| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * SN Platform GRU Driver |
| * |
| * KERNEL SERVICES THAT USE THE GRU |
| * |
| * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/spinlock.h> |
| #include <linux/device.h> |
| #include <linux/miscdevice.h> |
| #include <linux/proc_fs.h> |
| #include <linux/interrupt.h> |
| #include <linux/sync_core.h> |
| #include <linux/uaccess.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <asm/io_apic.h> |
| #include "gru.h" |
| #include "grulib.h" |
| #include "grutables.h" |
| #include "grukservices.h" |
| #include "gru_instructions.h" |
| #include <asm/uv/uv_hub.h> |
| |
| /* |
| * Kernel GRU Usage |
| * |
| * The following is an interim algorithm for management of kernel GRU |
| * resources. This will likely be replaced when we better understand the |
| * kernel/user requirements. |
| * |
| * Blade percpu resources reserved for kernel use. These resources are |
| * reserved whenever the the kernel context for the blade is loaded. Note |
| * that the kernel context is not guaranteed to be always available. It is |
| * loaded on demand & can be stolen by a user if the user demand exceeds the |
| * kernel demand. The kernel can always reload the kernel context but |
| * a SLEEP may be required!!!. |
| * |
| * Async Overview: |
| * |
| * Each blade has one "kernel context" that owns GRU kernel resources |
| * located on the blade. Kernel drivers use GRU resources in this context |
| * for sending messages, zeroing memory, etc. |
| * |
| * The kernel context is dynamically loaded on demand. If it is not in |
| * use by the kernel, the kernel context can be unloaded & given to a user. |
| * The kernel context will be reloaded when needed. This may require that |
| * a context be stolen from a user. |
| * NOTE: frequent unloading/reloading of the kernel context is |
| * expensive. We are depending on batch schedulers, cpusets, sane |
| * drivers or some other mechanism to prevent the need for frequent |
| * stealing/reloading. |
| * |
| * The kernel context consists of two parts: |
| * - 1 CB & a few DSRs that are reserved for each cpu on the blade. |
| * Each cpu has it's own private resources & does not share them |
| * with other cpus. These resources are used serially, ie, |
| * locked, used & unlocked on each call to a function in |
| * grukservices. |
| * (Now that we have dynamic loading of kernel contexts, I |
| * may rethink this & allow sharing between cpus....) |
| * |
| * - Additional resources can be reserved long term & used directly |
| * by UV drivers located in the kernel. Drivers using these GRU |
| * resources can use asynchronous GRU instructions that send |
| * interrupts on completion. |
| * - these resources must be explicitly locked/unlocked |
| * - locked resources prevent (obviously) the kernel |
| * context from being unloaded. |
| * - drivers using these resource directly issue their own |
| * GRU instruction and must wait/check completion. |
| * |
| * When these resources are reserved, the caller can optionally |
| * associate a wait_queue with the resources and use asynchronous |
| * GRU instructions. When an async GRU instruction completes, the |
| * driver will do a wakeup on the event. |
| * |
| */ |
| |
| |
| #define ASYNC_HAN_TO_BID(h) ((h) - 1) |
| #define ASYNC_BID_TO_HAN(b) ((b) + 1) |
| #define ASYNC_HAN_TO_BS(h) gru_base[ASYNC_HAN_TO_BID(h)] |
| |
| #define GRU_NUM_KERNEL_CBR 1 |
| #define GRU_NUM_KERNEL_DSR_BYTES 256 |
| #define GRU_NUM_KERNEL_DSR_CL (GRU_NUM_KERNEL_DSR_BYTES / \ |
| GRU_CACHE_LINE_BYTES) |
| |
| /* GRU instruction attributes for all instructions */ |
| #define IMA IMA_CB_DELAY |
| |
| /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */ |
| #define __gru_cacheline_aligned__ \ |
| __attribute__((__aligned__(GRU_CACHE_LINE_BYTES))) |
| |
| #define MAGIC 0x1234567887654321UL |
| |
| /* Default retry count for GRU errors on kernel instructions */ |
| #define EXCEPTION_RETRY_LIMIT 3 |
| |
| /* Status of message queue sections */ |
| #define MQS_EMPTY 0 |
