| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * *************************************************************************** |
| * Marvell Armada-3700 Serial Driver |
| * Author: Wilson Ding <dingwei@marvell.com> |
| * Copyright (C) 2015 Marvell International Ltd. |
| * *************************************************************************** |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/clk-provider.h> |
| #include <linux/console.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/math64.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_device.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_platform.h> |
| #include <linux/platform_device.h> |
| #include <linux/serial.h> |
| #include <linux/serial_core.h> |
| #include <linux/slab.h> |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| |
| /* Register Map */ |
| #define UART_STD_RBR 0x00 |
| #define UART_EXT_RBR 0x18 |
| |
| #define UART_STD_TSH 0x04 |
| #define UART_EXT_TSH 0x1C |
| |
| #define UART_STD_CTRL1 0x08 |
| #define UART_EXT_CTRL1 0x04 |
| #define CTRL_SOFT_RST BIT(31) |
| #define CTRL_TXFIFO_RST BIT(15) |
| #define CTRL_RXFIFO_RST BIT(14) |
| #define CTRL_SND_BRK_SEQ BIT(11) |
| #define CTRL_BRK_DET_INT BIT(3) |
| #define CTRL_FRM_ERR_INT BIT(2) |
| #define CTRL_PAR_ERR_INT BIT(1) |
| #define CTRL_OVR_ERR_INT BIT(0) |
| #define CTRL_BRK_INT (CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \ |
| CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT) |
| |
| #define UART_STD_CTRL2 UART_STD_CTRL1 |
| #define UART_EXT_CTRL2 0x20 |
| #define CTRL_STD_TX_RDY_INT BIT(5) |
| #define CTRL_EXT_TX_RDY_INT BIT(6) |
| #define CTRL_STD_RX_RDY_INT BIT(4) |
| #define CTRL_EXT_RX_RDY_INT BIT(5) |
| |
| #define UART_STAT 0x0C |
| #define STAT_TX_FIFO_EMP BIT(13) |
| #define STAT_TX_FIFO_FUL BIT(11) |
| #define STAT_TX_EMP BIT(6) |
| #define STAT_STD_TX_RDY BIT(5) |
| #define STAT_EXT_TX_RDY BIT(15) |
| #define STAT_STD_RX_RDY BIT(4) |
| #define STAT_EXT_RX_RDY BIT(14) |
| #define STAT_BRK_DET BIT(3) |
| #define STAT_FRM_ERR BIT(2) |
| #define STAT_PAR_ERR BIT(1) |
| #define STAT_OVR_ERR BIT(0) |
| #define STAT_BRK_ERR (STAT_BRK_DET | STAT_FRM_ERR \ |
| | STAT_PAR_ERR | STAT_OVR_ERR) |
| |
| /* |
| * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART |
| * Clock Control register controls UART1 and bit 20 controls UART2. But in |
| * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an |
| * error in Marvell's documentation. Hence following CLK_DIS macros are swapped. |
| */ |
| |
| #define UART_BRDV 0x10 |
| /* These bits are located in UART1 address space and control UART2 */ |
| #define UART2_CLK_DIS BIT(21) |
| /* These bits are located in UART1 address space and control UART1 */ |
| #define UART1_CLK_DIS BIT(20) |
| /* These bits are located in UART1 address space and control both UARTs */ |
| #define CLK_NO_XTAL BIT(19) |
| #define CLK_TBG_DIV1_SHIFT 15 |
| #define CLK_TBG_DIV1_MASK 0x7 |
| #define CLK_TBG_DIV1_MAX 6 |
| #define CLK_TBG_DIV2_SHIFT 12 |
| #define CLK_TBG_DIV2_MASK 0x7 |
| #define CLK_TBG_DIV2_MAX 6 |
| #define CLK_TBG_SEL_SHIFT 10 |
| #define CLK_TBG_SEL_MASK 0x3 |
| /* These bits are located in both UARTs address space */ |
| #define BRDV_BAUD_MASK 0x3FF |
| #define BRDV_BAUD_MAX BRDV_BAUD_MASK |
| |
| #define UART_OSAMP 0x14 |
| #define OSAMP_DEFAULT_DIVISOR 16 |
| #define OSAMP_DIVISORS_MASK 0x3F3F3F3F |
| #define OSAMP_MAX_DIVISOR 63 |
| |
| #define MVEBU_NR_UARTS 2 |
| |
| #define MVEBU_UART_TYPE "mvebu-uart" |
| #define DRIVER_NAME "mvebu_serial" |
| |
| enum { |
| /* Either there is only one summed IRQ... */ |
| UART_IRQ_SUM = 0, |
| /* ...or there are two separate IRQ for RX and TX */ |
| UART_RX_IRQ = 0, |
| UART_TX_IRQ, |
| UART_IRQ_COUNT |
| }; |
| |
| /* Diverging register offsets */ |
| struct uart_regs_layout { |
| unsigned int rbr; |
| unsigned int tsh; |
| unsigned int ctrl; |
| unsigned int intr; |
| }; |
| |
| /* Diverging flags */ |
| struct uart_flags { |
| unsigned int ctrl_tx_rdy_int; |
| unsigned int ctrl_rx_rdy_int; |
| unsigned int stat_tx_rdy; |
| unsigned int stat_rx_rdy; |
| }; |
| |
| /* Driver data, a structure for each UART port */ |
| struct mvebu_uart_driver_data { |
| bool is_ext; |
| struct uart_regs_layout regs; |
| struct uart_flags flags; |
| }; |
| |
| /* Saved registers during suspend */ |
| struct mvebu_uart_pm_regs { |
| unsigned int rbr; |
| unsigned int tsh; |
| unsigned int ctrl; |
| unsigned int intr; |
| unsigned int stat; |
| unsigned int brdv; |
| unsigned int osamp; |
| }; |
| |
| /* MVEBU UART driver structure */ |
| struct mvebu_uart { |
| struct uart_port *port; |
| struct clk *clk; |
| int irq[UART_IRQ_COUNT]; |
| struct mvebu_uart_driver_data *data; |
| #if defined(CONFIG_PM) |
| struct mvebu_uart_pm_regs pm_regs; |
| #endif /* CONFIG_PM */ |
| }; |
| |
| static struct mvebu_uart *to_mvuart(struct uart_port *port) |
| { |
| return (struct mvebu_uart *)port->private_data; |
| } |
| |
| #define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext) |
| |
| #define UART_RBR(port) (to_mvuart(port)->data->regs.rbr) |
| #define UART_TSH(port) (to_mvuart(port)->data->regs.tsh) |
| #define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl) |
| #define UART_INTR(port) (to_mvuart(port)->data->regs.intr) |
| |
| #define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int) |
| #define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int) |
| #define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy) |
| #define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy) |
| |
| static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS]; |
| |
| static DEFINE_SPINLOCK(mvebu_uart_lock); |
| |
| /* Core UART Driver Operations */ |
| static unsigned int mvebu_uart_tx_empty(struct uart_port *port) |
| { |
