blob: 74cee39d73dfa8b70510cf5cfcf8bf2a8dfc7aee [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Sensor-Technik Wiedemann GmbH
* Copyright (c) 2018-2019, Vladimir Oltean <olteanv@gmail.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/spi/spi.h>
#include <linux/errno.h>
#include <linux/gpio/consumer.h>
#include <linux/phylink.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/pcs/pcs-xpcs.h>
#include <linux/netdev_features.h>
#include <linux/netdevice.h>
#include <linux/if_bridge.h>
#include <linux/if_ether.h>
#include <linux/dsa/8021q.h>
#include "sja1105.h"
#include "sja1105_tas.h"
#define SJA1105_UNKNOWN_MULTICAST 0x010000000000ull
/* Configure the optional reset pin and bring up switch */
static int sja1105_hw_reset(struct device *dev, unsigned int pulse_len,
unsigned int startup_delay)
{
struct gpio_desc *gpio;
gpio = gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(gpio))
return PTR_ERR(gpio);
if (!gpio)
return 0;
gpiod_set_value_cansleep(gpio, 1);
/* Wait for minimum reset pulse length */
msleep(pulse_len);
gpiod_set_value_cansleep(gpio, 0);
/* Wait until chip is ready after reset */
msleep(startup_delay);
gpiod_put(gpio);
return 0;
}
static void
sja1105_port_allow_traffic(struct sja1105_l2_forwarding_entry *l2_fwd,
int from, int to, bool allow)
{
if (allow)
l2_fwd[from].reach_port |= BIT(to);
else
l2_fwd[from].reach_port &= ~BIT(to);
}
static bool sja1105_can_forward(struct sja1105_l2_forwarding_entry *l2_fwd,
int from, int to)
{
return !!(l2_fwd[from].reach_port & BIT(to));
}
static int sja1105_is_vlan_configured(struct sja1105_private *priv, u16 vid)
{
struct sja1105_vlan_lookup_entry *vlan;
int count, i;
vlan = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entries;
count = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entry_count;
for (i = 0; i < count; i++)
if (vlan[i].vlanid == vid)
return i;
/* Return an invalid entry index if not found */
return -1;
}
static int sja1105_drop_untagged(struct dsa_switch *ds, int port, bool drop)
{
struct sja1105_private *priv = ds->priv;
struct sja1105_mac_config_entry *mac;
mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
if (mac[port].drpuntag == drop)
return 0;
mac[port].drpuntag = drop;
return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
&mac[port], true);
}
static int sja1105_pvid_apply(struct sja1105_private *priv, int port, u16 pvid)
{
struct sja1105_mac_config_entry *mac;
mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
if (mac[port].vlanid == pvid)
return 0;
mac[port].vlanid = pvid;
return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
&mac[port], true);
}
static int sja1105_commit_pvid(struct dsa_switch *ds, int port)
{
struct dsa_port *dp = dsa_to_port(ds, port);
struct net_device *br = dsa_port_bridge_dev_get(dp);
struct sja1105_private *priv = ds->priv;
struct sja1105_vlan_lookup_entry *vlan;
bool drop_untagged = false;
int match, rc;
u16 pvid;
if (br && br_vlan_enabled(br))
pvid = priv->bridge_pvid[port];
else
pvid = priv->tag_8021q_pvid[port];
rc = sja1105_pvid_apply(priv, port, pvid);
if (rc)
return rc;
/* Only force dropping of untagged packets when the port is under a
* VLAN-aware bridge. When the tag_8021q pvid is used, we are
* deliberately removing the RX VLAN from the port's VMEMB_PORT list,
* to prevent DSA tag spoofing from the link partner. Untagged packets
* are the only ones that should be received with tag_8021q, so
* definitely don't drop them.
*/
if (pvid == priv->bridge_pvid[port]) {
vlan = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entries;
match = sja1105_is_vlan_configured(priv, pvid);
if (match < 0 || !(vlan[match].vmemb_port & BIT(port)))
drop_untagged = true;
}
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
drop_untagged = true;
return sja1105_drop_untagged(ds, port, drop_untagged);
}
static int sja1105_init_mac_settings(struct sja1105_private *priv)
{
struct sja1105_mac_config_entry default_mac = {
/* Enable all 8 priority queues on egress.
* Every queue i holds top[i] - base[i] frames.
* Sum of top[i] - base[i] is 511 (max hardware limit).
*/
.top = {0x3F, 0x7F, 0xBF, 0xFF, 0x13F, 0x17F, 0x1BF, 0x1FF},
.base = {0x0, 0x40, 0x80, 0xC0, 0x100, 0x140, 0x180, 0x1C0},
.enabled = {true, true, true, true, true, true, true, true},
/* Keep standard IFG of 12 bytes on egress. */
.ifg = 0,
/* Always put the MAC speed in automatic mode, where it can be
* adjusted at runtime by PHYLINK.
*/
.speed = priv->info->port_speed[SJA1105_SPEED_AUTO],
/* No static correction for 1-step 1588 events */
.tp_delin = 0,
.tp_delout = 0,
/* Disable aging for critical TTEthernet traffic */
.maxage = 0xFF,
/* Internal VLAN (pvid) to apply to untagged ingress */
.vlanprio = 0,
.vlanid = 1,
.ing_mirr = false,
.egr_mirr = false,
/* Don't drop traffic with other EtherType than ETH_P_IP */
.drpnona664 = false,
/* Don't drop double-tagged traffic */
.drpdtag = false,
/* Don't drop untagged traffic */
.drpuntag = false,
/* Don't retag 802.1p (VID 0) traffic with the pvid */
.retag = false,
/* Disable learning and I/O on user ports by default -
* STP will enable it.
*/
.dyn_learn = false,
.egress = false,
.ingress = false,
};
struct sja1105_mac_config_entry *mac;
struct dsa_switch *ds = priv->ds;
struct sja1105_table *table;
struct dsa_port *dp;
table = &priv->static_config.tables[BLK_IDX_MAC_CONFIG];
/* Discard previous MAC Configuration Table */
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
table->entries = kcalloc(table->ops->max_entry_count,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = table->ops->max_entry_count;
mac = table->entries;
list_for_each_entry(dp, &ds->dst->ports, list) {
if (dp->ds != ds)
continue;
mac[dp->index] = default_mac;
/* Let sja1105_bridge_stp_state_set() keep address learning
* enabled for the DSA ports. CPU ports use software-assisted
* learning to ensure that only FDB entries belonging to the
* bridge are learned, and that they are learned towards all
* CPU ports in a cross-chip topology if multiple CPU ports
* exist.
*/
if (dsa_port_is_dsa(dp))
dp->learning = true;
/* Disallow untagged packets from being received on the
* CPU and DSA ports.
*/
if (dsa_port_is_cpu(dp) || dsa_port_is_dsa(dp))
mac[dp->index].drpuntag = true;
}
return 0;
}
static int sja1105_init_mii_settings(struct sja1105_private *priv)
{
struct device *dev = &priv->spidev->dev;
struct sja1105_xmii_params_entry *mii;
struct dsa_switch *ds = priv->ds;
struct sja1105_table *table;
int i;
table = &priv->static_config.tables[BLK_IDX_XMII_PARAMS];
/* Discard previous xMII Mode Parameters Table */
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
table->entries = kcalloc(table->ops->max_entry_count,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
/* Override table based on PHYLINK DT bindings */
table->entry_count = table->ops->max_entry_count;
mii = table->entries;
for (i = 0; i < ds->num_ports; i++) {
sja1105_mii_role_t role = XMII_MAC;
if (dsa_is_unused_port(priv->ds, i))
continue;
switch (priv->phy_mode[i]) {
case PHY_INTERFACE_MODE_INTERNAL:
if (priv->info->internal_phy[i] == SJA1105_NO_PHY)
goto unsupported;
mii->xmii_mode[i] = XMII_MODE_MII;
if (priv->info->internal_phy[i] == SJA1105_PHY_BASE_TX)
mii->special[i] = true;
break;
case PHY_INTERFACE_MODE_REVMII:
role = XMII_PHY;
fallthrough;
case PHY_INTERFACE_MODE_MII:
if (!priv->info->supports_mii[i])
goto unsupported;
mii->xmii_mode[i] = XMII_MODE_MII;
break;
case PHY_INTERFACE_MODE_REVRMII:
role = XMII_PHY;
fallthrough;
case PHY_INTERFACE_MODE_RMII:
if (!priv->info->supports_rmii[i])
goto unsupported;
mii->xmii_mode[i] = XMII_MODE_RMII;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
if (!priv->info->supports_rgmii[i])
goto unsupported;
mii->xmii_mode[i] = XMII_MODE_RGMII;
break;
case PHY_INTERFACE_MODE_SGMII:
if (!priv->info->supports_sgmii[i])
goto unsupported;
mii->xmii_mode[i] = XMII_MODE_SGMII;
mii->special[i] = true;
break;
case PHY_INTERFACE_MODE_2500BASEX:
if (!priv->info->supports_2500basex[i])
goto unsupported;
mii->xmii_mode[i] = XMII_MODE_SGMII;
mii->special[i] = true;
break;
unsupported:
default:
dev_err(dev, "Unsupported PHY mode %s on port %d!\n",
phy_modes(priv->phy_mode[i]), i);
return -EINVAL;
}
mii->phy_mac[i] = role;
}
return 0;
}
static int sja1105_init_static_fdb(struct sja1105_private *priv)
{
struct sja1105_l2_lookup_entry *l2_lookup;
struct sja1105_table *table;
int port;
table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP];
/* We only populate the FDB table through dynamic L2 Address Lookup
* entries, except for a special entry at the end which is a catch-all
* for unknown multicast and will be used to control flooding domain.
*/
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
if (!priv->info->can_limit_mcast_flood)
return 0;
table->entries = kcalloc(1, table->ops->unpacked_entry_size,
GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = 1;
l2_lookup = table->entries;
/* All L2 multicast addresses have an odd first octet */
l2_lookup[0].macaddr = SJA1105_UNKNOWN_MULTICAST;
l2_lookup[0].mask_macaddr = SJA1105_UNKNOWN_MULTICAST;
l2_lookup[0].lockeds = true;
l2_lookup[0].index = SJA1105_MAX_L2_LOOKUP_COUNT - 1;
/* Flood multicast to every port by default */
for (port = 0; port < priv->ds->num_ports; port++)
if (!dsa_is_unused_port(priv->ds, port))
l2_lookup[0].destports |= BIT(port);
return 0;
}
static int sja1105_init_l2_lookup_params(struct sja1105_private *priv)
{
struct sja1105_l2_lookup_params_entry default_l2_lookup_params = {
/* Learned FDB entries are forgotten after 300 seconds */
.maxage = SJA1105_AGEING_TIME_MS(300000),
/* All entries within a FDB bin are available for learning */
.dyn_tbsz = SJA1105ET_FDB_BIN_SIZE,
/* And the P/Q/R/S equivalent setting: */
.start_dynspc = 0,
/* 2^8 + 2^5 + 2^3 + 2^2 + 2^1 + 1 in Koopman notation */
.poly = 0x97,
/* Always use Independent VLAN Learning (IVL) */
.shared_learn = false,
/* Don't discard management traffic based on ENFPORT -
* we don't perform SMAC port enforcement anyway, so
* what we are setting here doesn't matter.
*/
.no_enf_hostprt = false,
/* Don't learn SMAC for mac_fltres1 and mac_fltres0.
* Maybe correlate with no_linklocal_learn from bridge driver?
*/
.no_mgmt_learn = true,
/* P/Q/R/S only */
.use_static = true,
/* Dynamically learned FDB entries can overwrite other (older)
* dynamic FDB entries
*/
.owr_dyn = true,
.drpnolearn = true,
};
struct dsa_switch *ds = priv->ds;
int port, num_used_ports = 0;
struct sja1105_table *table;
u64 max_fdb_entries;
for (port = 0; port < ds->num_ports; port++)
if (!dsa_is_unused_port(ds, port))
num_used_ports++;
max_fdb_entries = SJA1105_MAX_L2_LOOKUP_COUNT / num_used_ports;
for (port = 0; port < ds->num_ports; port++) {
if (dsa_is_unused_port(ds, port))
continue;
default_l2_lookup_params.maxaddrp[port] = max_fdb_entries;
}
table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
table->entries = kcalloc(table->ops->max_entry_count,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = table->ops->max_entry_count;
/* This table only has a single entry */
((struct sja1105_l2_lookup_params_entry *)table->entries)[0] =
default_l2_lookup_params;
return 0;
}
/* Set up a default VLAN for untagged traffic injected from the CPU
* using management routes (e.g. STP, PTP) as opposed to tag_8021q.
* All DT-defined ports are members of this VLAN, and there are no
* restrictions on forwarding (since the CPU selects the destination).
* Frames from this VLAN will always be transmitted as untagged, and
* neither the bridge nor the 8021q module cannot create this VLAN ID.
