blob: 3934a0cc13e7629735f5e8d200b98f4a5451e5f5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright IBM Corp. 2016, 2023
* Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
*
* Adjunct processor bus, queue related code.
*/
#define KMSG_COMPONENT "ap"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/init.h>
#include <linux/slab.h>
#include <asm/facility.h>
#include "ap_bus.h"
#include "ap_debug.h"
static void __ap_flush_queue(struct ap_queue *aq);
/*
* some AP queue helper functions
*/
static inline bool ap_q_supports_bind(struct ap_queue *aq)
{
return ap_test_bit(&aq->card->functions, AP_FUNC_EP11) ||
ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL);
}
static inline bool ap_q_supports_assoc(struct ap_queue *aq)
{
return ap_test_bit(&aq->card->functions, AP_FUNC_EP11);
}
static inline bool ap_q_needs_bind(struct ap_queue *aq)
{
return ap_q_supports_bind(aq) && ap_sb_available();
}
/**
* ap_queue_enable_irq(): Enable interrupt support on this AP queue.
* @aq: The AP queue
* @ind: the notification indicator byte
*
* Enables interruption on AP queue via ap_aqic(). Based on the return
* value it waits a while and tests the AP queue if interrupts
* have been switched on using ap_test_queue().
*/
static int ap_queue_enable_irq(struct ap_queue *aq, void *ind)
{
union ap_qirq_ctrl qirqctrl = { .value = 0 };
struct ap_queue_status status;
qirqctrl.ir = 1;
qirqctrl.isc = AP_ISC;
status = ap_aqic(aq->qid, qirqctrl, virt_to_phys(ind));
if (status.async)
return -EPERM;
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
case AP_RESPONSE_OTHERWISE_CHANGED:
return 0;
case AP_RESPONSE_Q_NOT_AVAIL:
case AP_RESPONSE_DECONFIGURED:
case AP_RESPONSE_CHECKSTOPPED:
case AP_RESPONSE_INVALID_ADDRESS:
pr_err("Registering adapter interrupts for AP device %02x.%04x failed\n",
AP_QID_CARD(aq->qid),
AP_QID_QUEUE(aq->qid));
return -EOPNOTSUPP;
case AP_RESPONSE_RESET_IN_PROGRESS:
case AP_RESPONSE_BUSY:
default:
return -EBUSY;
}
}
/**
* __ap_send(): Send message to adjunct processor queue.
* @qid: The AP queue number
* @psmid: The program supplied message identifier
* @msg: The message text
* @msglen: The message length
* @special: Special Bit
*
* Returns AP queue status structure.
* Condition code 1 on NQAP can't happen because the L bit is 1.
* Condition code 2 on NQAP also means the send is incomplete,
* because a segment boundary was reached. The NQAP is repeated.
*/
static inline struct ap_queue_status
__ap_send(ap_qid_t qid, unsigned long psmid, void *msg, size_t msglen,
int special)
{
if (special)
qid |= 0x400000UL;
return ap_nqap(qid, psmid, msg, msglen);
}
/* State machine definitions and helpers */
static enum ap_sm_wait ap_sm_nop(struct ap_queue *aq)
{
return AP_SM_WAIT_NONE;
}
/**
* ap_sm_recv(): Receive pending reply messages from an AP queue but do
* not change the state of the device.
* @aq: pointer to the AP queue
*
* Returns AP_SM_WAIT_NONE, AP_SM_WAIT_AGAIN, or AP_SM_WAIT_INTERRUPT
*/
static struct ap_queue_status ap_sm_recv(struct ap_queue *aq)
{
struct ap_queue_status status;
struct ap_message *ap_msg;
bool found = false;
size_t reslen;
unsigned long resgr0 = 0;
int parts = 0;
/*
* DQAP loop until response code and resgr0 indicate that
* the msg is totally received. As we use the very same buffer
* the msg is overwritten with each invocation. That's intended
* and the receiver of the msg is informed with a msg rc code
* of EMSGSIZE in such a case.
*/
do {
status = ap_dqap(aq->qid, &aq->reply->psmid,
aq->reply->msg, aq->reply->bufsize,
&aq->reply->len, &reslen, &resgr0);
parts++;
} while (status.response_code == 0xFF && resgr0 != 0);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
aq->queue_count = max_t(int, 0, aq->queue_count - 1);
if (!status.queue_empty && !aq->queue_count)
aq->queue_count++;
if (aq->queue_count > 0)
mod_timer(&aq->timeout,
jiffies + aq->request_timeout);
list_for_each_entry(ap_msg, &aq->pendingq, list) {
if (ap_msg->psmid != aq->reply->psmid)
continue;
list_del_init(&ap_msg->list);
aq->pendingq_count--;
if (parts > 1) {
ap_msg->rc = -EMSGSIZE;
ap_msg->receive(aq, ap_msg, NULL);
} else {
ap_msg->receive(aq, ap_msg, aq->reply);
}
found = true;
break;
}
if (!found) {
AP_DBF_WARN("%s unassociated reply psmid=0x%016lx on 0x%02x.%04x\n",
__func__, aq->reply->psmid,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
}
fallthrough;
case AP_RESPONSE_NO_PENDING_REPLY:
if (!status.queue_empty || aq->queue_count <= 0)
break;
/* The card shouldn't forget requests but who knows. */
aq->queue_count = 0;
list_splice_init(&aq->pendingq, &aq->requestq);
aq->requestq_count += aq->pendingq_count;
aq->pendingq_count = 0;
break;
default:
break;
}
return status;
}
/**
* ap_sm_read(): Receive pending reply messages from an AP queue.