| unsigned long flags; |
| unsigned int st; |
| |
| spin_lock_irqsave(&port->lock, flags); |
| st = readl(port->membase + UART_STAT); |
| spin_unlock_irqrestore(&port->lock, flags); |
| |
| return (st & STAT_TX_EMP) ? TIOCSER_TEMT : 0; |
| } |
| |
| static unsigned int mvebu_uart_get_mctrl(struct uart_port *port) |
| { |
| return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR; |
| } |
| |
| static void mvebu_uart_set_mctrl(struct uart_port *port, |
| unsigned int mctrl) |
| { |
| /* |
| * Even if we do not support configuring the modem control lines, this |
| * function must be proided to the serial core |
| */ |
| } |
| |
| static void mvebu_uart_stop_tx(struct uart_port *port) |
| { |
| unsigned int ctl = readl(port->membase + UART_INTR(port)); |
| |
| ctl &= ~CTRL_TX_RDY_INT(port); |
| writel(ctl, port->membase + UART_INTR(port)); |
| } |
| |
| static void mvebu_uart_start_tx(struct uart_port *port) |
| { |
| unsigned int ctl; |
| struct circ_buf *xmit = &port->state->xmit; |
| |
| if (IS_EXTENDED(port) && !uart_circ_empty(xmit)) { |
| writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port)); |
| xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); |
| port->icount.tx++; |
| } |
| |
| ctl = readl(port->membase + UART_INTR(port)); |
| ctl |= CTRL_TX_RDY_INT(port); |
| writel(ctl, port->membase + UART_INTR(port)); |
| } |
| |
| static void mvebu_uart_stop_rx(struct uart_port *port) |
| { |
| unsigned int ctl; |
| |
| ctl = readl(port->membase + UART_CTRL(port)); |
| ctl &= ~CTRL_BRK_INT; |
| writel(ctl, port->membase + UART_CTRL(port)); |
| |
| ctl = readl(port->membase + UART_INTR(port)); |
| ctl &= ~CTRL_RX_RDY_INT(port); |
| writel(ctl, port->membase + UART_INTR(port)); |
| } |
| |
| static void mvebu_uart_break_ctl(struct uart_port *port, int brk) |
| { |
| unsigned int ctl; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&port->lock, flags); |
| ctl = readl(port->membase + UART_CTRL(port)); |
| if (brk == -1) |
| ctl |= CTRL_SND_BRK_SEQ; |
| else |
| ctl &= ~CTRL_SND_BRK_SEQ; |
| writel(ctl, port->membase + UART_CTRL(port)); |
| spin_unlock_irqrestore(&port->lock, flags); |
| } |
| |
| static void mvebu_uart_rx_chars(struct uart_port *port, unsigned int status) |
| { |
| struct tty_port *tport = &port->state->port; |
| unsigned char ch = 0; |
| char flag = 0; |
| |
| do { |
| if (status & STAT_RX_RDY(port)) { |
| ch = readl(port->membase + UART_RBR(port)); |
| ch &= 0xff; |
| flag = TTY_NORMAL; |
| port->icount.rx++; |
| |
| if (status & STAT_PAR_ERR) |
| port->icount.parity++; |
| } |
| |
| if (status & STAT_BRK_DET) { |
| port->icount.brk++; |
| status &= ~(STAT_FRM_ERR | STAT_PAR_ERR); |
| if (uart_handle_break(port)) |
| goto ignore_char; |
| } |
| |
| if (status & STAT_OVR_ERR) |
| port->icount.overrun++; |
| |
| if (status & STAT_FRM_ERR) |
| port->icount.frame++; |
| |
| if (uart_handle_sysrq_char(port, ch)) |
| goto ignore_char; |
| |
| if (status & port->ignore_status_mask & STAT_PAR_ERR) |
| status &= ~STAT_RX_RDY(port); |
| |
| status &= port->read_status_mask; |
| |
| if (status & STAT_PAR_ERR) |
| flag = TTY_PARITY; |
| |
| status &= ~port->ignore_status_mask; |
| |
| if (status & STAT_RX_RDY(port)) |
| tty_insert_flip_char(tport, ch, flag); |
| |
| if (status & STAT_BRK_DET) |
| tty_insert_flip_char(tport, 0, TTY_BREAK); |
| |
| if (status & STAT_FRM_ERR) |
| tty_insert_flip_char(tport, 0, TTY_FRAME); |
| |
| if (status & STAT_OVR_ERR) |
| tty_insert_flip_char(tport, 0, TTY_OVERRUN); |
| |
| ignore_char: |
| status = readl(port->membase + UART_STAT); |
| } while (status & (STAT_RX_RDY(port) | STAT_BRK_DET)); |
| |
| tty_flip_buffer_push(tport); |
| } |
| |
| static void mvebu_uart_tx_chars(struct uart_port *port, unsigned int status) |
| { |
| struct circ_buf *xmit = &port->state->xmit; |
| unsigned int count; |
| unsigned int st; |
| |
| if (port->x_char) { |
| writel(port->x_char, port->membase + UART_TSH(port)); |
| port->icount.tx++; |
| port->x_char = 0; |
| return; |
| } |
| |
| if (uart_circ_empty(xmit) || uart_tx_stopped(port)) { |
| mvebu_uart_stop_tx(port); |
| return; |
| } |
| |
| for (count = 0; count < port->fifosize; count++) { |
| writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port)); |
| xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); |
| port->icount.tx++; |
| |
| if (uart_circ_empty(xmit)) |
| break; |
| |
| st = readl(port->membase + UART_STAT); |
| if (st & STAT_TX_FIFO_FUL) |
| break; |
| } |
| |
| if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) |
| uart_write_wakeup(port); |
| |
| if (uart_circ_empty(xmit)) |
| mvebu_uart_stop_tx(port); |
| } |
| |
| static irqreturn_t mvebu_uart_isr(int irq, void *dev_id) |
| { |
| struct uart_port *port = (struct uart_port *)dev_id; |
| unsigned int st = readl(port->membase + UART_STAT); |
| |
| if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR | |
| STAT_BRK_DET)) |
| mvebu_uart_rx_chars(port, st); |
| |
| if (st & STAT_TX_RDY(port)) |
| mvebu_uart_tx_chars(port, st); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t mvebu_uart_rx_isr(int irq, void *dev_id) |
| { |
| struct uart_port *port = (struct uart_port *)dev_id; |
| unsigned int st = readl(port->membase + UART_STAT); |
| |
| if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR | |
| STAT_BRK_DET)) |
| mvebu_uart_rx_chars(port, st); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t mvebu_uart_tx_isr(int irq, void *dev_id) |
| { |
| struct uart_port *port = (struct uart_port *)dev_id; |
| unsigned int st = readl(port->membase + UART_STAT); |
| |
| if (st & STAT_TX_RDY(port)) |
| mvebu_uart_tx_chars(port, st); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int mvebu_uart_startup(struct uart_port *port) |
| { |
| struct mvebu_uart *mvuart = to_mvuart(port); |
| unsigned int ctl; |