| #define MQS_FULL 1 |
| #define MQS_NOOP 2 |
| |
| /*----------------- RESOURCE MANAGEMENT -------------------------------------*/ |
| /* optimized for x86_64 */ |
| struct message_queue { |
| union gru_mesqhead head __gru_cacheline_aligned__; /* CL 0 */ |
| int qlines; /* DW 1 */ |
| long hstatus[2]; |
| void *next __gru_cacheline_aligned__;/* CL 1 */ |
| void *limit; |
| void *start; |
| void *start2; |
| char data ____cacheline_aligned; /* CL 2 */ |
| }; |
| |
| /* First word in every message - used by mesq interface */ |
| struct message_header { |
| char present; |
| char present2; |
| char lines; |
| char fill; |
| }; |
| |
| #define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h])) |
| |
| /* |
| * Reload the blade's kernel context into a GRU chiplet. Called holding |
| * the bs_kgts_sema for READ. Will steal user contexts if necessary. |
| */ |
| static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id) |
| { |
| struct gru_state *gru; |
| struct gru_thread_state *kgts; |
| void *vaddr; |
| int ctxnum, ncpus; |
| |
| up_read(&bs->bs_kgts_sema); |
| down_write(&bs->bs_kgts_sema); |
| |
| if (!bs->bs_kgts) { |
| do { |
| bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0); |
| if (!IS_ERR(bs->bs_kgts)) |
| break; |
| msleep(1); |
| } while (true); |
| bs->bs_kgts->ts_user_blade_id = blade_id; |
| } |
| kgts = bs->bs_kgts; |
| |
| if (!kgts->ts_gru) { |
| STAT(load_kernel_context); |
| ncpus = uv_blade_nr_possible_cpus(blade_id); |
| kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU( |
| GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs); |
| kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU( |
| GRU_NUM_KERNEL_DSR_BYTES * ncpus + |
| bs->bs_async_dsr_bytes); |
| while (!gru_assign_gru_context(kgts)) { |
| msleep(1); |
| gru_steal_context(kgts); |
| } |
| gru_load_context(kgts); |
| gru = bs->bs_kgts->ts_gru; |
| vaddr = gru->gs_gru_base_vaddr; |
| ctxnum = kgts->ts_ctxnum; |
| bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0); |
| bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0); |
| } |
| downgrade_write(&bs->bs_kgts_sema); |
| } |
| |
| /* |
| * Free all kernel contexts that are not currently in use. |
| * Returns 0 if all freed, else number of inuse context. |
| */ |
| static int gru_free_kernel_contexts(void) |
| { |
| struct gru_blade_state *bs; |
| struct gru_thread_state *kgts; |
| int bid, ret = 0; |
| |
| for (bid = 0; bid < GRU_MAX_BLADES; bid++) { |
| bs = gru_base[bid]; |
| if (!bs) |
| continue; |
| |
| /* Ignore busy contexts. Don't want to block here. */ |
| if (down_write_trylock(&bs->bs_kgts_sema)) { |
| kgts = bs->bs_kgts; |
| if (kgts && kgts->ts_gru) |
| gru_unload_context(kgts, 0); |
| bs->bs_kgts = NULL; |
| up_write(&bs->bs_kgts_sema); |
| kfree(kgts); |
| } else { |
| ret++; |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * Lock & load the kernel context for the specified blade. |
| */ |
| static struct gru_blade_state *gru_lock_kernel_context(int blade_id) |
| { |
| struct gru_blade_state *bs; |
| int bid; |
| |
| STAT(lock_kernel_context); |
| again: |
| bid = blade_id < 0 ? uv_numa_blade_id() : blade_id; |
| bs = gru_base[bid]; |
| |
| /* Handle the case where migration occurred while waiting for the sema */ |
| down_read(&bs->bs_kgts_sema); |
| if (blade_id < 0 && bid != uv_numa_blade_id()) { |
| up_read(&bs->bs_kgts_sema); |
| goto again; |
| } |
| if (!bs->bs_kgts || !bs->bs_kgts->ts_gru) |
| gru_load_kernel_context(bs, bid); |
| return bs; |
| |
| } |
| |
| /* |
| * Unlock the kernel context for the specified blade. Context is not |
| * unloaded but may be stolen before next use. |
| */ |
| static void gru_unlock_kernel_context(int blade_id) |
| { |
| struct gru_blade_state *bs; |
| |
| bs = gru_base[blade_id]; |
| up_read(&bs->bs_kgts_sema); |
| STAT(unlock_kernel_context); |
| } |
| |
| /* |
| * Reserve & get pointers to the DSR/CBRs reserved for the current cpu. |
| * - returns with preemption disabled |
| */ |