*/
static int sja1105_init_static_vlan(struct sja1105_private *priv)
{
struct sja1105_table *table;
struct sja1105_vlan_lookup_entry pvid = {
.type_entry = SJA1110_VLAN_D_TAG,
.ving_mirr = 0,
.vegr_mirr = 0,
.vmemb_port = 0,
.vlan_bc = 0,
.tag_port = 0,
.vlanid = SJA1105_DEFAULT_VLAN,
};
struct dsa_switch *ds = priv->ds;
int port;
table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
table->entries = kzalloc(table->ops->unpacked_entry_size,
GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = 1;
for (port = 0; port < ds->num_ports; port++) {
if (dsa_is_unused_port(ds, port))
continue;
pvid.vmemb_port |= BIT(port);
pvid.vlan_bc |= BIT(port);
pvid.tag_port &= ~BIT(port);
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
priv->tag_8021q_pvid[port] = SJA1105_DEFAULT_VLAN;
priv->bridge_pvid[port] = SJA1105_DEFAULT_VLAN;
}
}
((struct sja1105_vlan_lookup_entry *)table->entries)[0] = pvid;
return 0;
}
static int sja1105_init_l2_forwarding(struct sja1105_private *priv)
{
struct sja1105_l2_forwarding_entry *l2fwd;
struct dsa_switch *ds = priv->ds;
struct dsa_switch_tree *dst;
struct sja1105_table *table;
struct dsa_link *dl;
int port, tc;
int from, to;
table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
table->entries = kcalloc(table->ops->max_entry_count,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = table->ops->max_entry_count;
l2fwd = table->entries;
/* First 5 entries in the L2 Forwarding Table define the forwarding
* rules and the VLAN PCP to ingress queue mapping.
* Set up the ingress queue mapping first.
*/
for (port = 0; port < ds->num_ports; port++) {
if (dsa_is_unused_port(ds, port))
continue;
for (tc = 0; tc < SJA1105_NUM_TC; tc++)
l2fwd[port].vlan_pmap[tc] = tc;
}
/* Then manage the forwarding domain for user ports. These can forward
* only to the always-on domain (CPU port and DSA links)
*/
for (from = 0; from < ds->num_ports; from++) {
if (!dsa_is_user_port(ds, from))
continue;
for (to = 0; to < ds->num_ports; to++) {
if (!dsa_is_cpu_port(ds, to) &&
!dsa_is_dsa_port(ds, to))
continue;
l2fwd[from].bc_domain |= BIT(to);
l2fwd[from].fl_domain |= BIT(to);
sja1105_port_allow_traffic(l2fwd, from, to, true);
}
}
/* Then manage the forwarding domain for DSA links and CPU ports (the
* always-on domain). These can send packets to any enabled port except
* themselves.
*/
for (from = 0; from < ds->num_ports; from++) {
if (!dsa_is_cpu_port(ds, from) && !dsa_is_dsa_port(ds, from))
continue;
for (to = 0; to < ds->num_ports; to++) {
if (dsa_is_unused_port(ds, to))
continue;
if (from == to)
continue;
l2fwd[from].bc_domain |= BIT(to);
l2fwd[from].fl_domain |= BIT(to);
sja1105_port_allow_traffic(l2fwd, from, to, true);
}
}
/* In odd topologies ("H" connections where there is a DSA link to
* another switch which also has its own CPU port), TX packets can loop
* back into the system (they are flooded from CPU port 1 to the DSA
* link, and from there to CPU port 2). Prevent this from happening by
* cutting RX from DSA links towards our CPU port, if the remote switch
* has its own CPU port and therefore doesn't need ours for network
* stack termination.
*/
dst = ds->dst;
list_for_each_entry(dl, &dst->rtable, list) {
if (dl->dp->ds != ds || dl->link_dp->cpu_dp == dl->dp->cpu_dp)
continue;
from = dl->dp->index;
to = dsa_upstream_port(ds, from);
dev_warn(ds->dev,
"H topology detected, cutting RX from DSA link %d to CPU port %d to prevent TX packet loops\n",
from, to);
sja1105_port_allow_traffic(l2fwd, from, to, false);
l2fwd[from].bc_domain &= ~BIT(to);
l2fwd[from].fl_domain &= ~BIT(to);
}
/* Finally, manage the egress flooding domain. All ports start up with
* flooding enabled, including the CPU port and DSA links.
*/
for (port = 0; port < ds->num_ports; port++) {
if (dsa_is_unused_port(ds, port))
continue;
priv->ucast_egress_floods |= BIT(port);
priv->bcast_egress_floods |= BIT(port);
}
/* Next 8 entries define VLAN PCP mapping from ingress to egress.
* Create a one-to-one mapping.
*/
for (tc = 0; tc < SJA1105_NUM_TC; tc++) {
for (port = 0; port < ds->num_ports; port++) {
if (dsa_is_unused_port(ds, port))
continue;
l2fwd[ds->num_ports + tc].vlan_pmap[port] = tc;
}
l2fwd[ds->num_ports + tc].type_egrpcp2outputq = true;
}
return 0;
}
static int sja1110_init_pcp_remapping(struct sja1105_private *priv)
{
struct sja1110_pcp_remapping_entry *pcp_remap;
struct dsa_switch *ds = priv->ds;
struct sja1105_table *table;
int port, tc;
table = &priv->static_config.tables[BLK_IDX_PCP_REMAPPING];
/* Nothing to do for SJA1105 */
if (!table->ops->max_entry_count)
return 0;
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
table->entries = kcalloc(table->ops->max_entry_count,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = table->ops->max_entry_count;
pcp_remap = table->entries;
/* Repeat the configuration done for vlan_pmap */
for (port = 0; port < ds->num_ports; port++) {
if (dsa_is_unused_port(ds, port))
continue;
for (tc = 0; tc < SJA1105_NUM_TC; tc++)
pcp_remap[port].egrpcp[tc] = tc;
}
return 0;
}
static int sja1105_init_l2_forwarding_params(struct sja1105_private *priv)
{
struct sja1105_l2_forwarding_params_entry *l2fwd_params;
struct sja1105_table *table;
table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING_PARAMS];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
table->entries = kcalloc(table->ops->max_entry_count,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = table->ops->max_entry_count;
/* This table only has a single entry */
l2fwd_params = table->entries;
/* Disallow dynamic reconfiguration of vlan_pmap */
l2fwd_params->max_dynp = 0;
/* Use a single memory partition for all ingress queues */
l2fwd_params->part_spc[0] = priv->info->max_frame_mem;
return 0;
}
void sja1105_frame_memory_partitioning(struct sja1105_private *priv)
{
struct sja1105_l2_forwarding_params_entry *l2_fwd_params;
struct sja1105_vl_forwarding_params_entry *vl_fwd_params;
struct sja1105_table *table;
table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING_PARAMS];
l2_fwd_params = table->entries;
l2_fwd_params->part_spc[0] = SJA1105_MAX_FRAME_MEMORY;
/* If we have any critical-traffic virtual links, we need to reserve
* some frame buffer memory for them. At the moment, hardcode the value
* at 100 blocks of 128 bytes of memory each. This leaves 829 blocks
* remaining for best-effort traffic. TODO: figure out a more flexible
* way to perform the frame buffer partitioning.
*/
if (!priv->static_config.tables[BLK_IDX_VL_FORWARDING].entry_count)
return;
table = &priv->static_config.tables[BLK_IDX_VL_FORWARDING_PARAMS];
vl_fwd_params = table->entries;
l2_fwd_params->part_spc[0] -= SJA1105_VL_FRAME_MEMORY;
vl_fwd_params->partspc[0] = SJA1105_VL_FRAME_MEMORY;
}
/* SJA1110 TDMACONFIGIDX values:
*
* | 100 Mbps ports | 1Gbps ports | 2.5Gbps ports | Disabled ports
* -----+----------------+---------------+---------------+---------------
* 0 | 0, [5:10] | [1:2] | [3:4] | retag
* 1 |0, [5:10], retag| [1:2] | [3:4] | -
* 2 | 0, [5:10] | [1:3], retag | 4 | -
* 3 | 0, [5:10] |[1:2], 4, retag| 3 | -
* 4 | 0, 2, [5:10] | 1, retag | [3:4] | -
* 5 | 0, 1, [5:10] | 2, retag | [3:4] | -
* 14 | 0, [5:10] | [1:4], retag | - | -
* 15 | [5:10] | [0:4], retag | - | -
*/
static void sja1110_select_tdmaconfigidx(struct sja1105_private *priv)
{
struct sja1105_general_params_entry *general_params;
struct sja1105_table *table;
bool port_1_is_base_tx;
bool port_3_is_2500;
bool port_4_is_2500;
u64 tdmaconfigidx;
if (priv->info->device_id != SJA1110_DEVICE_ID)
return;
table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
general_params = table->entries;
/* All the settings below are "as opposed to SGMII", which is the
* other pinmuxing option.
*/
port_1_is_base_tx = priv->phy_mode[1] == PHY_INTERFACE_MODE_INTERNAL;
port_3_is_2500 = priv->phy_mode[3] == PHY_INTERFACE_MODE_2500BASEX;
port_4_is_2500 = priv->phy_mode[4] == PHY_INTERFACE_MODE_2500BASEX;
if (port_1_is_base_tx)
/* Retagging port will operate at 1 Gbps */
tdmaconfigidx = 5;
else if (port_3_is_2500 && port_4_is_2500)
/* Retagging port will operate at 100 Mbps */
tdmaconfigidx = 1;
else if (port_3_is_2500)
/* Retagging port will operate at 1 Gbps */
tdmaconfigidx = 3;
else if (port_4_is_2500)
/* Retagging port will operate at 1 Gbps */
tdmaconfigidx = 2;
else
/* Retagging port will operate at 1 Gbps */
tdmaconfigidx = 14;
general_params->tdmaconfigidx = tdmaconfigidx;
}
static int sja1105_init_topology(struct sja1105_private *priv,
struct sja1105_general_params_entry *general_params)
{
struct dsa_switch *ds = priv->ds;
int port;
/* The host port is the destination for traffic matching mac_fltres1
* and mac_fltres0 on all ports except itself. Default to an invalid
* value.
*/
general_params->host_port = ds->num_ports;
/* Link-local traffic received on casc_port will be forwarded
* to host_port without embedding the source port and device ID
* info in the destination MAC address, and no RX timestamps will be
* taken either (presumably because it is a cascaded port and a
* downstream SJA switch already did that).
* To disable the feature, we need to do different things depending on
* switch generation. On SJA1105 we need to set an invalid port, while
* on SJA1110 which support multiple cascaded ports, this field is a
* bitmask so it must be left zero.
*/
if (!priv->info->multiple_cascade_ports)
general_params->casc_port = ds->num_ports;
for (port = 0; port < ds->num_ports; port++) {
bool is_upstream = dsa_is_upstream_port(ds, port);
bool is_dsa_link = dsa_is_dsa_port(ds, port);
/* Upstream ports can be dedicated CPU ports or
* upstream-facing DSA links
*/
if (is_upstream) {
if (general_params->host_port == ds->num_ports) {
general_params->host_port = port;
} else {
dev_err(ds->dev,
"Port %llu is already a host port, configuring %d as one too is not supported\n",
general_params->host_port, port);
return -EINVAL;
}
}
/* Cascade ports are downstream-facing DSA links */
if (is_dsa_link && !is_upstream) {
if (priv->info->multiple_cascade_ports) {
general_params->casc_port |= BIT(port);
} else if (general_params->casc_port == ds->num_ports) {
general_params->casc_port = port;
} else {
dev_err(ds->dev,
"Port %llu is already a cascade port, configuring %d as one too is not supported\n",
general_params->casc_port, port);
return -EINVAL;
}
}
}
if (general_params->host_port == ds->num_ports) {
dev_err(ds->dev, "No host port configured\n");
return -EINVAL;
}
return 0;
}
static int sja1105_init_general_params(struct sja1105_private *priv)
{
struct sja1105_general_params_entry default_general_params = {
/* Allow dynamic changing of the mirror port */
.mirr_ptacu = true,
.switchid = priv->ds->index,
/* Priority queue for link-local management frames
* (both ingress to and egress from CPU - PTP, STP etc)
*/
.hostprio = 7,
.mac_fltres1 = SJA1105_LINKLOCAL_FILTER_A,
.mac_flt1 = SJA1105_LINKLOCAL_FILTER_A_MASK,
.incl_srcpt1 = true,
.send_meta1 = true,
.mac_fltres0 = SJA1105_LINKLOCAL_FILTER_B,
.mac_flt0 = SJA1105_LINKLOCAL_FILTER_B_MASK,
.incl_srcpt0 = true,
.send_meta0 = true,
/* Default to an invalid value */
.mirr_port = priv->ds->num_ports,
/* No TTEthernet */
.vllupformat = SJA1105_VL_FORMAT_PSFP,
.vlmarker = 0,
.vlmask = 0,
/* Only update correctionField for 1-step PTP (L2 transport) */
.ignore2stf = 0,
/* Forcefully disable VLAN filtering by telling
* the switch that VLAN has a different EtherType.
