |
| /* |
| * Remove a btree block from a directory or attribute. |
| */ |
| int |
| xfs_da_shrink_inode(xfs_da_args_t *args, xfs_dablk_t dead_blkno, |
| xfs_dabuf_t *dead_buf) |
| { |
| xfs_inode_t *dp; |
| int done, error, w, count; |
| xfs_trans_t *tp; |
| xfs_mount_t *mp; |
| |
| trace_xfs_da_shrink_inode(args); |
| |
| dp = args->dp; |
| w = args->whichfork; |
| tp = args->trans; |
| mp = dp->i_mount; |
| if (w == XFS_DATA_FORK) |
| count = mp->m_dirblkfsbs; |
| else |
| count = 1; |
| for (;;) { |
| /* |
| * Remove extents. If we get ENOSPC for a dir we have to move |
| * the last block to the place we want to kill. |
| */ |
| if ((error = xfs_bunmapi(tp, dp, dead_blkno, count, |
| xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA, |
| 0, args->firstblock, args->flist, |
| &done)) == ENOSPC) { |
| if (w != XFS_DATA_FORK) |
| break; |
| if ((error = xfs_da_swap_lastblock(args, &dead_blkno, |
| &dead_buf))) |
| break; |
| } else { |
| break; |
| } |
| } |
| xfs_da_binval(tp, dead_buf); |
| return error; |
| } |
| |
| /* |
| * See if the mapping(s) for this btree block are valid, i.e. |
| * don't contain holes, are logically contiguous, and cover the whole range. |
| */ |
| STATIC int |
| xfs_da_map_covers_blocks( |
| int nmap, |
| xfs_bmbt_irec_t *mapp, |
| xfs_dablk_t bno, |
| int count) |
| { |
| int i; |
| xfs_fileoff_t off; |
| |
| for (i = 0, off = bno; i < nmap; i++) { |
| if (mapp[i].br_startblock == HOLESTARTBLOCK || |
| mapp[i].br_startblock == DELAYSTARTBLOCK) { |
| return 0; |
| } |
| if (off != mapp[i].br_startoff) { |
| return 0; |
| } |
| off += mapp[i].br_blockcount; |
| } |
| return off == bno + count; |
| } |
| |
| /* |
| * Make a dabuf. |
| * Used for get_buf, read_buf, read_bufr, and reada_buf. |
| */ |
| STATIC int |
| xfs_da_do_buf( |
| xfs_trans_t *trans, |
| xfs_inode_t *dp, |
| xfs_dablk_t bno, |
| xfs_daddr_t *mappedbnop, |
| xfs_dabuf_t **bpp, |
| int whichfork, |
| int caller) |
| { |
| xfs_buf_t *bp = NULL; |
| xfs_buf_t **bplist; |
| int error=0; |
| int i; |
| xfs_bmbt_irec_t map; |
| xfs_bmbt_irec_t *mapp; |
| xfs_daddr_t mappedbno; |
| xfs_mount_t *mp; |
| int nbplist=0; |
| int nfsb; |
| int nmap; |
| xfs_dabuf_t *rbp; |
| |
| mp = dp->i_mount; |
| nfsb = (whichfork == XFS_DATA_FORK) ? mp->m_dirblkfsbs : 1; |
| mappedbno = *mappedbnop; |
| /* |
| * Caller doesn't have a mapping. -2 means don't complain |
| * if we land in a hole. |
| */ |
| if (mappedbno == -1 || mappedbno == -2) { |
| /* |
| * Optimize the one-block case. |
| */ |
| if (nfsb == 1) |
| mapp = ↦ |
| else |
| mapp = kmem_alloc(sizeof(*mapp) * nfsb, KM_SLEEP); |
| |
| nmap = nfsb; |