| static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr) |
| { |
| struct gru_blade_state *bs; |
| int lcpu; |
| |
| BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES); |
| preempt_disable(); |
| bs = gru_lock_kernel_context(-1); |
| lcpu = uv_blade_processor_id(); |
| *cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE; |
| *dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES; |
| return 0; |
| } |
| |
| /* |
| * Free the current cpus reserved DSR/CBR resources. |
| */ |
| static void gru_free_cpu_resources(void *cb, void *dsr) |
| { |
| gru_unlock_kernel_context(uv_numa_blade_id()); |
| preempt_enable(); |
| } |
| |
| /* |
| * Reserve GRU resources to be used asynchronously. |
| * Note: currently supports only 1 reservation per blade. |
| * |
| * input: |
| * blade_id - blade on which resources should be reserved |
| * cbrs - number of CBRs |
| * dsr_bytes - number of DSR bytes needed |
| * output: |
| * handle to identify resource |
| * (0 = async resources already reserved) |
| */ |
| unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes, |
| struct completion *cmp) |
| { |
| struct gru_blade_state *bs; |
| struct gru_thread_state *kgts; |
| int ret = 0; |
| |
| bs = gru_base[blade_id]; |
| |
| down_write(&bs->bs_kgts_sema); |
| |
| /* Verify no resources already reserved */ |
| if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs) |
| goto done; |
| bs->bs_async_dsr_bytes = dsr_bytes; |
| bs->bs_async_cbrs = cbrs; |
| bs->bs_async_wq = cmp; |
| kgts = bs->bs_kgts; |
| |
| /* Resources changed. Unload context if already loaded */ |
| if (kgts && kgts->ts_gru) |
| gru_unload_context(kgts, 0); |
| ret = ASYNC_BID_TO_HAN(blade_id); |
| |
| done: |
| up_write(&bs->bs_kgts_sema); |
| return ret; |
| } |
| |
| /* |
| * Release async resources previously reserved. |
| * |
| * input: |
| * han - handle to identify resources |
| */ |
| void gru_release_async_resources(unsigned long han) |
| { |
| struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han); |
| |
| down_write(&bs->bs_kgts_sema); |
| bs->bs_async_dsr_bytes = 0; |
| bs->bs_async_cbrs = 0; |
| bs->bs_async_wq = NULL; |
| up_write(&bs->bs_kgts_sema); |
| } |
| |
| /* |
| * Wait for async GRU instructions to complete. |
| * |
| * input: |
| * han - handle to identify resources |
| */ |
| void gru_wait_async_cbr(unsigned long han) |
| { |
| struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han); |
| |
| wait_for_completion(bs->bs_async_wq); |
| mb(); |
| } |
| |
| /* |
| * Lock previous reserved async GRU resources |
| * |
| * input: |
| * han - handle to identify resources |
| * output: |
| * cb - pointer to first CBR |
| * dsr - pointer to first DSR |
| */ |
| void gru_lock_async_resource(unsigned long han, void **cb, void **dsr) |
| { |
| struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han); |
| int blade_id = ASYNC_HAN_TO_BID(han); |
| int ncpus; |
| |
| gru_lock_kernel_context(blade_id); |
| ncpus = uv_blade_nr_possible_cpus(blade_id); |
| if (cb) |
| *cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE; |
| if (dsr) |
| *dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES; |
| } |
| |
| /* |
| * Unlock previous reserved async GRU resources |
| * |
| * input: |
| * han - handle to identify resources |
| */ |
| void gru_unlock_async_resource(unsigned long han) |
| { |
| int blade_id = ASYNC_HAN_TO_BID(han); |
| |
| gru_unlock_kernel_context(blade_id); |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| int gru_get_cb_exception_detail(void *cb, |
| struct control_block_extended_exc_detail *excdet) |
| { |
| struct gru_control_block_extended *cbe; |
| struct gru_thread_state *kgts = NULL; |
| unsigned long off; |
| int cbrnum, bid; |
| |
| /* |
| * Locate kgts for cb. This algorithm is SLOW but |
| * this function is rarely called (ie., almost never). |
| * Performance does not matter. |
| */ |
| for_each_possible_blade(bid) { |
| if (!gru_base[bid]) |
| break; |
| kgts = gru_base[bid]->bs_kgts; |
| if (!kgts || !kgts->ts_gru) |
| continue; |
