| // SPDX-License-Identifier: GPL-2.0 |
| // CAN bus driver for Bosch M_CAN controller |
| // Copyright (C) 2014 Freescale Semiconductor, Inc. |
| // Dong Aisheng <b29396@freescale.com> |
| // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ |
| |
| /* Bosch M_CAN user manual can be obtained from: |
| * https://github.com/linux-can/can-doc/tree/master/m_can |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/iopoll.h> |
| #include <linux/can/dev.h> |
| #include <linux/pinctrl/consumer.h> |
| #include <linux/phy/phy.h> |
| |
| #include "m_can.h" |
| |
| /* registers definition */ |
| enum m_can_reg { |
| M_CAN_CREL = 0x0, |
| M_CAN_ENDN = 0x4, |
| M_CAN_CUST = 0x8, |
| M_CAN_DBTP = 0xc, |
| M_CAN_TEST = 0x10, |
| M_CAN_RWD = 0x14, |
| M_CAN_CCCR = 0x18, |
| M_CAN_NBTP = 0x1c, |
| M_CAN_TSCC = 0x20, |
| M_CAN_TSCV = 0x24, |
| M_CAN_TOCC = 0x28, |
| M_CAN_TOCV = 0x2c, |
| M_CAN_ECR = 0x40, |
| M_CAN_PSR = 0x44, |
| /* TDCR Register only available for version >=3.1.x */ |
| M_CAN_TDCR = 0x48, |
| M_CAN_IR = 0x50, |
| M_CAN_IE = 0x54, |
| M_CAN_ILS = 0x58, |
| M_CAN_ILE = 0x5c, |
| M_CAN_GFC = 0x80, |
| M_CAN_SIDFC = 0x84, |
| M_CAN_XIDFC = 0x88, |
| M_CAN_XIDAM = 0x90, |
| M_CAN_HPMS = 0x94, |
| M_CAN_NDAT1 = 0x98, |
| M_CAN_NDAT2 = 0x9c, |
| M_CAN_RXF0C = 0xa0, |
| M_CAN_RXF0S = 0xa4, |
| M_CAN_RXF0A = 0xa8, |
| M_CAN_RXBC = 0xac, |
| M_CAN_RXF1C = 0xb0, |
| M_CAN_RXF1S = 0xb4, |
| M_CAN_RXF1A = 0xb8, |
| M_CAN_RXESC = 0xbc, |
| M_CAN_TXBC = 0xc0, |
| M_CAN_TXFQS = 0xc4, |
| M_CAN_TXESC = 0xc8, |
| M_CAN_TXBRP = 0xcc, |
| M_CAN_TXBAR = 0xd0, |
| M_CAN_TXBCR = 0xd4, |
| M_CAN_TXBTO = 0xd8, |
| M_CAN_TXBCF = 0xdc, |
| M_CAN_TXBTIE = 0xe0, |
| M_CAN_TXBCIE = 0xe4, |
| M_CAN_TXEFC = 0xf0, |
| M_CAN_TXEFS = 0xf4, |
| M_CAN_TXEFA = 0xf8, |
| }; |
| |
| /* message ram configuration data length */ |
| #define MRAM_CFG_LEN 8 |
| |
| /* Core Release Register (CREL) */ |
| #define CREL_REL_MASK GENMASK(31, 28) |
| #define CREL_STEP_MASK GENMASK(27, 24) |
| #define CREL_SUBSTEP_MASK GENMASK(23, 20) |
| |
| /* Data Bit Timing & Prescaler Register (DBTP) */ |
| #define DBTP_TDC BIT(23) |
| #define DBTP_DBRP_MASK GENMASK(20, 16) |
| #define DBTP_DTSEG1_MASK GENMASK(12, 8) |
| #define DBTP_DTSEG2_MASK GENMASK(7, 4) |
| #define DBTP_DSJW_MASK GENMASK(3, 0) |
| |
| /* Transmitter Delay Compensation Register (TDCR) */ |
| #define TDCR_TDCO_MASK GENMASK(14, 8) |
| #define TDCR_TDCF_MASK GENMASK(6, 0) |
| |
| /* Test Register (TEST) */ |
| #define TEST_LBCK BIT(4) |
| |
| /* CC Control Register (CCCR) */ |
| #define CCCR_TXP BIT(14) |
| #define CCCR_TEST BIT(7) |
| #define CCCR_DAR BIT(6) |
| #define CCCR_MON BIT(5) |
| #define CCCR_CSR BIT(4) |
| #define CCCR_CSA BIT(3) |
| #define CCCR_ASM BIT(2) |
| #define CCCR_CCE BIT(1) |
| #define CCCR_INIT BIT(0) |
| /* for version 3.0.x */ |
| #define CCCR_CMR_MASK GENMASK(11, 10) |
| #define CCCR_CMR_CANFD 0x1 |
| #define CCCR_CMR_CANFD_BRS 0x2 |
| #define CCCR_CMR_CAN 0x3 |
| #define CCCR_CME_MASK GENMASK(9, 8) |
| #define CCCR_CME_CAN 0 |
| #define CCCR_CME_CANFD 0x1 |
| #define CCCR_CME_CANFD_BRS 0x2 |
| /* for version >=3.1.x */ |
| #define CCCR_EFBI BIT(13) |
| #define CCCR_PXHD BIT(12) |
| #define CCCR_BRSE BIT(9) |
| #define CCCR_FDOE BIT(8) |
| /* for version >=3.2.x */ |
| #define CCCR_NISO BIT(15) |
| /* for version >=3.3.x */ |
| #define CCCR_WMM BIT(11) |
| #define CCCR_UTSU BIT(10) |
| |
| /* Nominal Bit Timing & Prescaler Register (NBTP) */ |
| #define NBTP_NSJW_MASK GENMASK(31, 25) |
| #define NBTP_NBRP_MASK GENMASK(24, 16) |
| #define NBTP_NTSEG1_MASK GENMASK(15, 8) |
| #define NBTP_NTSEG2_MASK GENMASK(6, 0) |
| |
| /* Timestamp Counter Configuration Register (TSCC) */ |
| #define TSCC_TCP_MASK GENMASK(19, 16) |
| #define TSCC_TSS_MASK GENMASK(1, 0) |
| #define TSCC_TSS_DISABLE 0x0 |
| #define TSCC_TSS_INTERNAL 0x1 |
| #define TSCC_TSS_EXTERNAL 0x2 |
| |
| /* Timestamp Counter Value Register (TSCV) */ |
| #define TSCV_TSC_MASK GENMASK(15, 0) |
| |
| /* Error Counter Register (ECR) */ |
| #define ECR_RP BIT(15) |
| #define ECR_REC_MASK GENMASK(14, 8) |
| #define ECR_TEC_MASK GENMASK(7, 0) |
| |
| /* Protocol Status Register (PSR) */ |
| #define PSR_BO BIT(7) |
| #define PSR_EW BIT(6) |
| #define PSR_EP BIT(5) |
| #define PSR_LEC_MASK GENMASK(2, 0) |
| |
| /* Interrupt Register (IR) */ |
| #define IR_ALL_INT 0xffffffff |
| |
| /* Renamed bits for versions > 3.1.x */ |
| #define IR_ARA BIT(29) |
| #define IR_PED BIT(28) |
| #define IR_PEA BIT(27) |
| |
| /* Bits for version 3.0.x */ |
| #define IR_STE BIT(31) |
| #define IR_FOE BIT(30) |
| #define IR_ACKE BIT(29) |
| #define IR_BE BIT(28) |
| #define IR_CRCE BIT(27) |
| #define IR_WDI BIT(26) |
| #define IR_BO BIT(25) |
| #define IR_EW BIT(24) |
| #define IR_EP BIT(23) |
| #define IR_ELO BIT(22) |
| #define IR_BEU BIT(21) |
| #define IR_BEC BIT(20) |
| #define IR_DRX BIT(19) |
| #define IR_TOO BIT(18) |
| #define IR_MRAF BIT(17) |
| #define IR_TSW BIT(16) |
| #define IR_TEFL BIT(15) |
| #define IR_TEFF BIT(14) |
| #define IR_TEFW BIT(13) |
| #define IR_TEFN BIT(12) |
| #define IR_TFE BIT(11) |
| #define IR_TCF BIT(10) |
| #define IR_TC BIT(9) |
| #define IR_HPM BIT(8) |
| #define IR_RF1L BIT(7) |
| #define IR_RF1F BIT(6) |
| #define IR_RF1W BIT(5) |
| #define IR_RF1N BIT(4) |
| #define IR_RF0L BIT(3) |
| #define IR_RF0F BIT(2) |
| #define IR_RF0W BIT(1) |
| #define IR_RF0N BIT(0) |
| #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) |
| |
| /* Interrupts for version 3.0.x */ |
| #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) |
| #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \ |
| IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ |
| IR_RF0L) |
| #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) |
| |
| /* Interrupts for version >= 3.1.x */ |
| #define IR_ERR_LEC_31X (IR_PED | IR_PEA) |
| #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \ |
| IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ |
| IR_RF0L) |
| #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) |
| |
| /* Interrupt Line Select (ILS) */ |
| #define ILS_ALL_INT0 0x0 |
| #define ILS_ALL_INT1 0xFFFFFFFF |
| |
| /* Interrupt Line Enable (ILE) */ |
| #define ILE_EINT1 BIT(1) |
| #define ILE_EINT0 BIT(0) |
| |
| /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ |
| #define RXFC_FWM_MASK GENMASK(30, 24) |
| #define RXFC_FS_MASK GENMASK(22, 16) |
| |
| /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ |
| #define RXFS_RFL BIT(25) |
| #define RXFS_FF BIT(24) |
| #define RXFS_FPI_MASK GENMASK(21, 16) |
| #define RXFS_FGI_MASK GENMASK(13, 8) |
| #define RXFS_FFL_MASK GENMASK(6, 0) |
| |
| /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ |
| #define RXESC_RBDS_MASK GENMASK(10, 8) |
| #define RXESC_F1DS_MASK GENMASK(6, 4) |
| #define RXESC_F0DS_MASK GENMASK(2, 0) |
| #define RXESC_64B 0x7 |
| |
| /* Tx Buffer Configuration (TXBC) */ |
| #define TXBC_TFQS_MASK GENMASK(29, 24) |
| #define TXBC_NDTB_MASK GENMASK(21, 16) |
| |
| /* Tx FIFO/Queue Status (TXFQS) */ |
| #define TXFQS_TFQF BIT(21) |
| #define TXFQS_TFQPI_MASK GENMASK(20, 16) |