*/
.tpid = ETH_P_SJA1105,
.tpid2 = ETH_P_SJA1105,
/* Enable the TTEthernet engine on SJA1110 */
.tte_en = true,
/* Set up the EtherType for control packets on SJA1110 */
.header_type = ETH_P_SJA1110,
};
struct sja1105_general_params_entry *general_params;
struct sja1105_table *table;
int rc;
rc = sja1105_init_topology(priv, &default_general_params);
if (rc)
return rc;
table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
table->entries = kcalloc(table->ops->max_entry_count,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = table->ops->max_entry_count;
general_params = table->entries;
/* This table only has a single entry */
general_params[0] = default_general_params;
sja1110_select_tdmaconfigidx(priv);
return 0;
}
static int sja1105_init_avb_params(struct sja1105_private *priv)
{
struct sja1105_avb_params_entry *avb;
struct sja1105_table *table;
table = &priv->static_config.tables[BLK_IDX_AVB_PARAMS];
/* Discard previous AVB Parameters Table */
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
table->entries = kcalloc(table->ops->max_entry_count,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = table->ops->max_entry_count;
avb = table->entries;
/* Configure the MAC addresses for meta frames */
avb->destmeta = SJA1105_META_DMAC;
avb->srcmeta = SJA1105_META_SMAC;
/* On P/Q/R/S, configure the direction of the PTP_CLK pin as input by
* default. This is because there might be boards with a hardware
* layout where enabling the pin as output might cause an electrical
* clash. On E/T the pin is always an output, which the board designers
* probably already knew, so even if there are going to be electrical
* issues, there's nothing we can do.
*/
avb->cas_master = false;
return 0;
}
/* The L2 policing table is 2-stage. The table is looked up for each frame
* according to the ingress port, whether it was broadcast or not, and the
* classified traffic class (given by VLAN PCP). This portion of the lookup is
* fixed, and gives access to the SHARINDX, an indirection register pointing
* within the policing table itself, which is used to resolve the policer that
* will be used for this frame.
*
* Stage 1 Stage 2
* +------------+--------+ +---------------------------------+
* |Port 0 TC 0 |SHARINDX| | Policer 0: Rate, Burst, MTU |
* +------------+--------+ +---------------------------------+
* |Port 0 TC 1 |SHARINDX| | Policer 1: Rate, Burst, MTU |
* +------------+--------+ +---------------------------------+
* ... | Policer 2: Rate, Burst, MTU |
* +------------+--------+ +---------------------------------+
* |Port 0 TC 7 |SHARINDX| | Policer 3: Rate, Burst, MTU |
* +------------+--------+ +---------------------------------+
* |Port 1 TC 0 |SHARINDX| | Policer 4: Rate, Burst, MTU |
* +------------+--------+ +---------------------------------+
* ... | Policer 5: Rate, Burst, MTU |
* +------------+--------+ +---------------------------------+
* |Port 1 TC 7 |SHARINDX| | Policer 6: Rate, Burst, MTU |
* +------------+--------+ +---------------------------------+
* ... | Policer 7: Rate, Burst, MTU |
* +------------+--------+ +---------------------------------+
* |Port 4 TC 7 |SHARINDX| ...
* +------------+--------+
* |Port 0 BCAST|SHARINDX| ...
* +------------+--------+
* |Port 1 BCAST|SHARINDX| ...
* +------------+--------+
* ... ...
* +------------+--------+ +---------------------------------+
* |Port 4 BCAST|SHARINDX| | Policer 44: Rate, Burst, MTU |
* +------------+--------+ +---------------------------------+
*
* In this driver, we shall use policers 0-4 as statically alocated port
* (matchall) policers. So we need to make the SHARINDX for all lookups
* corresponding to this ingress port (8 VLAN PCP lookups and 1 broadcast
* lookup) equal.
* The remaining policers (40) shall be dynamically allocated for flower
* policers, where the key is either vlan_prio or dst_mac ff:ff:ff:ff:ff:ff.
*/
#define SJA1105_RATE_MBPS(speed) (((speed) * 64000) / 1000)
static int sja1105_init_l2_policing(struct sja1105_private *priv)
{
struct sja1105_l2_policing_entry *policing;
struct dsa_switch *ds = priv->ds;
struct sja1105_table *table;
int port, tc;
table = &priv->static_config.tables[BLK_IDX_L2_POLICING];
/* Discard previous L2 Policing Table */
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
table->entries = kcalloc(table->ops->max_entry_count,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = table->ops->max_entry_count;
policing = table->entries;
/* Setup shared indices for the matchall policers */
for (port = 0; port < ds->num_ports; port++) {
int mcast = (ds->num_ports * (SJA1105_NUM_TC + 1)) + port;
int bcast = (ds->num_ports * SJA1105_NUM_TC) + port;
for (tc = 0; tc < SJA1105_NUM_TC; tc++)
policing[port * SJA1105_NUM_TC + tc].sharindx = port;
policing[bcast].sharindx = port;
/* Only SJA1110 has multicast policers */
if (mcast < table->ops->max_entry_count)
policing[mcast].sharindx = port;
}
/* Setup the matchall policer parameters */
for (port = 0; port < ds->num_ports; port++) {
int mtu = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
mtu += VLAN_HLEN;
policing[port].smax = 65535; /* Burst size in bytes */
policing[port].rate = SJA1105_RATE_MBPS(1000);
policing[port].maxlen = mtu;
policing[port].partition = 0;
}
return 0;
}
static int sja1105_static_config_load(struct sja1105_private *priv)
{
int rc;
sja1105_static_config_free(&priv->static_config);
rc = sja1105_static_config_init(&priv->static_config,
priv->info->static_ops,
priv->info->device_id);
if (rc)
return rc;
/* Build static configuration */
rc = sja1105_init_mac_settings(priv);
if (rc < 0)
return rc;
rc = sja1105_init_mii_settings(priv);
if (rc < 0)
return rc;
rc = sja1105_init_static_fdb(priv);
if (rc < 0)
return rc;
rc = sja1105_init_static_vlan(priv);
if (rc < 0)
return rc;
rc = sja1105_init_l2_lookup_params(priv);
if (rc < 0)
return rc;
rc = sja1105_init_l2_forwarding(priv);
if (rc < 0)
return rc;
rc = sja1105_init_l2_forwarding_params(priv);
if (rc < 0)
return rc;
rc = sja1105_init_l2_policing(priv);
if (rc < 0)
return rc;
rc = sja1105_init_general_params(priv);
if (rc < 0)
return rc;
rc = sja1105_init_avb_params(priv);
if (rc < 0)
return rc;
rc = sja1110_init_pcp_remapping(priv);
if (rc < 0)
return rc;
/* Send initial configuration to hardware via SPI */
return sja1105_static_config_upload(priv);
}
/* This is the "new way" for a MAC driver to configure its RGMII delay lines,
* based on the explicit "rx-internal-delay-ps" and "tx-internal-delay-ps"
* properties. It has the advantage of working with fixed links and with PHYs
* that apply RGMII delays too, and the MAC driver needs not perform any
* special checks.
*
* Previously we were acting upon the "phy-mode" property when we were
* operating in fixed-link, basically acting as a PHY, but with a reversed
* interpretation: PHY_INTERFACE_MODE_RGMII_TXID means that the MAC should
* behave as if it is connected to a PHY which has applied RGMII delays in the
* TX direction. So if anything, RX delays should have been added by the MAC,
* but we were adding TX delays.
*
* If the "{rx,tx}-internal-delay-ps" properties are not specified, we fall
* back to the legacy behavior and apply delays on fixed-link ports based on
* the reverse interpretation of the phy-mode. This is a deviation from the
* expected default behavior which is to simply apply no delays. To achieve
* that behavior with the new bindings, it is mandatory to specify
* "{rx,tx}-internal-delay-ps" with a value of 0.
*/
static int sja1105_parse_rgmii_delays(struct sja1105_private *priv, int port,
struct device_node *port_dn)
{
phy_interface_t phy_mode = priv->phy_mode[port];
struct device *dev = &priv->spidev->dev;
int rx_delay = -1, tx_delay = -1;
if (!phy_interface_mode_is_rgmii(phy_mode))
return 0;
of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
if (rx_delay == -1 && tx_delay == -1 && priv->fixed_link[port]) {
dev_warn(dev,
"Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
"please update device tree to specify \"rx-internal-delay-ps\" and "
"\"tx-internal-delay-ps\"",
port);
if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
rx_delay = 2000;
if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
tx_delay = 2000;
}
if (rx_delay < 0)
rx_delay = 0;
if (tx_delay < 0)
tx_delay = 0;
if ((rx_delay || tx_delay) && !priv->info->setup_rgmii_delay) {
dev_err(dev, "Chip cannot apply RGMII delays\n");
return -EINVAL;
}
if ((rx_delay && rx_delay < SJA1105_RGMII_DELAY_MIN_PS) ||
(tx_delay && tx_delay < SJA1105_RGMII_DELAY_MIN_PS) ||
(rx_delay > SJA1105_RGMII_DELAY_MAX_PS) ||
(tx_delay > SJA1105_RGMII_DELAY_MAX_PS)) {
dev_err(dev,
"port %d RGMII delay values out of range, must be between %d and %d ps\n",
port, SJA1105_RGMII_DELAY_MIN_PS, SJA1105_RGMII_DELAY_MAX_PS);
return -ERANGE;
}
priv->rgmii_rx_delay_ps[port] = rx_delay;
priv->rgmii_tx_delay_ps[port] = tx_delay;
return 0;
}
static int sja1105_parse_ports_node(struct sja1105_private *priv,
struct device_node *ports_node)
{
struct device *dev = &priv->spidev->dev;
struct device_node *child;
for_each_available_child_of_node(ports_node, child) {
struct device_node *phy_node;
phy_interface_t phy_mode;
u32 index;
int err;
/* Get switch port number from DT */
if (of_property_read_u32(child, "reg", &index) < 0) {
dev_err(dev, "Port number not defined in device tree "
"(property \"reg\")\n");
of_node_put(child);
return -ENODEV;
}
/* Get PHY mode from DT */
err = of_get_phy_mode(child, &phy_mode);
if (err) {
dev_err(dev, "Failed to read phy-mode or "
"phy-interface-type property for port %d\n",
index);
of_node_put(child);
return -ENODEV;
}
phy_node = of_parse_phandle(child, "phy-handle", 0);
if (!phy_node) {
if (!of_phy_is_fixed_link(child)) {
dev_err(dev, "phy-handle or fixed-link "
"properties missing!\n");
of_node_put(child);
return -ENODEV;
}
/* phy-handle is missing, but fixed-link isn't.
* So it's a fixed link. Default to PHY role.
*/
priv->fixed_link[index] = true;
} else {
of_node_put(phy_node);
}
priv->phy_mode[index] = phy_mode;
err = sja1105_parse_rgmii_delays(priv, index, child);
if (err) {
of_node_put(child);
return err;
}
}
return 0;
}
static int sja1105_parse_dt(struct sja1105_private *priv)
{
struct device *dev = &priv->spidev->dev;
struct device_node *switch_node = dev->of_node;
struct device_node *ports_node;
int rc;
ports_node = of_get_child_by_name(switch_node, "ports");
if (!ports_node)
ports_node = of_get_child_by_name(switch_node, "ethernet-ports");
if (!ports_node) {
dev_err(dev, "Incorrect bindings: absent \"ports\" node\n");
return -ENODEV;
}
rc = sja1105_parse_ports_node(priv, ports_node);
of_node_put(ports_node);
return rc;
}
/* Convert link speed from SJA1105 to ethtool encoding */
static int sja1105_port_speed_to_ethtool(struct sja1105_private *priv,
u64 speed)
{
if (speed == priv->info->port_speed[SJA1105_SPEED_10MBPS])
return SPEED_10;
if (speed == priv->info->port_speed[SJA1105_SPEED_100MBPS])
return SPEED_100;
if (speed == priv->info->port_speed[SJA1105_SPEED_1000MBPS])
return SPEED_1000;
if (speed == priv->info->port_speed[SJA1105_SPEED_2500MBPS])
return SPEED_2500;
return SPEED_UNKNOWN;
}
/* Set link speed in the MAC configuration for a specific port. */
static int sja1105_adjust_port_config(struct sja1105_private *priv, int port,
int speed_mbps)
{
struct sja1105_mac_config_entry *mac;
struct device *dev = priv->ds->dev;
u64 speed;
int rc;
/* On P/Q/R/S, one can read from the device via the MAC reconfiguration
* tables. On E/T, MAC reconfig tables are not readable, only writable.
* We have to *know* what the MAC looks like. For the sake of keeping
* the code common, we'll use the static configuration tables as a
* reasonable approximation for both E/T and P/Q/R/S.
*/
mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
switch (speed_mbps) {
case SPEED_UNKNOWN:
/* PHYLINK called sja1105_mac_config() to inform us about
* the state->interface, but AN has not completed and the
* speed is not yet valid. UM10944.pdf says that setting
* SJA1105_SPEED_AUTO at runtime disables the port, so that is
* ok for power consumption in case AN will never complete -
* otherwise PHYLINK should come back with a new update.