| off = cb - kgts->ts_gru->gs_gru_base_vaddr; |
| if (off < GRU_SIZE) |
| break; |
| kgts = NULL; |
| } |
| BUG_ON(!kgts); |
| cbrnum = thread_cbr_number(kgts, get_cb_number(cb)); |
| cbe = get_cbe(GRUBASE(cb), cbrnum); |
| gru_flush_cache(cbe); /* CBE not coherent */ |
| sync_core(); |
| excdet->opc = cbe->opccpy; |
| excdet->exopc = cbe->exopccpy; |
| excdet->ecause = cbe->ecause; |
| excdet->exceptdet0 = cbe->idef1upd; |
| excdet->exceptdet1 = cbe->idef3upd; |
| gru_flush_cache(cbe); |
| return 0; |
| } |
| |
| static char *gru_get_cb_exception_detail_str(int ret, void *cb, |
| char *buf, int size) |
| { |
| struct gru_control_block_status *gen = (void *)cb; |
| struct control_block_extended_exc_detail excdet; |
| |
| if (ret > 0 && gen->istatus == CBS_EXCEPTION) { |
| gru_get_cb_exception_detail(cb, &excdet); |
| snprintf(buf, size, |
| "GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x," |
| "excdet0 0x%lx, excdet1 0x%x", smp_processor_id(), |
| gen, excdet.opc, excdet.exopc, excdet.ecause, |
| excdet.exceptdet0, excdet.exceptdet1); |
| } else { |
| snprintf(buf, size, "No exception"); |
| } |
| return buf; |
| } |
| |
| static int gru_wait_idle_or_exception(struct gru_control_block_status *gen) |
| { |
| while (gen->istatus >= CBS_ACTIVE) { |
| cpu_relax(); |
| barrier(); |
| } |
| return gen->istatus; |
| } |
| |
| static int gru_retry_exception(void *cb) |
| { |
| struct gru_control_block_status *gen = (void *)cb; |
| struct control_block_extended_exc_detail excdet; |
| int retry = EXCEPTION_RETRY_LIMIT; |
| |
| while (1) { |
| if (gru_wait_idle_or_exception(gen) == CBS_IDLE) |
| return CBS_IDLE; |
| if (gru_get_cb_message_queue_substatus(cb)) |
| return CBS_EXCEPTION; |
| gru_get_cb_exception_detail(cb, &excdet); |
| if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) || |
| (excdet.cbrexecstatus & CBR_EXS_ABORT_OCC)) |
| break; |
| if (retry-- == 0) |
| break; |
| gen->icmd = 1; |
| gru_flush_cache(gen); |
| } |
| return CBS_EXCEPTION; |
| } |
| |
| int gru_check_status_proc(void *cb) |
| { |
| struct gru_control_block_status *gen = (void *)cb; |
| int ret; |
| |
| ret = gen->istatus; |
| if (ret == CBS_EXCEPTION) |
| ret = gru_retry_exception(cb); |
| rmb(); |
| return ret; |
| |
| } |
| |
| int gru_wait_proc(void *cb) |
| { |
| struct gru_control_block_status *gen = (void *)cb; |
| int ret; |
| |
| ret = gru_wait_idle_or_exception(gen); |
| if (ret == CBS_EXCEPTION) |
| ret = gru_retry_exception(cb); |
| rmb(); |
| return ret; |
| } |
| |
| static void gru_abort(int ret, void *cb, char *str) |
| { |
| char buf[GRU_EXC_STR_SIZE]; |
| |
| panic("GRU FATAL ERROR: %s - %s\n", str, |
| gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf))); |
| } |
| |
| void gru_wait_abort_proc(void *cb) |
| { |
| int ret; |
| |
| ret = gru_wait_proc(cb); |
| if (ret) |
| gru_abort(ret, cb, "gru_wait_abort"); |
| } |
| |
| |
| /*------------------------------ MESSAGE QUEUES -----------------------------*/ |
| |
| /* Internal status . These are NOT returned to the user. */ |
| #define MQIE_AGAIN -1 /* try again */ |
| |
| |
| /* |
| * Save/restore the "present" flag that is in the second line of 2-line |
| * messages |
| */ |
| static inline int get_present2(void *p) |
| { |
| struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES; |
| return mhdr->present; |
| } |
| |
| static inline void restore_present2(void *p, int val) |
| { |
| struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES; |
| mhdr->present = val; |
| } |
| |
| /* |
| * Create a message queue. |
| * qlines - message queue size in cache lines. Includes 2-line header. |
| */ |
| int gru_create_message_queue(struct gru_message_queue_desc *mqd, |
| void *p, unsigned int bytes, int nasid, int vector, int apicid) |
| { |
| struct message_queue *mq = p; |
| unsigned int qlines; |
| |
| qlines = bytes / GRU_CACHE_LINE_BYTES - 2; |
| memset(mq, 0, bytes); |
| mq->start = &mq->data; |
| mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES; |
| mq->next = &mq->data; |
| mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES; |
| mq->qlines = qlines; |
| mq->hstatus[0] = 0; |
| mq->hstatus[1] = 1; |
| mq->head = gru_mesq_head(2, qlines / 2 + 1); |
| mqd->mq = mq; |
| mqd->mq_gpa = uv_gpa(mq); |
| mqd->qlines = qlines; |
| mqd->interrupt_pnode = nasid >> 1; |
| mqd->interrupt_vector = vector; |
| mqd->interrupt_apicid = apicid; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(gru_create_message_queue); |
| |
| /* |
| * Send a NOOP message to a message queue |
| * Returns: |
| * 0 - if queue is full after the send. This is the normal case |
| * but various races can change this. |
| * -1 - if mesq sent successfully but queue not full |
| * >0 - unexpected error. MQE_xxx returned |
| */ |
| static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd, |
| void *mesg) |
| { |
| const struct message_header noop_header = { |
| .present = MQS_NOOP, .lines = 1}; |
| unsigned long m; |
| int substatus, ret; |
| struct message_header save_mhdr, *mhdr = mesg; |
| |
| STAT(mesq_noop); |
| save_mhdr = *mhdr; |
| *mhdr = noop_header; |
| gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA); |
| ret = gru_wait(cb); |
| |
| if (ret) { |
| substatus = gru_get_cb_message_queue_substatus(cb); |
| switch (substatus) { |
| case CBSS_NO_ERROR: |
| STAT(mesq_noop_unexpected_error); |
| ret = MQE_UNEXPECTED_CB_ERR; |
| break; |
| case CBSS_LB_OVERFLOWED: |
| STAT(mesq_noop_lb_overflow); |
| ret = MQE_CONGESTION; |
| break; |
| case CBSS_QLIMIT_REACHED: |
| STAT(mesq_noop_qlimit_reached); |
| ret = 0; |
| break; |
| case CBSS_AMO_NACKED: |
| STAT(mesq_noop_amo_nacked); |
| ret = MQE_CONGESTION; |
| break; |
| case CBSS_PUT_NACKED: |
| STAT(mesq_noop_put_nacked); |
| m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6); |
| gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1, |
| IMA); |
| if (gru_wait(cb) == CBS_IDLE) |
| ret = MQIE_AGAIN; |
| else |
| ret = MQE_UNEXPECTED_CB_ERR; |
| break; |
| case CBSS_PAGE_OVERFLOW: |
| STAT(mesq_noop_page_overflow); |
| fallthrough; |
| default: |
| BUG(); |
| } |
| } |
| *mhdr = save_mhdr; |
| return ret; |
| } |
| |
| /* |
| * Handle a gru_mesq full. |
| */ |
| static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd, |
| void *mesg, int lines) |
| { |
| union gru_mesqhead mqh; |
| unsigned int limit, head; |
| unsigned long avalue; |
| int half, qlines; |
| |
| /* Determine if switching to first/second half of q */ |
| avalue = gru_get_amo_value(cb); |
| head = gru_get_amo_value_head(cb); |
| limit = gru_get_amo_value_limit(cb); |
| |
| qlines = mqd->qlines; |
| half = (limit != qlines); |
| |
| if (half) |
| mqh = gru_mesq_head(qlines / 2 + 1, qlines); |
| else |
| mqh = gru_mesq_head(2, qlines / 2 + 1); |
| |
| /* Try to get lock for switching head pointer */ |
| gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA); |
| if (gru_wait(cb) != CBS_IDLE) |
| goto cberr; |
| if (!gru_get_amo_value(cb)) { |
| STAT(mesq_qf_locked); |
| return MQE_QUEUE_FULL; |
| } |
| |
| /* Got the lock. Send optional NOP if queue not full, */ |
| if (head != limit) { |
| if (send_noop_message(cb, mqd, mesg)) { |
| gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), |
| XTYPE_DW, IMA); |
| if (gru_wait(cb) != CBS_IDLE) |
| goto cberr; |
| STAT(mesq_qf_noop_not_full); |
| return MQIE_AGAIN; |
| } |
| avalue++; |
| } |
| |
| /* Then flip queuehead to other half of queue. */ |
| gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue, |
| IMA); |
| if (gru_wait(cb) != CBS_IDLE) |
| goto cberr; |
| |
| /* If not successfully in swapping queue head, clear the hstatus lock */ |
| if (gru_get_amo_value(cb) != avalue) { |
| STAT(mesq_qf_switch_head_failed); |
| gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, |
| IMA); |
| if (gru_wait(cb) != CBS_IDLE) |
| goto cberr; |
| } |
| return MQIE_AGAIN; |
| cberr: |
| STAT(mesq_qf_unexpected_error); |
| return MQE_UNEXPECTED_CB_ERR; |
| } |
| |
| /* |
| * Handle a PUT failure. Note: if message was a 2-line message, one of the |
| * lines might have successfully have been written. Before sending the |