| #define TXFQS_TFGI_MASK GENMASK(12, 8) |
| #define TXFQS_TFFL_MASK GENMASK(5, 0) |
| |
| /* Tx Buffer Element Size Configuration (TXESC) */ |
| #define TXESC_TBDS_MASK GENMASK(2, 0) |
| #define TXESC_TBDS_64B 0x7 |
| |
| /* Tx Event FIFO Configuration (TXEFC) */ |
| #define TXEFC_EFS_MASK GENMASK(21, 16) |
| |
| /* Tx Event FIFO Status (TXEFS) */ |
| #define TXEFS_TEFL BIT(25) |
| #define TXEFS_EFF BIT(24) |
| #define TXEFS_EFGI_MASK GENMASK(12, 8) |
| #define TXEFS_EFFL_MASK GENMASK(5, 0) |
| |
| /* Tx Event FIFO Acknowledge (TXEFA) */ |
| #define TXEFA_EFAI_MASK GENMASK(4, 0) |
| |
| /* Message RAM Configuration (in bytes) */ |
| #define SIDF_ELEMENT_SIZE 4 |
| #define XIDF_ELEMENT_SIZE 8 |
| #define RXF0_ELEMENT_SIZE 72 |
| #define RXF1_ELEMENT_SIZE 72 |
| #define RXB_ELEMENT_SIZE 72 |
| #define TXE_ELEMENT_SIZE 8 |
| #define TXB_ELEMENT_SIZE 72 |
| |
| /* Message RAM Elements */ |
| #define M_CAN_FIFO_ID 0x0 |
| #define M_CAN_FIFO_DLC 0x4 |
| #define M_CAN_FIFO_DATA 0x8 |
| |
| /* Rx Buffer Element */ |
| /* R0 */ |
| #define RX_BUF_ESI BIT(31) |
| #define RX_BUF_XTD BIT(30) |
| #define RX_BUF_RTR BIT(29) |
| /* R1 */ |
| #define RX_BUF_ANMF BIT(31) |
| #define RX_BUF_FDF BIT(21) |
| #define RX_BUF_BRS BIT(20) |
| #define RX_BUF_RXTS_MASK GENMASK(15, 0) |
| |
| /* Tx Buffer Element */ |
| /* T0 */ |
| #define TX_BUF_ESI BIT(31) |
| #define TX_BUF_XTD BIT(30) |
| #define TX_BUF_RTR BIT(29) |
| /* T1 */ |
| #define TX_BUF_EFC BIT(23) |
| #define TX_BUF_FDF BIT(21) |
| #define TX_BUF_BRS BIT(20) |
| #define TX_BUF_MM_MASK GENMASK(31, 24) |
| #define TX_BUF_DLC_MASK GENMASK(19, 16) |
| |
| /* Tx event FIFO Element */ |
| /* E1 */ |
| #define TX_EVENT_MM_MASK GENMASK(31, 24) |
| #define TX_EVENT_TXTS_MASK GENMASK(15, 0) |
| |
| /* The ID and DLC registers are adjacent in M_CAN FIFO memory, |
| * and we can save a (potentially slow) bus round trip by combining |
| * reads and writes to them. |
| */ |
| struct id_and_dlc { |
| u32 id; |
| u32 dlc; |
| }; |
| |
| static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) |
| { |
| return cdev->ops->read_reg(cdev, reg); |
| } |
| |
| static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, |
| u32 val) |
| { |
| cdev->ops->write_reg(cdev, reg, val); |
| } |
| |
| static int |
| m_can_fifo_read(struct m_can_classdev *cdev, |
| u32 fgi, unsigned int offset, void *val, size_t val_count) |
| { |
| u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + |
| offset; |
| |
| if (val_count == 0) |
| return 0; |
| |
| return cdev->ops->read_fifo(cdev, addr_offset, val, val_count); |
| } |
| |
| static int |
| m_can_fifo_write(struct m_can_classdev *cdev, |
| u32 fpi, unsigned int offset, const void *val, size_t val_count) |
| { |
| u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + |
| offset; |
| |
| if (val_count == 0) |
| return 0; |
| |
| return cdev->ops->write_fifo(cdev, addr_offset, val, val_count); |
| } |
| |
| static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev, |
| u32 fpi, u32 val) |
| { |
| return cdev->ops->write_fifo(cdev, fpi, &val, 1); |
| } |
| |
| static int |
| m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val) |
| { |
| u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + |
| offset; |
| |
| return cdev->ops->read_fifo(cdev, addr_offset, val, 1); |
| } |
| |
| static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) |
| { |
| return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF); |
| } |
| |
| static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) |
| { |
| u32 cccr = m_can_read(cdev, M_CAN_CCCR); |
| u32 timeout = 10; |
| u32 val = 0; |
| |
| /* Clear the Clock stop request if it was set */ |
| if (cccr & CCCR_CSR) |
| cccr &= ~CCCR_CSR; |
| |
| if (enable) { |
| /* enable m_can configuration */ |
| m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); |
| udelay(5); |
| /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ |
| m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); |
| } else { |
| m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); |
| } |
| |
| /* there's a delay for module initialization */ |
| if (enable) |
| val = CCCR_INIT | CCCR_CCE; |
| |
| while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { |
| if (timeout == 0) { |
| netdev_warn(cdev->net, "Failed to init module\n"); |
| return; |
| } |
| timeout--; |
| udelay(1); |
| } |
| } |
| |
| static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) |
| { |
| /* Only interrupt line 0 is used in this driver */ |
| m_can_write(cdev, M_CAN_ILE, ILE_EINT0); |
| } |
| |
| static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) |
| { |
| m_can_write(cdev, M_CAN_ILE, 0x0); |
| } |
| |
| /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit |
| * width. |
| */ |
| static u32 m_can_get_timestamp(struct m_can_classdev *cdev) |
| { |
| u32 tscv; |
| u32 tsc; |
| |
| tscv = m_can_read(cdev, M_CAN_TSCV); |
| tsc = FIELD_GET(TSCV_TSC_MASK, tscv); |
| |
| return (tsc << 16); |
| } |
| |
| static void m_can_clean(struct net_device *net) |
| { |
| struct m_can_classdev *cdev = netdev_priv(net); |
| |
| if (cdev->tx_skb) { |
| int putidx = 0; |
| |
| net->stats.tx_errors++; |
| if (cdev->version > 30) |
| putidx = FIELD_GET(TXFQS_TFQPI_MASK, |
| m_can_read(cdev, M_CAN_TXFQS)); |
| |
| can_free_echo_skb(cdev->net, putidx, NULL); |
| cdev->tx_skb = NULL; |
| } |
| } |
| |
| /* For peripherals, pass skb to rx-offload, which will push skb from |
| * napi. For non-peripherals, RX is done in napi already, so push |
| * directly. timestamp is used to ensure good skb ordering in |
| * rx-offload and is ignored for non-peripherals. |
| */ |
| static void m_can_receive_skb(struct m_can_classdev *cdev, |
| struct sk_buff *skb, |
| u32 timestamp) |
| { |
| if (cdev->is_peripheral) { |
| struct net_device_stats *stats = &cdev->net->stats; |
| int err; |
| |
| err = can_rx_offload_queue_timestamp(&cdev->offload, skb, |
| timestamp); |
| if (err) |
| stats->rx_fifo_errors++; |
| } else { |
| netif_receive_skb(skb); |
| } |
| } |
| |
| static int m_can_read_fifo(struct net_device *dev, u32 rxfs) |
| { |
| struct net_device_stats *stats = &dev->stats; |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| struct canfd_frame *cf; |
| struct sk_buff *skb; |
| struct id_and_dlc fifo_header; |
| u32 fgi; |
| u32 timestamp = 0; |
| int err; |
| |
| /* calculate the fifo get index for where to read data */ |
| fgi = FIELD_GET(RXFS_FGI_MASK, rxfs); |
| err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2); |
| if (err) |
| goto out_fail; |
| |
| if (fifo_header.dlc & RX_BUF_FDF) |
| skb = alloc_canfd_skb(dev, &cf); |
| else |
| skb = alloc_can_skb(dev, (struct can_frame **)&cf); |
| if (!skb) { |
| stats->rx_dropped++; |
| return 0; |
| } |
| |
| if (fifo_header.dlc & RX_BUF_FDF) |
| cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F); |
| else |
| cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F); |
| |
| if (fifo_header.id & RX_BUF_XTD) |
| cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG; |
| else |
| cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK; |
| |