*/
speed = priv->info->port_speed[SJA1105_SPEED_AUTO];
break;
case SPEED_10:
speed = priv->info->port_speed[SJA1105_SPEED_10MBPS];
break;
case SPEED_100:
speed = priv->info->port_speed[SJA1105_SPEED_100MBPS];
break;
case SPEED_1000:
speed = priv->info->port_speed[SJA1105_SPEED_1000MBPS];
break;
case SPEED_2500:
speed = priv->info->port_speed[SJA1105_SPEED_2500MBPS];
break;
default:
dev_err(dev, "Invalid speed %iMbps\n", speed_mbps);
return -EINVAL;
}
/* Overwrite SJA1105_SPEED_AUTO from the static MAC configuration
* table, since this will be used for the clocking setup, and we no
* longer need to store it in the static config (already told hardware
* we want auto during upload phase).
* Actually for the SGMII port, the MAC is fixed at 1 Gbps and
* we need to configure the PCS only (if even that).
*/
if (priv->phy_mode[port] == PHY_INTERFACE_MODE_SGMII)
mac[port].speed = priv->info->port_speed[SJA1105_SPEED_1000MBPS];
else if (priv->phy_mode[port] == PHY_INTERFACE_MODE_2500BASEX)
mac[port].speed = priv->info->port_speed[SJA1105_SPEED_2500MBPS];
else
mac[port].speed = speed;
/* Write to the dynamic reconfiguration tables */
rc = sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
&mac[port], true);
if (rc < 0) {
dev_err(dev, "Failed to write MAC config: %d\n", rc);
return rc;
}
/* Reconfigure the PLLs for the RGMII interfaces (required 125 MHz at
* gigabit, 25 MHz at 100 Mbps and 2.5 MHz at 10 Mbps). For MII and
* RMII no change of the clock setup is required. Actually, changing
* the clock setup does interrupt the clock signal for a certain time
* which causes trouble for all PHYs relying on this signal.
*/
if (!phy_interface_mode_is_rgmii(priv->phy_mode[port]))
return 0;
return sja1105_clocking_setup_port(priv, port);
}
static struct phylink_pcs *
sja1105_mac_select_pcs(struct dsa_switch *ds, int port, phy_interface_t iface)
{
struct sja1105_private *priv = ds->priv;
struct dw_xpcs *xpcs = priv->xpcs[port];
if (xpcs)
return &xpcs->pcs;
return NULL;
}
static void sja1105_mac_link_down(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface)
{
sja1105_inhibit_tx(ds->priv, BIT(port), true);
}
static void sja1105_mac_link_up(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct sja1105_private *priv = ds->priv;
sja1105_adjust_port_config(priv, port, speed);
sja1105_inhibit_tx(priv, BIT(port), false);
}
static void sja1105_phylink_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
struct sja1105_private *priv = ds->priv;
struct sja1105_xmii_params_entry *mii;
phy_interface_t phy_mode;
phy_mode = priv->phy_mode[port];
if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
phy_mode == PHY_INTERFACE_MODE_2500BASEX) {
/* Changing the PHY mode on SERDES ports is possible and makes
* sense, because that is done through the XPCS. We allow
* changes between SGMII and 2500base-X.
*/
if (priv->info->supports_sgmii[port])
__set_bit(PHY_INTERFACE_MODE_SGMII,
config->supported_interfaces);
if (priv->info->supports_2500basex[port])
__set_bit(PHY_INTERFACE_MODE_2500BASEX,
config->supported_interfaces);
} else {
/* The SJA1105 MAC programming model is through the static
* config (the xMII Mode table cannot be dynamically
* reconfigured), and we have to program that early.
*/
__set_bit(phy_mode, config->supported_interfaces);
}
/* The MAC does not support pause frames, and also doesn't
* support half-duplex traffic modes.
*/
config->mac_capabilities = MAC_10FD | MAC_100FD;
mii = priv->static_config.tables[BLK_IDX_XMII_PARAMS].entries;
if (mii->xmii_mode[port] == XMII_MODE_RGMII ||
mii->xmii_mode[port] == XMII_MODE_SGMII)
config->mac_capabilities |= MAC_1000FD;
if (priv->info->supports_2500basex[port])
config->mac_capabilities |= MAC_2500FD;
}
static int
sja1105_find_static_fdb_entry(struct sja1105_private *priv, int port,
const struct sja1105_l2_lookup_entry *requested)
{
struct sja1105_l2_lookup_entry *l2_lookup;
struct sja1105_table *table;
int i;
table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP];
l2_lookup = table->entries;
for (i = 0; i < table->entry_count; i++)
if (l2_lookup[i].macaddr == requested->macaddr &&
l2_lookup[i].vlanid == requested->vlanid &&
l2_lookup[i].destports & BIT(port))
return i;
return -1;
}
/* We want FDB entries added statically through the bridge command to persist
* across switch resets, which are a common thing during normal SJA1105
* operation. So we have to back them up in the static configuration tables
* and hence apply them on next static config upload... yay!
*/
static int
sja1105_static_fdb_change(struct sja1105_private *priv, int port,
const struct sja1105_l2_lookup_entry *requested,
bool keep)
{
struct sja1105_l2_lookup_entry *l2_lookup;
struct sja1105_table *table;
int rc, match;
table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP];
match = sja1105_find_static_fdb_entry(priv, port, requested);
if (match < 0) {
/* Can't delete a missing entry. */
if (!keep)
return 0;
/* No match => new entry */
rc = sja1105_table_resize(table, table->entry_count + 1);
if (rc)
return rc;
match = table->entry_count - 1;
}
/* Assign pointer after the resize (it may be new memory) */
l2_lookup = table->entries;
/* We have a match.
* If the job was to add this FDB entry, it's already done (mostly
* anyway, since the port forwarding mask may have changed, case in
* which we update it).
* Otherwise we have to delete it.
*/
if (keep) {
l2_lookup[match] = *requested;
return 0;
}
/* To remove, the strategy is to overwrite the element with
* the last one, and then reduce the array size by 1
*/
l2_lookup[match] = l2_lookup[table->entry_count - 1];
return sja1105_table_resize(table, table->entry_count - 1);
}
/* First-generation switches have a 4-way set associative TCAM that
* holds the FDB entries. An FDB index spans from 0 to 1023 and is comprised of
* a "bin" (grouping of 4 entries) and a "way" (an entry within a bin).
* For the placement of a newly learnt FDB entry, the switch selects the bin
* based on a hash function, and the way within that bin incrementally.
*/
static int sja1105et_fdb_index(int bin, int way)
{
return bin * SJA1105ET_FDB_BIN_SIZE + way;
}
static int sja1105et_is_fdb_entry_in_bin(struct sja1105_private *priv, int bin,
const u8 *addr, u16 vid,
struct sja1105_l2_lookup_entry *match,
int *last_unused)
{
int way;
for (way = 0; way < SJA1105ET_FDB_BIN_SIZE; way++) {
struct sja1105_l2_lookup_entry l2_lookup = {0};
int index = sja1105et_fdb_index(bin, way);
/* Skip unused entries, optionally marking them
* into the return value
*/
if (sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
index, &l2_lookup)) {
if (last_unused)
*last_unused = way;
continue;
}
if (l2_lookup.macaddr == ether_addr_to_u64(addr) &&
l2_lookup.vlanid == vid) {
if (match)
*match = l2_lookup;
return way;
}
}
/* Return an invalid entry index if not found */
return -1;
}
int sja1105et_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct sja1105_l2_lookup_entry l2_lookup = {0}, tmp;
struct sja1105_private *priv = ds->priv;
struct device *dev = ds->dev;
int last_unused = -1;
int start, end, i;
int bin, way, rc;
bin = sja1105et_fdb_hash(priv, addr, vid);
way = sja1105et_is_fdb_entry_in_bin(priv, bin, addr, vid,
&l2_lookup, &last_unused);
if (way >= 0) {
/* We have an FDB entry. Is our port in the destination
* mask? If yes, we need to do nothing. If not, we need
* to rewrite the entry by adding this port to it.
*/
if ((l2_lookup.destports & BIT(port)) && l2_lookup.lockeds)
return 0;
l2_lookup.destports |= BIT(port);
} else {
int index = sja1105et_fdb_index(bin, way);
/* We don't have an FDB entry. We construct a new one and
* try to find a place for it within the FDB table.
*/
l2_lookup.macaddr = ether_addr_to_u64(addr);
l2_lookup.destports = BIT(port);
l2_lookup.vlanid = vid;
if (last_unused >= 0) {
way = last_unused;
} else {
/* Bin is full, need to evict somebody.
* Choose victim at random. If you get these messages
* often, you may need to consider changing the
* distribution function:
* static_config[BLK_IDX_L2_LOOKUP_PARAMS].entries->poly
*/
get_random_bytes(&way, sizeof(u8));
way %= SJA1105ET_FDB_BIN_SIZE;
dev_warn(dev, "Warning, FDB bin %d full while adding entry for %pM. Evicting entry %u.\n",
bin, addr, way);
/* Evict entry */
sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
index, NULL, false);
}
}
l2_lookup.lockeds = true;
l2_lookup.index = sja1105et_fdb_index(bin, way);
rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
l2_lookup.index, &l2_lookup,
true);
if (rc < 0)
return rc;
/* Invalidate a dynamically learned entry if that exists */
start = sja1105et_fdb_index(bin, 0);
end = sja1105et_fdb_index(bin, way);
for (i = start; i < end; i++) {
rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
i, &tmp);
if (rc == -ENOENT)
continue;
if (rc)
return rc;
if (tmp.macaddr != ether_addr_to_u64(addr) || tmp.vlanid != vid)
continue;
rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
i, NULL, false);
if (rc)
return rc;
break;
}
return sja1105_static_fdb_change(priv, port, &l2_lookup, true);
}
int sja1105et_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct sja1105_l2_lookup_entry l2_lookup = {0};
struct sja1105_private *priv = ds->priv;
int index, bin, way, rc;
bool keep;
bin = sja1105et_fdb_hash(priv, addr, vid);
way = sja1105et_is_fdb_entry_in_bin(priv, bin, addr, vid,
&l2_lookup, NULL);
if (way < 0)
return 0;
index = sja1105et_fdb_index(bin, way);
/* We have an FDB entry. Is our port in the destination mask? If yes,
* we need to remove it. If the resulting port mask becomes empty, we
* need to completely evict the FDB entry.
* Otherwise we just write it back.
*/
l2_lookup.destports &= ~BIT(port);
if (l2_lookup.destports)
keep = true;
else
keep = false;
rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
index, &l2_lookup, keep);
if (rc < 0)
return rc;
return sja1105_static_fdb_change(priv, port, &l2_lookup, keep);
}
int sja1105pqrs_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct sja1105_l2_lookup_entry l2_lookup = {0}, tmp;
struct sja1105_private *priv = ds->priv;
int rc, i;
/* Search for an existing entry in the FDB table */
l2_lookup.macaddr = ether_addr_to_u64(addr);
l2_lookup.vlanid = vid;
l2_lookup.mask_macaddr = GENMASK_ULL(ETH_ALEN * 8 - 1, 0);
l2_lookup.mask_vlanid = VLAN_VID_MASK;
l2_lookup.destports = BIT(port);
tmp = l2_lookup;
rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
SJA1105_SEARCH, &tmp);
if (rc == 0 && tmp.index != SJA1105_MAX_L2_LOOKUP_COUNT - 1) {
/* Found a static entry and this port is already in the entry's
* port mask => job done
*/
if ((tmp.destports & BIT(port)) && tmp.lockeds)
return 0;
l2_lookup = tmp;
/* l2_lookup.index is populated by the switch in case it
* found something.
*/
l2_lookup.destports |= BIT(port);
goto skip_finding_an_index;
}
/* Not found, so try to find an unused spot in the FDB.
* This is slightly inefficient because the strategy is knock-knock at
* every possible position from 0 to 1023.
*/
for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) {
rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
i, NULL);
if (rc < 0)
break;
}
if (i == SJA1105_MAX_L2_LOOKUP_COUNT) {
dev_err(ds->dev, "FDB is full, cannot add entry.\n");
return -EINVAL;
}
l2_lookup.index = i;
skip_finding_an_index:
l2_lookup.lockeds = true;
rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
l2_lookup.index, &l2_lookup,
true);
if (rc < 0)
return rc;
/* The switch learns dynamic entries and looks up the FDB left to
* right. It is possible that our addition was concurrent with the
* dynamic learning of the same address, so now that the static entry
* has been installed, we are certain that address learning for this
* particular address has been turned off, so the dynamic entry either
* is in the FDB at an index smaller than the static one, or isn't (it
* can also be at a larger index, but in that case it is inactive
* because the static FDB entry will match first, and the dynamic one
* will eventually age out). Search for a dynamically learned address
* prior to our static one and invalidate it.