| error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, mapp, |
| &nmap, xfs_bmapi_aflag(whichfork)); |
| if (error) |
| goto exit0; |
| } else { |
| map.br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno); |
| map.br_startoff = (xfs_fileoff_t)bno; |
| map.br_blockcount = nfsb; |
| mapp = ↦ |
| nmap = 1; |
| } |
| if (!xfs_da_map_covers_blocks(nmap, mapp, bno, nfsb)) { |
| error = mappedbno == -2 ? 0 : XFS_ERROR(EFSCORRUPTED); |
| if (unlikely(error == EFSCORRUPTED)) { |
| if (xfs_error_level >= XFS_ERRLEVEL_LOW) { |
| xfs_alert(mp, "%s: bno %lld dir: inode %lld", |
| __func__, (long long)bno, |
| (long long)dp->i_ino); |
| for (i = 0; i < nmap; i++) { |
| xfs_alert(mp, |
| "[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d", |
| i, |
| (long long)mapp[i].br_startoff, |
| (long long)mapp[i].br_startblock, |
| (long long)mapp[i].br_blockcount, |
| mapp[i].br_state); |
| } |
| } |
| XFS_ERROR_REPORT("xfs_da_do_buf(1)", |
| XFS_ERRLEVEL_LOW, mp); |
| } |
| goto exit0; |
| } |
| if (caller != 3 && nmap > 1) { |
| bplist = kmem_alloc(sizeof(*bplist) * nmap, KM_SLEEP); |
| nbplist = 0; |
| } else |
| bplist = NULL; |
| /* |
| * Turn the mapping(s) into buffer(s). |
| */ |
| for (i = 0; i < nmap; i++) { |
| int nmapped; |
| |
| mappedbno = XFS_FSB_TO_DADDR(mp, mapp[i].br_startblock); |
| if (i == 0) |
| *mappedbnop = mappedbno; |
| nmapped = (int)XFS_FSB_TO_BB(mp, mapp[i].br_blockcount); |
| switch (caller) { |
| case 0: |
| bp = xfs_trans_get_buf(trans, mp->m_ddev_targp, |
| mappedbno, nmapped, 0); |
| error = bp ? bp->b_error : XFS_ERROR(EIO); |
| break; |
| case 1: |
| case 2: |
| bp = NULL; |
| error = xfs_trans_read_buf(mp, trans, mp->m_ddev_targp, |
| mappedbno, nmapped, 0, &bp); |
| break; |
| case 3: |
| xfs_buf_readahead(mp->m_ddev_targp, mappedbno, nmapped); |
| error = 0; |
| bp = NULL; |
| break; |
| } |
| if (error) { |
| if (bp) |
| xfs_trans_brelse(trans, bp); |
| goto exit1; |
| } |
| if (!bp) |
| continue; |
| if (caller == 1) { |
| if (whichfork == XFS_ATTR_FORK) |
| xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF); |
| else |
| xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF); |
| } |
| if (bplist) { |
| bplist[nbplist++] = bp; |
| } |
| } |
| /* |
| * Build a dabuf structure. |
| */ |
| if (bplist) { |
| rbp = xfs_da_buf_make(nbplist, bplist); |
| } else if (bp) |
| rbp = xfs_da_buf_make(1, &bp); |
| else |
| rbp = NULL; |
| /* |
| * For read_buf, check the magic number. |
| */ |
| if (caller == 1) { |
| xfs_dir2_data_hdr_t *hdr = rbp->data; |
| xfs_dir2_free_t *free = rbp->data; |
| xfs_da_blkinfo_t *info = rbp->data; |
| uint magic, magic1; |