| if (fifo_header.id & RX_BUF_ESI) { |
| cf->flags |= CANFD_ESI; |
| netdev_dbg(dev, "ESI Error\n"); |
| } |
| |
| if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) { |
| cf->can_id |= CAN_RTR_FLAG; |
| } else { |
| if (fifo_header.dlc & RX_BUF_BRS) |
| cf->flags |= CANFD_BRS; |
| |
| err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA, |
| cf->data, DIV_ROUND_UP(cf->len, 4)); |
| if (err) |
| goto out_free_skb; |
| |
| stats->rx_bytes += cf->len; |
| } |
| stats->rx_packets++; |
| |
| /* acknowledge rx fifo 0 */ |
| m_can_write(cdev, M_CAN_RXF0A, fgi); |
| |
| timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16; |
| |
| m_can_receive_skb(cdev, skb, timestamp); |
| |
| return 0; |
| |
| out_free_skb: |
| kfree_skb(skb); |
| out_fail: |
| netdev_err(dev, "FIFO read returned %d\n", err); |
| return err; |
| } |
| |
| static int m_can_do_rx_poll(struct net_device *dev, int quota) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| u32 pkts = 0; |
| u32 rxfs; |
| int err; |
| |
| rxfs = m_can_read(cdev, M_CAN_RXF0S); |
| if (!(rxfs & RXFS_FFL_MASK)) { |
| netdev_dbg(dev, "no messages in fifo0\n"); |
| return 0; |
| } |
| |
| while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { |
| err = m_can_read_fifo(dev, rxfs); |
| if (err) |
| return err; |
| |
| quota--; |
| pkts++; |
| rxfs = m_can_read(cdev, M_CAN_RXF0S); |
| } |
| |
| return pkts; |
| } |
| |
| static int m_can_handle_lost_msg(struct net_device *dev) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| struct net_device_stats *stats = &dev->stats; |
| struct sk_buff *skb; |
| struct can_frame *frame; |
| u32 timestamp = 0; |
| |
| netdev_err(dev, "msg lost in rxf0\n"); |
| |
| stats->rx_errors++; |
| stats->rx_over_errors++; |
| |
| skb = alloc_can_err_skb(dev, &frame); |
| if (unlikely(!skb)) |
| return 0; |
| |
| frame->can_id |= CAN_ERR_CRTL; |
| frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; |
| |
| if (cdev->is_peripheral) |
| timestamp = m_can_get_timestamp(cdev); |
| |
| m_can_receive_skb(cdev, skb, timestamp); |
| |
| return 1; |
| } |
| |
| static int m_can_handle_lec_err(struct net_device *dev, |
| enum m_can_lec_type lec_type) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| struct net_device_stats *stats = &dev->stats; |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| u32 timestamp = 0; |
| |
| cdev->can.can_stats.bus_error++; |
| stats->rx_errors++; |
| |
| /* propagate the error condition to the CAN stack */ |
| skb = alloc_can_err_skb(dev, &cf); |
| if (unlikely(!skb)) |
| return 0; |
| |
| /* check for 'last error code' which tells us the |
| * type of the last error to occur on the CAN bus |
| */ |
| cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; |
| |
| switch (lec_type) { |
| case LEC_STUFF_ERROR: |
| netdev_dbg(dev, "stuff error\n"); |
| cf->data[2] |= CAN_ERR_PROT_STUFF; |
| break; |
| case LEC_FORM_ERROR: |
| netdev_dbg(dev, "form error\n"); |
| cf->data[2] |= CAN_ERR_PROT_FORM; |
| break; |
| case LEC_ACK_ERROR: |
| netdev_dbg(dev, "ack error\n"); |
| cf->data[3] = CAN_ERR_PROT_LOC_ACK; |
| break; |
| case LEC_BIT1_ERROR: |
| netdev_dbg(dev, "bit1 error\n"); |
| cf->data[2] |= CAN_ERR_PROT_BIT1; |
| break; |
| case LEC_BIT0_ERROR: |
| netdev_dbg(dev, "bit0 error\n"); |
| cf->data[2] |= CAN_ERR_PROT_BIT0; |
| break; |
| case LEC_CRC_ERROR: |
| netdev_dbg(dev, "CRC error\n"); |
| cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; |
| break; |
| default: |
| break; |
| } |
| |
| if (cdev->is_peripheral) |
| timestamp = m_can_get_timestamp(cdev); |
| |
| m_can_receive_skb(cdev, skb, timestamp); |
| |
| return 1; |
| } |
| |
| static int __m_can_get_berr_counter(const struct net_device *dev, |
| struct can_berr_counter *bec) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| unsigned int ecr; |
| |
| ecr = m_can_read(cdev, M_CAN_ECR); |
| bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr); |
| bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr); |
| |
| return 0; |
| } |
| |
| static int m_can_clk_start(struct m_can_classdev *cdev) |
| { |
| if (cdev->pm_clock_support == 0) |
| return 0; |
| |
| return pm_runtime_resume_and_get(cdev->dev); |
| } |
| |
| static void m_can_clk_stop(struct m_can_classdev *cdev) |
| { |
| if (cdev->pm_clock_support) |
| pm_runtime_put_sync(cdev->dev); |
| } |
| |
| static int m_can_get_berr_counter(const struct net_device *dev, |
| struct can_berr_counter *bec) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| int err; |
| |
| err = m_can_clk_start(cdev); |
| if (err) |
| return err; |
| |
| __m_can_get_berr_counter(dev, bec); |
| |
| m_can_clk_stop(cdev); |
| |
| return 0; |
| } |
| |
| static int m_can_handle_state_change(struct net_device *dev, |
| enum can_state new_state) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| struct can_berr_counter bec; |
| unsigned int ecr; |
| u32 timestamp = 0; |
| |
| switch (new_state) { |
| case CAN_STATE_ERROR_WARNING: |
| /* error warning state */ |
| cdev->can.can_stats.error_warning++; |
| cdev->can.state = CAN_STATE_ERROR_WARNING; |
| break; |
| case CAN_STATE_ERROR_PASSIVE: |
| /* error passive state */ |
| cdev->can.can_stats.error_passive++; |
| cdev->can.state = CAN_STATE_ERROR_PASSIVE; |
| break; |
| case CAN_STATE_BUS_OFF: |
| /* bus-off state */ |
| cdev->can.state = CAN_STATE_BUS_OFF; |
| m_can_disable_all_interrupts(cdev); |
| cdev->can.can_stats.bus_off++; |
| can_bus_off(dev); |
| break; |
| default: |
| break; |
| } |
| |
| /* propagate the error condition to the CAN stack */ |
| skb = alloc_can_err_skb(dev, &cf); |
| if (unlikely(!skb)) |
| return 0; |
| |
| __m_can_get_berr_counter(dev, &bec); |
| |
| switch (new_state) { |
| case CAN_STATE_ERROR_WARNING: |
| /* error warning state */ |
| cf->can_id |= CAN_ERR_CRTL; |
| cf->data[1] = (bec.txerr > bec.rxerr) ? |
| CAN_ERR_CRTL_TX_WARNING : |
| CAN_ERR_CRTL_RX_WARNING; |
| cf->data[6] = bec.txerr; |
| cf->data[7] = bec.rxerr; |
| break; |
| case CAN_STATE_ERROR_PASSIVE: |
| /* error passive state */ |
| cf->can_id |= CAN_ERR_CRTL; |
| ecr = m_can_read(cdev, M_CAN_ECR); |
| if (ecr & ECR_RP) |
| cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; |
| if (bec.txerr > 127) |
| cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; |
| cf->data[6] = bec.txerr; |
| cf->data[7] = bec.rxerr; |
| break; |
| case CAN_STATE_BUS_OFF: |
| /* bus-off state */ |
| cf->can_id |= CAN_ERR_BUSOFF; |
| break; |
| default: |
| break; |
| } |
| |
| if (cdev->is_peripheral) |
| timestamp = m_can_get_timestamp(cdev); |
| |
| m_can_receive_skb(cdev, skb, timestamp); |
| |
| return 1; |
| } |
| |
| static int m_can_handle_state_errors(struct net_device *dev, u32 psr) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| int work_done = 0; |
| |
| if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { |
| netdev_dbg(dev, "entered error warning state\n"); |
| work_done += m_can_handle_state_change(dev, |
| CAN_STATE_ERROR_WARNING); |
| } |
| |
| if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { |
| netdev_dbg(dev, "entered error passive state\n"); |