* @aq: pointer to the AP queue
*
* Returns AP_SM_WAIT_NONE, AP_SM_WAIT_AGAIN, or AP_SM_WAIT_INTERRUPT
*/
static enum ap_sm_wait ap_sm_read(struct ap_queue *aq)
{
struct ap_queue_status status;
if (!aq->reply)
return AP_SM_WAIT_NONE;
status = ap_sm_recv(aq);
if (status.async)
return AP_SM_WAIT_NONE;
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
if (aq->queue_count > 0) {
aq->sm_state = AP_SM_STATE_WORKING;
return AP_SM_WAIT_AGAIN;
}
aq->sm_state = AP_SM_STATE_IDLE;
break;
case AP_RESPONSE_NO_PENDING_REPLY:
if (aq->queue_count > 0)
return status.irq_enabled ?
AP_SM_WAIT_INTERRUPT : AP_SM_WAIT_HIGH_TIMEOUT;
aq->sm_state = AP_SM_STATE_IDLE;
break;
default:
aq->dev_state = AP_DEV_STATE_ERROR;
aq->last_err_rc = status.response_code;
AP_DBF_WARN("%s RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n",
__func__, status.response_code,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return AP_SM_WAIT_NONE;
}
/* Check and maybe enable irq support (again) on this queue */
if (!status.irq_enabled && status.queue_empty) {
void *lsi_ptr = ap_airq_ptr();
if (lsi_ptr && ap_queue_enable_irq(aq, lsi_ptr) == 0) {
aq->sm_state = AP_SM_STATE_SETIRQ_WAIT;
return AP_SM_WAIT_AGAIN;
}
}
return AP_SM_WAIT_NONE;
}
/**
* ap_sm_write(): Send messages from the request queue to an AP queue.
* @aq: pointer to the AP queue
*
* Returns AP_SM_WAIT_NONE, AP_SM_WAIT_AGAIN, or AP_SM_WAIT_INTERRUPT
*/
static enum ap_sm_wait ap_sm_write(struct ap_queue *aq)
{
struct ap_queue_status status;
struct ap_message *ap_msg;
ap_qid_t qid = aq->qid;
if (aq->requestq_count <= 0)
return AP_SM_WAIT_NONE;
/* Start the next request on the queue. */
ap_msg = list_entry(aq->requestq.next, struct ap_message, list);
status = __ap_send(qid, ap_msg->psmid,
ap_msg->msg, ap_msg->len,
ap_msg->flags & AP_MSG_FLAG_SPECIAL);
if (status.async)
return AP_SM_WAIT_NONE;
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
aq->queue_count = max_t(int, 1, aq->queue_count + 1);
if (aq->queue_count == 1)
mod_timer(&aq->timeout, jiffies + aq->request_timeout);
list_move_tail(&ap_msg->list, &aq->pendingq);
aq->requestq_count--;
aq->pendingq_count++;
if (aq->queue_count < aq->card->queue_depth) {
aq->sm_state = AP_SM_STATE_WORKING;
return AP_SM_WAIT_AGAIN;
}
fallthrough;
case AP_RESPONSE_Q_FULL:
aq->sm_state = AP_SM_STATE_QUEUE_FULL;
return status.irq_enabled ?
AP_SM_WAIT_INTERRUPT : AP_SM_WAIT_HIGH_TIMEOUT;
case AP_RESPONSE_RESET_IN_PROGRESS:
aq->sm_state = AP_SM_STATE_RESET_WAIT;
return AP_SM_WAIT_LOW_TIMEOUT;
case AP_RESPONSE_INVALID_DOMAIN:
AP_DBF_WARN("%s RESPONSE_INVALID_DOMAIN on NQAP\n", __func__);
fallthrough;
case AP_RESPONSE_MESSAGE_TOO_BIG:
case AP_RESPONSE_REQ_FAC_NOT_INST:
list_del_init(&ap_msg->list);
aq->requestq_count--;
ap_msg->rc = -EINVAL;
ap_msg->receive(aq, ap_msg, NULL);
return AP_SM_WAIT_AGAIN;
default:
aq->dev_state = AP_DEV_STATE_ERROR;
aq->last_err_rc = status.response_code;
AP_DBF_WARN("%s RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n",
__func__, status.response_code,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return AP_SM_WAIT_NONE;
}
}
/**
* ap_sm_read_write(): Send and receive messages to/from an AP queue.