*/
tmp = l2_lookup;
rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
SJA1105_SEARCH, &tmp);
if (rc < 0) {
dev_err(ds->dev,
"port %d failed to read back entry for %pM vid %d: %pe\n",
port, addr, vid, ERR_PTR(rc));
return rc;
}
if (tmp.index < l2_lookup.index) {
rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
tmp.index, NULL, false);
if (rc < 0)
return rc;
}
return sja1105_static_fdb_change(priv, port, &l2_lookup, true);
}
int sja1105pqrs_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct sja1105_l2_lookup_entry l2_lookup = {0};
struct sja1105_private *priv = ds->priv;
bool keep;
int rc;
l2_lookup.macaddr = ether_addr_to_u64(addr);
l2_lookup.vlanid = vid;
l2_lookup.mask_macaddr = GENMASK_ULL(ETH_ALEN * 8 - 1, 0);
l2_lookup.mask_vlanid = VLAN_VID_MASK;
l2_lookup.destports = BIT(port);
rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
SJA1105_SEARCH, &l2_lookup);
if (rc < 0)
return 0;
l2_lookup.destports &= ~BIT(port);
/* Decide whether we remove just this port from the FDB entry,
* or if we remove it completely.
*/
if (l2_lookup.destports)
keep = true;
else
keep = false;
rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
l2_lookup.index, &l2_lookup, keep);
if (rc < 0)
return rc;
return sja1105_static_fdb_change(priv, port, &l2_lookup, keep);
}
static int sja1105_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
struct sja1105_private *priv = ds->priv;
int rc;
if (!vid) {
switch (db.type) {
case DSA_DB_PORT:
vid = dsa_tag_8021q_standalone_vid(db.dp);
break;
case DSA_DB_BRIDGE:
vid = dsa_tag_8021q_bridge_vid(db.bridge.num);
break;
default:
return -EOPNOTSUPP;
}
}
mutex_lock(&priv->fdb_lock);
rc = priv->info->fdb_add_cmd(ds, port, addr, vid);
mutex_unlock(&priv->fdb_lock);
return rc;
}
static int __sja1105_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
struct sja1105_private *priv = ds->priv;
if (!vid) {
switch (db.type) {
case DSA_DB_PORT:
vid = dsa_tag_8021q_standalone_vid(db.dp);
break;
case DSA_DB_BRIDGE:
vid = dsa_tag_8021q_bridge_vid(db.bridge.num);
break;
default:
return -EOPNOTSUPP;
}
}
return priv->info->fdb_del_cmd(ds, port, addr, vid);
}
static int sja1105_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
struct sja1105_private *priv = ds->priv;
int rc;
mutex_lock(&priv->fdb_lock);
rc = __sja1105_fdb_del(ds, port, addr, vid, db);
mutex_unlock(&priv->fdb_lock);
return rc;
}
static int sja1105_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct sja1105_private *priv = ds->priv;
struct device *dev = ds->dev;
int i;
for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) {
struct sja1105_l2_lookup_entry l2_lookup = {0};
u8 macaddr[ETH_ALEN];
int rc;
rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
i, &l2_lookup);
/* No fdb entry at i, not an issue */
if (rc == -ENOENT)
continue;
if (rc) {
dev_err(dev, "Failed to dump FDB: %d\n", rc);
return rc;
}
/* FDB dump callback is per port. This means we have to
* disregard a valid entry if it's not for this port, even if
* only to revisit it later. This is inefficient because the
* 1024-sized FDB table needs to be traversed 4 times through
* SPI during a 'bridge fdb show' command.
*/
if (!(l2_lookup.destports & BIT(port)))
continue;
u64_to_ether_addr(l2_lookup.macaddr, macaddr);
/* Hardware FDB is shared for fdb and mdb, "bridge fdb show"
* only wants to see unicast
*/
if (is_multicast_ether_addr(macaddr))
continue;
/* We need to hide the dsa_8021q VLANs from the user. */
if (vid_is_dsa_8021q(l2_lookup.vlanid))
l2_lookup.vlanid = 0;
rc = cb(macaddr, l2_lookup.vlanid, l2_lookup.lockeds, data);
if (rc)
return rc;
}
return 0;
}
static void sja1105_fast_age(struct dsa_switch *ds, int port)
{
struct dsa_port *dp = dsa_to_port(ds, port);
struct sja1105_private *priv = ds->priv;
struct dsa_db db = {
.type = DSA_DB_BRIDGE,
.bridge = {
.dev = dsa_port_bridge_dev_get(dp),
.num = dsa_port_bridge_num_get(dp),
},
};
int i;
mutex_lock(&priv->fdb_lock);
for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) {
struct sja1105_l2_lookup_entry l2_lookup = {0};
u8 macaddr[ETH_ALEN];
int rc;
rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
i, &l2_lookup);
/* No fdb entry at i, not an issue */
if (rc == -ENOENT)
continue;
if (rc) {
dev_err(ds->dev, "Failed to read FDB: %pe\n",
ERR_PTR(rc));
break;
}
if (!(l2_lookup.destports & BIT(port)))
continue;
/* Don't delete static FDB entries */
if (l2_lookup.lockeds)
continue;
u64_to_ether_addr(l2_lookup.macaddr, macaddr);
rc = __sja1105_fdb_del(ds, port, macaddr, l2_lookup.vlanid, db);
if (rc) {
dev_err(ds->dev,
"Failed to delete FDB entry %pM vid %lld: %pe\n",
macaddr, l2_lookup.vlanid, ERR_PTR(rc));
break;
}
}
mutex_unlock(&priv->fdb_lock);
}
static int sja1105_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb,
struct dsa_db db)
{
return sja1105_fdb_add(ds, port, mdb->addr, mdb->vid, db);
}
static int sja1105_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb,
struct dsa_db db)
{
return sja1105_fdb_del(ds, port, mdb->addr, mdb->vid, db);
}
/* Common function for unicast and broadcast flood configuration.
* Flooding is configured between each {ingress, egress} port pair, and since
* the bridge's semantics are those of "egress flooding", it means we must
* enable flooding towards this port from all ingress ports that are in the
* same forwarding domain.
*/
static int sja1105_manage_flood_domains(struct sja1105_private *priv)
{
struct sja1105_l2_forwarding_entry *l2_fwd;
struct dsa_switch *ds = priv->ds;
int from, to, rc;
l2_fwd = priv->static_config.tables[BLK_IDX_L2_FORWARDING].entries;
for (from = 0; from < ds->num_ports; from++) {
u64 fl_domain = 0, bc_domain = 0;
for (to = 0; to < priv->ds->num_ports; to++) {
if (!sja1105_can_forward(l2_fwd, from, to))
continue;
if (priv->ucast_egress_floods & BIT(to))
fl_domain |= BIT(to);
if (priv->bcast_egress_floods & BIT(to))
bc_domain |= BIT(to);
}
/* Nothing changed, nothing to do */
if (l2_fwd[from].fl_domain == fl_domain &&
l2_fwd[from].bc_domain == bc_domain)
continue;
l2_fwd[from].fl_domain = fl_domain;
l2_fwd[from].bc_domain = bc_domain;
rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING,
from, &l2_fwd[from], true);
if (rc < 0)
return rc;
}
return 0;
}
static int sja1105_bridge_member(struct dsa_switch *ds, int port,
struct dsa_bridge bridge, bool member)
{
struct sja1105_l2_forwarding_entry *l2_fwd;
struct sja1105_private *priv = ds->priv;
int i, rc;
l2_fwd = priv->static_config.tables[BLK_IDX_L2_FORWARDING].entries;
for (i = 0; i < ds->num_ports; i++) {
/* Add this port to the forwarding matrix of the
* other ports in the same bridge, and viceversa.
*/
if (!dsa_is_user_port(ds, i))
continue;
/* For the ports already under the bridge, only one thing needs
* to be done, and that is to add this port to their
* reachability domain. So we can perform the SPI write for
* them immediately. However, for this port itself (the one
* that is new to the bridge), we need to add all other ports
* to its reachability domain. So we do that incrementally in
* this loop, and perform the SPI write only at the end, once
* the domain contains all other bridge ports.
*/
if (i == port)
continue;
if (!dsa_port_offloads_bridge(dsa_to_port(ds, i), &bridge))
continue;
sja1105_port_allow_traffic(l2_fwd, i, port, member);
sja1105_port_allow_traffic(l2_fwd, port, i, member);
rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING,
i, &l2_fwd[i], true);
if (rc < 0)
return rc;
}
rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING,
port, &l2_fwd[port], true);
if (rc)
return rc;
rc = sja1105_commit_pvid(ds, port);
if (rc)
return rc;
return sja1105_manage_flood_domains(priv);
}
static void sja1105_bridge_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
{
struct dsa_port *dp = dsa_to_port(ds, port);
struct sja1105_private *priv = ds->priv;
struct sja1105_mac_config_entry *mac;
mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
switch (state) {
case BR_STATE_DISABLED:
case BR_STATE_BLOCKING:
/* From UM10944 description of DRPDTAG (why put this there?):
* "Management traffic flows to the port regardless of the state
* of the INGRESS flag". So BPDUs are still be allowed to pass.
* At the moment no difference between DISABLED and BLOCKING.
*/
mac[port].ingress = false;
mac[port].egress = false;
mac[port].dyn_learn = false;
break;
case BR_STATE_LISTENING:
mac[port].ingress = true;
mac[port].egress = false;
mac[port].dyn_learn = false;
break;
case BR_STATE_LEARNING:
mac[port].ingress = true;
mac[port].egress = false;
mac[port].dyn_learn = dp->learning;
break;
case BR_STATE_FORWARDING:
mac[port].ingress = true;
mac[port].egress = true;
mac[port].dyn_learn = dp->learning;
break;
default:
dev_err(ds->dev, "invalid STP state: %d\n", state);
return;
}
sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
&mac[port], true);
}
static int sja1105_bridge_join(struct dsa_switch *ds, int port,
struct dsa_bridge bridge,
bool *tx_fwd_offload,
struct netlink_ext_ack *extack)
{
int rc;
rc = sja1105_bridge_member(ds, port, bridge, true);
if (rc)
return rc;
rc = dsa_tag_8021q_bridge_join(ds, port, bridge);
if (rc) {
sja1105_bridge_member(ds, port, bridge, false);
return rc;
}
*tx_fwd_offload = true;
return 0;
}
static void sja1105_bridge_leave(struct dsa_switch *ds, int port,
struct dsa_bridge bridge)
{
dsa_tag_8021q_bridge_leave(ds, port, bridge);
sja1105_bridge_member(ds, port, bridge, false);
}
#define BYTES_PER_KBIT (1000LL / 8)
/* Port 0 (the uC port) does not have CBS shapers */
#define SJA1110_FIXED_CBS(port, prio) ((((port) - 1) * SJA1105_NUM_TC) + (prio))
static int sja1105_find_cbs_shaper(struct sja1105_private *priv,
int port, int prio)
{
int i;
if (priv->info->fixed_cbs_mapping) {
i = SJA1110_FIXED_CBS(port, prio);
if (i >= 0 && i < priv->info->num_cbs_shapers)
return i;
return -1;
}
for (i = 0; i < priv->info->num_cbs_shapers; i++)
if (priv->cbs[i].port == port && priv->cbs[i].prio == prio)
return i;
return -1;
}
static int sja1105_find_unused_cbs_shaper(struct sja1105_private *priv)
{
int i;
if (priv->info->fixed_cbs_mapping)
return -1;
for (i = 0; i < priv->info->num_cbs_shapers; i++)
if (!priv->cbs[i].idle_slope && !priv->cbs[i].send_slope)
return i;
return -1;
}
static int sja1105_delete_cbs_shaper(struct sja1105_private *priv, int port,
int prio)
{
int i;
for (i = 0; i < priv->info->num_cbs_shapers; i++) {
struct sja1105_cbs_entry *cbs = &priv->cbs[i];
if (cbs->port == port && cbs->prio == prio) {
memset(cbs, 0, sizeof(*cbs));
return sja1105_dynamic_config_write(priv, BLK_IDX_CBS,
i, cbs, true);
}
}
return 0;
}
static int sja1105_setup_tc_cbs(struct dsa_switch *ds, int port,
struct tc_cbs_qopt_offload *offload)
{
struct sja1105_private *priv = ds->priv;
struct sja1105_cbs_entry *cbs;
s64 port_transmit_rate_kbps;
int index;
if (!offload->enable)
return sja1105_delete_cbs_shaper(priv, port, offload->queue);
/* The user may be replacing an existing shaper */
index = sja1105_find_cbs_shaper(priv, port, offload->queue);
if (index < 0) {
/* That isn't the case - see if we can allocate a new one */
index = sja1105_find_unused_cbs_shaper(priv);
if (index < 0)
return -ENOSPC;
}
cbs = &priv->cbs[index];
cbs->port = port;
cbs->prio = offload->queue;
/* locredit and sendslope are negative by definition. In hardware,
* positive values must be provided, and the negative sign is implicit.