| work_done += m_can_handle_state_change(dev, |
| CAN_STATE_ERROR_PASSIVE); |
| } |
| |
| if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { |
| netdev_dbg(dev, "entered error bus off state\n"); |
| work_done += m_can_handle_state_change(dev, |
| CAN_STATE_BUS_OFF); |
| } |
| |
| return work_done; |
| } |
| |
| static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) |
| { |
| if (irqstatus & IR_WDI) |
| netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); |
| if (irqstatus & IR_BEU) |
| netdev_err(dev, "Bit Error Uncorrected\n"); |
| if (irqstatus & IR_BEC) |
| netdev_err(dev, "Bit Error Corrected\n"); |
| if (irqstatus & IR_TOO) |
| netdev_err(dev, "Timeout reached\n"); |
| if (irqstatus & IR_MRAF) |
| netdev_err(dev, "Message RAM access failure occurred\n"); |
| } |
| |
| static inline bool is_lec_err(u32 psr) |
| { |
| psr &= LEC_UNUSED; |
| |
| return psr && (psr != LEC_UNUSED); |
| } |
| |
| static inline bool m_can_is_protocol_err(u32 irqstatus) |
| { |
| return irqstatus & IR_ERR_LEC_31X; |
| } |
| |
| static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) |
| { |
| struct net_device_stats *stats = &dev->stats; |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| u32 timestamp = 0; |
| |
| /* propagate the error condition to the CAN stack */ |
| skb = alloc_can_err_skb(dev, &cf); |
| |
| /* update tx error stats since there is protocol error */ |
| stats->tx_errors++; |
| |
| /* update arbitration lost status */ |
| if (cdev->version >= 31 && (irqstatus & IR_PEA)) { |
| netdev_dbg(dev, "Protocol error in Arbitration fail\n"); |
| cdev->can.can_stats.arbitration_lost++; |
| if (skb) { |
| cf->can_id |= CAN_ERR_LOSTARB; |
| cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; |
| } |
| } |
| |
| if (unlikely(!skb)) { |
| netdev_dbg(dev, "allocation of skb failed\n"); |
| return 0; |
| } |
| |
| if (cdev->is_peripheral) |
| timestamp = m_can_get_timestamp(cdev); |
| |
| m_can_receive_skb(cdev, skb, timestamp); |
| |
| return 1; |
| } |
| |
| static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, |
| u32 psr) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| int work_done = 0; |
| |
| if (irqstatus & IR_RF0L) |
| work_done += m_can_handle_lost_msg(dev); |
| |
| /* handle lec errors on the bus */ |
| if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && |
| is_lec_err(psr)) |
| work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); |
| |
| /* handle protocol errors in arbitration phase */ |
| if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && |
| m_can_is_protocol_err(irqstatus)) |
| work_done += m_can_handle_protocol_error(dev, irqstatus); |
| |
| /* other unproccessed error interrupts */ |
| m_can_handle_other_err(dev, irqstatus); |
| |
| return work_done; |
| } |
| |
| static int m_can_rx_handler(struct net_device *dev, int quota) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| int rx_work_or_err; |
| int work_done = 0; |
| u32 irqstatus, psr; |
| |
| irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); |
| if (!irqstatus) |
| goto end; |
| |
| /* Errata workaround for issue "Needless activation of MRAF irq" |
| * During frame reception while the MCAN is in Error Passive state |
| * and the Receive Error Counter has the value MCAN_ECR.REC = 127, |
| * it may happen that MCAN_IR.MRAF is set although there was no |
| * Message RAM access failure. |
| * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated |
| * The Message RAM Access Failure interrupt routine needs to check |
| * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. |
| * In this case, reset MCAN_IR.MRAF. No further action is required. |
| */ |
| if (cdev->version <= 31 && irqstatus & IR_MRAF && |
| m_can_read(cdev, M_CAN_ECR) & ECR_RP) { |
| struct can_berr_counter bec; |
| |
| __m_can_get_berr_counter(dev, &bec); |
| if (bec.rxerr == 127) { |
| m_can_write(cdev, M_CAN_IR, IR_MRAF); |
| irqstatus &= ~IR_MRAF; |
| } |
| } |
| |
| psr = m_can_read(cdev, M_CAN_PSR); |
| |
| if (irqstatus & IR_ERR_STATE) |
| work_done += m_can_handle_state_errors(dev, psr); |
| |
| if (irqstatus & IR_ERR_BUS_30X) |
| work_done += m_can_handle_bus_errors(dev, irqstatus, psr); |
| |
| if (irqstatus & IR_RF0N) { |
| rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done)); |
| if (rx_work_or_err < 0) |
| return rx_work_or_err; |
| |
| work_done += rx_work_or_err; |
| } |
| end: |
| return work_done; |
| } |
| |
| static int m_can_rx_peripheral(struct net_device *dev) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| int work_done; |
| |
| work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT); |
| |
| /* Don't re-enable interrupts if the driver had a fatal error |
| * (e.g., FIFO read failure). |
| */ |
| if (work_done >= 0) |
| m_can_enable_all_interrupts(cdev); |
| |
| return work_done; |
| } |
| |
| static int m_can_poll(struct napi_struct *napi, int quota) |
| { |
| struct net_device *dev = napi->dev; |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| int work_done; |
| |
| work_done = m_can_rx_handler(dev, quota); |
| |
| /* Don't re-enable interrupts if the driver had a fatal error |
| * (e.g., FIFO read failure). |
| */ |
| if (work_done >= 0 && work_done < quota) { |
| napi_complete_done(napi, work_done); |
| m_can_enable_all_interrupts(cdev); |
| } |
| |
| return work_done; |
| } |
| |
| /* Echo tx skb and update net stats. Peripherals use rx-offload for |
| * echo. timestamp is used for peripherals to ensure correct ordering |
| * by rx-offload, and is ignored for non-peripherals. |
| */ |
| static void m_can_tx_update_stats(struct m_can_classdev *cdev, |
| unsigned int msg_mark, |
| u32 timestamp) |
| { |
| struct net_device *dev = cdev->net; |
| struct net_device_stats *stats = &dev->stats; |
| |
| if (cdev->is_peripheral) |
| stats->tx_bytes += |
| can_rx_offload_get_echo_skb(&cdev->offload, |
| msg_mark, |
| timestamp, |
| NULL); |
| else |
| stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL); |
| |
| stats->tx_packets++; |
| } |
| |
| static int m_can_echo_tx_event(struct net_device *dev) |
| { |
| u32 txe_count = 0; |
| u32 m_can_txefs; |
| u32 fgi = 0; |
| int i = 0; |
| unsigned int msg_mark; |
| |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| |
| /* read tx event fifo status */ |
| m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); |
| |
| /* Get Tx Event fifo element count */ |
| txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs); |
| |
| /* Get and process all sent elements */ |
| for (i = 0; i < txe_count; i++) { |
| u32 txe, timestamp = 0; |
| int err; |
| |
| /* retrieve get index */ |
| fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS)); |
| |
| /* get message marker, timestamp */ |
| err = m_can_txe_fifo_read(cdev, fgi, 4, &txe); |
| if (err) { |
| netdev_err(dev, "TXE FIFO read returned %d\n", err); |
| return err; |
| } |
| |
| msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe); |
| timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16; |
| |
| /* ack txe element */ |
| m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK, |
| fgi)); |
| |
| /* update stats */ |