* @aq: pointer to the AP queue
*
* Returns AP_SM_WAIT_NONE, AP_SM_WAIT_AGAIN, or AP_SM_WAIT_INTERRUPT
*/
static enum ap_sm_wait ap_sm_read_write(struct ap_queue *aq)
{
return min(ap_sm_read(aq), ap_sm_write(aq));
}
/**
* ap_sm_reset(): Reset an AP queue.
* @aq: The AP queue
*
* Submit the Reset command to an AP queue.
*/
static enum ap_sm_wait ap_sm_reset(struct ap_queue *aq)
{
struct ap_queue_status status;
status = ap_rapq(aq->qid, aq->rapq_fbit);
if (status.async)
return AP_SM_WAIT_NONE;
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
case AP_RESPONSE_RESET_IN_PROGRESS:
aq->sm_state = AP_SM_STATE_RESET_WAIT;
aq->rapq_fbit = 0;
aq->se_bound = false;
return AP_SM_WAIT_LOW_TIMEOUT;
default:
aq->dev_state = AP_DEV_STATE_ERROR;
aq->last_err_rc = status.response_code;
AP_DBF_WARN("%s RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n",
__func__, status.response_code,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return AP_SM_WAIT_NONE;
}
}
/**
* ap_sm_reset_wait(): Test queue for completion of the reset operation
* @aq: pointer to the AP queue
*
* Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
*/
static enum ap_sm_wait ap_sm_reset_wait(struct ap_queue *aq)
{
struct ap_queue_status status;
void *lsi_ptr;
if (aq->queue_count > 0 && aq->reply)
/* Try to read a completed message and get the status */
status = ap_sm_recv(aq);
else
/* Get the status with TAPQ */
status = ap_tapq(aq->qid, NULL);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
lsi_ptr = ap_airq_ptr();
if (lsi_ptr && ap_queue_enable_irq(aq, lsi_ptr) == 0)
aq->sm_state = AP_SM_STATE_SETIRQ_WAIT;
else
aq->sm_state = (aq->queue_count > 0) ?
AP_SM_STATE_WORKING : AP_SM_STATE_IDLE;
return AP_SM_WAIT_AGAIN;
case AP_RESPONSE_BUSY:
case AP_RESPONSE_RESET_IN_PROGRESS:
return AP_SM_WAIT_LOW_TIMEOUT;
case AP_RESPONSE_Q_NOT_AVAIL:
case AP_RESPONSE_DECONFIGURED:
case AP_RESPONSE_CHECKSTOPPED:
default:
aq->dev_state = AP_DEV_STATE_ERROR;
aq->last_err_rc = status.response_code;
AP_DBF_WARN("%s RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n",
__func__, status.response_code,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return AP_SM_WAIT_NONE;
}
}
/**
* ap_sm_setirq_wait(): Test queue for completion of the irq enablement
* @aq: pointer to the AP queue
*
* Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
*/
static enum ap_sm_wait ap_sm_setirq_wait(struct ap_queue *aq)
{
struct ap_queue_status status;
if (aq->queue_count > 0 && aq->reply)
/* Try to read a completed message and get the status */
status = ap_sm_recv(aq);
else
/* Get the status with TAPQ */
status = ap_tapq(aq->qid, NULL);
if (status.irq_enabled == 1) {
/* Irqs are now enabled */
aq->sm_state = (aq->queue_count > 0) ?
AP_SM_STATE_WORKING : AP_SM_STATE_IDLE;
}
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
if (aq->queue_count > 0)
return AP_SM_WAIT_AGAIN;
fallthrough;
case AP_RESPONSE_NO_PENDING_REPLY:
return AP_SM_WAIT_LOW_TIMEOUT;
default:
aq->dev_state = AP_DEV_STATE_ERROR;
aq->last_err_rc = status.response_code;
AP_DBF_WARN("%s RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n",
__func__, status.response_code,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return AP_SM_WAIT_NONE;
}
}
/**
* ap_sm_assoc_wait(): Test queue for completion of a pending
* association request.