*/
cbs->credit_hi = offload->hicredit;
cbs->credit_lo = abs(offload->locredit);
/* User space is in kbits/sec, while the hardware in bytes/sec times
* link speed. Since the given offload->sendslope is good only for the
* current link speed anyway, and user space is likely to reprogram it
* when that changes, don't even bother to track the port's link speed,
* but deduce the port transmit rate from idleslope - sendslope.
*/
port_transmit_rate_kbps = offload->idleslope - offload->sendslope;
cbs->idle_slope = div_s64(offload->idleslope * BYTES_PER_KBIT,
port_transmit_rate_kbps);
cbs->send_slope = div_s64(abs(offload->sendslope * BYTES_PER_KBIT),
port_transmit_rate_kbps);
/* Convert the negative values from 64-bit 2's complement
* to 32-bit 2's complement (for the case of 0x80000000 whose
* negative is still negative).
*/
cbs->credit_lo &= GENMASK_ULL(31, 0);
cbs->send_slope &= GENMASK_ULL(31, 0);
return sja1105_dynamic_config_write(priv, BLK_IDX_CBS, index, cbs,
true);
}
static int sja1105_reload_cbs(struct sja1105_private *priv)
{
int rc = 0, i;
/* The credit based shapers are only allocated if
* CONFIG_NET_SCH_CBS is enabled.
*/
if (!priv->cbs)
return 0;
for (i = 0; i < priv->info->num_cbs_shapers; i++) {
struct sja1105_cbs_entry *cbs = &priv->cbs[i];
if (!cbs->idle_slope && !cbs->send_slope)
continue;
rc = sja1105_dynamic_config_write(priv, BLK_IDX_CBS, i, cbs,
true);
if (rc)
break;
}
return rc;
}
static const char * const sja1105_reset_reasons[] = {
[SJA1105_VLAN_FILTERING] = "VLAN filtering",
[SJA1105_AGEING_TIME] = "Ageing time",
[SJA1105_SCHEDULING] = "Time-aware scheduling",
[SJA1105_BEST_EFFORT_POLICING] = "Best-effort policing",
[SJA1105_VIRTUAL_LINKS] = "Virtual links",
};
/* For situations where we need to change a setting at runtime that is only
* available through the static configuration, resetting the switch in order
* to upload the new static config is unavoidable. Back up the settings we
* modify at runtime (currently only MAC) and restore them after uploading,
* such that this operation is relatively seamless.
*/
int sja1105_static_config_reload(struct sja1105_private *priv,
enum sja1105_reset_reason reason)
{
struct ptp_system_timestamp ptp_sts_before;
struct ptp_system_timestamp ptp_sts_after;
int speed_mbps[SJA1105_MAX_NUM_PORTS];
u16 bmcr[SJA1105_MAX_NUM_PORTS] = {0};
struct sja1105_mac_config_entry *mac;
struct dsa_switch *ds = priv->ds;
s64 t1, t2, t3, t4;
s64 t12, t34;
int rc, i;
s64 now;
mutex_lock(&priv->fdb_lock);
mutex_lock(&priv->mgmt_lock);
mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
/* Back up the dynamic link speed changed by sja1105_adjust_port_config
* in order to temporarily restore it to SJA1105_SPEED_AUTO - which the
* switch wants to see in the static config in order to allow us to
* change it through the dynamic interface later.
*/
for (i = 0; i < ds->num_ports; i++) {
speed_mbps[i] = sja1105_port_speed_to_ethtool(priv,
mac[i].speed);
mac[i].speed = priv->info->port_speed[SJA1105_SPEED_AUTO];
if (priv->xpcs[i])
bmcr[i] = mdiobus_c45_read(priv->mdio_pcs, i,
MDIO_MMD_VEND2, MDIO_CTRL1);
}
/* No PTP operations can run right now */
mutex_lock(&priv->ptp_data.lock);
rc = __sja1105_ptp_gettimex(ds, &now, &ptp_sts_before);
if (rc < 0) {
mutex_unlock(&priv->ptp_data.lock);
goto out;
}
/* Reset switch and send updated static configuration */
rc = sja1105_static_config_upload(priv);
if (rc < 0) {
mutex_unlock(&priv->ptp_data.lock);
goto out;
}
rc = __sja1105_ptp_settime(ds, 0, &ptp_sts_after);
if (rc < 0) {
mutex_unlock(&priv->ptp_data.lock);
goto out;
}
t1 = timespec64_to_ns(&ptp_sts_before.pre_ts);
t2 = timespec64_to_ns(&ptp_sts_before.post_ts);
t3 = timespec64_to_ns(&ptp_sts_after.pre_ts);
t4 = timespec64_to_ns(&ptp_sts_after.post_ts);
/* Mid point, corresponds to pre-reset PTPCLKVAL */
t12 = t1 + (t2 - t1) / 2;
/* Mid point, corresponds to post-reset PTPCLKVAL, aka 0 */
t34 = t3 + (t4 - t3) / 2;
/* Advance PTPCLKVAL by the time it took since its readout */
now += (t34 - t12);
__sja1105_ptp_adjtime(ds, now);
mutex_unlock(&priv->ptp_data.lock);
dev_info(priv->ds->dev,
"Reset switch and programmed static config. Reason: %s\n",
sja1105_reset_reasons[reason]);
/* Configure the CGU (PLLs) for MII and RMII PHYs.
* For these interfaces there is no dynamic configuration
* needed, since PLLs have same settings at all speeds.
*/
if (priv->info->clocking_setup) {
rc = priv->info->clocking_setup(priv);
if (rc < 0)
goto out;
}
for (i = 0; i < ds->num_ports; i++) {
struct dw_xpcs *xpcs = priv->xpcs[i];
unsigned int neg_mode;
rc = sja1105_adjust_port_config(priv, i, speed_mbps[i]);
if (rc < 0)
goto out;
if (!xpcs)
continue;
if (bmcr[i] & BMCR_ANENABLE)
neg_mode = PHYLINK_PCS_NEG_INBAND_ENABLED;
else
neg_mode = PHYLINK_PCS_NEG_OUTBAND;
rc = xpcs_do_config(xpcs, priv->phy_mode[i], NULL, neg_mode);
if (rc < 0)
goto out;
if (neg_mode == PHYLINK_PCS_NEG_OUTBAND) {
int speed = SPEED_UNKNOWN;
if (priv->phy_mode[i] == PHY_INTERFACE_MODE_2500BASEX)
speed = SPEED_2500;
else if (bmcr[i] & BMCR_SPEED1000)
speed = SPEED_1000;
else if (bmcr[i] & BMCR_SPEED100)
speed = SPEED_100;
else
speed = SPEED_10;
xpcs_link_up(&xpcs->pcs, neg_mode, priv->phy_mode[i],
speed, DUPLEX_FULL);
}
}
rc = sja1105_reload_cbs(priv);
if (rc < 0)
goto out;
out:
mutex_unlock(&priv->mgmt_lock);
mutex_unlock(&priv->fdb_lock);
return rc;
}
static enum dsa_tag_protocol
sja1105_get_tag_protocol(struct dsa_switch *ds, int port,
enum dsa_tag_protocol mp)
{
struct sja1105_private *priv = ds->priv;
return priv->info->tag_proto;
}
/* The TPID setting belongs to the General Parameters table,
* which can only be partially reconfigured at runtime (and not the TPID).
* So a switch reset is required.
*/
int sja1105_vlan_filtering(struct dsa_switch *ds, int port, bool enabled,
struct netlink_ext_ack *extack)
{
struct sja1105_general_params_entry *general_params;
struct sja1105_private *priv = ds->priv;
struct sja1105_table *table;
struct sja1105_rule *rule;
u16 tpid, tpid2;
int rc;
list_for_each_entry(rule, &priv->flow_block.rules, list) {
if (rule->type == SJA1105_RULE_VL) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot change VLAN filtering with active VL rules");
return -EBUSY;
}
}
if (enabled) {
/* Enable VLAN filtering. */
tpid = ETH_P_8021Q;
tpid2 = ETH_P_8021AD;
} else {
/* Disable VLAN filtering. */
tpid = ETH_P_SJA1105;
tpid2 = ETH_P_SJA1105;
}
table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
general_params = table->entries;
/* EtherType used to identify inner tagged (C-tag) VLAN traffic */
general_params->tpid = tpid;
/* EtherType used to identify outer tagged (S-tag) VLAN traffic */
general_params->tpid2 = tpid2;
for (port = 0; port < ds->num_ports; port++) {
if (dsa_is_unused_port(ds, port))
continue;
rc = sja1105_commit_pvid(ds, port);
if (rc)
return rc;
}
rc = sja1105_static_config_reload(priv, SJA1105_VLAN_FILTERING);
if (rc)
NL_SET_ERR_MSG_MOD(extack, "Failed to change VLAN Ethertype");
return rc;
}
static int sja1105_vlan_add(struct sja1105_private *priv, int port, u16 vid,
u16 flags, bool allowed_ingress)
{
struct sja1105_vlan_lookup_entry *vlan;
struct sja1105_table *table;
int match, rc;
table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP];
match = sja1105_is_vlan_configured(priv, vid);
if (match < 0) {
rc = sja1105_table_resize(table, table->entry_count + 1);
if (rc)
return rc;
match = table->entry_count - 1;
}
/* Assign pointer after the resize (it's new memory) */
vlan = table->entries;
vlan[match].type_entry = SJA1110_VLAN_D_TAG;
vlan[match].vlanid = vid;
vlan[match].vlan_bc |= BIT(port);
if (allowed_ingress)
vlan[match].vmemb_port |= BIT(port);
else
vlan[match].vmemb_port &= ~BIT(port);
if (flags & BRIDGE_VLAN_INFO_UNTAGGED)
vlan[match].tag_port &= ~BIT(port);
else
vlan[match].tag_port |= BIT(port);
return sja1105_dynamic_config_write(priv, BLK_IDX_VLAN_LOOKUP, vid,
&vlan[match], true);
}
static int sja1105_vlan_del(struct sja1105_private *priv, int port, u16 vid)
{
struct sja1105_vlan_lookup_entry *vlan;
struct sja1105_table *table;
bool keep = true;
int match, rc;
table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP];
match = sja1105_is_vlan_configured(priv, vid);
/* Can't delete a missing entry. */
if (match < 0)
return 0;
/* Assign pointer after the resize (it's new memory) */
vlan = table->entries;
vlan[match].vlanid = vid;
vlan[match].vlan_bc &= ~BIT(port);
vlan[match].vmemb_port &= ~BIT(port);
/* Also unset tag_port, just so we don't have a confusing bitmap
* (no practical purpose).
*/
vlan[match].tag_port &= ~BIT(port);
/* If there's no port left as member of this VLAN,
* it's time for it to go.
*/
if (!vlan[match].vmemb_port)
keep = false;
rc = sja1105_dynamic_config_write(priv, BLK_IDX_VLAN_LOOKUP, vid,
&vlan[match], keep);
if (rc < 0)
return rc;
if (!keep)
return sja1105_table_delete_entry(table, match);
return 0;
}
static int sja1105_bridge_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
struct sja1105_private *priv = ds->priv;
u16 flags = vlan->flags;
int rc;
/* Be sure to deny alterations to the configuration done by tag_8021q.
*/
if (vid_is_dsa_8021q(vlan->vid)) {
NL_SET_ERR_MSG_MOD(extack,
"Range 3072-4095 reserved for dsa_8021q operation");
return -EBUSY;
}
/* Always install bridge VLANs as egress-tagged on CPU and DSA ports */
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
flags = 0;
rc = sja1105_vlan_add(priv, port, vlan->vid, flags, true);
if (rc)
return rc;
if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
priv->bridge_pvid[port] = vlan->vid;
return sja1105_commit_pvid(ds, port);
}
static int sja1105_bridge_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct sja1105_private *priv = ds->priv;
int rc;
rc = sja1105_vlan_del(priv, port, vlan->vid);
if (rc)
return rc;
/* In case the pvid was deleted, make sure that untagged packets will
* be dropped.
*/
return sja1105_commit_pvid(ds, port);
}
static int sja1105_dsa_8021q_vlan_add(struct dsa_switch *ds, int port, u16 vid,
u16 flags)
{
struct sja1105_private *priv = ds->priv;
bool allowed_ingress = true;
int rc;
/* Prevent attackers from trying to inject a DSA tag from
* the outside world.