| m_can_tx_update_stats(cdev, msg_mark, timestamp); |
| } |
| |
| return 0; |
| } |
| |
| static irqreturn_t m_can_isr(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *)dev_id; |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| u32 ir; |
| |
| if (pm_runtime_suspended(cdev->dev)) |
| return IRQ_NONE; |
| ir = m_can_read(cdev, M_CAN_IR); |
| if (!ir) |
| return IRQ_NONE; |
| |
| /* ACK all irqs */ |
| if (ir & IR_ALL_INT) |
| m_can_write(cdev, M_CAN_IR, ir); |
| |
| if (cdev->ops->clear_interrupts) |
| cdev->ops->clear_interrupts(cdev); |
| |
| /* schedule NAPI in case of |
| * - rx IRQ |
| * - state change IRQ |
| * - bus error IRQ and bus error reporting |
| */ |
| if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { |
| cdev->irqstatus = ir; |
| m_can_disable_all_interrupts(cdev); |
| if (!cdev->is_peripheral) |
| napi_schedule(&cdev->napi); |
| else if (m_can_rx_peripheral(dev) < 0) |
| goto out_fail; |
| } |
| |
| if (cdev->version == 30) { |
| if (ir & IR_TC) { |
| /* Transmission Complete Interrupt*/ |
| u32 timestamp = 0; |
| |
| if (cdev->is_peripheral) |
| timestamp = m_can_get_timestamp(cdev); |
| m_can_tx_update_stats(cdev, 0, timestamp); |
| netif_wake_queue(dev); |
| } |
| } else { |
| if (ir & IR_TEFN) { |
| /* New TX FIFO Element arrived */ |
| if (m_can_echo_tx_event(dev) != 0) |
| goto out_fail; |
| |
| if (netif_queue_stopped(dev) && |
| !m_can_tx_fifo_full(cdev)) |
| netif_wake_queue(dev); |
| } |
| } |
| |
| if (cdev->is_peripheral) |
| can_rx_offload_threaded_irq_finish(&cdev->offload); |
| |
| return IRQ_HANDLED; |
| |
| out_fail: |
| m_can_disable_all_interrupts(cdev); |
| return IRQ_HANDLED; |
| } |
| |
| static const struct can_bittiming_const m_can_bittiming_const_30X = { |
| .name = KBUILD_MODNAME, |
| .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ |
| .tseg1_max = 64, |
| .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ |
| .tseg2_max = 16, |
| .sjw_max = 16, |
| .brp_min = 1, |
| .brp_max = 1024, |
| .brp_inc = 1, |
| }; |
| |
| static const struct can_bittiming_const m_can_data_bittiming_const_30X = { |
| .name = KBUILD_MODNAME, |
| .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ |
| .tseg1_max = 16, |
| .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ |
| .tseg2_max = 8, |
| .sjw_max = 4, |
| .brp_min = 1, |
| .brp_max = 32, |
| .brp_inc = 1, |
| }; |
| |
| static const struct can_bittiming_const m_can_bittiming_const_31X = { |
| .name = KBUILD_MODNAME, |
| .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ |
| .tseg1_max = 256, |
| .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ |
| .tseg2_max = 128, |
| .sjw_max = 128, |
| .brp_min = 1, |
| .brp_max = 512, |
| .brp_inc = 1, |
| }; |
| |
| static const struct can_bittiming_const m_can_data_bittiming_const_31X = { |
| .name = KBUILD_MODNAME, |
| .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ |
| .tseg1_max = 32, |
| .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ |
| .tseg2_max = 16, |
| .sjw_max = 16, |
| .brp_min = 1, |
| .brp_max = 32, |
| .brp_inc = 1, |
| }; |
| |
| static int m_can_set_bittiming(struct net_device *dev) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| const struct can_bittiming *bt = &cdev->can.bittiming; |
| const struct can_bittiming *dbt = &cdev->can.data_bittiming; |
| u16 brp, sjw, tseg1, tseg2; |
| u32 reg_btp; |
| |
| brp = bt->brp - 1; |
| sjw = bt->sjw - 1; |
| tseg1 = bt->prop_seg + bt->phase_seg1 - 1; |
| tseg2 = bt->phase_seg2 - 1; |
| reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) | |
| FIELD_PREP(NBTP_NSJW_MASK, sjw) | |
| FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) | |
| FIELD_PREP(NBTP_NTSEG2_MASK, tseg2); |
| m_can_write(cdev, M_CAN_NBTP, reg_btp); |
| |
| if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { |
| reg_btp = 0; |
| brp = dbt->brp - 1; |
| sjw = dbt->sjw - 1; |
| tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; |
| tseg2 = dbt->phase_seg2 - 1; |
| |
| /* TDC is only needed for bitrates beyond 2.5 MBit/s. |
| * This is mentioned in the "Bit Time Requirements for CAN FD" |
| * paper presented at the International CAN Conference 2013 |
| */ |
| if (dbt->bitrate > 2500000) { |
| u32 tdco, ssp; |
| |
| /* Use the same value of secondary sampling point |
| * as the data sampling point |
| */ |
| ssp = dbt->sample_point; |
| |
| /* Equation based on Bosch's M_CAN User Manual's |
| * Transmitter Delay Compensation Section |
| */ |
| tdco = (cdev->can.clock.freq / 1000) * |
| ssp / dbt->bitrate; |
| |
| /* Max valid TDCO value is 127 */ |
| if (tdco > 127) { |
| netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", |
| tdco); |
| tdco = 127; |
| } |
| |
| reg_btp |= DBTP_TDC; |
| m_can_write(cdev, M_CAN_TDCR, |
| FIELD_PREP(TDCR_TDCO_MASK, tdco)); |
| } |
| |
| reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) | |
| FIELD_PREP(DBTP_DSJW_MASK, sjw) | |
| FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) | |
| FIELD_PREP(DBTP_DTSEG2_MASK, tseg2); |
| |
| m_can_write(cdev, M_CAN_DBTP, reg_btp); |
| } |
| |
| return 0; |
| } |
| |
| /* Configure M_CAN chip: |
| * - set rx buffer/fifo element size |
| * - configure rx fifo |
| * - accept non-matching frame into fifo 0 |
| * - configure tx buffer |
| * - >= v3.1.x: TX FIFO is used |
| * - configure mode |
| * - setup bittiming |
| * - configure timestamp generation |
| */ |
| static void m_can_chip_config(struct net_device *dev) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| u32 cccr, test; |
| |
| m_can_config_endisable(cdev, true); |
| |
| /* RX Buffer/FIFO Element Size 64 bytes data field */ |
| m_can_write(cdev, M_CAN_RXESC, |
| FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) | |
| FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) | |
| FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B)); |
| |
| /* Accept Non-matching Frames Into FIFO 0 */ |
| m_can_write(cdev, M_CAN_GFC, 0x0); |
| |
| if (cdev->version == 30) { |
| /* only support one Tx Buffer currently */ |
| m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) | |
| cdev->mcfg[MRAM_TXB].off); |
| } else { |
| /* TX FIFO is used for newer IP Core versions */ |
| m_can_write(cdev, M_CAN_TXBC, |
| FIELD_PREP(TXBC_TFQS_MASK, |
| cdev->mcfg[MRAM_TXB].num) | |
| cdev->mcfg[MRAM_TXB].off); |
| } |
| |
| /* support 64 bytes payload */ |
| m_can_write(cdev, M_CAN_TXESC, |
| FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B)); |
| |
| /* TX Event FIFO */ |
| if (cdev->version == 30) { |
| m_can_write(cdev, M_CAN_TXEFC, |
| FIELD_PREP(TXEFC_EFS_MASK, 1) | |
| cdev->mcfg[MRAM_TXE].off); |
| } else { |
| /* Full TX Event FIFO is used */ |
| m_can_write(cdev, M_CAN_TXEFC, |
| FIELD_PREP(TXEFC_EFS_MASK, |
| cdev->mcfg[MRAM_TXE].num) | |
| cdev->mcfg[MRAM_TXE].off); |
| } |
| |
| /* rx fifo configuration, blocking mode, fifo size 1 */ |
| m_can_write(cdev, M_CAN_RXF0C, |
| FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) | |
| cdev->mcfg[MRAM_RXF0].off); |
| |
| m_can_write(cdev, M_CAN_RXF1C, |
| FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) | |