* @aq: pointer to the AP queue
*/
static enum ap_sm_wait ap_sm_assoc_wait(struct ap_queue *aq)
{
struct ap_queue_status status;
struct ap_tapq_gr2 info;
status = ap_test_queue(aq->qid, 1, &info);
/* handle asynchronous error on this queue */
if (status.async && status.response_code) {
aq->dev_state = AP_DEV_STATE_ERROR;
aq->last_err_rc = status.response_code;
AP_DBF_WARN("%s asynch RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n",
__func__, status.response_code,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return AP_SM_WAIT_NONE;
}
if (status.response_code > AP_RESPONSE_BUSY) {
aq->dev_state = AP_DEV_STATE_ERROR;
aq->last_err_rc = status.response_code;
AP_DBF_WARN("%s RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n",
__func__, status.response_code,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return AP_SM_WAIT_NONE;
}
/* check bs bits */
switch (info.bs) {
case AP_BS_Q_USABLE:
/* association is through */
aq->sm_state = AP_SM_STATE_IDLE;
AP_DBF_DBG("%s queue 0x%02x.%04x associated with %u\n",
__func__, AP_QID_CARD(aq->qid),
AP_QID_QUEUE(aq->qid), aq->assoc_idx);
return AP_SM_WAIT_NONE;
case AP_BS_Q_USABLE_NO_SECURE_KEY:
/* association still pending */
return AP_SM_WAIT_LOW_TIMEOUT;
default:
/* reset from 'outside' happened or no idea at all */
aq->assoc_idx = ASSOC_IDX_INVALID;
aq->dev_state = AP_DEV_STATE_ERROR;
aq->last_err_rc = status.response_code;
AP_DBF_WARN("%s bs 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n",
__func__, info.bs,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return AP_SM_WAIT_NONE;
}
}
/*
* AP state machine jump table
*/
static ap_func_t *ap_jumptable[NR_AP_SM_STATES][NR_AP_SM_EVENTS] = {
[AP_SM_STATE_RESET_START] = {
[AP_SM_EVENT_POLL] = ap_sm_reset,
[AP_SM_EVENT_TIMEOUT] = ap_sm_nop,
},
[AP_SM_STATE_RESET_WAIT] = {
[AP_SM_EVENT_POLL] = ap_sm_reset_wait,
[AP_SM_EVENT_TIMEOUT] = ap_sm_nop,
},
[AP_SM_STATE_SETIRQ_WAIT] = {
[AP_SM_EVENT_POLL] = ap_sm_setirq_wait,
[AP_SM_EVENT_TIMEOUT] = ap_sm_nop,
},
[AP_SM_STATE_IDLE] = {
[AP_SM_EVENT_POLL] = ap_sm_write,
[AP_SM_EVENT_TIMEOUT] = ap_sm_nop,
},
[AP_SM_STATE_WORKING] = {
[AP_SM_EVENT_POLL] = ap_sm_read_write,
[AP_SM_EVENT_TIMEOUT] = ap_sm_reset,
},
[AP_SM_STATE_QUEUE_FULL] = {
[AP_SM_EVENT_POLL] = ap_sm_read,
[AP_SM_EVENT_TIMEOUT] = ap_sm_reset,
},
[AP_SM_STATE_ASSOC_WAIT] = {
[AP_SM_EVENT_POLL] = ap_sm_assoc_wait,
[AP_SM_EVENT_TIMEOUT] = ap_sm_reset,
},
};
enum ap_sm_wait ap_sm_event(struct ap_queue *aq, enum ap_sm_event event)
{
if (aq->config && !aq->chkstop &&
aq->dev_state > AP_DEV_STATE_UNINITIATED)
return ap_jumptable[aq->sm_state][event](aq);
else
return AP_SM_WAIT_NONE;
}
enum ap_sm_wait ap_sm_event_loop(struct ap_queue *aq, enum ap_sm_event event)
{
enum ap_sm_wait wait;
while ((wait = ap_sm_event(aq, event)) == AP_SM_WAIT_AGAIN)
;
return wait;
}
/*
* AP queue related attributes.
*/
static ssize_t request_count_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ap_queue *aq = to_ap_queue(dev);
bool valid = false;
u64 req_cnt;
spin_lock_bh(&aq->lock);
if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
req_cnt = aq->total_request_count;
valid = true;
}
spin_unlock_bh(&aq->lock);
if (valid)
return sysfs_emit(buf, "%llu\n", req_cnt);
else
return sysfs_emit(buf, "-\n");
}
static ssize_t request_count_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ap_queue *aq = to_ap_queue(dev);
spin_lock_bh(&aq->lock);
aq->total_request_count = 0;
spin_unlock_bh(&aq->lock);
return count;
}
static DEVICE_ATTR_RW(request_count);
static ssize_t requestq_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_queue *aq = to_ap_queue(dev);
unsigned int reqq_cnt = 0;
spin_lock_bh(&aq->lock);
if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
reqq_cnt = aq->requestq_count;
spin_unlock_bh(&aq->lock);