| int ret; |
| |
| writel(CTRL_TXFIFO_RST | CTRL_RXFIFO_RST, |
| port->membase + UART_CTRL(port)); |
| udelay(1); |
| |
| /* Clear the error bits of state register before IRQ request */ |
| ret = readl(port->membase + UART_STAT); |
| ret |= STAT_BRK_ERR; |
| writel(ret, port->membase + UART_STAT); |
| |
| writel(CTRL_BRK_INT, port->membase + UART_CTRL(port)); |
| |
| ctl = readl(port->membase + UART_INTR(port)); |
| ctl |= CTRL_RX_RDY_INT(port); |
| writel(ctl, port->membase + UART_INTR(port)); |
| |
| if (!mvuart->irq[UART_TX_IRQ]) { |
| /* Old bindings with just one interrupt (UART0 only) */ |
| ret = devm_request_irq(port->dev, mvuart->irq[UART_IRQ_SUM], |
| mvebu_uart_isr, port->irqflags, |
| dev_name(port->dev), port); |
| if (ret) { |
| dev_err(port->dev, "unable to request IRQ %d\n", |
| mvuart->irq[UART_IRQ_SUM]); |
| return ret; |
| } |
| } else { |
| /* New bindings with an IRQ for RX and TX (both UART) */ |
| ret = devm_request_irq(port->dev, mvuart->irq[UART_RX_IRQ], |
| mvebu_uart_rx_isr, port->irqflags, |
| dev_name(port->dev), port); |
| if (ret) { |
| dev_err(port->dev, "unable to request IRQ %d\n", |
| mvuart->irq[UART_RX_IRQ]); |
| return ret; |
| } |
| |
| ret = devm_request_irq(port->dev, mvuart->irq[UART_TX_IRQ], |
| mvebu_uart_tx_isr, port->irqflags, |
| dev_name(port->dev), |
| port); |
| if (ret) { |
| dev_err(port->dev, "unable to request IRQ %d\n", |
| mvuart->irq[UART_TX_IRQ]); |
| devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], |
| port); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void mvebu_uart_shutdown(struct uart_port *port) |
| { |
| struct mvebu_uart *mvuart = to_mvuart(port); |
| |
| writel(0, port->membase + UART_INTR(port)); |
| |
| if (!mvuart->irq[UART_TX_IRQ]) { |
| devm_free_irq(port->dev, mvuart->irq[UART_IRQ_SUM], port); |
| } else { |
| devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], port); |
| devm_free_irq(port->dev, mvuart->irq[UART_TX_IRQ], port); |
| } |
| } |
| |
| static unsigned int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud) |
| { |
| unsigned int d_divisor, m_divisor; |
| unsigned long flags; |
| u32 brdv, osamp; |
| |
| if (!port->uartclk) |
| return 0; |
| |
| /* |
| * The baudrate is derived from the UART clock thanks to divisors: |
| * > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6 |
| * > D ("baud generator"): can divide the clock from 1 to 1023 |
| * > M ("fractional divisor"): allows a better accuracy (from 1 to 63) |
| * |
| * Exact formulas for calculating baudrate: |
| * |
| * with default x16 scheme: |
| * baudrate = xtal / (d * 16) |
| * baudrate = tbg / (d1 * d2 * d * 16) |
| * |
| * with fractional divisor: |
| * baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4))) |
| * baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4))) |
| * |
| * Oversampling value: |
| * osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24); |
| * |
| * Where m1 controls number of clock cycles per bit for bits 1,2,3; |
| * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10. |
| * |
| * To simplify baudrate setup set all the M prescalers to the same |
| * value. For baudrates 9600 Bd and higher, it is enough to use the |
| * default (x16) divisor or fractional divisor with M = 63, so there |
| * is no need to use real fractional support (where the M prescalers |
| * are not equal). |
| * |
| * When all the M prescalers are zeroed then default (x16) divisor is |
| * used. Default x16 scheme is more stable than M (fractional divisor), |
| * so use M only when D divisor is not enough to derive baudrate. |
| * |
| * Member port->uartclk is either xtal clock rate or TBG clock rate |
| * divided by (d1 * d2). So d1 and d2 are already set by the UART clock |
| * driver (and UART driver itself cannot change them). Moreover they are |
| * shared between both UARTs. |
| */ |
| |
| m_divisor = OSAMP_DEFAULT_DIVISOR; |
| d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor); |
| |
| if (d_divisor > BRDV_BAUD_MAX) { |
| /* |
| * Experiments show that small M divisors are unstable. |
| * Use maximal possible M = 63 and calculate D divisor. |
| */ |
| m_divisor = OSAMP_MAX_DIVISOR; |
| d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor); |
| } |
| |
| if (d_divisor < 1) |
| d_divisor = 1; |
| else if (d_divisor > BRDV_BAUD_MAX) |
| d_divisor = BRDV_BAUD_MAX; |
| |
| spin_lock_irqsave(&mvebu_uart_lock, flags); |
| brdv = readl(port->membase + UART_BRDV); |
| brdv &= ~BRDV_BAUD_MASK; |
| brdv |= d_divisor; |
| writel(brdv, port->membase + UART_BRDV); |
| spin_unlock_irqrestore(&mvebu_uart_lock, flags); |
| |
| osamp = readl(port->membase + UART_OSAMP); |
| osamp &= ~OSAMP_DIVISORS_MASK; |
| if (m_divisor != OSAMP_DEFAULT_DIVISOR) |
| osamp |= (m_divisor << 0) | (m_divisor << 8) | |
| (m_divisor << 16) | (m_divisor << 24); |
| writel(osamp, port->membase + UART_OSAMP); |
| |
| return DIV_ROUND_CLOSEST(port->uartclk, d_divisor * m_divisor); |
| } |
| |
| static void mvebu_uart_set_termios(struct uart_port *port, |
| struct ktermios *termios, |
| struct ktermios *old) |
| { |
| unsigned long flags; |
| unsigned int baud, min_baud, max_baud; |
| |
| spin_lock_irqsave(&port->lock, flags); |
| |
| port->read_status_mask = STAT_RX_RDY(port) | STAT_OVR_ERR | |
| STAT_TX_RDY(port) | STAT_TX_FIFO_FUL; |
| |
| if (termios->c_iflag & INPCK) |
| port->read_status_mask |= STAT_FRM_ERR | STAT_PAR_ERR; |
| |
| port->ignore_status_mask = 0; |
| if (termios->c_iflag & IGNPAR) |
| port->ignore_status_mask |= |
| STAT_FRM_ERR | STAT_PAR_ERR | STAT_OVR_ERR; |
| |
| if ((termios->c_cflag & CREAD) == 0) |
| port->ignore_status_mask |= STAT_RX_RDY(port) | STAT_BRK_ERR; |
| |
| /* |
| * Maximal divisor is 1023 and maximal fractional divisor is 63. And |