| |
| magic = be16_to_cpu(info->magic); |
| magic1 = be32_to_cpu(hdr->magic); |
| if (unlikely( |
| XFS_TEST_ERROR((magic != XFS_DA_NODE_MAGIC) && |
| (magic != XFS_ATTR_LEAF_MAGIC) && |
| (magic != XFS_DIR2_LEAF1_MAGIC) && |
| (magic != XFS_DIR2_LEAFN_MAGIC) && |
| (magic1 != XFS_DIR2_BLOCK_MAGIC) && |
| (magic1 != XFS_DIR2_DATA_MAGIC) && |
| (free->hdr.magic != cpu_to_be32(XFS_DIR2_FREE_MAGIC)), |
| mp, XFS_ERRTAG_DA_READ_BUF, |
| XFS_RANDOM_DA_READ_BUF))) { |
| trace_xfs_da_btree_corrupt(rbp->bps[0], _RET_IP_); |
| XFS_CORRUPTION_ERROR("xfs_da_do_buf(2)", |
| XFS_ERRLEVEL_LOW, mp, info); |
| error = XFS_ERROR(EFSCORRUPTED); |
| xfs_da_brelse(trans, rbp); |
| nbplist = 0; |
| goto exit1; |
| } |
| } |
| if (bplist) { |
| kmem_free(bplist); |
| } |
| if (mapp != &map) { |
| kmem_free(mapp); |
| } |
| if (bpp) |
| *bpp = rbp; |
| return 0; |
| exit1: |
| if (bplist) { |
| for (i = 0; i < nbplist; i++) |
| xfs_trans_brelse(trans, bplist[i]); |
| kmem_free(bplist); |
| } |
| exit0: |
| if (mapp != &map) |
| kmem_free(mapp); |
| if (bpp) |
| *bpp = NULL; |
| return error; |
| } |
| |
| /* |
| * Get a buffer for the dir/attr block. |
| */ |
| int |
| xfs_da_get_buf( |
| xfs_trans_t *trans, |
| xfs_inode_t *dp, |
| xfs_dablk_t bno, |
| xfs_daddr_t mappedbno, |
| xfs_dabuf_t **bpp, |
| int whichfork) |
| { |
| return xfs_da_do_buf(trans, dp, bno, &mappedbno, bpp, whichfork, 0); |
| } |
| |
| /* |
| * Get a buffer for the dir/attr block, fill in the contents. |
| */ |
| int |
| xfs_da_read_buf( |
| xfs_trans_t *trans, |
| xfs_inode_t *dp, |
| xfs_dablk_t bno, |
| xfs_daddr_t mappedbno, |
| xfs_dabuf_t **bpp, |
| int whichfork) |
| { |
| return xfs_da_do_buf(trans, dp, bno, &mappedbno, bpp, whichfork, 1); |
| } |
| |
| /* |
| * Readahead the dir/attr block. |
| */ |
| xfs_daddr_t |
| xfs_da_reada_buf( |
| xfs_trans_t *trans, |
| xfs_inode_t *dp, |
| xfs_dablk_t bno, |
| int whichfork) |
| { |
| xfs_daddr_t rval; |
| |
| rval = -1; |
| if (xfs_da_do_buf(trans, dp, bno, &rval, NULL, whichfork, 3)) |
| return -1; |
| else |
| return rval; |
| } |
| |
| kmem_zone_t *xfs_da_state_zone; /* anchor for state struct zone */ |
| kmem_zone_t *xfs_dabuf_zone; /* dabuf zone */ |
| |
| /* |
| * Allocate a dir-state structure. |
| * We don't put them on the stack since they're large. |
| */ |
| xfs_da_state_t * |
| xfs_da_state_alloc(void) |
| { |
| return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS); |
| } |
| |
| /* |
| * Kill the altpath contents of a da-state structure. |
| */ |
| STATIC void |
| xfs_da_state_kill_altpath(xfs_da_state_t *state) |
| { |
| int i; |
| |
| for (i = 0; i < state->altpath.active; i++) { |