return sysfs_emit(buf, "%d\n", reqq_cnt);
}
static DEVICE_ATTR_RO(requestq_count);
static ssize_t pendingq_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_queue *aq = to_ap_queue(dev);
unsigned int penq_cnt = 0;
spin_lock_bh(&aq->lock);
if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
penq_cnt = aq->pendingq_count;
spin_unlock_bh(&aq->lock);
return sysfs_emit(buf, "%d\n", penq_cnt);
}
static DEVICE_ATTR_RO(pendingq_count);
static ssize_t reset_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_queue *aq = to_ap_queue(dev);
int rc = 0;
spin_lock_bh(&aq->lock);
switch (aq->sm_state) {
case AP_SM_STATE_RESET_START:
case AP_SM_STATE_RESET_WAIT:
rc = sysfs_emit(buf, "Reset in progress.\n");
break;
case AP_SM_STATE_WORKING:
case AP_SM_STATE_QUEUE_FULL:
rc = sysfs_emit(buf, "Reset Timer armed.\n");
break;
default:
rc = sysfs_emit(buf, "No Reset Timer set.\n");
}
spin_unlock_bh(&aq->lock);
return rc;
}
static ssize_t reset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ap_queue *aq = to_ap_queue(dev);
spin_lock_bh(&aq->lock);
__ap_flush_queue(aq);
aq->sm_state = AP_SM_STATE_RESET_START;
ap_wait(ap_sm_event(aq, AP_SM_EVENT_POLL));
spin_unlock_bh(&aq->lock);
AP_DBF_INFO("%s reset queue=%02x.%04x triggered by user\n",
__func__, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return count;
}
static DEVICE_ATTR_RW(reset);
static ssize_t interrupt_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_queue *aq = to_ap_queue(dev);
struct ap_queue_status status;
int rc = 0;
spin_lock_bh(&aq->lock);
if (aq->sm_state == AP_SM_STATE_SETIRQ_WAIT) {
rc = sysfs_emit(buf, "Enable Interrupt pending.\n");
} else {
status = ap_tapq(aq->qid, NULL);
if (status.irq_enabled)
rc = sysfs_emit(buf, "Interrupts enabled.\n");
else
rc = sysfs_emit(buf, "Interrupts disabled.\n");
}
spin_unlock_bh(&aq->lock);
return rc;
}
static DEVICE_ATTR_RO(interrupt);
static ssize_t config_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_queue *aq = to_ap_queue(dev);
int rc;
spin_lock_bh(&aq->lock);
rc = sysfs_emit(buf, "%d\n", aq->config ? 1 : 0);
spin_unlock_bh(&aq->lock);
return rc;
}
static DEVICE_ATTR_RO(config);
static ssize_t chkstop_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_queue *aq = to_ap_queue(dev);
int rc;
spin_lock_bh(&aq->lock);
rc = sysfs_emit(buf, "%d\n", aq->chkstop ? 1 : 0);
spin_unlock_bh(&aq->lock);
return rc;
}
static DEVICE_ATTR_RO(chkstop);
static ssize_t ap_functions_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_queue *aq = to_ap_queue(dev);
struct ap_queue_status status;
struct ap_tapq_gr2 info;
status = ap_test_queue(aq->qid, 1, &info);
if (status.response_code > AP_RESPONSE_BUSY) {
AP_DBF_DBG("%s RC 0x%02x on tapq(0x%02x.%04x)\n",
__func__, status.response_code,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return -EIO;
}
return sysfs_emit(buf, "0x%08X\n", info.fac);
}
static DEVICE_ATTR_RO(ap_functions);
#ifdef CONFIG_ZCRYPT_DEBUG
static ssize_t states_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_queue *aq = to_ap_queue(dev);
int rc = 0;
spin_lock_bh(&aq->lock);
/* queue device state */
switch (aq->dev_state) {
case AP_DEV_STATE_UNINITIATED:
rc = sysfs_emit(buf, "UNINITIATED\n");
break;
case AP_DEV_STATE_OPERATING:
rc = sysfs_emit(buf, "OPERATING");
break;
case AP_DEV_STATE_SHUTDOWN:
rc = sysfs_emit(buf, "SHUTDOWN");
break;
case AP_DEV_STATE_ERROR:
rc = sysfs_emit(buf, "ERROR");
break;
default:
rc = sysfs_emit(buf, "UNKNOWN");
}
/* state machine state */
if (aq->dev_state) {
switch (aq->sm_state) {
case AP_SM_STATE_RESET_START:
rc += sysfs_emit_at(buf, rc, " [RESET_START]\n");
break;
case AP_SM_STATE_RESET_WAIT:
rc += sysfs_emit_at(buf, rc, " [RESET_WAIT]\n");
break;
case AP_SM_STATE_SETIRQ_WAIT:
rc += sysfs_emit_at(buf, rc, " [SETIRQ_WAIT]\n");
break;
case AP_SM_STATE_IDLE:
rc += sysfs_emit_at(buf, rc, " [IDLE]\n");
break;
case AP_SM_STATE_WORKING:
rc += sysfs_emit_at(buf, rc, " [WORKING]\n");
break;
case AP_SM_STATE_QUEUE_FULL:
rc += sysfs_emit_at(buf, rc, " [FULL]\n");
break;
case AP_SM_STATE_ASSOC_WAIT:
rc += sysfs_emit_at(buf, rc, " [ASSOC_WAIT]\n");
break;
default:
rc += sysfs_emit_at(buf, rc, " [UNKNOWN]\n");
}
}
spin_unlock_bh(&aq->lock);
return rc;
}
static DEVICE_ATTR_RO(states);
static ssize_t last_err_rc_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_queue *aq = to_ap_queue(dev);
int rc;
spin_lock_bh(&aq->lock);
rc = aq->last_err_rc;
spin_unlock_bh(&aq->lock);
switch (rc) {
case AP_RESPONSE_NORMAL:
return sysfs_emit(buf, "NORMAL\n");
case AP_RESPONSE_Q_NOT_AVAIL:
return sysfs_emit(buf, "Q_NOT_AVAIL\n");
case AP_RESPONSE_RESET_IN_PROGRESS:
return sysfs_emit(buf, "RESET_IN_PROGRESS\n");
case AP_RESPONSE_DECONFIGURED:
return sysfs_emit(buf, "DECONFIGURED\n");
case AP_RESPONSE_CHECKSTOPPED:
return sysfs_emit(buf, "CHECKSTOPPED\n");
case AP_RESPONSE_BUSY:
return sysfs_emit(buf, "BUSY\n");
case AP_RESPONSE_INVALID_ADDRESS:
return sysfs_emit(buf, "INVALID_ADDRESS\n");
case AP_RESPONSE_OTHERWISE_CHANGED:
return sysfs_emit(buf, "OTHERWISE_CHANGED\n");
case AP_RESPONSE_Q_FULL:
return sysfs_emit(buf, "Q_FULL/NO_PENDING_REPLY\n");
case AP_RESPONSE_INDEX_TOO_BIG:
return sysfs_emit(buf, "INDEX_TOO_BIG\n");
case AP_RESPONSE_NO_FIRST_PART:
return sysfs_emit(buf, "NO_FIRST_PART\n");
case AP_RESPONSE_MESSAGE_TOO_BIG:
return sysfs_emit(buf, "MESSAGE_TOO_BIG\n");
case AP_RESPONSE_REQ_FAC_NOT_INST:
return sysfs_emit(buf, "REQ_FAC_NOT_INST\n");
default:
return sysfs_emit(buf, "response code %d\n", rc);
}
}
static DEVICE_ATTR_RO(last_err_rc);
#endif
static struct attribute *ap_queue_dev_attrs[] = {
&dev_attr_request_count.attr,
&dev_attr_requestq_count.attr,
&dev_attr_pendingq_count.attr,
&dev_attr_reset.attr,
&dev_attr_interrupt.attr,
&dev_attr_config.attr,
&dev_attr_chkstop.attr,
&dev_attr_ap_functions.attr,
#ifdef CONFIG_ZCRYPT_DEBUG
&dev_attr_states.attr,
&dev_attr_last_err_rc.attr,
#endif
NULL
};
static struct attribute_group ap_queue_dev_attr_group = {
.attrs = ap_queue_dev_attrs
};
static const struct attribute_group *ap_queue_dev_attr_groups[] = {
&ap_queue_dev_attr_group,
NULL
};
static struct device_type ap_queue_type = {
.name = "ap_queue",
.groups = ap_queue_dev_attr_groups,
};
static ssize_t se_bind_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_queue *aq = to_ap_queue(dev);
struct ap_queue_status status;
struct ap_tapq_gr2 info;
if (!ap_q_supports_bind(aq))
return sysfs_emit(buf, "-\n");
status = ap_test_queue(aq->qid, 1, &info);
if (status.response_code > AP_RESPONSE_BUSY) {
AP_DBF_DBG("%s RC 0x%02x on tapq(0x%02x.%04x)\n",
__func__, status.response_code,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return -EIO;
}
switch (info.bs) {
case AP_BS_Q_USABLE:
case AP_BS_Q_USABLE_NO_SECURE_KEY:
return sysfs_emit(buf, "bound\n");
default:
return sysfs_emit(buf, "unbound\n");
}
}
static ssize_t se_bind_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ap_queue *aq = to_ap_queue(dev);
struct ap_queue_status status;
bool value;
int rc;
if (!ap_q_supports_bind(aq))
return -EINVAL;
/* only 0 (unbind) and 1 (bind) allowed */
rc = kstrtobool(buf, &value);
if (rc)
return rc;
if (value) {
/* bind, do BAPQ */
spin_lock_bh(&aq->lock);
if (aq->sm_state < AP_SM_STATE_IDLE) {
spin_unlock_bh(&aq->lock);
return -EBUSY;
}
status = ap_bapq(aq->qid);
spin_unlock_bh(&aq->lock);
if (!status.response_code) {
aq->se_bound = true;
AP_DBF_INFO("%s bapq(0x%02x.%04x) success\n", __func__,
AP_QID_CARD(aq->qid),
AP_QID_QUEUE(aq->qid));
} else {
AP_DBF_WARN("%s RC 0x%02x on bapq(0x%02x.%04x)\n",
__func__, status.response_code,
AP_QID_CARD(aq->qid),
AP_QID_QUEUE(aq->qid));
return -EIO;
}
} else {