| * experiments show that baudrates above 1/80 of parent clock rate are |
| * not stable. So disallow baudrates above 1/80 of the parent clock |
| * rate. If port->uartclk is not available, then |
| * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud |
| * in this case do not matter. |
| */ |
| min_baud = DIV_ROUND_UP(port->uartclk, BRDV_BAUD_MAX * |
| OSAMP_MAX_DIVISOR); |
| max_baud = port->uartclk / 80; |
| |
| baud = uart_get_baud_rate(port, termios, old, min_baud, max_baud); |
| baud = mvebu_uart_baud_rate_set(port, baud); |
| |
| /* In case baudrate cannot be changed, report previous old value */ |
| if (baud == 0 && old) |
| baud = tty_termios_baud_rate(old); |
| |
| /* Only the following flag changes are supported */ |
| if (old) { |
| termios->c_iflag &= INPCK | IGNPAR; |
| termios->c_iflag |= old->c_iflag & ~(INPCK | IGNPAR); |
| termios->c_cflag &= CREAD | CBAUD; |
| termios->c_cflag |= old->c_cflag & ~(CREAD | CBAUD); |
| termios->c_cflag |= CS8; |
| } |
| |
| if (baud != 0) { |
| tty_termios_encode_baud_rate(termios, baud, baud); |
| uart_update_timeout(port, termios->c_cflag, baud); |
| } |
| |
| spin_unlock_irqrestore(&port->lock, flags); |
| } |
| |
| static const char *mvebu_uart_type(struct uart_port *port) |
| { |
| return MVEBU_UART_TYPE; |
| } |
| |
| static void mvebu_uart_release_port(struct uart_port *port) |
| { |
| /* Nothing to do here */ |
| } |
| |
| static int mvebu_uart_request_port(struct uart_port *port) |
| { |
| return 0; |
| } |
| |
| #ifdef CONFIG_CONSOLE_POLL |
| static int mvebu_uart_get_poll_char(struct uart_port *port) |
| { |
| unsigned int st = readl(port->membase + UART_STAT); |
| |
| if (!(st & STAT_RX_RDY(port))) |
| return NO_POLL_CHAR; |
| |
| return readl(port->membase + UART_RBR(port)); |
| } |
| |
| static void mvebu_uart_put_poll_char(struct uart_port *port, unsigned char c) |
| { |
| unsigned int st; |
| |
| for (;;) { |
| st = readl(port->membase + UART_STAT); |
| |
| if (!(st & STAT_TX_FIFO_FUL)) |
| break; |
| |
| udelay(1); |
| } |
| |
| writel(c, port->membase + UART_TSH(port)); |
| } |
| #endif |
| |
| static const struct uart_ops mvebu_uart_ops = { |
| .tx_empty = mvebu_uart_tx_empty, |
| .set_mctrl = mvebu_uart_set_mctrl, |
| .get_mctrl = mvebu_uart_get_mctrl, |
| .stop_tx = mvebu_uart_stop_tx, |
| .start_tx = mvebu_uart_start_tx, |
| .stop_rx = mvebu_uart_stop_rx, |
| .break_ctl = mvebu_uart_break_ctl, |
| .startup = mvebu_uart_startup, |
| .shutdown = mvebu_uart_shutdown, |
| .set_termios = mvebu_uart_set_termios, |
| .type = mvebu_uart_type, |
| .release_port = mvebu_uart_release_port, |
| .request_port = mvebu_uart_request_port, |
| #ifdef CONFIG_CONSOLE_POLL |
| .poll_get_char = mvebu_uart_get_poll_char, |
| .poll_put_char = mvebu_uart_put_poll_char, |
| #endif |
| }; |
| |
| /* Console Driver Operations */ |
| |
| #ifdef CONFIG_SERIAL_MVEBU_CONSOLE |
| /* Early Console */ |
| static void mvebu_uart_putc(struct uart_port *port, unsigned char c) |
| { |
| unsigned int st; |
| |
| for (;;) { |
| st = readl(port->membase + UART_STAT); |
| if (!(st & STAT_TX_FIFO_FUL)) |
| break; |
| } |
| |
| /* At early stage, DT is not parsed yet, only use UART0 */ |
| writel(c, port->membase + UART_STD_TSH); |
| |
| for (;;) { |
| st = readl(port->membase + UART_STAT); |
| if (st & STAT_TX_FIFO_EMP) |
| break; |
| } |
| } |
| |
| static void mvebu_uart_putc_early_write(struct console *con, |
| const char *s, |
| unsigned int n) |
| { |
| struct earlycon_device *dev = con->data; |
| |
| uart_console_write(&dev->port, s, n, mvebu_uart_putc); |
| } |
| |
| static int __init |
| mvebu_uart_early_console_setup(struct earlycon_device *device, |
| const char *opt) |
| { |
| if (!device->port.membase) |
| return -ENODEV; |
| |
| device->con->write = mvebu_uart_putc_early_write; |
| |
| return 0; |
| } |
| |
| EARLYCON_DECLARE(ar3700_uart, mvebu_uart_early_console_setup); |
| OF_EARLYCON_DECLARE(ar3700_uart, "marvell,armada-3700-uart", |
| mvebu_uart_early_console_setup); |
| |
| static void wait_for_xmitr(struct uart_port *port) |
| { |
| u32 val; |
| |
| readl_poll_timeout_atomic(port->membase + UART_STAT, val, |
| (val & STAT_TX_RDY(port)), 1, 10000); |
| } |
| |
| static void wait_for_xmite(struct uart_port *port) |
| { |
| u32 val; |
| |
| readl_poll_timeout_atomic(port->membase + UART_STAT, val, |
| (val & STAT_TX_EMP), 1, 10000); |
| } |
| |
| static void mvebu_uart_console_putchar(struct uart_port *port, unsigned char ch) |
| { |
| wait_for_xmitr(port); |
| writel(ch, port->membase + UART_TSH(port)); |
| } |
| |
| static void mvebu_uart_console_write(struct console *co, const char *s, |
| unsigned int count) |
| { |
| struct uart_port *port = &mvebu_uart_ports[co->index]; |
| unsigned long flags; |
| unsigned int ier, intr, ctl; |
| int locked = 1; |
| |
| if (oops_in_progress) |
| locked = spin_trylock_irqsave(&port->lock, flags); |
| else |
| spin_lock_irqsave(&port->lock, flags); |
| |
| ier = readl(port->membase + UART_CTRL(port)) & CTRL_BRK_INT; |
| intr = readl(port->membase + UART_INTR(port)) & |
| (CTRL_RX_RDY_INT(port) | CTRL_TX_RDY_INT(port)); |
| writel(0, port->membase + UART_CTRL(port)); |
| writel(0, port->membase + UART_INTR(port)); |
| |
| uart_console_write(port, s, count, mvebu_uart_console_putchar); |
| |
| wait_for_xmite(port); |
| |
| if (ier) |
| writel(ier, port->membase + UART_CTRL(port)); |
| |
| if (intr) { |
| ctl = intr | readl(port->membase + UART_INTR(port)); |
| writel(ctl, port->membase + UART_INTR(port)); |
| } |
| |
| if (locked) |
| spin_unlock_irqrestore(&port->lock, flags); |
| } |
| |
| static int mvebu_uart_console_setup(struct console *co, char *options) |
| { |
| struct uart_port *port; |
| int baud = 9600; |
| int bits = 8; |
| int parity = 'n'; |
| int flow = 'n'; |
| |
| if (co->index < 0 || co->index >= MVEBU_NR_UARTS) |