| cdev->mcfg[MRAM_RXF1].off); |
| |
| cccr = m_can_read(cdev, M_CAN_CCCR); |
| test = m_can_read(cdev, M_CAN_TEST); |
| test &= ~TEST_LBCK; |
| if (cdev->version == 30) { |
| /* Version 3.0.x */ |
| |
| cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | |
| FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) | |
| FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK))); |
| |
| if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) |
| cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS); |
| |
| } else { |
| /* Version 3.1.x or 3.2.x */ |
| cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | |
| CCCR_NISO | CCCR_DAR); |
| |
| /* Only 3.2.x has NISO Bit implemented */ |
| if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) |
| cccr |= CCCR_NISO; |
| |
| if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) |
| cccr |= (CCCR_BRSE | CCCR_FDOE); |
| } |
| |
| /* Loopback Mode */ |
| if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { |
| cccr |= CCCR_TEST | CCCR_MON; |
| test |= TEST_LBCK; |
| } |
| |
| /* Enable Monitoring (all versions) */ |
| if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) |
| cccr |= CCCR_MON; |
| |
| /* Disable Auto Retransmission (all versions) */ |
| if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) |
| cccr |= CCCR_DAR; |
| |
| /* Write config */ |
| m_can_write(cdev, M_CAN_CCCR, cccr); |
| m_can_write(cdev, M_CAN_TEST, test); |
| |
| /* Enable interrupts */ |
| m_can_write(cdev, M_CAN_IR, IR_ALL_INT); |
| if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) |
| if (cdev->version == 30) |
| m_can_write(cdev, M_CAN_IE, IR_ALL_INT & |
| ~(IR_ERR_LEC_30X)); |
| else |
| m_can_write(cdev, M_CAN_IE, IR_ALL_INT & |
| ~(IR_ERR_LEC_31X)); |
| else |
| m_can_write(cdev, M_CAN_IE, IR_ALL_INT); |
| |
| /* route all interrupts to INT0 */ |
| m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); |
| |
| /* set bittiming params */ |
| m_can_set_bittiming(dev); |
| |
| /* enable internal timestamp generation, with a prescalar of 16. The |
| * prescalar is applied to the nominal bit timing |
| */ |
| m_can_write(cdev, M_CAN_TSCC, |
| FIELD_PREP(TSCC_TCP_MASK, 0xf) | |
| FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL)); |
| |
| m_can_config_endisable(cdev, false); |
| |
| if (cdev->ops->init) |
| cdev->ops->init(cdev); |
| } |
| |
| static void m_can_start(struct net_device *dev) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| |
| /* basic m_can configuration */ |
| m_can_chip_config(dev); |
| |
| cdev->can.state = CAN_STATE_ERROR_ACTIVE; |
| |
| m_can_enable_all_interrupts(cdev); |
| } |
| |
| static int m_can_set_mode(struct net_device *dev, enum can_mode mode) |
| { |
| switch (mode) { |
| case CAN_MODE_START: |
| m_can_clean(dev); |
| m_can_start(dev); |
| netif_wake_queue(dev); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| /* Checks core release number of M_CAN |
| * returns 0 if an unsupported device is detected |
| * else it returns the release and step coded as: |
| * return value = 10 * <release> + 1 * <step> |
| */ |
| static int m_can_check_core_release(struct m_can_classdev *cdev) |
| { |
| u32 crel_reg; |
| u8 rel; |
| u8 step; |
| int res; |
| |
| /* Read Core Release Version and split into version number |
| * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; |
| */ |
| crel_reg = m_can_read(cdev, M_CAN_CREL); |
| rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg); |
| step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg); |
| |
| if (rel == 3) { |
| /* M_CAN v3.x.y: create return value */ |
| res = 30 + step; |
| } else { |
| /* Unsupported M_CAN version */ |
| res = 0; |
| } |
| |
| return res; |
| } |
| |
| /* Selectable Non ISO support only in version 3.2.x |
| * This function checks if the bit is writable. |
| */ |
| static bool m_can_niso_supported(struct m_can_classdev *cdev) |
| { |
| u32 cccr_reg, cccr_poll = 0; |
| int niso_timeout = -ETIMEDOUT; |
| int i; |
| |
| m_can_config_endisable(cdev, true); |
| cccr_reg = m_can_read(cdev, M_CAN_CCCR); |
| cccr_reg |= CCCR_NISO; |
| m_can_write(cdev, M_CAN_CCCR, cccr_reg); |
| |
| for (i = 0; i <= 10; i++) { |
| cccr_poll = m_can_read(cdev, M_CAN_CCCR); |
| if (cccr_poll == cccr_reg) { |
| niso_timeout = 0; |
| break; |
| } |
| |
| usleep_range(1, 5); |
| } |
| |
| /* Clear NISO */ |
| cccr_reg &= ~(CCCR_NISO); |
| m_can_write(cdev, M_CAN_CCCR, cccr_reg); |
| |
| m_can_config_endisable(cdev, false); |
| |
| /* return false if time out (-ETIMEDOUT), else return true */ |
| return !niso_timeout; |
| } |
| |
| static int m_can_dev_setup(struct m_can_classdev *cdev) |
| { |
| struct net_device *dev = cdev->net; |
| int m_can_version, err; |
| |
| m_can_version = m_can_check_core_release(cdev); |
| /* return if unsupported version */ |
| if (!m_can_version) { |
| dev_err(cdev->dev, "Unsupported version number: %2d", |
| m_can_version); |
| return -EINVAL; |
| } |
| |
| if (!cdev->is_peripheral) |
| netif_napi_add(dev, &cdev->napi, |
| m_can_poll, NAPI_POLL_WEIGHT); |
| |
| /* Shared properties of all M_CAN versions */ |
| cdev->version = m_can_version; |
| cdev->can.do_set_mode = m_can_set_mode; |
| cdev->can.do_get_berr_counter = m_can_get_berr_counter; |
| |
| /* Set M_CAN supported operations */ |
| cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | |
| CAN_CTRLMODE_LISTENONLY | |
| CAN_CTRLMODE_BERR_REPORTING | |
| CAN_CTRLMODE_FD | |
| CAN_CTRLMODE_ONE_SHOT; |
| |
| /* Set properties depending on M_CAN version */ |
| switch (cdev->version) { |
| case 30: |
| /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ |
| err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); |
| if (err) |
| return err; |
| cdev->can.bittiming_const = &m_can_bittiming_const_30X; |
| cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X; |
| break; |
| case 31: |
| /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ |
| err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); |
| if (err) |
| return err; |
| cdev->can.bittiming_const = &m_can_bittiming_const_31X; |
| cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; |
| break; |
| case 32: |
| case 33: |
| /* Support both MCAN version v3.2.x and v3.3.0 */ |
| cdev->can.bittiming_const = &m_can_bittiming_const_31X; |
| cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; |
| |
| cdev->can.ctrlmode_supported |= |
| (m_can_niso_supported(cdev) ? |
| CAN_CTRLMODE_FD_NON_ISO : 0); |
| break; |
| default: |
| dev_err(cdev->dev, "Unsupported version number: %2d", |
| cdev->version); |
| return -EINVAL; |
| } |
| |
| if (cdev->ops->init) |
| cdev->ops->init(cdev); |
| |
| return 0; |
| } |
| |
| static void m_can_stop(struct net_device *dev) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| |
| /* disable all interrupts */ |
| m_can_disable_all_interrupts(cdev); |
| |
| /* Set init mode to disengage from the network */ |
| m_can_config_endisable(cdev, true); |
| |
| /* set the state as STOPPED */ |
| cdev->can.state = CAN_STATE_STOPPED; |
| } |
| |
| static int m_can_close(struct net_device *dev) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| |