*/
if (dsa_is_user_port(ds, port))
allowed_ingress = false;
rc = sja1105_vlan_add(priv, port, vid, flags, allowed_ingress);
if (rc)
return rc;
if (flags & BRIDGE_VLAN_INFO_PVID)
priv->tag_8021q_pvid[port] = vid;
return sja1105_commit_pvid(ds, port);
}
static int sja1105_dsa_8021q_vlan_del(struct dsa_switch *ds, int port, u16 vid)
{
struct sja1105_private *priv = ds->priv;
return sja1105_vlan_del(priv, port, vid);
}
static int sja1105_prechangeupper(struct dsa_switch *ds, int port,
struct netdev_notifier_changeupper_info *info)
{
struct netlink_ext_ack *extack = info->info.extack;
struct net_device *upper = info->upper_dev;
struct dsa_switch_tree *dst = ds->dst;
struct dsa_port *dp;
if (is_vlan_dev(upper)) {
NL_SET_ERR_MSG_MOD(extack, "8021q uppers are not supported");
return -EBUSY;
}
if (netif_is_bridge_master(upper)) {
list_for_each_entry(dp, &dst->ports, list) {
struct net_device *br = dsa_port_bridge_dev_get(dp);
if (br && br != upper && br_vlan_enabled(br)) {
NL_SET_ERR_MSG_MOD(extack,
"Only one VLAN-aware bridge is supported");
return -EBUSY;
}
}
}
return 0;
}
static int sja1105_mgmt_xmit(struct dsa_switch *ds, int port, int slot,
struct sk_buff *skb, bool takets)
{
struct sja1105_mgmt_entry mgmt_route = {0};
struct sja1105_private *priv = ds->priv;
struct ethhdr *hdr;
int timeout = 10;
int rc;
hdr = eth_hdr(skb);
mgmt_route.macaddr = ether_addr_to_u64(hdr->h_dest);
mgmt_route.destports = BIT(port);
mgmt_route.enfport = 1;
mgmt_route.tsreg = 0;
mgmt_route.takets = takets;
rc = sja1105_dynamic_config_write(priv, BLK_IDX_MGMT_ROUTE,
slot, &mgmt_route, true);
if (rc < 0) {
kfree_skb(skb);
return rc;
}
/* Transfer skb to the host port. */
dsa_enqueue_skb(skb, dsa_to_port(ds, port)->user);
/* Wait until the switch has processed the frame */
do {
rc = sja1105_dynamic_config_read(priv, BLK_IDX_MGMT_ROUTE,
slot, &mgmt_route);
if (rc < 0) {
dev_err_ratelimited(priv->ds->dev,
"failed to poll for mgmt route\n");
continue;
}
/* UM10944: The ENFPORT flag of the respective entry is
* cleared when a match is found. The host can use this
* flag as an acknowledgment.
*/
cpu_relax();
} while (mgmt_route.enfport && --timeout);
if (!timeout) {
/* Clean up the management route so that a follow-up
* frame may not match on it by mistake.
* This is only hardware supported on P/Q/R/S - on E/T it is
* a no-op and we are silently discarding the -EOPNOTSUPP.
*/
sja1105_dynamic_config_write(priv, BLK_IDX_MGMT_ROUTE,
slot, &mgmt_route, false);
dev_err_ratelimited(priv->ds->dev, "xmit timed out\n");
}
return NETDEV_TX_OK;
}
#define work_to_xmit_work(w) \
container_of((w), struct sja1105_deferred_xmit_work, work)
/* Deferred work is unfortunately necessary because setting up the management
* route cannot be done from atomit context (SPI transfer takes a sleepable
* lock on the bus)
*/
static void sja1105_port_deferred_xmit(struct kthread_work *work)
{
struct sja1105_deferred_xmit_work *xmit_work = work_to_xmit_work(work);
struct sk_buff *clone, *skb = xmit_work->skb;
struct dsa_switch *ds = xmit_work->dp->ds;
struct sja1105_private *priv = ds->priv;
int port = xmit_work->dp->index;
clone = SJA1105_SKB_CB(skb)->clone;
mutex_lock(&priv->mgmt_lock);
sja1105_mgmt_xmit(ds, port, 0, skb, !!clone);
/* The clone, if there, was made by dsa_skb_tx_timestamp */
if (clone)
sja1105_ptp_txtstamp_skb(ds, port, clone);
mutex_unlock(&priv->mgmt_lock);
kfree(xmit_work);
}
static int sja1105_connect_tag_protocol(struct dsa_switch *ds,
enum dsa_tag_protocol proto)
{
struct sja1105_private *priv = ds->priv;
struct sja1105_tagger_data *tagger_data;
if (proto != priv->info->tag_proto)
return -EPROTONOSUPPORT;
tagger_data = sja1105_tagger_data(ds);
tagger_data->xmit_work_fn = sja1105_port_deferred_xmit;
tagger_data->meta_tstamp_handler = sja1110_process_meta_tstamp;
return 0;
}
/* The MAXAGE setting belongs to the L2 Forwarding Parameters table,
* which cannot be reconfigured at runtime. So a switch reset is required.
*/
static int sja1105_set_ageing_time(struct dsa_switch *ds,
unsigned int ageing_time)
{
struct sja1105_l2_lookup_params_entry *l2_lookup_params;
struct sja1105_private *priv = ds->priv;
struct sja1105_table *table;
unsigned int maxage;
table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS];
l2_lookup_params = table->entries;
maxage = SJA1105_AGEING_TIME_MS(ageing_time);
if (l2_lookup_params->maxage == maxage)
return 0;
l2_lookup_params->maxage = maxage;
return sja1105_static_config_reload(priv, SJA1105_AGEING_TIME);
}
static int sja1105_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
struct sja1105_l2_policing_entry *policing;
struct sja1105_private *priv = ds->priv;
new_mtu += VLAN_ETH_HLEN + ETH_FCS_LEN;
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
new_mtu += VLAN_HLEN;
policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries;
if (policing[port].maxlen == new_mtu)
return 0;
policing[port].maxlen = new_mtu;
return sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING);
}
static int sja1105_get_max_mtu(struct dsa_switch *ds, int port)
{
return 2043 - VLAN_ETH_HLEN - ETH_FCS_LEN;
}
static int sja1105_port_setup_tc(struct dsa_switch *ds, int port,
enum tc_setup_type type,
void *type_data)
{
switch (type) {
case TC_SETUP_QDISC_TAPRIO:
return sja1105_setup_tc_taprio(ds, port, type_data);
case TC_SETUP_QDISC_CBS:
return sja1105_setup_tc_cbs(ds, port, type_data);
default:
return -EOPNOTSUPP;
}
}
/* We have a single mirror (@to) port, but can configure ingress and egress
* mirroring on all other (@from) ports.
* We need to allow mirroring rules only as long as the @to port is always the
* same, and we need to unset the @to port from mirr_port only when there is no
* mirroring rule that references it.
*/
static int sja1105_mirror_apply(struct sja1105_private *priv, int from, int to,
bool ingress, bool enabled)
{
struct sja1105_general_params_entry *general_params;
struct sja1105_mac_config_entry *mac;
struct dsa_switch *ds = priv->ds;
struct sja1105_table *table;
bool already_enabled;
u64 new_mirr_port;
int rc;
table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
general_params = table->entries;
mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
already_enabled = (general_params->mirr_port != ds->num_ports);
if (already_enabled && enabled && general_params->mirr_port != to) {
dev_err(priv->ds->dev,
"Delete mirroring rules towards port %llu first\n",
general_params->mirr_port);
return -EBUSY;
}
new_mirr_port = to;
if (!enabled) {
bool keep = false;
int port;
/* Anybody still referencing mirr_port? */
for (port = 0; port < ds->num_ports; port++) {
if (mac[port].ing_mirr || mac[port].egr_mirr) {
keep = true;
break;
}
}
/* Unset already_enabled for next time */
if (!keep)
new_mirr_port = ds->num_ports;
}
if (new_mirr_port != general_params->mirr_port) {
general_params->mirr_port = new_mirr_port;
rc = sja1105_dynamic_config_write(priv, BLK_IDX_GENERAL_PARAMS,
0, general_params, true);
if (rc < 0)
return rc;
}
if (ingress)
mac[from].ing_mirr = enabled;
else
mac[from].egr_mirr = enabled;
return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, from,
&mac[from], true);
}
static int sja1105_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress, struct netlink_ext_ack *extack)
{
return sja1105_mirror_apply(ds->priv, port, mirror->to_local_port,
ingress, true);
}
static void sja1105_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
sja1105_mirror_apply(ds->priv, port, mirror->to_local_port,
mirror->ingress, false);
}
static int sja1105_port_policer_add(struct dsa_switch *ds, int port,
struct dsa_mall_policer_tc_entry *policer)
{
struct sja1105_l2_policing_entry *policing;
struct sja1105_private *priv = ds->priv;
policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries;
/* In hardware, every 8 microseconds the credit level is incremented by
* the value of RATE bytes divided by 64, up to a maximum of SMAX
* bytes.
*/
policing[port].rate = div_u64(512 * policer->rate_bytes_per_sec,
1000000);
policing[port].smax = policer->burst;
return sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING);
}
static void sja1105_port_policer_del(struct dsa_switch *ds, int port)
{
struct sja1105_l2_policing_entry *policing;
struct sja1105_private *priv = ds->priv;
policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries;
policing[port].rate = SJA1105_RATE_MBPS(1000);
policing[port].smax = 65535;
sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING);
}
static int sja1105_port_set_learning(struct sja1105_private *priv, int port,
bool enabled)
{
struct sja1105_mac_config_entry *mac;
mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
mac[port].dyn_learn = enabled;
return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
&mac[port], true);
}
static int sja1105_port_ucast_bcast_flood(struct sja1105_private *priv, int to,
struct switchdev_brport_flags flags)
{
if (flags.mask & BR_FLOOD) {
if (flags.val & BR_FLOOD)
priv->ucast_egress_floods |= BIT(to);
else
priv->ucast_egress_floods &= ~BIT(to);
}
if (flags.mask & BR_BCAST_FLOOD) {
if (flags.val & BR_BCAST_FLOOD)
priv->bcast_egress_floods |= BIT(to);
else
priv->bcast_egress_floods &= ~BIT(to);
}
return sja1105_manage_flood_domains(priv);
}
static int sja1105_port_mcast_flood(struct sja1105_private *priv, int to,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
struct sja1105_l2_lookup_entry *l2_lookup;
struct sja1105_table *table;
int match, rc;
mutex_lock(&priv->fdb_lock);
table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP];
l2_lookup = table->entries;
for (match = 0; match < table->entry_count; match++)
if (l2_lookup[match].macaddr == SJA1105_UNKNOWN_MULTICAST &&
l2_lookup[match].mask_macaddr == SJA1105_UNKNOWN_MULTICAST)
break;
if (match == table->entry_count) {
NL_SET_ERR_MSG_MOD(extack,
"Could not find FDB entry for unknown multicast");
rc = -ENOSPC;
goto out;
}
if (flags.val & BR_MCAST_FLOOD)
l2_lookup[match].destports |= BIT(to);
else
l2_lookup[match].destports &= ~BIT(to);
rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
l2_lookup[match].index,
&l2_lookup[match], true);
out:
mutex_unlock(&priv->fdb_lock);
return rc;
}
static int sja1105_port_pre_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
struct sja1105_private *priv = ds->priv;
if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
BR_BCAST_FLOOD))
return -EINVAL;
if (flags.mask & (BR_FLOOD | BR_MCAST_FLOOD) &&
!priv->info->can_limit_mcast_flood) {
bool multicast = !!(flags.val & BR_MCAST_FLOOD);
bool unicast = !!(flags.val & BR_FLOOD);
if (unicast != multicast) {
NL_SET_ERR_MSG_MOD(extack,
"This chip cannot configure multicast flooding independently of unicast");
return -EINVAL;
}
}
return 0;
}
static int sja1105_port_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
struct sja1105_private *priv = ds->priv;
int rc;
if (flags.mask & BR_LEARNING) {
bool learn_ena = !!(flags.val & BR_LEARNING);
rc = sja1105_port_set_learning(priv, port, learn_ena);
if (rc)
return rc;
}
if (flags.mask & (BR_FLOOD | BR_BCAST_FLOOD)) {
rc = sja1105_port_ucast_bcast_flood(priv, port, flags);
if (rc)
return rc;
}
/* For chips that can't offload BR_MCAST_FLOOD independently, there
* is nothing to do here, we ensured the configuration is in sync by
* offloading BR_FLOOD.
*/
if (flags.mask & BR_MCAST_FLOOD && priv->info->can_limit_mcast_flood) {
rc = sja1105_port_mcast_flood(priv, port, flags,
extack);
if (rc)
return rc;
}
return 0;
}
/* The programming model for the SJA1105 switch is "all-at-once" via static
* configuration tables. Some of these can be dynamically modified at runtime,
* but not the xMII mode parameters table.
* Furthermode, some PHYs may not have crystals for generating their clocks
* (e.g. RMII). Instead, their 50MHz clock is supplied via the SJA1105 port's
* ref_clk pin. So port clocking needs to be initialized early, before
* connecting to PHYs is attempted, otherwise they won't respond through MDIO.
* Setting correct PHY link speed does not matter now.
* But dsa_user_phy_setup is called later than sja1105_setup, so the PHY
* bindings are not yet parsed by DSA core. We need to parse early so that we
* can populate the xMII mode parameters table.