| if (state->altpath.blk[i].bp) { |
| if (state->altpath.blk[i].bp != state->path.blk[i].bp) |
| xfs_da_buf_done(state->altpath.blk[i].bp); |
| state->altpath.blk[i].bp = NULL; |
| } |
| } |
| state->altpath.active = 0; |
| } |
| |
| /* |
| * Free a da-state structure. |
| */ |
| void |
| xfs_da_state_free(xfs_da_state_t *state) |
| { |
| int i; |
| |
| xfs_da_state_kill_altpath(state); |
| for (i = 0; i < state->path.active; i++) { |
| if (state->path.blk[i].bp) |
| xfs_da_buf_done(state->path.blk[i].bp); |
| } |
| if (state->extravalid && state->extrablk.bp) |
| xfs_da_buf_done(state->extrablk.bp); |
| #ifdef DEBUG |
| memset((char *)state, 0, sizeof(*state)); |
| #endif /* DEBUG */ |
| kmem_zone_free(xfs_da_state_zone, state); |
| } |
| |
| /* |
| * Create a dabuf. |
| */ |
| /* ARGSUSED */ |
| STATIC xfs_dabuf_t * |
| xfs_da_buf_make(int nbuf, xfs_buf_t **bps) |
| { |
| xfs_buf_t *bp; |
| xfs_dabuf_t *dabuf; |
| int i; |
| int off; |
| |
| if (nbuf == 1) |
| dabuf = kmem_zone_alloc(xfs_dabuf_zone, KM_NOFS); |
| else |
| dabuf = kmem_alloc(XFS_DA_BUF_SIZE(nbuf), KM_NOFS); |
| dabuf->dirty = 0; |
| if (nbuf == 1) { |
| dabuf->nbuf = 1; |
| bp = bps[0]; |
| dabuf->bbcount = bp->b_length; |
| dabuf->data = bp->b_addr; |
| dabuf->bps[0] = bp; |
| } else { |
| dabuf->nbuf = nbuf; |
| for (i = 0, dabuf->bbcount = 0; i < nbuf; i++) { |
| dabuf->bps[i] = bp = bps[i]; |
| dabuf->bbcount += bp->b_length; |
| } |
| dabuf->data = kmem_alloc(BBTOB(dabuf->bbcount), KM_SLEEP); |
| for (i = off = 0; i < nbuf; i++, off += BBTOB(bp->b_length)) { |
| bp = bps[i]; |
| memcpy((char *)dabuf->data + off, bp->b_addr, |
| BBTOB(bp->b_length)); |
| } |
| } |
| return dabuf; |
| } |
| |
| /* |
| * Un-dirty a dabuf. |
| */ |
| STATIC void |
| xfs_da_buf_clean(xfs_dabuf_t *dabuf) |
| { |
| xfs_buf_t *bp; |
| int i; |
| int off; |
| |
| if (dabuf->dirty) { |
| ASSERT(dabuf->nbuf > 1); |
| dabuf->dirty = 0; |
| for (i = off = 0; i < dabuf->nbuf; |
| i++, off += BBTOB(bp->b_length)) { |
| bp = dabuf->bps[i]; |
| memcpy(bp->b_addr, dabuf->data + off, |
| BBTOB(bp->b_length)); |
| } |
| } |
| } |
| |
| /* |
| * Release a dabuf. |
| */ |
| void |
| xfs_da_buf_done(xfs_dabuf_t *dabuf) |
| { |
| ASSERT(dabuf); |
| ASSERT(dabuf->nbuf && dabuf->data && dabuf->bbcount && dabuf->bps[0]); |
| if (dabuf->dirty) |
| xfs_da_buf_clean(dabuf); |
| if (dabuf->nbuf > 1) { |
| kmem_free(dabuf->data); |
| kmem_free(dabuf); |
| } else { |
| kmem_zone_free(xfs_dabuf_zone, dabuf); |
| } |
| } |
| |
| /* |
| * Log transaction from a dabuf. |
| */ |
| void |
| xfs_da_log_buf(xfs_trans_t *tp, xfs_dabuf_t *dabuf, uint first, uint last) |