| netif_stop_queue(dev); |
| |
| if (!cdev->is_peripheral) |
| napi_disable(&cdev->napi); |
| |
| m_can_stop(dev); |
| m_can_clk_stop(cdev); |
| free_irq(dev->irq, dev); |
| |
| if (cdev->is_peripheral) { |
| cdev->tx_skb = NULL; |
| destroy_workqueue(cdev->tx_wq); |
| cdev->tx_wq = NULL; |
| } |
| |
| if (cdev->is_peripheral) |
| can_rx_offload_disable(&cdev->offload); |
| |
| close_candev(dev); |
| |
| phy_power_off(cdev->transceiver); |
| |
| return 0; |
| } |
| |
| static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| /*get wrap around for loopback skb index */ |
| unsigned int wrap = cdev->can.echo_skb_max; |
| int next_idx; |
| |
| /* calculate next index */ |
| next_idx = (++putidx >= wrap ? 0 : putidx); |
| |
| /* check if occupied */ |
| return !!cdev->can.echo_skb[next_idx]; |
| } |
| |
| static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) |
| { |
| struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; |
| struct net_device *dev = cdev->net; |
| struct sk_buff *skb = cdev->tx_skb; |
| struct id_and_dlc fifo_header; |
| u32 cccr, fdflags; |
| int err; |
| int putidx; |
| |
| cdev->tx_skb = NULL; |
| |
| /* Generate ID field for TX buffer Element */ |
| /* Common to all supported M_CAN versions */ |
| if (cf->can_id & CAN_EFF_FLAG) { |
| fifo_header.id = cf->can_id & CAN_EFF_MASK; |
| fifo_header.id |= TX_BUF_XTD; |
| } else { |
| fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18); |
| } |
| |
| if (cf->can_id & CAN_RTR_FLAG) |
| fifo_header.id |= TX_BUF_RTR; |
| |
| if (cdev->version == 30) { |
| netif_stop_queue(dev); |
| |
| fifo_header.dlc = can_fd_len2dlc(cf->len) << 16; |
| |
| /* Write the frame ID, DLC, and payload to the FIFO element. */ |
| err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2); |
| if (err) |
| goto out_fail; |
| |
| err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA, |
| cf->data, DIV_ROUND_UP(cf->len, 4)); |
| if (err) |
| goto out_fail; |
| |
| if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { |
| cccr = m_can_read(cdev, M_CAN_CCCR); |
| cccr &= ~CCCR_CMR_MASK; |
| if (can_is_canfd_skb(skb)) { |
| if (cf->flags & CANFD_BRS) |
| cccr |= FIELD_PREP(CCCR_CMR_MASK, |
| CCCR_CMR_CANFD_BRS); |
| else |
| cccr |= FIELD_PREP(CCCR_CMR_MASK, |
| CCCR_CMR_CANFD); |
| } else { |
| cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN); |
| } |
| m_can_write(cdev, M_CAN_CCCR, cccr); |
| } |
| m_can_write(cdev, M_CAN_TXBTIE, 0x1); |
| |
| can_put_echo_skb(skb, dev, 0, 0); |
| |
| m_can_write(cdev, M_CAN_TXBAR, 0x1); |
| /* End of xmit function for version 3.0.x */ |
| } else { |
| /* Transmit routine for version >= v3.1.x */ |
| |
| /* Check if FIFO full */ |
| if (m_can_tx_fifo_full(cdev)) { |
| /* This shouldn't happen */ |
| netif_stop_queue(dev); |
| netdev_warn(dev, |
| "TX queue active although FIFO is full."); |
| |
| if (cdev->is_peripheral) { |
| kfree_skb(skb); |
| dev->stats.tx_dropped++; |
| return NETDEV_TX_OK; |
| } else { |
| return NETDEV_TX_BUSY; |
| } |
| } |
| |
| /* get put index for frame */ |
| putidx = FIELD_GET(TXFQS_TFQPI_MASK, |
| m_can_read(cdev, M_CAN_TXFQS)); |
| |
| /* Construct DLC Field, with CAN-FD configuration. |
| * Use the put index of the fifo as the message marker, |
| * used in the TX interrupt for sending the correct echo frame. |
| */ |
| |
| /* get CAN FD configuration of frame */ |
| fdflags = 0; |
| if (can_is_canfd_skb(skb)) { |
| fdflags |= TX_BUF_FDF; |
| if (cf->flags & CANFD_BRS) |
| fdflags |= TX_BUF_BRS; |
| } |
| |
| fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) | |
| FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) | |
| fdflags | TX_BUF_EFC; |
| err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2); |
| if (err) |
| goto out_fail; |
| |
| err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA, |
| cf->data, DIV_ROUND_UP(cf->len, 4)); |
| if (err) |
| goto out_fail; |
| |
| /* Push loopback echo. |
| * Will be looped back on TX interrupt based on message marker |
| */ |
| can_put_echo_skb(skb, dev, putidx, 0); |
| |
| /* Enable TX FIFO element to start transfer */ |
| m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); |
| |
| /* stop network queue if fifo full */ |
| if (m_can_tx_fifo_full(cdev) || |
| m_can_next_echo_skb_occupied(dev, putidx)) |
| netif_stop_queue(dev); |
| } |
| |
| return NETDEV_TX_OK; |
| |
| out_fail: |
| netdev_err(dev, "FIFO write returned %d\n", err); |
| m_can_disable_all_interrupts(cdev); |
| return NETDEV_TX_BUSY; |
| } |
| |
| static void m_can_tx_work_queue(struct work_struct *ws) |
| { |
| struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, |
| tx_work); |
| |
| m_can_tx_handler(cdev); |
| } |
| |
| static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| |
| if (can_dropped_invalid_skb(dev, skb)) |
| return NETDEV_TX_OK; |
| |
| if (cdev->is_peripheral) { |
| if (cdev->tx_skb) { |
| netdev_err(dev, "hard_xmit called while tx busy\n"); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (cdev->can.state == CAN_STATE_BUS_OFF) { |
| m_can_clean(dev); |
| } else { |
| /* Need to stop the queue to avoid numerous requests |
| * from being sent. Suggested improvement is to create |
| * a queueing mechanism that will queue the skbs and |
| * process them in order. |
| */ |
| cdev->tx_skb = skb; |
| netif_stop_queue(cdev->net); |
| queue_work(cdev->tx_wq, &cdev->tx_work); |
| } |
| } else { |
| cdev->tx_skb = skb; |
| return m_can_tx_handler(cdev); |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static int m_can_open(struct net_device *dev) |
| { |
| struct m_can_classdev *cdev = netdev_priv(dev); |
| int err; |
| |
| err = phy_power_on(cdev->transceiver); |
| if (err) |
| return err; |
| |
| err = m_can_clk_start(cdev); |
| if (err) |
| goto out_phy_power_off; |
| |
| /* open the can device */ |
| err = open_candev(dev); |
| if (err) { |
| netdev_err(dev, "failed to open can device\n"); |
| goto exit_disable_clks; |
| } |
| |
| if (cdev->is_peripheral) |
| can_rx_offload_enable(&cdev->offload); |
| |
| /* register interrupt handler */ |
| if (cdev->is_peripheral) { |
| cdev->tx_skb = NULL; |
| cdev->tx_wq = alloc_workqueue("mcan_wq", |
| WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); |
| if (!cdev->tx_wq) { |
| err = -ENOMEM; |
| goto out_wq_fail; |
| } |
| |
| INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); |
| |
| err = request_threaded_irq(dev->irq, NULL, m_can_isr, |
| IRQF_ONESHOT, |
| dev->name, dev); |
| } else { |
| err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, |
| dev); |
| } |
| |
| if (err < 0) { |
| netdev_err(dev, "failed to request interrupt\n"); |
| goto exit_irq_fail; |
| } |
| |
| /* start the m_can controller */ |
| m_can_start(dev); |
| |
| if (!cdev->is_peripheral) |
| napi_enable(&cdev->napi); |
| |
| netif_start_queue(dev); |
| |
| return 0; |
| |
| exit_irq_fail: |
| if (cdev->is_peripheral) |
| destroy_workqueue(cdev->tx_wq); |
| out_wq_fail: |
| if (cdev->is_peripheral) |
| can_rx_offload_disable(&cdev->offload); |
| close_candev(dev); |
| exit_disable_clks: |
| m_can_clk_stop(cdev); |