/* unbind, set F bit arg and trigger RAPQ */
spin_lock_bh(&aq->lock);
__ap_flush_queue(aq);
aq->rapq_fbit = 1;
aq->assoc_idx = ASSOC_IDX_INVALID;
aq->sm_state = AP_SM_STATE_RESET_START;
ap_wait(ap_sm_event(aq, AP_SM_EVENT_POLL));
spin_unlock_bh(&aq->lock);
}
return count;
}
static DEVICE_ATTR_RW(se_bind);
static ssize_t se_associate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_queue *aq = to_ap_queue(dev);
struct ap_queue_status status;
struct ap_tapq_gr2 info;
if (!ap_q_supports_assoc(aq))
return sysfs_emit(buf, "-\n");
status = ap_test_queue(aq->qid, 1, &info);
if (status.response_code > AP_RESPONSE_BUSY) {
AP_DBF_DBG("%s RC 0x%02x on tapq(0x%02x.%04x)\n",
__func__, status.response_code,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return -EIO;
}
switch (info.bs) {
case AP_BS_Q_USABLE:
if (aq->assoc_idx == ASSOC_IDX_INVALID) {
AP_DBF_WARN("%s AP_BS_Q_USABLE but invalid assoc_idx\n", __func__);
return -EIO;
}
return sysfs_emit(buf, "associated %u\n", aq->assoc_idx);
case AP_BS_Q_USABLE_NO_SECURE_KEY:
if (aq->assoc_idx != ASSOC_IDX_INVALID)
return sysfs_emit(buf, "association pending\n");
fallthrough;
default:
return sysfs_emit(buf, "unassociated\n");
}
}
static ssize_t se_associate_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ap_queue *aq = to_ap_queue(dev);
struct ap_queue_status status;
unsigned int value;
int rc;
if (!ap_q_supports_assoc(aq))
return -EINVAL;
/* association index needs to be >= 0 */
rc = kstrtouint(buf, 0, &value);
if (rc)
return rc;
if (value >= ASSOC_IDX_INVALID)
return -EINVAL;
spin_lock_bh(&aq->lock);
/* sm should be in idle state */
if (aq->sm_state != AP_SM_STATE_IDLE) {
spin_unlock_bh(&aq->lock);
return -EBUSY;
}
/* already associated or association pending ? */
if (aq->assoc_idx != ASSOC_IDX_INVALID) {
spin_unlock_bh(&aq->lock);
return -EINVAL;
}
/* trigger the asynchronous association request */
status = ap_aapq(aq->qid, value);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
case AP_RESPONSE_STATE_CHANGE_IN_PROGRESS:
aq->sm_state = AP_SM_STATE_ASSOC_WAIT;
aq->assoc_idx = value;
ap_wait(ap_sm_event(aq, AP_SM_EVENT_POLL));
spin_unlock_bh(&aq->lock);
break;
default:
spin_unlock_bh(&aq->lock);
AP_DBF_WARN("%s RC 0x%02x on aapq(0x%02x.%04x)\n",
__func__, status.response_code,
AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid));
return -EIO;
}
return count;
}
static DEVICE_ATTR_RW(se_associate);
static struct attribute *ap_queue_dev_sb_attrs[] = {
&dev_attr_se_bind.attr,
&dev_attr_se_associate.attr,
NULL
};
static struct attribute_group ap_queue_dev_sb_attr_group = {
.attrs = ap_queue_dev_sb_attrs
};
static const struct attribute_group *ap_queue_dev_sb_attr_groups[] = {
&ap_queue_dev_sb_attr_group,
NULL
};
static void ap_queue_device_release(struct device *dev)
{
struct ap_queue *aq = to_ap_queue(dev);
spin_lock_bh(&ap_queues_lock);
hash_del(&aq->hnode);
spin_unlock_bh(&ap_queues_lock);
kfree(aq);
}
struct ap_queue *ap_queue_create(ap_qid_t qid, int device_type)
{
struct ap_queue *aq;
aq = kzalloc(sizeof(*aq), GFP_KERNEL);
if (!aq)
return NULL;
aq->ap_dev.device.release = ap_queue_device_release;
aq->ap_dev.device.type = &ap_queue_type;
aq->ap_dev.device_type = device_type;
// add optional SE secure binding attributes group
if (ap_sb_available() && is_prot_virt_guest())
aq->ap_dev.device.groups = ap_queue_dev_sb_attr_groups;
aq->qid = qid;
spin_lock_init(&aq->lock);
INIT_LIST_HEAD(&aq->pendingq);
INIT_LIST_HEAD(&aq->requestq);
timer_setup(&aq->timeout, ap_request_timeout, 0);
return aq;
}
void ap_queue_init_reply(struct ap_queue *aq, struct ap_message *reply)
{
aq->reply = reply;
spin_lock_bh(&aq->lock);
ap_wait(ap_sm_event(aq, AP_SM_EVENT_POLL));
spin_unlock_bh(&aq->lock);
}
EXPORT_SYMBOL(ap_queue_init_reply);
/**
* ap_queue_message(): Queue a request to an AP device.