| return -EINVAL; |
| |
| port = &mvebu_uart_ports[co->index]; |
| |
| if (!port->mapbase || !port->membase) { |
| pr_debug("console on ttyMV%i not present\n", co->index); |
| return -ENODEV; |
| } |
| |
| if (options) |
| uart_parse_options(options, &baud, &parity, &bits, &flow); |
| |
| return uart_set_options(port, co, baud, parity, bits, flow); |
| } |
| |
| static struct uart_driver mvebu_uart_driver; |
| |
| static struct console mvebu_uart_console = { |
| .name = "ttyMV", |
| .write = mvebu_uart_console_write, |
| .device = uart_console_device, |
| .setup = mvebu_uart_console_setup, |
| .flags = CON_PRINTBUFFER, |
| .index = -1, |
| .data = &mvebu_uart_driver, |
| }; |
| |
| static int __init mvebu_uart_console_init(void) |
| { |
| register_console(&mvebu_uart_console); |
| return 0; |
| } |
| |
| console_initcall(mvebu_uart_console_init); |
| |
| |
| #endif /* CONFIG_SERIAL_MVEBU_CONSOLE */ |
| |
| static struct uart_driver mvebu_uart_driver = { |
| .owner = THIS_MODULE, |
| .driver_name = DRIVER_NAME, |
| .dev_name = "ttyMV", |
| .nr = MVEBU_NR_UARTS, |
| #ifdef CONFIG_SERIAL_MVEBU_CONSOLE |
| .cons = &mvebu_uart_console, |
| #endif |
| }; |
| |
| #if defined(CONFIG_PM) |
| static int mvebu_uart_suspend(struct device *dev) |
| { |
| struct mvebu_uart *mvuart = dev_get_drvdata(dev); |
| struct uart_port *port = mvuart->port; |
| unsigned long flags; |
| |
| uart_suspend_port(&mvebu_uart_driver, port); |
| |
| mvuart->pm_regs.rbr = readl(port->membase + UART_RBR(port)); |
| mvuart->pm_regs.tsh = readl(port->membase + UART_TSH(port)); |
| mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port)); |
| mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port)); |
| mvuart->pm_regs.stat = readl(port->membase + UART_STAT); |
| spin_lock_irqsave(&mvebu_uart_lock, flags); |
| mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV); |
| spin_unlock_irqrestore(&mvebu_uart_lock, flags); |
| mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP); |
| |
| device_set_wakeup_enable(dev, true); |
| |
| return 0; |
| } |
| |
| static int mvebu_uart_resume(struct device *dev) |
| { |
| struct mvebu_uart *mvuart = dev_get_drvdata(dev); |
| struct uart_port *port = mvuart->port; |
| unsigned long flags; |
| |
| writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port)); |
| writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port)); |
| writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port)); |
| writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port)); |
| writel(mvuart->pm_regs.stat, port->membase + UART_STAT); |
| spin_lock_irqsave(&mvebu_uart_lock, flags); |
| writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV); |
| spin_unlock_irqrestore(&mvebu_uart_lock, flags); |
| writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP); |
| |
| uart_resume_port(&mvebu_uart_driver, port); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops mvebu_uart_pm_ops = { |
| .suspend = mvebu_uart_suspend, |
| .resume = mvebu_uart_resume, |
| }; |
| #endif /* CONFIG_PM */ |
| |
| static const struct of_device_id mvebu_uart_of_match[]; |
| |
| /* Counter to keep track of each UART port id when not using CONFIG_OF */ |
| static int uart_num_counter; |
| |
| static int mvebu_uart_probe(struct platform_device *pdev) |
| { |
| struct resource *reg = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| const struct of_device_id *match = of_match_device(mvebu_uart_of_match, |
| &pdev->dev); |
| struct uart_port *port; |
| struct mvebu_uart *mvuart; |
| int id, irq; |
| |
| if (!reg) { |
| dev_err(&pdev->dev, "no registers defined\n"); |
| return -EINVAL; |
| } |
| |
| /* Assume that all UART ports have a DT alias or none has */ |
| id = of_alias_get_id(pdev->dev.of_node, "serial"); |
| if (!pdev->dev.of_node || id < 0) |
| pdev->id = uart_num_counter++; |
| else |
| pdev->id = id; |
| |
| if (pdev->id >= MVEBU_NR_UARTS) { |
| dev_err(&pdev->dev, "cannot have more than %d UART ports\n", |
| MVEBU_NR_UARTS); |
| return -EINVAL; |
| } |
| |
| port = &mvebu_uart_ports[pdev->id]; |
| |
| spin_lock_init(&port->lock); |
| |
| port->dev = &pdev->dev; |
| port->type = PORT_MVEBU; |
| port->ops = &mvebu_uart_ops; |
| port->regshift = 0; |
| |
| port->fifosize = 32; |
| port->iotype = UPIO_MEM32; |
| port->flags = UPF_FIXED_PORT; |
| port->line = pdev->id; |
| |
| /* |
| * IRQ number is not stored in this structure because we may have two of |
| * them per port (RX and TX). Instead, use the driver UART structure |
| * array so called ->irq[]. |
| */ |
| port->irq = 0; |
| port->irqflags = 0; |
| port->mapbase = reg->start; |
| |
| port->membase = devm_ioremap_resource(&pdev->dev, reg); |
| if (IS_ERR(port->membase)) |
| return PTR_ERR(port->membase); |
| |
| mvuart = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_uart), |
| GFP_KERNEL); |
| if (!mvuart) |
| return -ENOMEM; |
| |
| /* Get controller data depending on the compatible string */ |
| mvuart->data = (struct mvebu_uart_driver_data *)match->data; |
| mvuart->port = port; |
| |
| port->private_data = mvuart; |
| platform_set_drvdata(pdev, mvuart); |
| |
| /* Get fixed clock frequency */ |
| mvuart->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(mvuart->clk)) { |
| if (PTR_ERR(mvuart->clk) == -EPROBE_DEFER) |
| return PTR_ERR(mvuart->clk); |
| |
| if (IS_EXTENDED(port)) { |
| dev_err(&pdev->dev, "unable to get UART clock\n"); |
| return PTR_ERR(mvuart->clk); |
| } |
| } else { |
| if (!clk_prepare_enable(mvuart->clk)) |
| port->uartclk = clk_get_rate(mvuart->clk); |
| } |
| |
| /* Manage interrupts */ |
| if (platform_irq_count(pdev) == 1) { |
| /* Old bindings: no name on the single unamed UART0 IRQ */ |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| mvuart->irq[UART_IRQ_SUM] = irq; |