| out_phy_power_off: |
| phy_power_off(cdev->transceiver); |
| return err; |
| } |
| |
| static const struct net_device_ops m_can_netdev_ops = { |
| .ndo_open = m_can_open, |
| .ndo_stop = m_can_close, |
| .ndo_start_xmit = m_can_start_xmit, |
| .ndo_change_mtu = can_change_mtu, |
| }; |
| |
| static int register_m_can_dev(struct net_device *dev) |
| { |
| dev->flags |= IFF_ECHO; /* we support local echo */ |
| dev->netdev_ops = &m_can_netdev_ops; |
| |
| return register_candev(dev); |
| } |
| |
| static void m_can_of_parse_mram(struct m_can_classdev *cdev, |
| const u32 *mram_config_vals) |
| { |
| cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; |
| cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; |
| cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + |
| cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; |
| cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; |
| cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + |
| cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; |
| cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & |
| FIELD_MAX(RXFC_FS_MASK); |
| cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + |
| cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; |
| cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & |
| FIELD_MAX(RXFC_FS_MASK); |
| cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + |
| cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; |
| cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; |
| cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + |
| cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; |
| cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; |
| cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + |
| cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; |
| cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & |
| FIELD_MAX(TXBC_NDTB_MASK); |
| |
| dev_dbg(cdev->dev, |
| "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", |
| cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, |
| cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, |
| cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, |
| cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, |
| cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, |
| cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, |
| cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); |
| } |
| |
| int m_can_init_ram(struct m_can_classdev *cdev) |
| { |
| int end, i, start; |
| int err = 0; |
| |
| /* initialize the entire Message RAM in use to avoid possible |
| * ECC/parity checksum errors when reading an uninitialized buffer |
| */ |
| start = cdev->mcfg[MRAM_SIDF].off; |
| end = cdev->mcfg[MRAM_TXB].off + |
| cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; |
| |
| for (i = start; i < end; i += 4) { |
| err = m_can_fifo_write_no_off(cdev, i, 0x0); |
| if (err) |
| break; |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(m_can_init_ram); |
| |
| int m_can_class_get_clocks(struct m_can_classdev *cdev) |
| { |
| int ret = 0; |
| |
| cdev->hclk = devm_clk_get(cdev->dev, "hclk"); |
| cdev->cclk = devm_clk_get(cdev->dev, "cclk"); |
| |
| if (IS_ERR(cdev->cclk)) { |
| dev_err(cdev->dev, "no clock found\n"); |
| ret = -ENODEV; |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(m_can_class_get_clocks); |
| |
| struct m_can_classdev *m_can_class_allocate_dev(struct device *dev, |
| int sizeof_priv) |
| { |
| struct m_can_classdev *class_dev = NULL; |
| u32 mram_config_vals[MRAM_CFG_LEN]; |
| struct net_device *net_dev; |
| u32 tx_fifo_size; |
| int ret; |
| |
| ret = fwnode_property_read_u32_array(dev_fwnode(dev), |
| "bosch,mram-cfg", |
| mram_config_vals, |
| sizeof(mram_config_vals) / 4); |
| if (ret) { |
| dev_err(dev, "Could not get Message RAM configuration."); |
| goto out; |
| } |
| |
| /* Get TX FIFO size |
| * Defines the total amount of echo buffers for loopback |
| */ |
| tx_fifo_size = mram_config_vals[7]; |
| |
| /* allocate the m_can device */ |
| net_dev = alloc_candev(sizeof_priv, tx_fifo_size); |
| if (!net_dev) { |
| dev_err(dev, "Failed to allocate CAN device"); |
| goto out; |
| } |
| |
| class_dev = netdev_priv(net_dev); |
| class_dev->net = net_dev; |
| class_dev->dev = dev; |
| SET_NETDEV_DEV(net_dev, dev); |
| |
| m_can_of_parse_mram(class_dev, mram_config_vals); |
| out: |
| return class_dev; |
| } |
| EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); |
| |
| void m_can_class_free_dev(struct net_device *net) |
| { |
| free_candev(net); |
| } |
| EXPORT_SYMBOL_GPL(m_can_class_free_dev); |
| |
| int m_can_class_register(struct m_can_classdev *cdev) |
| { |
| int ret; |
| |
| if (cdev->pm_clock_support) { |
| ret = m_can_clk_start(cdev); |
| if (ret) |
| return ret; |
| } |
| |
| if (cdev->is_peripheral) { |
| ret = can_rx_offload_add_manual(cdev->net, &cdev->offload, |
| NAPI_POLL_WEIGHT); |
| if (ret) |
| goto clk_disable; |
| } |
| |
| ret = m_can_dev_setup(cdev); |
| if (ret) |
| goto rx_offload_del; |
| |
| ret = register_m_can_dev(cdev->net); |
| if (ret) { |
| dev_err(cdev->dev, "registering %s failed (err=%d)\n", |
| cdev->net->name, ret); |
| goto rx_offload_del; |
| } |
| |
| of_can_transceiver(cdev->net); |
| |
| dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n", |
| KBUILD_MODNAME, cdev->net->irq, cdev->version); |
| |
| /* Probe finished |
| * Stop clocks. They will be reactivated once the M_CAN device is opened |
| */ |
| m_can_clk_stop(cdev); |
| |
| return 0; |
| |
| rx_offload_del: |
| if (cdev->is_peripheral) |
| can_rx_offload_del(&cdev->offload); |
| clk_disable: |
| m_can_clk_stop(cdev); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(m_can_class_register); |
| |
| void m_can_class_unregister(struct m_can_classdev *cdev) |
| { |
| if (cdev->is_peripheral) |
| can_rx_offload_del(&cdev->offload); |
| unregister_candev(cdev->net); |
| } |
| EXPORT_SYMBOL_GPL(m_can_class_unregister); |
| |
| int m_can_class_suspend(struct device *dev) |
| { |
| struct m_can_classdev *cdev = dev_get_drvdata(dev); |
| struct net_device *ndev = cdev->net; |
| |
| if (netif_running(ndev)) { |
| netif_stop_queue(ndev); |
| netif_device_detach(ndev); |
| m_can_stop(ndev); |
| m_can_clk_stop(cdev); |
| } |
| |
| pinctrl_pm_select_sleep_state(dev); |
| |
| cdev->can.state = CAN_STATE_SLEEPING; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(m_can_class_suspend); |
| |
| int m_can_class_resume(struct device *dev) |
| { |
| struct m_can_classdev *cdev = dev_get_drvdata(dev); |
| struct net_device *ndev = cdev->net; |
| |
| pinctrl_pm_select_default_state(dev); |
| |
| cdev->can.state = CAN_STATE_ERROR_ACTIVE; |
| |
| if (netif_running(ndev)) { |
| int ret; |
| |
| ret = m_can_clk_start(cdev); |
| if (ret) |
| return ret; |
| |
| m_can_init_ram(cdev); |
| m_can_start(ndev); |
| netif_device_attach(ndev); |
| netif_start_queue(ndev); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(m_can_class_resume); |
| |
| MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); |
| MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); |