| * message, "present" must be cleared in BOTH lines to prevent the receiver |
| * from prematurely seeing the full message. |
| */ |
| static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd, |
| void *mesg, int lines) |
| { |
| unsigned long m; |
| int ret, loops = 200; /* experimentally determined */ |
| |
| m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6); |
| if (lines == 2) { |
| gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA); |
| if (gru_wait(cb) != CBS_IDLE) |
| return MQE_UNEXPECTED_CB_ERR; |
| } |
| gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA); |
| if (gru_wait(cb) != CBS_IDLE) |
| return MQE_UNEXPECTED_CB_ERR; |
| |
| if (!mqd->interrupt_vector) |
| return MQE_OK; |
| |
| /* |
| * Send a noop message in order to deliver a cross-partition interrupt |
| * to the SSI that contains the target message queue. Normally, the |
| * interrupt is automatically delivered by hardware following mesq |
| * operations, but some error conditions require explicit delivery. |
| * The noop message will trigger delivery. Otherwise partition failures |
| * could cause unrecovered errors. |
| */ |
| do { |
| ret = send_noop_message(cb, mqd, mesg); |
| } while ((ret == MQIE_AGAIN || ret == MQE_CONGESTION) && (loops-- > 0)); |
| |
| if (ret == MQIE_AGAIN || ret == MQE_CONGESTION) { |
| /* |
| * Don't indicate to the app to resend the message, as it's |
| * already been successfully sent. We simply send an OK |
| * (rather than fail the send with MQE_UNEXPECTED_CB_ERR), |
| * assuming that the other side is receiving enough |
| * interrupts to get this message processed anyway. |
| */ |
| ret = MQE_OK; |
| } |
| return ret; |
| } |
| |
| /* |
| * Handle a gru_mesq failure. Some of these failures are software recoverable |
| * or retryable. |
| */ |
| static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd, |
| void *mesg, int lines) |
| { |
| int substatus, ret = 0; |
| |
| substatus = gru_get_cb_message_queue_substatus(cb); |
| switch (substatus) { |
| case CBSS_NO_ERROR: |
| STAT(mesq_send_unexpected_error); |
| ret = MQE_UNEXPECTED_CB_ERR; |
| break; |
| case CBSS_LB_OVERFLOWED: |
| STAT(mesq_send_lb_overflow); |
| ret = MQE_CONGESTION; |
| break; |
| case CBSS_QLIMIT_REACHED: |
| STAT(mesq_send_qlimit_reached); |
| ret = send_message_queue_full(cb, mqd, mesg, lines); |
| break; |
| case CBSS_AMO_NACKED: |
| STAT(mesq_send_amo_nacked); |
| ret = MQE_CONGESTION; |
| break; |
| case CBSS_PUT_NACKED: |
| STAT(mesq_send_put_nacked); |
| ret = send_message_put_nacked(cb, mqd, mesg, lines); |
| break; |
| case CBSS_PAGE_OVERFLOW: |
| STAT(mesq_page_overflow); |
| fallthrough; |
| default: |
| BUG(); |
| } |
| return ret; |
| } |
| |
| /* |
| * Send a message to a message queue |
| * mqd message queue descriptor |
| * mesg message. ust be vaddr within a GSEG |
| * bytes message size (<= 2 CL) |
| */ |
| int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg, |
| unsigned int bytes) |
| { |
| struct message_header *mhdr; |
| void *cb; |
| void *dsr; |
| int istatus, clines, ret; |
| |
| STAT(mesq_send); |
| BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES); |
| |
| clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES); |
| if (gru_get_cpu_resources(bytes, &cb, &dsr)) |
| return MQE_BUG_NO_RESOURCES; |
| memcpy(dsr, mesg, bytes); |
| mhdr = dsr; |
| mhdr->present = MQS_FULL; |
| mhdr->lines = clines; |
| if (clines == 2) { |
| mhdr->present2 = get_present2(mhdr); |
| restore_present2(mhdr, MQS_FULL); |
| } |
| |
| do { |
| ret = MQE_OK; |
| gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA); |
| istatus = gru_wait(cb); |
| if (istatus != CBS_IDLE) |
| ret = send_message_failure(cb, mqd, dsr, clines); |
| } while (ret == MQIE_AGAIN); |
| gru_free_cpu_resources(cb, dsr); |
| |
| if (ret) |
| STAT(mesq_send_failed); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(gru_send_message_gpa); |
| |
| /* |
| * Advance the receive pointer for the queue to the next message. |
| */ |