| } else { |
| /* |
| * New bindings: named interrupts (RX, TX) for both UARTS, |
| * only make use of uart-rx and uart-tx interrupts, do not use |
| * uart-sum of UART0 port. |
| */ |
| irq = platform_get_irq_byname(pdev, "uart-rx"); |
| if (irq < 0) |
| return irq; |
| |
| mvuart->irq[UART_RX_IRQ] = irq; |
| |
| irq = platform_get_irq_byname(pdev, "uart-tx"); |
| if (irq < 0) |
| return irq; |
| |
| mvuart->irq[UART_TX_IRQ] = irq; |
| } |
| |
| /* UART Soft Reset*/ |
| writel(CTRL_SOFT_RST, port->membase + UART_CTRL(port)); |
| udelay(1); |
| writel(0, port->membase + UART_CTRL(port)); |
| |
| return uart_add_one_port(&mvebu_uart_driver, port); |
| } |
| |
| static struct mvebu_uart_driver_data uart_std_driver_data = { |
| .is_ext = false, |
| .regs.rbr = UART_STD_RBR, |
| .regs.tsh = UART_STD_TSH, |
| .regs.ctrl = UART_STD_CTRL1, |
| .regs.intr = UART_STD_CTRL2, |
| .flags.ctrl_tx_rdy_int = CTRL_STD_TX_RDY_INT, |
| .flags.ctrl_rx_rdy_int = CTRL_STD_RX_RDY_INT, |
| .flags.stat_tx_rdy = STAT_STD_TX_RDY, |
| .flags.stat_rx_rdy = STAT_STD_RX_RDY, |
| }; |
| |
| static struct mvebu_uart_driver_data uart_ext_driver_data = { |
| .is_ext = true, |
| .regs.rbr = UART_EXT_RBR, |
| .regs.tsh = UART_EXT_TSH, |
| .regs.ctrl = UART_EXT_CTRL1, |
| .regs.intr = UART_EXT_CTRL2, |
| .flags.ctrl_tx_rdy_int = CTRL_EXT_TX_RDY_INT, |
| .flags.ctrl_rx_rdy_int = CTRL_EXT_RX_RDY_INT, |
| .flags.stat_tx_rdy = STAT_EXT_TX_RDY, |
| .flags.stat_rx_rdy = STAT_EXT_RX_RDY, |
| }; |
| |
| /* Match table for of_platform binding */ |
| static const struct of_device_id mvebu_uart_of_match[] = { |
| { |
| .compatible = "marvell,armada-3700-uart", |
| .data = (void *)&uart_std_driver_data, |
| }, |
| { |
| .compatible = "marvell,armada-3700-uart-ext", |
| .data = (void *)&uart_ext_driver_data, |
| }, |
| {} |
| }; |
| |
| static struct platform_driver mvebu_uart_platform_driver = { |
| .probe = mvebu_uart_probe, |
| .driver = { |
| .name = "mvebu-uart", |
| .of_match_table = of_match_ptr(mvebu_uart_of_match), |
| .suppress_bind_attrs = true, |
| #if defined(CONFIG_PM) |
| .pm = &mvebu_uart_pm_ops, |
| #endif /* CONFIG_PM */ |
| }, |
| }; |
| |
| /* This code is based on clk-fixed-factor.c driver and modified. */ |
| |
| struct mvebu_uart_clock { |
| struct clk_hw clk_hw; |
| int clock_idx; |
| u32 pm_context_reg1; |
| u32 pm_context_reg2; |
| }; |
| |
| struct mvebu_uart_clock_base { |
| struct mvebu_uart_clock clocks[2]; |
| unsigned int parent_rates[5]; |
| int parent_idx; |
| unsigned int div; |
| void __iomem *reg1; |
| void __iomem *reg2; |
| bool configured; |
| }; |
| |
| #define PARENT_CLOCK_XTAL 4 |
| |
| #define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw) |
| #define to_uart_clock_base(uart_clock) container_of(uart_clock, \ |
| struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx]) |
| |
| static int mvebu_uart_clock_prepare(struct clk_hw *hw) |
| { |
| struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| struct mvebu_uart_clock_base *uart_clock_base = |
| to_uart_clock_base(uart_clock); |
| unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2; |
| unsigned int parent_clock_idx, parent_clock_rate; |
| unsigned long flags; |
| unsigned int d1, d2; |
| u64 divisor; |
| u32 val; |
| |
| /* |
| * This function just reconfigures UART Clock Control register (located |
| * in UART1 address space which controls both UART1 and UART2) to |
| * selected UART base clock and recalculates current UART1/UART2 |
| * divisors in their address spaces, so that final baudrate will not be |
| * changed by switching UART parent clock. This is required for |
| * otherwise kernel's boot log stops working - we need to ensure that |
| * UART baudrate does not change during this setup. It is a one time |
| * operation, it will execute only once and set `configured` to true, |
| * and be skipped on subsequent calls. Because this UART Clock Control |
| * register (UART_BRDV) is shared between UART1 baudrate function, |
| * UART1 clock selector and UART2 clock selector, every access to |
| * UART_BRDV (reg1) needs to be protected by a lock. |
| */ |
| |
| spin_lock_irqsave(&mvebu_uart_lock, flags); |
| |
| if (uart_clock_base->configured) { |
| spin_unlock_irqrestore(&mvebu_uart_lock, flags); |
| return 0; |
| } |
| |
| parent_clock_idx = uart_clock_base->parent_idx; |
| parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx]; |
| |
| val = readl(uart_clock_base->reg1); |
| |
| if (uart_clock_base->div > CLK_TBG_DIV1_MAX) { |
| d1 = CLK_TBG_DIV1_MAX; |
| d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX; |
| } else { |
| d1 = uart_clock_base->div; |
| d2 = 1; |
| } |
| |
| if (val & CLK_NO_XTAL) { |
| prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK; |
| prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) * |
| ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK); |
| } else { |
| prev_clock_idx = PARENT_CLOCK_XTAL; |
| prev_d1d2 = 1; |
| } |
| |
| /* Note that uart_clock_base->parent_rates[i] may not be available */ |
| prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx]; |
| |
| /* Recalculate UART1 divisor so UART1 baudrate does not change */ |
| if (prev_clock_rate) { |
| divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) * |
| parent_clock_rate * prev_d1d2, |
| prev_clock_rate * d1 * d2); |
| if (divisor < 1) |
| divisor = 1; |
| else if (divisor > BRDV_BAUD_MAX) |
| divisor = BRDV_BAUD_MAX; |
| val = (val & ~BRDV_BAUD_MASK) | divisor; |
| } |
| |
| if (parent_clock_idx != PARENT_CLOCK_XTAL) { |
| /* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */ |
| val |= CLK_NO_XTAL; |
| val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT); |
| val |= d1 << CLK_TBG_DIV1_SHIFT; |
| val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT); |