*/
static int sja1105_setup(struct dsa_switch *ds)
{
struct sja1105_private *priv = ds->priv;
int rc;
if (priv->info->disable_microcontroller) {
rc = priv->info->disable_microcontroller(priv);
if (rc < 0) {
dev_err(ds->dev,
"Failed to disable microcontroller: %pe\n",
ERR_PTR(rc));
return rc;
}
}
/* Create and send configuration down to device */
rc = sja1105_static_config_load(priv);
if (rc < 0) {
dev_err(ds->dev, "Failed to load static config: %d\n", rc);
return rc;
}
/* Configure the CGU (PHY link modes and speeds) */
if (priv->info->clocking_setup) {
rc = priv->info->clocking_setup(priv);
if (rc < 0) {
dev_err(ds->dev,
"Failed to configure MII clocking: %pe\n",
ERR_PTR(rc));
goto out_static_config_free;
}
}
sja1105_tas_setup(ds);
sja1105_flower_setup(ds);
rc = sja1105_ptp_clock_register(ds);
if (rc < 0) {
dev_err(ds->dev, "Failed to register PTP clock: %d\n", rc);
goto out_flower_teardown;
}
rc = sja1105_mdiobus_register(ds);
if (rc < 0) {
dev_err(ds->dev, "Failed to register MDIO bus: %pe\n",
ERR_PTR(rc));
goto out_ptp_clock_unregister;
}
rc = sja1105_devlink_setup(ds);
if (rc < 0)
goto out_mdiobus_unregister;
rtnl_lock();
rc = dsa_tag_8021q_register(ds, htons(ETH_P_8021Q));
rtnl_unlock();
if (rc)
goto out_devlink_teardown;
/* On SJA1105, VLAN filtering per se is always enabled in hardware.
* The only thing we can do to disable it is lie about what the 802.1Q
* EtherType is.
* So it will still try to apply VLAN filtering, but all ingress
* traffic (except frames received with EtherType of ETH_P_SJA1105)
* will be internally tagged with a distorted VLAN header where the
* TPID is ETH_P_SJA1105, and the VLAN ID is the port pvid.
*/
ds->vlan_filtering_is_global = true;
ds->untag_bridge_pvid = true;
ds->fdb_isolation = true;
/* tag_8021q has 3 bits for the VBID, and the value 0 is reserved */
ds->max_num_bridges = 7;
/* Advertise the 8 egress queues */
ds->num_tx_queues = SJA1105_NUM_TC;
ds->mtu_enforcement_ingress = true;
ds->assisted_learning_on_cpu_port = true;
return 0;
out_devlink_teardown:
sja1105_devlink_teardown(ds);
out_mdiobus_unregister:
sja1105_mdiobus_unregister(ds);
out_ptp_clock_unregister:
sja1105_ptp_clock_unregister(ds);
out_flower_teardown:
sja1105_flower_teardown(ds);
sja1105_tas_teardown(ds);
out_static_config_free:
sja1105_static_config_free(&priv->static_config);
return rc;
}
static void sja1105_teardown(struct dsa_switch *ds)
{
struct sja1105_private *priv = ds->priv;
rtnl_lock();
dsa_tag_8021q_unregister(ds);
rtnl_unlock();
sja1105_devlink_teardown(ds);
sja1105_mdiobus_unregister(ds);
sja1105_ptp_clock_unregister(ds);
sja1105_flower_teardown(ds);
sja1105_tas_teardown(ds);
sja1105_static_config_free(&priv->static_config);
}
static const struct dsa_switch_ops sja1105_switch_ops = {
.get_tag_protocol = sja1105_get_tag_protocol,
.connect_tag_protocol = sja1105_connect_tag_protocol,
.setup = sja1105_setup,
.teardown = sja1105_teardown,
.set_ageing_time = sja1105_set_ageing_time,
.port_change_mtu = sja1105_change_mtu,
.port_max_mtu = sja1105_get_max_mtu,
.phylink_get_caps = sja1105_phylink_get_caps,
.phylink_mac_select_pcs = sja1105_mac_select_pcs,
.phylink_mac_link_up = sja1105_mac_link_up,
.phylink_mac_link_down = sja1105_mac_link_down,
.get_strings = sja1105_get_strings,
.get_ethtool_stats = sja1105_get_ethtool_stats,
.get_sset_count = sja1105_get_sset_count,
.get_ts_info = sja1105_get_ts_info,
.port_fdb_dump = sja1105_fdb_dump,
.port_fdb_add = sja1105_fdb_add,
.port_fdb_del = sja1105_fdb_del,
.port_fast_age = sja1105_fast_age,
.port_bridge_join = sja1105_bridge_join,
.port_bridge_leave = sja1105_bridge_leave,
.port_pre_bridge_flags = sja1105_port_pre_bridge_flags,
.port_bridge_flags = sja1105_port_bridge_flags,
.port_stp_state_set = sja1105_bridge_stp_state_set,
.port_vlan_filtering = sja1105_vlan_filtering,
.port_vlan_add = sja1105_bridge_vlan_add,
.port_vlan_del = sja1105_bridge_vlan_del,
.port_mdb_add = sja1105_mdb_add,
.port_mdb_del = sja1105_mdb_del,
.port_hwtstamp_get = sja1105_hwtstamp_get,
.port_hwtstamp_set = sja1105_hwtstamp_set,
.port_rxtstamp = sja1105_port_rxtstamp,
.port_txtstamp = sja1105_port_txtstamp,
.port_setup_tc = sja1105_port_setup_tc,
.port_mirror_add = sja1105_mirror_add,
.port_mirror_del = sja1105_mirror_del,
.port_policer_add = sja1105_port_policer_add,
.port_policer_del = sja1105_port_policer_del,
.cls_flower_add = sja1105_cls_flower_add,
.cls_flower_del = sja1105_cls_flower_del,
.cls_flower_stats = sja1105_cls_flower_stats,
.devlink_info_get = sja1105_devlink_info_get,
.tag_8021q_vlan_add = sja1105_dsa_8021q_vlan_add,
.tag_8021q_vlan_del = sja1105_dsa_8021q_vlan_del,
.port_prechangeupper = sja1105_prechangeupper,
};
static const struct of_device_id sja1105_dt_ids[];
static int sja1105_check_device_id(struct sja1105_private *priv)
{
const struct sja1105_regs *regs = priv->info->regs;
u8 prod_id[SJA1105_SIZE_DEVICE_ID] = {0};
struct device *dev = &priv->spidev->dev;
const struct of_device_id *match;
u32 device_id;
u64 part_no;
int rc;
rc = sja1105_xfer_u32(priv, SPI_READ, regs->device_id, &device_id,
NULL);
if (rc < 0)
return rc;
rc = sja1105_xfer_buf(priv, SPI_READ, regs->prod_id, prod_id,
SJA1105_SIZE_DEVICE_ID);
if (rc < 0)
return rc;
sja1105_unpack(prod_id, &part_no, 19, 4, SJA1105_SIZE_DEVICE_ID);
for (match = sja1105_dt_ids; match->compatible[0]; match++) {
const struct sja1105_info *info = match->data;
/* Is what's been probed in our match table at all? */
if (info->device_id != device_id || info->part_no != part_no)
continue;
/* But is it what's in the device tree? */
if (priv->info->device_id != device_id ||
priv->info->part_no != part_no) {
dev_warn(dev, "Device tree specifies chip %s but found %s, please fix it!\n",
priv->info->name, info->name);
/* It isn't. No problem, pick that up. */
priv->info = info;
}
return 0;
}
dev_err(dev, "Unexpected {device ID, part number}: 0x%x 0x%llx\n",
device_id, part_no);
return -ENODEV;
}
static int sja1105_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct sja1105_private *priv;
size_t max_xfer, max_msg;
struct dsa_switch *ds;
int rc;
if (!dev->of_node) {
dev_err(dev, "No DTS bindings for SJA1105 driver\n");
return -EINVAL;
}
rc = sja1105_hw_reset(dev, 1, 1);
if (rc)
return rc;
priv = devm_kzalloc(dev, sizeof(struct sja1105_private), GFP_KERNEL);
if (!priv)
return -ENOMEM;
/* Populate our driver private structure (priv) based on
* the device tree node that was probed (spi)
*/
priv->spidev = spi;
spi_set_drvdata(spi, priv);
/* Configure the SPI bus */
spi->bits_per_word = 8;
rc = spi_setup(spi);
if (rc < 0) {
dev_err(dev, "Could not init SPI\n");
return rc;
}
/* In sja1105_xfer, we send spi_messages composed of two spi_transfers:
* a small one for the message header and another one for the current
* chunk of the packed buffer.
* Check that the restrictions imposed by the SPI controller are
* respected: the chunk buffer is smaller than the max transfer size,
* and the total length of the chunk plus its message header is smaller
* than the max message size.
* We do that during probe time since the maximum transfer size is a
* runtime invariant.
*/
max_xfer = spi_max_transfer_size(spi);
max_msg = spi_max_message_size(spi);
/* We need to send at least one 64-bit word of SPI payload per message
* in order to be able to make useful progress.
*/
if (max_msg < SJA1105_SIZE_SPI_MSG_HEADER + 8) {
dev_err(dev, "SPI master cannot send large enough buffers, aborting\n");
return -EINVAL;
}
priv->max_xfer_len = SJA1105_SIZE_SPI_MSG_MAXLEN;
if (priv->max_xfer_len > max_xfer)
priv->max_xfer_len = max_xfer;
if (priv->max_xfer_len > max_msg - SJA1105_SIZE_SPI_MSG_HEADER)
priv->max_xfer_len = max_msg - SJA1105_SIZE_SPI_MSG_HEADER;
priv->info = of_device_get_match_data(dev);
/* Detect hardware device */
rc = sja1105_check_device_id(priv);
if (rc < 0) {
dev_err(dev, "Device ID check failed: %d\n", rc);
return rc;
}
dev_info(dev, "Probed switch chip: %s\n", priv->info->name);
ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
if (!ds)
return -ENOMEM;
ds->dev = dev;
ds->num_ports = priv->info->num_ports;
ds->ops = &sja1105_switch_ops;
ds->priv = priv;
priv->ds = ds;
mutex_init(&priv->ptp_data.lock);
mutex_init(&priv->dynamic_config_lock);
mutex_init(&priv->mgmt_lock);
mutex_init(&priv->fdb_lock);
spin_lock_init(&priv->ts_id_lock);
rc = sja1105_parse_dt(priv);
if (rc < 0) {
dev_err(ds->dev, "Failed to parse DT: %d\n", rc);
return rc;
}
if (IS_ENABLED(CONFIG_NET_SCH_CBS)) {
priv->cbs = devm_kcalloc(dev, priv->info->num_cbs_shapers,
sizeof(struct sja1105_cbs_entry),
GFP_KERNEL);
if (!priv->cbs)
return -ENOMEM;
}
return dsa_register_switch(priv->ds);
}
static void sja1105_remove(struct spi_device *spi)
{
struct sja1105_private *priv = spi_get_drvdata(spi);
if (!priv)
return;
dsa_unregister_switch(priv->ds);
}
static void sja1105_shutdown(struct spi_device *spi)
{
struct sja1105_private *priv = spi_get_drvdata(spi);
if (!priv)
return;
dsa_switch_shutdown(priv->ds);
spi_set_drvdata(spi, NULL);
}
static const struct of_device_id sja1105_dt_ids[] = {
{ .compatible = "nxp,sja1105e", .data = &sja1105e_info },
{ .compatible = "nxp,sja1105t", .data = &sja1105t_info },
{ .compatible = "nxp,sja1105p", .data = &sja1105p_info },
{ .compatible = "nxp,sja1105q", .data = &sja1105q_info },
{ .compatible = "nxp,sja1105r", .data = &sja1105r_info },
{ .compatible = "nxp,sja1105s", .data = &sja1105s_info },
{ .compatible = "nxp,sja1110a", .data = &sja1110a_info },
{ .compatible = "nxp,sja1110b", .data = &sja1110b_info },
{ .compatible = "nxp,sja1110c", .data = &sja1110c_info },
{ .compatible = "nxp,sja1110d", .data = &sja1110d_info },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, sja1105_dt_ids);
static const struct spi_device_id sja1105_spi_ids[] = {
{ "sja1105e" },
{ "sja1105t" },
{ "sja1105p" },
{ "sja1105q" },
{ "sja1105r" },
{ "sja1105s" },
{ "sja1110a" },
{ "sja1110b" },
{ "sja1110c" },
{ "sja1110d" },
{ },
};
MODULE_DEVICE_TABLE(spi, sja1105_spi_ids);
static struct spi_driver sja1105_driver = {
.driver = {
.name = "sja1105",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(sja1105_dt_ids),
},
.id_table = sja1105_spi_ids,
.probe = sja1105_probe,
.remove = sja1105_remove,
.shutdown = sja1105_shutdown,
};
module_spi_driver(sja1105_driver);
MODULE_AUTHOR("Vladimir Oltean <olteanv@gmail.com>");
MODULE_AUTHOR("Georg Waibel <georg.waibel@sensor-technik.de>");
MODULE_DESCRIPTION("SJA1105 Driver");
MODULE_LICENSE("GPL v2");