| { |
| xfs_buf_t *bp; |
| uint f; |
| int i; |
| uint l; |
| int off; |
| |
| ASSERT(dabuf->nbuf && dabuf->data && dabuf->bbcount && dabuf->bps[0]); |
| if (dabuf->nbuf == 1) { |
| ASSERT(dabuf->data == dabuf->bps[0]->b_addr); |
| xfs_trans_log_buf(tp, dabuf->bps[0], first, last); |
| return; |
| } |
| dabuf->dirty = 1; |
| ASSERT(first <= last); |
| for (i = off = 0; i < dabuf->nbuf; i++, off += BBTOB(bp->b_length)) { |
| bp = dabuf->bps[i]; |
| f = off; |
| l = f + BBTOB(bp->b_length) - 1; |
| if (f < first) |
| f = first; |
| if (l > last) |
| l = last; |
| if (f <= l) |
| xfs_trans_log_buf(tp, bp, f - off, l - off); |
| /* |
| * B_DONE is set by xfs_trans_log buf. |
| * If we don't set it on a new buffer (get not read) |
| * then if we don't put anything in the buffer it won't |
| * be set, and at commit it it released into the cache, |
| * and then a read will fail. |
| */ |
| else if (!(XFS_BUF_ISDONE(bp))) |
| XFS_BUF_DONE(bp); |
| } |
| ASSERT(last < off); |
| } |
| |
| /* |
| * Release dabuf from a transaction. |
| * Have to free up the dabuf before the buffers are released, |
| * since the synchronization on the dabuf is really the lock on the buffer. |
| */ |
| void |
| xfs_da_brelse(xfs_trans_t *tp, xfs_dabuf_t *dabuf) |
| { |
| xfs_buf_t *bp; |
| xfs_buf_t **bplist; |
| int i; |
| int nbuf; |
| |
| ASSERT(dabuf->nbuf && dabuf->data && dabuf->bbcount && dabuf->bps[0]); |
| if ((nbuf = dabuf->nbuf) == 1) { |
| bplist = &bp; |
| bp = dabuf->bps[0]; |
| } else { |
| bplist = kmem_alloc(nbuf * sizeof(*bplist), KM_SLEEP); |
| memcpy(bplist, dabuf->bps, nbuf * sizeof(*bplist)); |
| } |
| xfs_da_buf_done(dabuf); |
| for (i = 0; i < nbuf; i++) |
| xfs_trans_brelse(tp, bplist[i]); |
| if (bplist != &bp) |
| kmem_free(bplist); |
| } |
| |
| /* |
| * Invalidate dabuf from a transaction. |
| */ |
| void |
| xfs_da_binval(xfs_trans_t *tp, xfs_dabuf_t *dabuf) |
| { |
| xfs_buf_t *bp; |
| xfs_buf_t **bplist; |
| int i; |
| int nbuf; |
| |
| ASSERT(dabuf->nbuf && dabuf->data && dabuf->bbcount && dabuf->bps[0]); |
| if ((nbuf = dabuf->nbuf) == 1) { |
| bplist = &bp; |
| bp = dabuf->bps[0]; |
| } else { |
| bplist = kmem_alloc(nbuf * sizeof(*bplist), KM_SLEEP); |
| memcpy(bplist, dabuf->bps, nbuf * sizeof(*bplist)); |
| } |
| xfs_da_buf_done(dabuf); |
| for (i = 0; i < nbuf; i++) |
| xfs_trans_binval(tp, bplist[i]); |
| if (bplist != &bp) |
| kmem_free(bplist); |
| } |
| |
| /* |
| * Get the first daddr from a dabuf. |
| */ |
| xfs_daddr_t |
| xfs_da_blkno(xfs_dabuf_t *dabuf) |
| { |
| ASSERT(dabuf->nbuf); |
| ASSERT(dabuf->data); |
| return XFS_BUF_ADDR(dabuf->bps[0]); |
| } |