| void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg) |
| { |
| struct message_queue *mq = mqd->mq; |
| struct message_header *mhdr = mq->next; |
| void *next, *pnext; |
| int half = -1; |
| int lines = mhdr->lines; |
| |
| if (lines == 2) |
| restore_present2(mhdr, MQS_EMPTY); |
| mhdr->present = MQS_EMPTY; |
| |
| pnext = mq->next; |
| next = pnext + GRU_CACHE_LINE_BYTES * lines; |
| if (next == mq->limit) { |
| next = mq->start; |
| half = 1; |
| } else if (pnext < mq->start2 && next >= mq->start2) { |
| half = 0; |
| } |
| |
| if (half >= 0) |
| mq->hstatus[half] = 1; |
| mq->next = next; |
| } |
| EXPORT_SYMBOL_GPL(gru_free_message); |
| |
| /* |
| * Get next message from message queue. Return NULL if no message |
| * present. User must call next_message() to move to next message. |
| * rmq message queue |
| */ |
| void *gru_get_next_message(struct gru_message_queue_desc *mqd) |
| { |
| struct message_queue *mq = mqd->mq; |
| struct message_header *mhdr = mq->next; |
| int present = mhdr->present; |
| |
| /* skip NOOP messages */ |
| while (present == MQS_NOOP) { |
| gru_free_message(mqd, mhdr); |
| mhdr = mq->next; |
| present = mhdr->present; |
| } |
| |
| /* Wait for both halves of 2 line messages */ |
| if (present == MQS_FULL && mhdr->lines == 2 && |
| get_present2(mhdr) == MQS_EMPTY) |
| present = MQS_EMPTY; |
| |
| if (!present) { |
| STAT(mesq_receive_none); |
| return NULL; |
| } |
| |
| if (mhdr->lines == 2) |
| restore_present2(mhdr, mhdr->present2); |
| |
| STAT(mesq_receive); |
| return mhdr; |
| } |
| EXPORT_SYMBOL_GPL(gru_get_next_message); |
| |
| /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/ |
| |
| /* |
| * Load a DW from a global GPA. The GPA can be a memory or MMR address. |
| */ |
| int gru_read_gpa(unsigned long *value, unsigned long gpa) |
| { |
| void *cb; |
| void *dsr; |
| int ret, iaa; |
| |
| STAT(read_gpa); |
| if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr)) |
| return MQE_BUG_NO_RESOURCES; |
| iaa = gpa >> 62; |
| gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA); |
| ret = gru_wait(cb); |
| if (ret == CBS_IDLE) |
| *value = *(unsigned long *)dsr; |
| gru_free_cpu_resources(cb, dsr); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(gru_read_gpa); |
| |
| |
| /* |
| * Copy a block of data using the GRU resources |
| */ |
| int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa, |
| unsigned int bytes) |
| { |
| void *cb; |
| void *dsr; |
| int ret; |
| |
| STAT(copy_gpa); |
| if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr)) |
| return MQE_BUG_NO_RESOURCES; |
| gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr), |
| XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA); |
| ret = gru_wait(cb); |
| gru_free_cpu_resources(cb, dsr); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(gru_copy_gpa); |
| |
| /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/ |
| /* Temp - will delete after we gain confidence in the GRU */ |
| |
| static int quicktest0(unsigned long arg) |
| { |
| unsigned long word0; |
| unsigned long word1; |
| void *cb; |
| void *dsr; |
| unsigned long *p; |
| int ret = -EIO; |
| |
| if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr)) |
| return MQE_BUG_NO_RESOURCES; |
| p = dsr; |
| word0 = MAGIC; |
| word1 = 0; |
| |
| gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA); |
| if (gru_wait(cb) != CBS_IDLE) { |
| printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id()); |
| goto done; |
| } |
| |
| if (*p != MAGIC) { |
| printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p); |
| goto done; |
| } |
| gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA); |
| if (gru_wait(cb) != CBS_IDLE) { |
| printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id()); |
| goto done; |
| } |
| |
| if (word0 != word1 || word1 != MAGIC) { |
| printk(KERN_DEBUG |
| "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n", |
| smp_processor_id(), word1, MAGIC); |
| goto done; |
| } |
| ret = 0; |
| |
| done: |