* @aq: The AP device to queue the message to
* @ap_msg: The message that is to be added
*/
int ap_queue_message(struct ap_queue *aq, struct ap_message *ap_msg)
{
int rc = 0;
/* msg needs to have a valid receive-callback */
BUG_ON(!ap_msg->receive);
spin_lock_bh(&aq->lock);
/* only allow to queue new messages if device state is ok */
if (aq->dev_state == AP_DEV_STATE_OPERATING) {
list_add_tail(&ap_msg->list, &aq->requestq);
aq->requestq_count++;
aq->total_request_count++;
atomic64_inc(&aq->card->total_request_count);
} else {
rc = -ENODEV;
}
/* Send/receive as many request from the queue as possible. */
ap_wait(ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
spin_unlock_bh(&aq->lock);
return rc;
}
EXPORT_SYMBOL(ap_queue_message);
/**
* ap_queue_usable(): Check if queue is usable just now.
* @aq: The AP queue device to test for usability.
* This function is intended for the scheduler to query if it makes
* sense to enqueue a message into this AP queue device by calling
* ap_queue_message(). The perspective is very short-term as the
* state machine and device state(s) may change at any time.
*/
bool ap_queue_usable(struct ap_queue *aq)
{
bool rc = true;
spin_lock_bh(&aq->lock);
/* check for not configured or checkstopped */
if (!aq->config || aq->chkstop) {
rc = false;
goto unlock_and_out;
}
/* device state needs to be ok */
if (aq->dev_state != AP_DEV_STATE_OPERATING) {
rc = false;
goto unlock_and_out;
}
/* SE guest's queues additionally need to be bound */
if (ap_q_needs_bind(aq) && !aq->se_bound)
rc = false;
unlock_and_out:
spin_unlock_bh(&aq->lock);
return rc;
}
EXPORT_SYMBOL(ap_queue_usable);
/**
* ap_cancel_message(): Cancel a crypto request.
* @aq: The AP device that has the message queued
* @ap_msg: The message that is to be removed
*
* Cancel a crypto request. This is done by removing the request
* from the device pending or request queue. Note that the
* request stays on the AP queue. When it finishes the message
* reply will be discarded because the psmid can't be found.
*/
void ap_cancel_message(struct ap_queue *aq, struct ap_message *ap_msg)
{
struct ap_message *tmp;
spin_lock_bh(&aq->lock);
if (!list_empty(&ap_msg->list)) {
list_for_each_entry(tmp, &aq->pendingq, list)
if (tmp->psmid == ap_msg->psmid) {
aq->pendingq_count--;
goto found;
}
aq->requestq_count--;
found:
list_del_init(&ap_msg->list);
}
spin_unlock_bh(&aq->lock);
}
EXPORT_SYMBOL(ap_cancel_message);
/**
* __ap_flush_queue(): Flush requests.
* @aq: Pointer to the AP queue
*
* Flush all requests from the request/pending queue of an AP device.
*/
static void __ap_flush_queue(struct ap_queue *aq)
{
struct ap_message *ap_msg, *next;
list_for_each_entry_safe(ap_msg, next, &aq->pendingq, list) {
list_del_init(&ap_msg->list);
aq->pendingq_count--;
ap_msg->rc = -EAGAIN;
ap_msg->receive(aq, ap_msg, NULL);
}
list_for_each_entry_safe(ap_msg, next, &aq->requestq, list) {
list_del_init(&ap_msg->list);
aq->requestq_count--;
ap_msg->rc = -EAGAIN;
ap_msg->receive(aq, ap_msg, NULL);
}
aq->queue_count = 0;
}
void ap_flush_queue(struct ap_queue *aq)
{
spin_lock_bh(&aq->lock);
__ap_flush_queue(aq);
spin_unlock_bh(&aq->lock);
}
EXPORT_SYMBOL(ap_flush_queue);
void ap_queue_prepare_remove(struct ap_queue *aq)
{
spin_lock_bh(&aq->lock);
/* flush queue */
__ap_flush_queue(aq);
/* move queue device state to SHUTDOWN in progress */
aq->dev_state = AP_DEV_STATE_SHUTDOWN;
spin_unlock_bh(&aq->lock);
del_timer_sync(&aq->timeout);
}
void ap_queue_remove(struct ap_queue *aq)
{
/*
* all messages have been flushed and the device state
* is SHUTDOWN. Now reset with zero which also clears
* the irq registration and move the device state
* to the initial value AP_DEV_STATE_UNINITIATED.
*/
spin_lock_bh(&aq->lock);
ap_zapq(aq->qid, 0);
aq->dev_state = AP_DEV_STATE_UNINITIATED;
spin_unlock_bh(&aq->lock);
}
void _ap_queue_init_state(struct ap_queue *aq)
{
aq->dev_state = AP_DEV_STATE_OPERATING;
aq->sm_state = AP_SM_STATE_RESET_START;
aq->last_err_rc = 0;
aq->assoc_idx = ASSOC_IDX_INVALID;
ap_wait(ap_sm_event(aq, AP_SM_EVENT_POLL));
}
void ap_queue_init_state(struct ap_queue *aq)
{
spin_lock_bh(&aq->lock);
_ap_queue_init_state(aq);
spin_unlock_bh(&aq->lock);
}
EXPORT_SYMBOL(ap_queue_init_state);