| val |= d2 << CLK_TBG_DIV2_SHIFT; |
| val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT); |
| val |= parent_clock_idx << CLK_TBG_SEL_SHIFT; |
| } else { |
| /* Use XTAL, TBG bits are then ignored */ |
| val &= ~CLK_NO_XTAL; |
| } |
| |
| writel(val, uart_clock_base->reg1); |
| |
| /* Recalculate UART2 divisor so UART2 baudrate does not change */ |
| if (prev_clock_rate) { |
| val = readl(uart_clock_base->reg2); |
| divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) * |
| parent_clock_rate * prev_d1d2, |
| prev_clock_rate * d1 * d2); |
| if (divisor < 1) |
| divisor = 1; |
| else if (divisor > BRDV_BAUD_MAX) |
| divisor = BRDV_BAUD_MAX; |
| val = (val & ~BRDV_BAUD_MASK) | divisor; |
| writel(val, uart_clock_base->reg2); |
| } |
| |
| uart_clock_base->configured = true; |
| |
| spin_unlock_irqrestore(&mvebu_uart_lock, flags); |
| |
| return 0; |
| } |
| |
| static int mvebu_uart_clock_enable(struct clk_hw *hw) |
| { |
| struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| struct mvebu_uart_clock_base *uart_clock_base = |
| to_uart_clock_base(uart_clock); |
| unsigned long flags; |
| u32 val; |
| |
| spin_lock_irqsave(&mvebu_uart_lock, flags); |
| |
| val = readl(uart_clock_base->reg1); |
| |
| if (uart_clock->clock_idx == 0) |
| val &= ~UART1_CLK_DIS; |
| else |
| val &= ~UART2_CLK_DIS; |
| |
| writel(val, uart_clock_base->reg1); |
| |
| spin_unlock_irqrestore(&mvebu_uart_lock, flags); |
| |
| return 0; |
| } |
| |
| static void mvebu_uart_clock_disable(struct clk_hw *hw) |
| { |
| struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| struct mvebu_uart_clock_base *uart_clock_base = |
| to_uart_clock_base(uart_clock); |
| unsigned long flags; |
| u32 val; |
| |
| spin_lock_irqsave(&mvebu_uart_lock, flags); |
| |
| val = readl(uart_clock_base->reg1); |
| |
| if (uart_clock->clock_idx == 0) |
| val |= UART1_CLK_DIS; |
| else |
| val |= UART2_CLK_DIS; |
| |
| writel(val, uart_clock_base->reg1); |
| |
| spin_unlock_irqrestore(&mvebu_uart_lock, flags); |
| } |
| |
| static int mvebu_uart_clock_is_enabled(struct clk_hw *hw) |
| { |
| struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| struct mvebu_uart_clock_base *uart_clock_base = |
| to_uart_clock_base(uart_clock); |
| u32 val; |
| |
| val = readl(uart_clock_base->reg1); |
| |
| if (uart_clock->clock_idx == 0) |
| return !(val & UART1_CLK_DIS); |
| else |
| return !(val & UART2_CLK_DIS); |
| } |
| |
| static int mvebu_uart_clock_save_context(struct clk_hw *hw) |
| { |
| struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| struct mvebu_uart_clock_base *uart_clock_base = |
| to_uart_clock_base(uart_clock); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&mvebu_uart_lock, flags); |
| uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1); |
| uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2); |
| spin_unlock_irqrestore(&mvebu_uart_lock, flags); |
| |
| return 0; |
| } |
| |
| static void mvebu_uart_clock_restore_context(struct clk_hw *hw) |
| { |
| struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| struct mvebu_uart_clock_base *uart_clock_base = |
| to_uart_clock_base(uart_clock); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&mvebu_uart_lock, flags); |
| writel(uart_clock->pm_context_reg1, uart_clock_base->reg1); |
| writel(uart_clock->pm_context_reg2, uart_clock_base->reg2); |
| spin_unlock_irqrestore(&mvebu_uart_lock, flags); |
| } |
| |
| static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| struct mvebu_uart_clock_base *uart_clock_base = |
| to_uart_clock_base(uart_clock); |
| |
| return parent_rate / uart_clock_base->div; |
| } |
| |
| static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long *parent_rate) |
| { |
| struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| struct mvebu_uart_clock_base *uart_clock_base = |
| to_uart_clock_base(uart_clock); |
| |
| return *parent_rate / uart_clock_base->div; |
| } |
| |
| static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long parent_rate) |
| { |
| /* |
| * We must report success but we can do so unconditionally because |
| * mvebu_uart_clock_round_rate returns values that ensure this call is a |
| * nop. |
| */ |
| |
| return 0; |
| } |
| |
| static const struct clk_ops mvebu_uart_clock_ops = { |
| .prepare = mvebu_uart_clock_prepare, |
| .enable = mvebu_uart_clock_enable, |
| .disable = mvebu_uart_clock_disable, |
| .is_enabled = mvebu_uart_clock_is_enabled, |
| .save_context = mvebu_uart_clock_save_context, |
| .restore_context = mvebu_uart_clock_restore_context, |
| .round_rate = mvebu_uart_clock_round_rate, |
| .set_rate = mvebu_uart_clock_set_rate, |
| .recalc_rate = mvebu_uart_clock_recalc_rate, |
| }; |
| |
| static int mvebu_uart_clock_register(struct device *dev, |
| struct mvebu_uart_clock *uart_clock, |
| const char *name, |
| const char *parent_name) |
| { |
| struct clk_init_data init = { }; |
| |
| uart_clock->clk_hw.init = &init; |
| |
| init.name = name; |
| init.ops = &mvebu_uart_clock_ops; |
| init.flags = 0; |
| init.num_parents = 1; |
| init.parent_names = &parent_name; |
| |
| return devm_clk_hw_register(dev, &uart_clock->clk_hw); |
| } |
| |
| static int mvebu_uart_clock_probe(struct platform_device *pdev) |
| { |
| static const char *const uart_clk_names[] = { "uart_1", "uart_2" }; |
| static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P", |
| "TBG-A-S", "TBG-B-S", |
| "xtal" }; |
| struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)]; |
| struct mvebu_uart_clock_base *uart_clock_base; |
| struct clk_hw_onecell_data *hw_clk_data; |
| struct device *dev = &pdev->dev; |
| int i, parent_clk_idx, ret; |
| unsigned long div, rate; |
| struct resource *res; |
| unsigned int d1, d2; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) != |
| ARRAY_SIZE(uart_clock_base->clocks)); |
| BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) != |
| ARRAY_SIZE(uart_clock_base->parent_rates)); |
| |
| uart_clock_base = devm_kzalloc(dev, |
| sizeof(*uart_clock_base), |
| GFP_KERNEL); |
| if (!uart_clock_base) |
| return -ENOMEM; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res) { |
| dev_err(dev, "Couldn't get first register\n"); |
| return -ENOENT; |
| } |
| |
| /* |
| * UART Clock Control register (reg1 / UART_BRDV) is in the address |
| * space of UART1 (standard UART variant), controls parent clock and |
| * dividers for both UART1 and UART2 and is supplied via DT as the first |
| * resource. Therefore use ioremap() rather than ioremap_resource() to |
| * avoid conflicts with UART1 driver. Access to UART_BRDV is protected |
| * by a lock shared between clock and UART driver. |
| */ |
| uart_clock_base->reg1 = devm_ioremap(dev, res->start, |
| resource_size(res)); |
| if (!uart_clock_base->reg1) |
| return -ENOMEM; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (!res) { |
| dev_err(dev, "Couldn't get second register\n"); |
| return -ENOENT; |
| } |
| |
| /* |
| * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address |
| * space of UART2 (extended UART variant), controls only one UART2 |
| * specific divider and is supplied via DT as second resource. |
| * Therefore use ioremap() rather than ioremap_resource() to avoid |
| * conflicts with UART2 driver. Access to UART_BRDV is protected by a |
| * by lock shared between clock and UART driver. |
| */ |
| uart_clock_base->reg2 = devm_ioremap(dev, res->start, |
| resource_size(res)); |
| if (!uart_clock_base->reg2) |
| return -ENOMEM; |
| |
| hw_clk_data = devm_kzalloc(dev, |
| struct_size(hw_clk_data, hws, |
| ARRAY_SIZE(uart_clk_names)), |
| GFP_KERNEL); |
| if (!hw_clk_data) |
| return -ENOMEM; |
| |
| hw_clk_data->num = ARRAY_SIZE(uart_clk_names); |
| for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) { |
| hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw; |
| uart_clock_base->clocks[i].clock_idx = i; |
| } |
| |
| parent_clk_idx = -1; |
| |
| for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) { |
| parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]); |
| if (IS_ERR(parent_clks[i])) { |
| if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER) |
| return -EPROBE_DEFER; |
| dev_warn(dev, "Couldn't get the parent clock %s: %ld\n", |
| parent_clk_names[i], PTR_ERR(parent_clks[i])); |
| continue; |
| } |
| |
| ret = clk_prepare_enable(parent_clks[i]); |
| if (ret) { |
| dev_warn(dev, "Couldn't enable parent clock %s: %d\n", |
| parent_clk_names[i], ret); |
| continue; |
| } |
| rate = clk_get_rate(parent_clks[i]); |
| uart_clock_base->parent_rates[i] = rate; |
| |
| if (i != PARENT_CLOCK_XTAL) { |
| /* |
| * Calculate the smallest TBG d1 and d2 divisors that |
| * still can provide 9600 baudrate. |
| */ |
| d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR * |
| BRDV_BAUD_MAX); |
| if (d1 < 1) |
| d1 = 1; |
| else if (d1 > CLK_TBG_DIV1_MAX) |
| d1 = CLK_TBG_DIV1_MAX; |
| |
| d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR * |
| BRDV_BAUD_MAX * d1); |
| if (d2 < 1) |
| d2 = 1; |
| else if (d2 > CLK_TBG_DIV2_MAX) |
| d2 = CLK_TBG_DIV2_MAX; |
| } else { |
| /* |
| * When UART clock uses XTAL clock as a source then it |
| * is not possible to use d1 and d2 divisors. |
| */ |
| d1 = d2 = 1; |
| } |
| |
| /* Skip clock source which cannot provide 9600 baudrate */ |
| if (rate > 9600 * OSAMP_MAX_DIVISOR * BRDV_BAUD_MAX * d1 * d2) |
| continue; |
| |
| /* |
| * Choose TBG clock source with the smallest divisors. Use XTAL |
| * clock source only in case TBG is not available as XTAL cannot |
| * be used for baudrates higher than 230400. |
| */ |
| if (parent_clk_idx == -1 || |
| (i != PARENT_CLOCK_XTAL && div > d1 * d2)) { |
| parent_clk_idx = i; |
| div = d1 * d2; |
| } |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) { |
| if (i == parent_clk_idx || IS_ERR(parent_clks[i])) |
| continue; |
| clk_disable_unprepare(parent_clks[i]); |
| devm_clk_put(dev, parent_clks[i]); |
| } |
| |
| if (parent_clk_idx == -1) { |
| dev_err(dev, "No usable parent clock\n"); |
| return -ENOENT; |
| } |
| |
| uart_clock_base->parent_idx = parent_clk_idx; |
| uart_clock_base->div = div; |
| |
| dev_notice(dev, "Using parent clock %s as base UART clock\n", |
| __clk_get_name(parent_clks[parent_clk_idx])); |
| |
| for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) { |
| ret = mvebu_uart_clock_register(dev, |
| &uart_clock_base->clocks[i], |
| uart_clk_names[i], |
| __clk_get_name(parent_clks[parent_clk_idx])); |
| if (ret) { |
| dev_err(dev, "Can't register UART clock %d: %d\n", |
| i, ret); |
| return ret; |
| } |
| } |
| |
| return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, |
| hw_clk_data); |
| } |
| |
| static const struct of_device_id mvebu_uart_clock_of_match[] = { |
| { .compatible = "marvell,armada-3700-uart-clock", }, |
| { } |
| }; |
| |
| static struct platform_driver mvebu_uart_clock_platform_driver = { |
| .probe = mvebu_uart_clock_probe, |
| .driver = { |
| .name = "mvebu-uart-clock", |
| .of_match_table = mvebu_uart_clock_of_match, |
| }, |
| }; |
| |
| static int __init mvebu_uart_init(void) |
| { |
| int ret; |
| |
| ret = uart_register_driver(&mvebu_uart_driver); |
| if (ret) |
| return ret; |
| |
| ret = platform_driver_register(&mvebu_uart_clock_platform_driver); |
| if (ret) { |
| uart_unregister_driver(&mvebu_uart_driver); |
| return ret; |
| } |
| |
| ret = platform_driver_register(&mvebu_uart_platform_driver); |
| if (ret) { |
| platform_driver_unregister(&mvebu_uart_clock_platform_driver); |
| uart_unregister_driver(&mvebu_uart_driver); |
| return ret; |
| } |
| |
| return 0; |
| } |
| arch_initcall(mvebu_uart_init); |