| gru_free_cpu_resources(cb, dsr); |
| return ret; |
| } |
| |
| #define ALIGNUP(p, q) ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1))) |
| |
| static int quicktest1(unsigned long arg) |
| { |
| struct gru_message_queue_desc mqd; |
| void *p, *mq; |
| int i, ret = -EIO; |
| char mes[GRU_CACHE_LINE_BYTES], *m; |
| |
| /* Need 1K cacheline aligned that does not cross page boundary */ |
| p = kmalloc(4096, 0); |
| if (p == NULL) |
| return -ENOMEM; |
| mq = ALIGNUP(p, 1024); |
| memset(mes, 0xee, sizeof(mes)); |
| |
| gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0); |
| for (i = 0; i < 6; i++) { |
| mes[8] = i; |
| do { |
| ret = gru_send_message_gpa(&mqd, mes, sizeof(mes)); |
| } while (ret == MQE_CONGESTION); |
| if (ret) |
| break; |
| } |
| if (ret != MQE_QUEUE_FULL || i != 4) { |
| printk(KERN_DEBUG "GRU:%d quicktest1: unexpected status %d, i %d\n", |
| smp_processor_id(), ret, i); |
| goto done; |
| } |
| |
| for (i = 0; i < 6; i++) { |
| m = gru_get_next_message(&mqd); |
| if (!m || m[8] != i) |
| break; |
| gru_free_message(&mqd, m); |
| } |
| if (i != 4) { |
| printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n", |
| smp_processor_id(), i, m, m ? m[8] : -1); |
| goto done; |
| } |
| ret = 0; |
| |
| done: |
| kfree(p); |
| return ret; |
| } |
| |
| static int quicktest2(unsigned long arg) |
| { |
| static DECLARE_COMPLETION(cmp); |
| unsigned long han; |
| int blade_id = 0; |
| int numcb = 4; |
| int ret = 0; |
| unsigned long *buf; |
| void *cb0, *cb; |
| struct gru_control_block_status *gen; |
| int i, k, istatus, bytes; |
| |
| bytes = numcb * 4 * 8; |
| buf = kmalloc(bytes, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| ret = -EBUSY; |
| han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp); |
| if (!han) |
| goto done; |
| |
| gru_lock_async_resource(han, &cb0, NULL); |
| memset(buf, 0xee, bytes); |
| for (i = 0; i < numcb; i++) |
| gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0, |
| XTYPE_DW, 4, 1, IMA_INTERRUPT); |
| |
| ret = 0; |
| k = numcb; |
| do { |
| gru_wait_async_cbr(han); |
| for (i = 0; i < numcb; i++) { |
| cb = cb0 + i * GRU_HANDLE_STRIDE; |
| istatus = gru_check_status(cb); |
| if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS) |
| break; |
| } |
| if (i == numcb) |
| continue; |
| if (istatus != CBS_IDLE) { |
| printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i); |
| ret = -EFAULT; |
| } else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] || |
| buf[4 * i + 3]) { |
| printk(KERN_DEBUG "GRU:%d quicktest2:cb %d, buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n", |
| smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]); |
| ret = -EIO; |
| } |
| k--; |
| gen = cb; |
| gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */ |
| } while (k); |
| BUG_ON(cmp.done); |
| |
| gru_unlock_async_resource(han); |
| gru_release_async_resources(han); |
| done: |
| kfree(buf); |
| return ret; |
| } |
| |
| #define BUFSIZE 200 |
| static int quicktest3(unsigned long arg) |
| { |
| char buf1[BUFSIZE], buf2[BUFSIZE]; |
| int ret = 0; |
| |
| memset(buf2, 0, sizeof(buf2)); |
| memset(buf1, get_cycles() & 255, sizeof(buf1)); |
| gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE); |
| if (memcmp(buf1, buf2, BUFSIZE)) { |
| printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id()); |
| ret = -EIO; |
| } |
| return ret; |
| } |
| |
| /* |
| * Debugging only. User hook for various kernel tests |
| * of driver & gru. |
| */ |
| int gru_ktest(unsigned long arg) |
| { |
| int ret = -EINVAL; |
| |
| switch (arg & 0xff) { |
| case 0: |
| ret = quicktest0(arg); |
| break; |
| case 1: |
| ret = quicktest1(arg); |
| break; |
| case 2: |
| ret = quicktest2(arg); |
| break; |
| case 3: |
| ret = quicktest3(arg); |
| break; |
| case 99: |
| ret = gru_free_kernel_contexts(); |
| break; |
| } |
| return ret; |
| |
| } |
| |
| int gru_kservices_init(void) |
| { |
| return 0; |
| } |
| |
| void gru_kservices_exit(void) |
| { |
| if (gru_free_kernel_contexts()) |
| BUG(); |
| } |
| |